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Extendible hashing is a new access technique, in which the user is guaranteed no more than two page 

faults to locate the data associated with a given unique identifier, or key. Unlike conventional hashing, 

extendible hashing has a dynamic structure that grows and shrinks gracefully as the database grows 
and shrinks. This approach simultaneously solves the problem of making hash tables that are 

extendible and of making radix search trees that are balanced. We study, by analysis and simulation, 

the performance of extendible hashing. The results indicate that extendible hashing provides an 
attractive alternative to other access methods, such as balanced trees. 
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1. EVOLUTION OF FILE ORGANIZATION SCHEMES 

Over the past two decades, schemes for structuring large files of data have evolved 
by merging concepts and techniques from two areas that were initially perceived 
as requiring distinct approaches: data structures appropriate for central memory, 
and access methods appropriate to slow, high-capacity secondary-storage devices. 
This distinction is becoming more and more blurred. We will briefly trace some 

relevant developments in both areas, and show their convergence towards general 
schemes for structuring data whose volume is allowed to grow and shrink by large 
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factors, such that the data are always accessed by the same algorithm (requiring 
no “exception routines”), and worst case performance is almost never significantly 
worse than average performance. 

The first schemes used for structuring data were more appropriate to static 
than to dynamic data. Static means that the extent and structure of the data 
remain unchanged during processing; only values may be updated. Dynamic 
means that data elements may be inserted and deleted, and relationships between 
data elements (such as links) may be changed. The distinction between static 
and dynamic data is of course not clear-cut (e.g. changing a link means updating 
a pointer value), but in practice it is usually unambiguous and serves a useful 

purpose. 
The array (as a data structure for central memory) and the sequential file (the 

only feasible structure on media restricted to sequential access, such as tape), are 

the best known examples of static structures. Insertions and deletions (except, 
possibly, at the end of a file) lead to at least one of two undesirable consequences: 
the introduction of ad hoc mechanisms (such as a flag to indicate that a record 

still present in the structure should be considered as having been deleted, or 
pointers to an overflow bucket which holds records that cannot be squeezed into 
their rightful place), and frequent expensive restructuring of the entire data 
collection (typically when the number of holes left by deletions, and overflow 
areas created by insertions, has grown so large as to degrade performance 
severely). 

The evolution from static to dynamic data structures proceeded rapidly in 

those applications where data could be kept in central memory. List structures, 
invented to accommodate highly dynamic data, became an identifiable technique 
during the 1950s (see, for example, Newell and Simon [El). The problem of 
possible degeneracy of list structures (for example, when a dynamic tree degen- 
erates into a linear list because of a biased sequence of insertions and deletions) 
was recognized and attacked early. The height-balanced trees of AdeIson-Velskii 
and Landis [l] were a pioneering step toward the development of data structures 

that adapt gracefully and gradually to repeated insertions and deletions. The 
concept of data structures that adapt their structure in response to external 
demands is now widely known. 

The development of comparable dynamic file structures for seconday-storage 
devices was slower. With the advent of disks, the sequential files appropriate to 

tapes were quickly modified to indexed-sequential files (see, for example, [6]), 
which, ideally, permit access to any record in two steps: first, a directory is 
searched, which points to the proper cylinder or track, second, this track is 
searched sequentially. For static files this scheme is as fast as the hardware 
restrictions on disk accessing permit; for highly dynamic files indexed-sequential 
access can lead to poor performance; instead of a 2-step access to data, long linear 
chains of “overflow buckets” may be traversed. 

Balanced trees turned out to be a good solution for storing highly dynamic files 
on disks, just as they were for dynamic lists in central memory. The B-trees of 
Bayer and McCreight [3] (a decade after the discovery of balanced trees for list 
structures!), were the first file organization scheme that addressed the issue of 
gradual adaptation of structure to fit the data. 

Since balanced trees are a successful technique for storing dynamic files, one 

ACM Transactions on Database Systems, Vol. 4, No. 3, September 1979. 



Extendible Hashing - 317 

might well be tempted not to look further. We have attempted, however, to make 
a systematic search for other adaptable file organization schemes suitable for 
dynamic files, and we saw two approaches that appeared promising. 

First, the analogy we have outlined, between file structures for secondary- 
storage devices, and data structures for central memory, leads one to investigate 
another general class of file organization techniques. Data structures for central 

memory fall into three broad categories: linearly or sequentially accessible (in 
time O(n), where n is the number of items in the collection), accessible by tree 
structures (in time O(log(n))), and directly accessible by key-to-address, or 
“hash,” transformations (in time O( 1)). Hashing schemes have so far been 
adapted to dynamic files on secondary-storage devices only by the inelegant and 
inefficient technique of attaching overflow buckets whenever needed, thus slowly 

but surely changing the O(1) access time characteristic of hashing towards the 

O(n) time characteristic of sequential allocation. If one can design adaptable 
hashing schemes that remain balanced as pages are added and deleted, the 
suitability of hashing for secondary-storage devices would be greatly enhanced. 

Second, radix search trees (also known as digital search trees, or tries (Fredkin 
[5])), which examine a key one digit or letter at a time, have long been known to 
provide potentially faster access than tree search schemes that are based on 
comparisons of entire keys, for the simple reason that one comparison leads to a 
larger fan-out (equal to the number of characters in the alphabet underlying the 
key.space). In practice, however, radix search trees tend to be used only for small 
files, since they often waste memory. The scheme of allocating a field for each 

character of the alphabet at each node is better suited to representing the entire 
key space rather than the contents of a particular file. Thus a radix search tree 
usually contains space for many keys not in the table. Usually, the wasted 
memory space occurs at the nodes near the bottom of the tree. Attempts to 
exploit the speed of radix search trees without paying the penalty in memory 
space usually combine radix search for some prefix of the key with other search 
techniques for the suffixes (see, for example, Walker [Ml). If, instead of switching 

from radix search to, say, binary search at some arbitrary depth in the tree, one 
could find a balancing scheme that would keep the tree uniformly filled, then 
radix search trees might provide an attractive alternative to balanced trees based 
on key comparison, such as B-trees. 

We pursued both goals: (1) making hash tables extendible, so that they can 
adapt to dynamic files and (2) filling radix search trees uniformly, so that they 

remain balanced. These two apparently distinct goals merged into a single file 
organization scheme which has both aspects. It will be described in detail after 
the necessary concepts and terminology have been developed. 

After preparing this paper, the authors learned that three similar but distinct 
schemes had been independently proposed, under the names expandable hashing 
[8], dynamic hashing [lo], and virtual hashing [ll]. The reader interested in the 
scheme described in this paper should also consult [S, 10, 111. Expandable and 
dynamic hashing are very similar to our scheme. Both our scheme and the 
schemes presented in [8] and [lo] use a directory (or index) pointing to leaves (or 
buckets), and all three schemes distribute records among buckets in the same 
way. The main difference is in the structure of the directory: Knott [S] and 
Larson [lo] use linked access to a tree, while we use direct access to a contiguously 
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allocated table. Our scheme will be no worse than the schemes of Khott and 
Larson as regards access time, and with virtual memory ours wilI be much better: 
we risk but one page fault to find the bucket containing a record, while Knott and 
Larson will risk several, depending on the depth of the tree. The comparison as 
regards space depends on system-dependent parameters such as pointer lengths, 
and also on the particular file being stored. For practical values of the parameters, 

our directory will be small with probability very nearly 1 (in a sense that will be 
made precise in Section 5). This difference will usually be unimportant, however, 
since the space used for the directory will be small compared with that used for 
the records themselves. Comparison of virtual hashing with our scheme is more 

difficult. The definition of virtual hashing (“any hashing which may dynamically 
change its hashing function”) is quite broad and could be taken to include all of 

the above schemes. The specific virtual hashing schemes Litwin [ll] describes, 
however, are different enough so that comparison with our scheme appears to 
require further specification of implementation details and values of system- 

dependent parameters. 
In addition to the details mentioned, other differences between our paper and 

the papers of Knott [8], Larson [lo], and Litwin [ll] are that we have a more 

comprehensive analysis (Section 5), and we describe (in Sections 2 and 3) an 

overall approach to designing ftie organizations. 

2. CHARACTERISTICS OF DYNAMIC FILE ORGANIZATION SCHEMES . 

This section defines the concepts and terminology used throughout the paper, 
and illustrates them by means of well-known data structures and file organizations 
(see also [17, Ch. 61. 

A file is a collection of records, each one identified by a key; usually B natural 
order is defined on the space of keys, which induces a natural order on the file. 

When accesses to the file occur according to the natural order, we speak of 
sequential access or processing of the file; otherwise we speak of random access. 

A file organization scheme is a logical storage structure into which a file can 
be mapped, along with the algorithms needed to manage this structure. A scheme 
manages a collection of pages or blocks, usually of fixed size. To specify a scheme 
one has to describe the relationship between the pages as well as the internal 
structure of a page, and algorithms for file maintenance (inserting and deleting 
records) and access. 

STRUCTURE BETWEEN PAGES. Pages are accessed by starting at a root page 
and following an access path which leads from page to page. A file organization 
scheme suitable for dynamic files imposes a constraint on the balance of the 
structure, which states that the length of access paths is bounded by some 
expression in the total number p of pages (for example, path length = O(log p) or 
perhaps O(1)). 

INTERNAL STRUCTURE OF A PAGE. In general, a page contains records and 
pointers to other pages, i.e. a page is a storage area as well as a directory. If a 
page contains only pointers, it is called a directory page. If a page contains only 
keys, or keys and their associated records, then it is called a leaf page, or leaf 
Usually the occupancy, or load factor A of a page is bounded, i.e. constants (Y and 
j? are specified such that 0 5 (Y I A 5 j3 I 1. The purpose of the lower bound (Y is 
to prevent the creation of pages that are underfiied; the purpose of the upper 
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bound /3, when it differs from 1, is to reduce the number of undesirable events 
(such as collisions in hash tables) due to crowding. 

File maintenance algorithms guarantee that the constraints on the balance of 

the entire structure, and on the load factor of each page, are always satisfied. 
Early file organization schemes did not include file maintenance as an integral 

part of the file structure. As a consequence, file maintenance algorithms were 
crude and not specified in much more detail than: “when there are so many holes 
and overflow buckets that access performance is severely degraded, restructure 
the whole file.” Dynamic file organization schemes, on the other hand, enforce 
rigorously stated balance and occupancy constraints. As soon as an insertion or 
deletion causes an occupancy parameter to fall outside its allowed range, a 

“small” rebalancing operation is performed. Usually, an underfilled page bor- 
rows records from a neighbor, if there is one who can spare records; or an 
underfiied page is merged with a neighbor who can absorb it; and an overfilled 
page is split into two partially filled pages. 

The difficulty of designing a dynamic file organization scheme lies in meeting 
all, or most, of the criteria above in a uniform way, by means of a set of simple 

concepts and algorithms. As an illustration, let us describe some well-known data 
structures and file organizations in terms of the concepts introduced above. 

Consider binary search trees. Each node can be considered as a page with a 
simple internal structure: It contains precisely one key (or record) and two 
pointers (which may be nil). The load factor of each node is always 100 percent. 
If the tree is allowed to grow and shrink unchecked in response to random 

insertions and deletions, the O(logp) access performance expected of binary trees 
cannot be guaranteed; the worst case behavior will be O(p). The height-balanced 
trees of Adelson-Velskii and Landis [l] enforce the following balance constraint: 
at any node, the heights of the two subtrees of this node may differ by at most 1. 
The weight-balanced trees of Nievergelt and Reingold [lS] enforce the following 
constraint: at any node, the ratio of the weights (e.g. the total number of nodes) 
of the two subtrees of this node must lie within certain bounds. Both balance 
constraints guarantee access, insertion, and deletion in time O(logp). Both classes 
of trees have balancing algorithms based on local transformations called rotations, 
which restore the balance of a tree that was disturbed by a single insertion or 

deletion, in time O(logp). 
Consider “paginated binary search trees,” where each page may contain at 

most m records (nodes of the binary tree). The structure between pages is that of 
a multiway tree, with a page containing i keys having i + 1 pointers to other 
pages. Page faults will be minimized when each page contains a connected 
subtree. In order to achieve this, Muntz and Uzgalis [14] proposed the following 
constraint on paginated binary trees: If a newly inserted key has no place in the 
page of its father, then it is entered into a newly allocated page (rather than into 

any page that has an empty space). Unfortunately, this constraint leads to the 
creation of many nearly empty pages, with a corresponding waste of memory and 

access time. 
Bayer and McCreight [3] proposed a more efficient occupancy constraint: when 

a newly inserted record does not fit into the page where it should go according to 
the natural order of its key, then split that page into two half-filled pages. Their 

B-trees satisfy the occupancy constraint + I h I 1 for all pages (with the possible 
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exception of one, the root page). The internal structure of a page is not completely 
specified, except that it contains records as well as pointers to other pages. Access 

to records within a page was originally intended to be sequential. If a page has 
the internal structure of a binary tree, then a B-tree can be interpreted as being 
a paginated binary tree. 

These examples should suffice to illustrate the concepts introduced at the 
beginning of this section. The reader who experiments with various combinations 
of balance and occupancy constraints and with various structures between the 
pages and internal to a page, will be able to discover an unlimited number of 
reasonable dynamic file organizations. Most of these will be variations on well- 

known themes. The following section combines these concepts to form a novel 

class of dynamic file organization schemes. 

3. EXTENDIBLE HASHING EQUALS BALANCED RADIX SEARCH TREES 

A clear understanding of the characteristics and components of dynamic file 
organization schemes, as presented in Section 2, allows one to design such 
schemes on demand. The results tend to cluster around a few basic types, 
however, one of which is the well-known balanced tree concept. A new basic type, 
to be described in this section, can be understood from two different viewpoints, 

and, accordingly, obtained by modifying two distinct known methods: hashing 
and radix search trees. These two addressing schemes are usually considered to 
be unrelated. Their interplay in our novel file organization scheme achieves two 
striking goals: 

(1) Hashing, conventionally using a table of fixed size, can be made to be 
extendible. 

(2) Radix search trees, conventionally seen to grow randomly, can be made to 
be balanced. 

This section gives an intuitive, high-level description of two design processes 
that lead to the same goal, a file organization scheme we call extendible hashing. 
The detailed description is left to Section 4. By presenting not only the final 
result, but also the method that leads to its discovery, we hope that the reader 
will gain a deeper understanding of the essential issues. 

3.1 Balancing Radix Search Trees 

Thesis. Radix search trees are naturally extendible. By addressing their nodes 

via a hash function that provides a uniform distribution of keys they become 
balanced. 

Let us illustrate the above brief statement of a design principle by means of an 
example. 

(a) Consider the radix search tree in Figure 1, over the alphabet (0, 1, 2}. 
Assume that leaf LOI contains all keys that start with the digits 01, for example, 
the keys 012 and 01110. When a leaf overflows, as might have happened in our 
example toa previzsly present leaf ,510, it is simply replaced by an internal node 
to which three new leaves are attached (L~oo, ZW, ~5102 in our example). 

(b) Access to a radix search tree can be speeded up if, instead of comparing 
one digit of a key at a time (resulting in a fan-out equal to the size r of the 
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Fig. 1. A radix search tree 
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Fig. 2. Radix search tree with two levels compressed into one 

OCO 001 002 010 011 012 020 021 022 loo 101 102 
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222 

. . . 

z 
b2 

Fig. 3. Degenerate radix search tree 

underlying alphabet at each node), we flatten out the top d levels into an array 
of rd pointers; by using the d leftmost (= most significant) digits of the key as an 
index into this directory, we achieve a fanout of rd at the root. For d = 2 our 
example is displayed in Figure 2. 

(c) If we can afford to waste some space for redundant information, then we 
may extend the directory to a greater depth, i.e. to cover more levels than the 
shortest root-to-leaf path justifies, thus trading memory for speed. This happens 
in our example if we choose d = 3 (see Figure 3). Notice that each leaf at depth 
2 (or level 2) in the tree is being pointed at from three different entries in the 
directory; only the leaves at depth 3 make full use of the expanded length of the 
directory. 
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(d) So far we have considered radix search trees whose top d levels have been 

flattened into a directory of depth d; leaves at level 1 I d are then accessed with 
a single probe, i.e. by following a single pointer from the directory (= root of the 
tree). Leaves at level I > d, on the other hand, would require more than one 
probe, as Figure 2 shows. By choosing the depth of the directory sufficiently large 

(d z the length of the longest root-to-leaf path) we can guarantee access in a 
single probe to any leaf. The radix search tree has degenerated into a direct 
(= one-step) access mechanism. Using the key as an address yields the ultimate 
in speed at a usually extravagant cost in memory-unless the space from which 
the keys are drawn is uncharacteristically small, or (and this is the key observa- 
tion) the keys in the file are uniformly spread over the key space. 

(e) Hash functions have been used for two decades to convert a nonuniform, 
usually unknown, distribution into another one which one hopes is close to 
uniform. Only recently Carter and Wegman [4] have given a mathematical 
foundation to this hope. Armed with this insight, we now envision the following 
file organization scheme which is both extendible and balanced (see Figure 4). 

This is a summary of the ideal picture. The details are described in Section 4. 
An analysis which justifies the high expectations mentioned above occurs in 
Sections 5 and 6. Let us now describe how the same goal can be reached by 

another design process, which starts with conventional hash tables and tries to 
extend them. 

3.2 Extending Hash Tables 

Thesis. Hash tables are naturally balanced. By separating the hash address space 
from the directory address space, hash tables can be made extendible. 

Hashing (or key-to-address transformation, or scatter storage techniques) is 

Key space S: 
Actual content 
of file very un- 
evenly distributed 

Hash function h 
maps S onto an 
address space A 
such that addresses 
hiKl fairlv evenlv 

Address space A is 
mapped onto a 
directory of appropriate 
size such that all leaves 
have approximately 0 0 0 
the same high load 0 0 
factor 

ml 0 

Fig. 4. Radix search tree being accessed through a hash function 
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W h 
Al 

Space B 

S 
Hash 

Function 

h(K) = Constant 

1 fy----j-q 
Fig. 5. Hashing into a directory 

recognized in practice as providing the fastest random access to a file. This 
empirical evidence is supported by theoretical analysis, which indicates that 
access time to a hash table is independent of the number of records; instead, 

access time depends on the load factor of the table, and in practice load factors 

as high as 90 percent ahow hashing to be competitive with other access schemes. 
In contrast to the fast O(1) access time, hashing is burdened with two disad- 

vantages that prevent its use in many applications. First, hashing usually cannot 
support sequential processing of a file according to the natural order on the keys. 
Sequential processing requires sorting, an O(n log n) operation which makes the 
fast random access useless. Second, traditional hash tables are not extendible- 

their size is intimately tied to the hash function used, and often must be 
determined before one knows how many records are to be placed in it. A high 

estimate of the number of records results in wasted space; a low estimate results 
in costly rehashing, that is, choice of a new table size, a new hash function, and 
relocation of all records. 

Because of the two preceding disadvantages, hashing has usually been confined 

to tables which fit into main memory, and whose size can be estimated reliably. 
Where such a table is a directory of a file stored on disk, the necessary file 
maintenance algorithms to make the file organization scheme truly dynamic, in 
the sense described in Section 2, have not previously been worked out. 

In this section we describe a broad class of file organization schemes based on 
hashing which are extendible in the sense of Section 2. They also go part way 
toward solving the first traditional shortcoming of hash tables: They support 
sequential processing to a limited extent. More specifically, it is possible to 
process the keys in hash order, without referencing the same page more than 
once. Let the following examples illustrate the design approach. 

(a) Consider a hash table organized as a directory with address space Al, with 
each entry of the directory pointing to a bucket (= leaf page) of fixed size (see 

Figure 5). This traditional picture has the disadvantage that it does not suggest 
a way of making the file extendible: When a bucket overflows, because too many 
keys K arrive with h(K) equal to a given address (Y, there appears to be no 
alternative to rehashing. 
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(b) The following figure serves as a starting point for generalization, since it 
contains an additional component that can be manipulated (see Figure 6). The 

hash function maps the key space S onto a large address space Al. A partition n 
splits A1 into m blocks; each block has one leaf allocated for its use and the 
directory somehow implements the correspondence between blocks and leaves. 
Assuming that 7~ is defined by m + 1 boundaries (~0, (~1, . . . , am, leaf Li contains all 
keys K with ai-1 I h(K) < CY~. The added flexibility of this scheme is shown by 
the following possibilities: if a leaf overflows, we may be able to change the 

partition, perhaps by as little as shifting one boundary ai, and relocating only 
those keys that are affected by this shift. Notice that h need not be changed. 

(c) We are thus led to make the hash table extendible by varying a partition 
7~ on a large address space A, while keeping the hash function unchanged. The 
question arises immediately as to what kind of partitions can be efficiently 
managed. Since we aim at a very large, theoretically unbounded, capacity of the 

entire file, while keeping the bucket capacity constant, the partitions we deal with 
must have a variable number of blocks. Among many conceivable families of 
partitions, the well-known “buddy system” for storage management (see, for 
example, Knuth [9, Vol. 1, p. 4421) suggestsitself immediately because of its 
simplicity. Let A = (0, . . . , 2” - 1) for some large fixed n; then a0 = 0 < (Y~ < (Y~ 
c... < (Y,,, = 2” - 1 are the boundaries of a partition of the buddy-system type 

iff all intervals [ai-l, ai) can be obtained by repeated halving of intervals in A. 
The example in Figure 7 shows a buddy-system partition with n = 3. 

Buddy-system partitions have the advantage that when a leaf overflows, the 

corresponding block in the address space is halved, a new leaf is added, and only 
the keys in the halved block are affected. Halving any block of a buddy-system 
partition leads to another such partition. When a block gets underfilled because 

of deletions, and its buddy has enough room, these two blocks can easily be 
merged into a buddy-system partition with one block less. 

(d) There remains the question of how a buddy-system partition is efficiently 
implemented in a directory. Again there is an obvious efficient solution. Let the 
depth d of a buddy-system partition be the least integer such that each member 

of the buddy-system partition is the union of some of the 2d equal-sized intervals 
obtained by continued halvings. Thus d is minimal such that for each block 

Kw 
SpiXe 

S 

h 
. 

Hash 
Function 

Fig. 6. Hashing into a large address space 
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Fig. 7. A partition of the buddy-system type 

[(~i-~, aJ of the partition, (ai - ai-1) 2 2”-“. A directory with 2d entries, some of 
which may point to the same bucket, allows one to take the d most significant 
bits of the hash address h(K) as the index in the address space A1 = 
(0, . . . , 2d - l} of the directory. When the depth of a partition increases, then the 
directory doubles in size. 

(e) The attentive reader will have noticed that we have now arrived at precisely 
the same scheme developed in Section 3, starting from a radix search tree; it is 
presented here for the special case where the radix r = 2, which is natural if one 
thinks of hash addresses as bit strings. The details of the file organization scheme 
thus found at the intersection of two distinct approaches are presented in 
Section 4. 

3.3 Balance Versus Sequentiality 

Two points mentioned earlier in this section remain to be discussed: balancing 
and sequential processing. Balancing, in the case of a two-level tree as we have in 
extendible hashing, merely means that the occupancy of leaf pages is bounded 

above and below. Sequentiality can mean two things. In a weak sense it means 
that the entire set of keys (and corresponding data) can be processed efficiently 
one at a time, where each page of keys is referenced only once. Sequential&y in 
the usual stronger sense means that the order of sequential processing coincides 
with the natural order (e.g. lexicographic order) defined on the space of keys. 
Either of these desirable goals (balance and sequentiality) can be achieved in 

extendible hash tables; both can be achieved simultaneously to some extent, but 
not fully. 

Balancing is achieved in two distinct ways. First, partitioning the address space 
A into blocks of variable length achieves a balancing effect regardless of the 
distribution of hash addresses h(K) over A: in regions where hash addresses of 
keys in the table cluster, the partition is finer than in sparsely populated regions. 

Second, a main purpose of hash functions in general is to distribute a set of keys 
that is nonuniformly distributed over the key space S uniformly over an address 
space A. 

Sequentiality in the weak sense (by hash address or “pseudokey”) is trivially 
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achieved with extendible hashing. For many applications, sequentiality in pseu- 
dokey order is just as good as sequentiality in key order. For example, consider 
a batch-update application, where there is a master file and a (presumably 

smaller) update file. The updates are “batched together” into an update file, 
which is then used to update the master. An efficient procedure for actually 
applying the update to the master file is to always store the master file in sorted 
order, then to sort the updates by key, and then to apply the updates to the 
master. In this way, no page of the master file is retrieved more than once. In this 

application, one can just as well sort in pseudokey order as in key order. As 
another example, it is often important to do a “first, next, next, next, . . .” and 
touch every record (or key) exactly once. Again, pseudokey order will do just as 
well as key order. 

Sequentiality in natural order, that is, by key, tends to conflict with balancing: 
a compromise is the result. Hash functions that tend to distribute hash addresses 

uniformly over A, even for biased sets of keys with many clusters, ignore (destroy) 
the natural order on the keys (whence the name “hash”). If such a conventional 
hash function is used in order to improve the balance, then extendible hashing 
provides sequentiality only in the weak sense. Note, however, that it is possible 
to store the set of keys within each leaf in natural order, so that sequential 
processing in natural order can be obtained for the cost of merging all leaves, as 

opposed to sorting the entire file. 

Order-preserving hash functions, which satisfy the condition “K < L iff h(K) 
< h(L)” permit sequential processing in natural order. They are rarely used in 
practice because they do not sufficiently break up clusters of adjacent names, 
and thus fail to provide a uniform occupancy of the address space. Since 
extendible hashing induces a partition of the address space into variable-length 
blocks, the occupancy of leaf pages (buckets) can be made to be significantly 
more uniform than the occupancy in the address space is. Hence order-preserving 
hash functions should be seriously considered as a means of allowing true 
sequential access in extendible hash tables. 

4. A SPECIFIC EXTENDIBLE HASHING SCHEME 

In this section we describe in more detail one extendible hashing scheme. 

Probably its most important performance characteristic is its speed. Even for files 
that are very large by current standards, there are never more than two page 
faults necessary to locate a key and its associated information. 

We assume that we are given a fixed hash function h. If K is a key, then we call 
K’ = h(K) the pseudokey associated with K. We choose pseudokeys to be of fixed 
length, such as 32 bits. A good choice for the hash function h is one randomly 

selected from a universal class of hash functions, as defined by Carter and 
Wegman [4]. Then, whatever the distribution of keys, we can expect the pseu- 
dokeys to be distributed nearly uniformly: about half the pseudokeys have Grst 
bit 0; about a quarter start with 01, etc. Note that although the pseudokeys are 
of fixed length, the keys need not be. 

The file is structured into two levels: directory and leaves. The leaves contain 

pairs (K, I(K)), where K is a key, and I(K) is associated information: either the 
record associated with K, or a pointer to the record. 

ACM Transactions on Database Systems, Vol. 4, No. 3, September 1979. 



Depth d 

000 pointer 

001 " 

010 " 

011 " 

100 " 

101 " 

110 " 

111 " 

Directory 

Extendible Hashing - 

Leaf Paqes 

327 

hi-) = 00. . . 

h(-) = 010. . . 

h(-J = 011 . . . 

h(-) = 1 . . . 

I 

Fig. 8 

The directory has a header, in which is stored a quantity called the depth d of 
the directory. After the header, the directory contains pointers to leaf pages. The 
pointers are laid out as follows. First, there is a pointer to a leaf that stores all 
keys K for which the pseudokey K’ = h(K) starts with d consecutive zeros. This 

is followed by a pointer for all keys whose pseudokeys begin with the d bits 

0 . . . 01, and then a pointer for all keys whose pseudokeys begin 0 . . . 010, and so 
on lexicographically. Thus altogether there are 2d pointers (not necessarily 
distinct), and the final pointer is for all keys whose pseudokey begins with d 
consecutive ones. If d = 3, then the directory looks like the left side of Figure 8. 

Assume that we want to locate key Ko and its associated information. Calculate 

h(Ko), and find its first d bits. Do a simple address computation to find the 
location in the directory of the pointer that corresponds to this d-bit prefix. If we 
follow this pointer, then we find a leaf page that contains (Ko, I(Ko)), provided Ko 
is a key in the file at the moment. 

Each leaf page has a header that contains a local depth d’ for the leaf page. 
For example, if we follow the 000 pointer in the directory of Figure 8, we reach a 
leaf page with local depth 2. Local depth 2 means that not only does this leaf 

page contain all keys whose pseudokey begins with 000, but even more, it contains 
all keys whose pseudokey begins with the 2 bits 00. Thus the 001 pointer also 
points to this leaf page. The depth of the directory is the maximum of the local 
depths of all of the leaf pages. 

In our example of Figure 8, there are so few keys whose pseudokey begins with 
a 1 that there is a single leaf page (with local depth 1) associated with all such 
keys. What happens when this leaf page finally overfills (or reaches a predeter- 
mined unacceptably full level, such as 90 percent full)? Then as in Figure 9, it 
“splits” into two leaf pages, each with local depth 2. All keys whose pseudokey 
begins 10 appear on the first of these leaf pages, and all keys whose pseudokey 
begins 11 appear on the other. 

What happens if a leaf page overfills, and the local depth of the leaf page 
already equals the depth of the directory? Then the directory doubles in size, its 
depth increases by 1, and the leaf page splits. For example, if we start with the 
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situation as in Figure 9, and if the leaf page pointed to by the 010 pointer overfills, 
then we get Figure 10. This process of doubling the directory is not expensive 
because no leaf pages need to be touched (except, of course, for the leaf page that 
caused the split and its new sibling). There is an easy, essentially one-pass 
algorithm for doubling the directory, that proceeds by working from the bottom 
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of the old directory up to the top of the old directory. The simple details are left 
to the reader. If there are so many keys that the directory is in secondary storage, 
then since the directory is stored contiguously, it can be streamed into main 
memory in large blocks. If there are a few million keys when the directory 

doubles, and if the secondary-storage device has a data transfer rate of around a 
million bytes per second (roughly comparable to that of the IBM 3330 disk), then 
it is straightforward to estimate that the time involved in doubling the directory 
(which is mainly data transfer time) would be less than a second if there were 400 
keys per leaf page. Even in the extreme case of a billion keys, the time involved 
in doubling the directory would be less than a minute. 

We note that if we had used suffixes of pseudokeys instead of prefixes, then the 
algorithm for doubling the directory would be especially easy: it would essentially 
consist of making a second copy of the nonheader portion of the directory, 
immediately after the first copy. However, we chose to use prefixes for the sake 
of intuitive simplicity (thus, by using prefures the keys can easily be accessed in 
pseudokey order, rather than in inverted pseudokey order). 

The internal structure of the leaves is independent of the relationship between 
the pages. In the interest of speed, we choose to organize the leaves as (traditional) 
hash tables. It is natural to use the “ignored” bits of the pseudokey K’ to hash 
within the page. Any standard collision-resolution technique, such as open 
addressing or chaining, is acceptable, as long as it stores colliding keys within the 
same page. 

If deletions form such a large proportion of the operations of an application 

that space will be saved by coalescing pages, then this can be accomplished by 
keeping in the directory the number of entries on each page as well as the pointer 
to the page. Then at each deletion, the total number of entries in the page deleted 
from together with the appropriate sibling page can be checked without any extra 
accesses. However, this additional complexity will probably not be justified for 

those applications where we can expect new growth to rapidly replace any 
deletions. 

There is at most one page fault in locating the appropriate directory page, 
because the structure of the directory is so simple that the location of each 
pointer can be determined by an easy address computation. Further, there is at 
most one page fault in obtaining the appropriate leaf page. So no more than two 

page faults are necessary to locate a key and its associated information. In many 
natural situations the directory will be so small that it can be kept resident in 
main memory. For example, if the page size is 4K bytes, if keys are 7 bytes long 
and pointers to pages are 3 bytes long, then after a million inserts, the directory 
can be expected to be 3 pages in size. 

A number of advantages accrue from the simple, intuitive structure of exten- 

dible hashing. The most obvious is the simplicity of coding (thus leading to lower 
likelihood of “bugs”). Our extendible hashing algorithm is easily modified to 
accommodate individual needs: for example, it might be desirable in some 
contexts to “initialize” by starting with a directory depth d greater than zero and 
individually initializing 2d leaf pages. 

We close this section by giving in more detail the algorithms for extendible 
hashing. 
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ACCESS (given key Ko) 

1. Calculate K< = h(KJ. 
2. Read d, the depth of the directory. 
3. Take the initial d bits of K<, interpret them as an integer base 2, and call this number 

4. ket u be the length in bytes of the region (one for each pointer in the directory) that 
tells the numbber of entries on that leaf page. If this information is not being stored in 
the directory then let v = 0. 

5. Find the pointer that is located r(Z + u) bytes from the start of the nonheader portion 
of the directory, when 1 is the length of each pointer in bytes. 

6. Follow this pointer to a leaf page P. 
7. Use the trailing s bits of the pseudokey to hash onto leaft page P (where s is a fixed, 

system-determined parameter). 
8. If necessary, follow the collision-resolution scheme within page P. 

INSERT (given (Ko, I(Ko))) 
1. Apply the first seven steps of ACCESS, using key Ko. 
2. If by inserting key KO on leaf page P, we would exceed our threshold, then go to Step 

7. 
3. If there is sufficient free space at the location calculated at the end of Step 1, then 

insert (Ko, I(Ko)) there. 
4. Otherwise, follow the collision-resolution scheme to insert (Ko, I(Ko)) on leaf page P, 

if this is possible. 
5. (Optional) For each directory pointer that points to page P, increment by one the 

entry that tells the number of entries on the leaf page. 
6. If (Ko, I(Ko)) has been successfully inserted, then stop. 
7. At this point, we know there is not sufficient free space on page P. Obtain a new page 

P* to use as a leaf page. 
8. Obtain a temporary area Q to store all (K, I(K)) pairs that appeared on page P, along 

with the new (Ko, I(Ko)). 
9. Set the local depth of each of P and P* to d’ + 1, where d’ is the old local depth of P. 

10. Erase all nonheader information from page P. 
11. If the new local depth of P is bigger than the current directory depth, then do the 

following. 
a. Increase the depth of the directory by one. 
b. Double the size of the directory, and update the pointers in the obvious manner. 
c. (Optional) Set to zero the entry giving the number of entries on the leaf pages P 

and P*. 
12. INSERT all (K, I(K)) pairs one at a time from the temporary area Q. 

Note that the INSERT routine can (repeatedly) call itself recursively (in Step 12). 

DELETE (given Ko) 
1. ACCESS, using K,,. 
2. If K. does not appear, then stop (and send the appropriate return code). 
3. Delete by writing the deleted sign over the entry or by unchaining, depending on the 

collision-resolution strategy. 
4. (Optional) If the sum of the number of entries on this page and its sibling page are 

below the threshold, then coalesce these two pages as follows: 
a. Copy all (K, I(K)) entries from these two pages into a temporary region Q. 
b. Throw away (i.e. return to free space) one of the two pages. Make all pointers that 

point to it point to the remaining page. 
c. Decrement the depth on the remaining page P by one. 
d. Erase all (K, I(K)) entries on page P. 
e. Set to zero the “number of entries on page” values associated with all pointers to P. 
f. INSERT all (K, I(K)) pairs one at a time from the temporary area Q. 

5. (Optional) If every pointer in the directory equals its sibling pointer, then do the 
following: 
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a. Decrease the depth of the directory by one. 
b. Halve the size of the directory, and update the pointers in the obvious manner. 

5. ANALYSIS 

In this section we shall derive some analytical results concerning the number of 
leaf pages and directory entries used by extendible hashing. As with all hashing 
schemes, performance in the worst case is intolerable; it is possible, for example, 
for a file with just one more record than wilI fit into a leaf page to cause the 

directory to expand until there is a separate entry for every possible pseudokey! 
The probability of this happening is astronomically small, of course, and in 
speaking of “probability” here we need not entrust our fate to the source of our 
file; for any file, we may take the dice into our own hands and choose our hashing 
function at random (see Markowsky, Carter, and Wegman [12]). In describing 
our insertion algorithm we assumed that the index contained no duplicate keys 

and that an index page was never filled with duplicate pseudokeys. In fact, if the 

hashing function maps even two distinct keys onto the same pseudokey, this 
collision might be considered an indication that either the space of pseudokeys is 
not large enough or that we have been unlucky in our choice of hash function and 
should choose again from the class of hash functions available. The results of 
Markowsky, Carter, and Wegman [12] aIlow us to make conservation estimates 
of the probability of collisions in the pseudokey space independent of the 
distribution of keys in the key space. For example, if pseudokeys are 128 bits 
long, the probability of even a single collision in filling an index with one billion 
inserts is less than one quadrillionth ( 10-15). 

Our interest in what follows will be in average performance; to study this we 
shall assume natural probability distributions, setting aside the question of 
whether the randomness is provided by the source of the file, the choice of the 
hashing function, or (as will usualIy be the case) some combination of the two. 

For the analysis of average performance, it is traditional to assume that the file 
has some particular number of records and that these records have uniformly 
and independently distributed pseudokeys. This wilI be called the Bernoulli 
model in what follows. The best way to handle this model seems to be to start 
with another model, in which the pseudokeys are again uniformly and indepen- 
dently distributed, but in which the number of records is itself a random variable. 
This will be called the Poisson model in what follows. Our strategy wiIl be to 
analyze the Poisson model, then show that the Bernoulli model can be reduced 
to the Poisson model. Although our main interest is in the Bernoulli model (since 
this allows comparisons with simuiations and other published analyses), the 
Poisson model is of some interest in its own right: if, for example, records arrive 

for insertion with exponentially distributed interarrival times and are deleted 
after arbitrarily distributed lifetimes, then the equilibrium distribution follows 
;he Poisson model (this is the situation M/G/w in ther terminology of queueing 
theory; see Khinchine [7, Section 251). 

THE BERNOULLI MODEL. For this model the number of records has a deter- 
ministic value, say n. If we consider a pseudokey interval of lengthp, the number 
J of records whose pseudokeys fall in this interval is a Bernoulli distributed 
random variable: 
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~‘(1 -p)“-‘. 

More generally, if we consider r disjoint intervals with lengths pl, . . . , pr, the 

numbers JI, . . . , J, of records whose pseudokeys fall in these intervals have the 

joint distribution 

wherep=pl+ --. +p,andj=jI+ --- +j,. 
THE POISSON MODEL. For this model the number N of records is a Poisson 

distributed random variable: 

P(N = n) = e-V/n!. 

The parameter Y is the average number of records. The number J of records 
whose pseudokeys fall in an interval of length p is also Poisson distributed: 

P( J = j) = C (e-“v”/n!) 
jzsn<m 0 

y pj(1 -p)n-j 

= (e-“vjpj/j!) C ~“~‘(1 - p)“-j/(n - j)! 
jancm 

=e -“)vp)j/j!. 

More generally, the numbers J1, . . . , Jr of records whose pseudokeys fall in 
disjoint intervals with lengthsp1, . . . , pr are independently Poisson distributed: 

P(Jl = jl, . . . , J,. = jr) = z . . . pc(l -P)“-’ 
jzzncm 

= (e-‘vjp$ . . . pG/j,! . . . j,!) z v”-j(l - p)“+(n - j)! 

jsnec 

= (e-“pb(vpl)‘*/jl!) . . . (e-“P+pr)jr/j,!). 

The aspects of extendible hashing that we shah study are closely related to a 
variant of radix-exchange sorting. If we assume that leaf pages split when they 

contain more than m records, we should assume that the sorting routine calls 
itself recursively when there are more than m records to be sorted, but terminates 
nonrecursively when there are m or fewer records. There will then be a one-to- 
one correspondence between the leaf pages in extendible hashing and the terminal 
invocations of the sorting routine. Straight radix-exchange sorting (the case m = 
1) has been analyzed by Knuth [S, Vol. 3, Section 5.2.21 and it is natural to try to 
extend that analysis to m I 2. This is done in [S, Vol. 3, Section 6.3, Exercises 19 
and 201, but the form in which the results are given there is unsuitable for our 
purposes, since it involves a sum of m different Fourier series. The method we 
use in what follows leads straightforwardly to a single Fourier series. Although it 
gives coarser error terms, it gives a natural interpretation for the main approxi- 
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mation involved: a Bernoulli distribution is approximated by a Poisson distribu- 
tion. 

5.1 The Poisson Model 

We begin with the average number of leaf pages. Consider a binary tree that has 

the “ghosts” of pages that have split as its internal nodes and has the current leaf 
pages as its external nodes (see Figure 11). 

The number of leaf pages is greater by one than the number of ghosts. A ghost 
at level K (the root is at level 0) corresponds to a pseudokey interval of length 2-k 
that contains more than m records. Since there are 2k potential ghosts at level k, 
the average number of leaf pages is 

1 + z 2kP(>m, 2-9, (5.1.1) 
OSk<C.D 

where P(>m, 2-k) denotes the probability that a pseudokey interval of length 2-k 
contains more than m records. 

Substituting the Poisson distribution (with average number of records as V) 

into (5.1.1) yields 

1 + c 2k c e-“-*(v2+)9!. (5.1.2) 
OSS<m mv~cm 

We shall show that if m remains fixed and Y + 00 this expression behaves like 

(v/m)~,(log v) + O(v”’ log v), (5.1.3) 

where 

b(x) = C, cm,heePnihX (5.1.4) 
-m-zk<+m 

and 
cm,h = (log e)(m - 1 + 2&h log e)!/(l - 2rih log e)(m - l)!. 

The logarithms are to the base 2. 

(5.1.5) 

A few words concerning this result are in order. The average number of records 

is v; if these records were packed m to a page, they would occupy v/m pages. In 
the expression (5.1.3), +,(log v) should therefore be interpreted as the storage 
expansion ratio: the ratio of the average number of pages for this algorithm to 

Fig. 11 
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the average of the minimum possible number. The Fourier series (5.1.4) shows 
this function to be periodic with period 1, so when Y doubles the expansion ratio 
returns to its original value. The constant tern (corresponding to h = 0) is 

log e = 1.442 . . . ; this is the “average” value of &,,(log v) if v is “distributed” 
according to the logarithmic law (so that log v is uniformly distributed modulo J). 
The first harmonic terms (corresponding to h = +l) are smaller in magnitude by 
at least a factor of (1 + (2a log e)2)“2, since I(x + iy)! 1 I x!; the succeeding 
harmonic terms continue to decrease in magnitude, and eventually they decay 
exponentially. 

To evaluate (5.1.2), we write it as 

1 + c (vj/j!) c 2MFde-y2-’ 
mcj<m Osk<cc 

and substitute the integral representation 

This gives 

I 

-1/2+im 

eP = (l/2&) (z!/zd+‘) dz. 
-1/2-h 

I 

-1/2+im 

1 + c (9/j!) c 2k”-q1/27ri) [z!/(v2-k)z+l] dz 
m-qicm tik<CO -1/2-k 

I 

-1/2+im 

= 1 + x (vj/j!)(l/2ni) [z!/v”+‘(l - 2z++2)] dz. 
mqj<m -1/2-b 

To evaluate this integral, let us consider the poles of the integrand. There are 
poles at 2 = -1, -2, . . . due to z!, and poles at z = j - 2 + 2nih log e (for h = 

. . . , -1, 0, +1, . . .) due to the zeros of 1 - 2*-J+2. If the path of integration is 
shifted to the right of the latter poles, the value of the integral is augmented by 
the sum of the residues at these poles. This gives 

1 + C (vj/j!) 2 (log e)(j - 2 + 2vrih log e)!v-i+1-2rrih log e 
mcjcm -m<h<+m 

j-3/2-e+& 

+ C (vj/j!)(l/277i) I [z!/v”‘(l - 2z++2)] dz, 
?Kj<CO 

j-3/2-c-ice 

where E is a small parameter (0 < E < 3) which will be chosen later. To complete 
the derivation of (5.1.3) we shall show that the double sum is (v/m)&(log v) and 
that the remaining sum is O(V”~ log v). 

The double sum can be rewritten as 

v -m;<+m v-2?rih log e C (log e)(j - 2 + 2aih log e)!/j! 
mc j<m 

=v c eCfnih log “(log e) C (m i-j - 1 + 2nih log e) !/(n + j + 1) !. 
--m<h<+m Osj-zx 

The inner sum is the hypergeometric series 
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F(m + 2mih log e, 1; m + 2; l)(m - 1 + 2mih log e) !/(m + l)! 

= (m - 1 + 2rih log e)!/(l - 2?rih log e)m!. 

This gives 

v -rrzc+m e-2nih log “(log e)(m - 1 + 2&h log e)!/(l - 2nih log e)m! 

= (v/m) C c,,he-2n’h log ” 
-m-zh<+m 

= W4qMlog 4. 

For the remaining sum we have 

j-3/2-r+im 

(1/27ri) 
I 

[z!/v”+‘(l - 2=-j+2)] dz = O((j - 1 - l )!/V’-“2-‘(+ - e)) 
j-3/2-r-ix 

and 

mJ<m (zJ/j!)O((j - 1 - l )!/P’“-‘(4 - E)) = O(vi’2”/e(+ - E)). 

By choosing E = l/in Y we obtain O(V”~ log v). 

Let us now consider the depth and the number of directory entries used by 
extendible hashing. We have seen that there are about (v/m)log e = v/m ln 2 leaf 

pages on the average; if these all appeared at two successive levels, these two 
levels would be 

a = [log (v/m ln 2)] 
and 

b = [log (v/m ln 2)1, 

and the directory would have 

entries. This last expression can be written as (v/m)#,Jlog v), where J/m(x) is a 
periodic function with period 1. This function has a Fourier series with constant 
term (log e)2 = 2.079 . . . , so there would be (v/m)(log e)2 = v/m@ 2)2 directory 

entries on the average. 
It does not always happen, of course, that all the leaf pages appear at two 

successive levels, we shall show, however, that it happens with probability very 
nearly 1 for practical values of m and v. First, consider the probability that there 
is a leaf page at level a - 1 or less. This can happen if one of the 2+’ potential 
ghosts at level a - 1 fails to be a ghost; the probability of this is at most 

Since 

gaml[l - P(>m, 2’-33 = za-’ C e-Y2’-“(y21-a)j/j!a 

Or+m 

and 

2”-’ 5 v/2m ln 2 

v2 lea 2 2m In 2, 
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this expression is at most 

(v/2m ln 2) C e-2m h 2(2m In 2)‘/j! 
osjm 

= (v/2m ln 2)[ed2” ‘” 2 (2m ln 2)“/m!] c (2m ln 2)‘~“m!/j!. 
05&m 

Bounding the sum by a geometric series, we find that this expression is at most 

(v/42 In 2 - l))[e-‘” Ln 2(2m In 2)“/m!], 

and using the inequality m! > mme-m(2?rm)1’2 we find that this expression in turn 

is at most 

~/rn~‘~(27r)~‘~(2 In 2 - 1)(2/e In 2)“. (5.1.6) 

By similar reasoning, if there is a leaf page at level b + 1 or more, one of the 2b 
potential ghosts at level b must actuaUy be a ghost; the probability of this is at 

most 

zbP(>m, 2-b) = 2b C e-‘2-b(v2-b)i/j! 
mq’a= 

I (2v/m ln 2) C e-* In 2(m ln 2)‘/j! 
*-=j<Ol 

5 (2u/m ln 2)[e-” In 2 (m ln 2)“/m!] 1 (m ln 2)‘-“m!/j! 
m-=j<oa 

I (2v/m(l - ln 2))[e-” In 2(m In 2)“/m!] 

I 2v/m3’2(27r)“2(1 - ln 2)(2/e ln 2)“. (5.1.7) 

The bounds (5.1.6) and (5.1.7) are both of the form v/E,,,, where E, grows 
exponentially with m. This means that when m is moderately large, these bounds 
are very smalI unless Y is very large. If m = 200, for example, (5.1.7) is less than 
~/130,000,000, and (5.1.6) is smaller still. For practical values of m and Y, then, the 
depth and number of directory entries can be predicted with considerable confi- 
dence. 

If m remains fixed and Y + m, however, we have no satisfactory estimates for 

the average depth and the average number of directory entries. The depth wilI 
exceed k if and only if there is a ghost at level k; the probability of this is 

Q(>k) = 1 - [l - P(>m, 2-k)]“. 

(We have used the fact that disjoint pseudokey intervals contain independent 

numbers of records.) Thus the average depth is 

wTcm Q(>k) = C 
OSk<CC 

and the average number of directory entries is 

1 + c 2kQ(>k) = 1 + C 
OSk<CO OdKm 

1 - x eey2-‘( v2-k)j/$ II . m-&m 

ACM Transactions on Database Systems, Vol. 4, No. 3, September 1979. 



Extendible Hashing * 337 

These sums have us stumped. It is natural to suppose that they are O(log 4 and 
O(V), but we have not succeeded in obtaining bounds better than O(V) and O(V’); 
these bounds are obtained by applying Q(M) I 2kP(>m, 2-k) and proceeding as 
for the average number of leaf pages. 

5.2 The Bernoulli Model 

We again begin with the average number of leaf pages. Substituting the Bernoulli 

distribution into (5.1.1) yields 

1+ c 2k c 
osk<ca llb&n 0 

y pj(l _ 2-ky-3. 

We shall show that this expression differs from 

1 + c 2k c e-“2-b(?z2-k)j/j! (5.2.2) 
OSk<CO m+CCO 

by a term of the form O(n2j3), and thus that the average number of leaf pages for 
the Bernoulli model is the same as that found in Section 5.1 for the Poisson model 
(with u = n), except for a slight deterioration of the error term. We shall go from 

(52.1) to (5.2.2) in three steps. First, we shall show that terms with k small orj 
large do not contribute much to (5.2.1), so these terms can be omitted without 
much effect. Second, we shall show that for the remaining terms the summand of 
(5.2.1) approximates that of (5.2.2). Finally, we shall show that terms with k small 
or j large do not contribute much to (5.2.2), so these terms can be restored 

without much effect. 
To make this argument precise, let 

k0 = log en2/’ 

and 

j0 = en’j3. 

Expression (5.2.1) differs from 

kz<m zk m& (;) 2-k’(l - rkrj (5.2.3) 

1+ c 2k c 
tik<k, m<jsn 

this sum is O(n213), since the inner sum (a Bernoulli probability) is at most 1. 
Expression (5.2.3) in turn differs from 

c P c 
0 

y 2-kj(l _ 2-k)n-j (5.2.4) 
k,,sk<m 

k,z&m 2k jo-& (I) 

pj(l _ p)n-i= c ” 

iO+- 0 

J %:k p-j)(l _ 2-k)“-‘; 

c: m 
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this sum is O(n2’3e-en”3), since (1 - 2-k) I 1 and (7) 5 (en/j)‘. 
Let us adopt the notation U(f(n)) for a factor of the form eoV@)). The expression 

U(f(n)) is equivalent to 1 + O(f(n)) when f(n) + 0 as n + m. Thus we have 

n 0 j 
= n(n - 1) - - - (n -j + 1)/j! 

and 

(1 _ 2-k)n-j = e(n-/)h(l-21) 

= ~(~-‘/3)~-“2-’ 

when k0 5 k and j 5 j,. Thus (5.2.4) can be rewritten in the form 

U(n-“3) k -gc 2k C e-n2-“(n2-k)i/j!. (5.2.5) 
cl-= m mussi 

We have seen in Section 5.1 that the double sum in this expression (even extended 
over 0 zz k < m and m <j < m) is O(n), so (5.2.5) differs from 

(5.2.6) 

by a term of the form O(n2’3). 
Expression (5.2.6) differs from 

C zk C e-"2-"(n2-k)i/j! 
kGk<m nt.Zj<CC 

(5.2.7) 

k C, 2k 2 e-“zek(n2-k)j/j! = c tnj/j!) bk 2k(l-j)e-n2-k; 

6 m jo-cj-zm &ii- c m 

this sum is O(n2’3e-en”3), since e-n2-k 5 1 and j! L G/e)‘. Expression (5.2.7) in turn 

differs from (5.2.2) by 

1 + C 2k C e-“2-k(n2-k)j/j!. 
Osk<k, mcj-zm 

This sum is O(n2j3), since the inner sum (a Poisson probability) is at most 1. 

From this chain of estimates we conclude that (5.2.1) and (5.2.2) differ by a term 
of the form O(n213), and thus that average number of leaf pages for the Bernoulli 
model is essentially the same as that found in Section 5.1 for the Poisson model: 

(n/m)$h(log n) + O(n2j3). 

Yao [19] has analyzed B-trees using the Bernoulli model; since the structure of a 
B-tree depends on the order in which the records are inserted, he made the 
assumption that all n! orders of insertion are equally probable. He found that the 
average number of pages is (n/m) log e asymptotically, which is the same as the 
leading term in the expansion of (n/m) c#+,, (log n); the oscillations of & (log n) do 
not occur for B-trees, however. 
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Let us now reconsider the depth and the number of directory entries. The 

probability that there is a leaf page at a level less than 

a = Llog(n/m ln 2)] 

is at most 

271 _ p(>m, p-Q)] = y-1 c 

0 

‘1 2’W(l _ 21-yi 
oz+srn J 

5 (n/2m ln 2) c 
0 

Y 
o+rn J 

[(2m ln 2,/n]‘[l - (2m In wzl"-'. 

Using results of Anderson and Samuels [2], it is easy to show that for n L 
2m ln 2 (that is, for a L 1) this Bernoulli probability is less than the corresponding 
Poisson probability, and thus that this expression is at most 

(n/2m In 2) C eezm In2 (2m ln 2)‘/j! 5 n/m3’2(2~)1’2(2 In 2 - 1)(2/e ln 2)-. 
Osmsj 

By similar reasoning, the probability that there is a leaf page at a level greater 
than 

is at most 

b = [log(n/m ln 2)] 

2bP(> m, 2-*) = 2’ C 
mc,is 0 

9 2--bj(l _ 2-b)n-j 

5 (2n/m ln 2) C 
0 

? 
mcjsn J 

[(m ln 2)/n]j[l - (m In 2)/n3”-‘. 

Again using the results of Anderson and Samuels [2], it is easy to show that for 
n L m In 2 this expression is at most 

(2n/m ln2) C eemh2 (m ln 2)‘/j! 5 2n/m3’2(2r)“2(1 - ln 2)(2/e ln 2)“. 
IMj<C.2 

Thus the probability bounds we derived in Section 5.1 for the Poisson model hold 

for the Bernoulli model as well. 

6. SIMULATION ’ 

In order to analyze the performance of extendible hashing, we wish to estimate 
three performance factors (( 1) expected access time, (2) expected insert time, and 
(3) total space required) as functions of the following database and system 
parameters: (a) database size (i.e. number of entries), (b) page size, (c) entry size, 
(d) directory entry size, (e) buffer size (number of pages resident in primary 

storage at a time), (f) expected page fault time, and (g) expected entry page 
search time (as a function of page occupancy). Analyzing at this level, we can 
compare the performance of extendible hashing with that of a typical B-tree 
model [3]. In this section we present sample results of a fairly detailed Monte 
Carlo simulation at this level plus performance estimates obtained from much 
simpler analytic models suggested by the simulation results and by results of 
Section 5. 
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Fig. 12. Access time. Detailed simulation of access times averaged over 1000 accesses for index sizes 

in multiples of 1000 entries. The time to fetch a page is 1000. The maximum number of entries on a 

page is 400. 

6.1 Detailed Models 

We postulate a paged memory, with p equal to the maximum number of entries 
(key-pointer pairs) that can reside on a page. (For directory pages, the maximum 
occupancy will be d. ) There is a buffer in primary memory that can hold b pages; 
and, whenever we require a page not in the buffer, there will be a page fault time 
cost of fi (No time except page fault time will be charged for searching the 
directory.) The time to search a page containing x entries will be S(x). An 
approximation for S(x) used in our simulations is S(x) = (probe time) [logzx]. 
This is an upper bound for extendible hashing and a lower bound for our B-tree 
model. 

The total number of entries will be n. The parameters n, p, b, f, and S are 
common to both detailed models. We simulated the insertion of n entries, 
following Section 4 for EXHASH (extendible hashing) and a standard B-tree 
insertion algorithm for B-TREE. Then we averaged the time costs of 1000 
ACCESSes to obtain approximate expected access times, and we averaged the 
time costs of 1000 INSERTS to obtain approximate expected insert times (for 

n + 500). Sample results withp = 400, b = 10, f= 1000, and S(x) = 21 [logzx] are 
given in Figures 12 through 14. The page replacement algorithm for the buffer 
was “Least Recently Used” [13]. 

6.2 Simpler Analytic Models 

The detailed simulation suggests that we can approximately characterize the 

space requirements of both EXHASH and B-TREE by assuming uniformly filled 
leaf pages. Let UT(n) be the average page occupancy in entries divided by p. 
UT(n) will of course be different for EXHASH and B-TREE. Our simulation 
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Fig. 13. Insert time. Detailed simulation of insert times averaged over loo0 inserts. The average 

insert time is plotted against the index size after 500 of the 1000 inserts. The time to fetch a page is 

1000. The maximum number of entries on a page is 400. 
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Fig. 14. Space required. Detailed simulation of the number of pages required as a function of the 

index size. The maximum number of entries on a page is 400. 

suggests that for B-TkEE UT(n) will quickly reach a steady state, even while 
the database size n grows. However, EXHASH seems to have a UT function 
which oscillates with scarcely decreasing amplitude far into the region of very 
large database size. In any case, we will factor our simplified models into a page 
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utilization model (UT(n)) and a time performance model which assumes each 

leaf page has exactly UT(n)p entries. 
6.2.1 ACCESS TIME. We need to calculate probabilities of page fault, i.e. of 

a page not residing in the buffer when it is required. We simplify our LRU page 
management algorithm by assuming that the buffer has one page reserved for 

each level of the index, and that the remaining buffer slots are occupied by pages 
drawn at random from the highest (root or directory) level or from succeeding 
levels if the highest were exhausted before the buffer. This assumption makes the 
page fault probabilities extremely easy to calculate. First we consider EXHASH. 

6.2.1.1 EXHASH. Let I be the number of leaf pages: 

I = rn/UT(n)pl. 

Then, if dl is the number of directory pages, 

dl = rl/dl. 

Now we can compute the probabilities bl (page fault referencing directory page) 

and b2 (page fault referencing leaf page): 

bl = max(O, 1 - (b - l)/dl)) 

bp = max(O, 1 - (max(1, b - dl))/Z)). 

Finally we have our approximation for expected access time: 

ACCESS = (bl + bz)f + S(UT(n))p. 

Next we consider B-TREE. 

6.2.1.2 B-TREE. Rather than write a general formula for the arbitrarily many 
levels of a B-tree index, we assume that there are at most four such levels. (The 
generalization will be obvious.) Since there is only one root page it will always be 
resident in the buffer. Thus our page fault probabilities will be bl (page fault at 
second level), bp (page fault at third level), and b3 (page fault at fourth or leaf 
level). We assume that at each level except the root, pages have at most x = 

UZ’(n)p entries. Thus in order to have four levels, we must have 

px2 5 n 5 px3. 

In this case, 

I= m/xl, 

dz = [Z/xl, 

dl = r&/xl, 

and 

bl = m&O, 1 - (b - 3/d,)), 

b2 = max(O, 1 - (b - d, - 2)/d2)$ 

bS = max(O, 1 - ((b - d, - d2 - 1)/Z)), 

ACCESS = (bl + b2 + b3)f + S(dl) + 3%~). 
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6.2.1.3 Comparison. We expect that S(x) < f, so that a rough estimate on the 
extra time required for B-TREE over that required for EXHASH is the difference 
in page fault times. For an index with more than one page (n > p), B-TREE 
requires at least as many levels as EXHASH. Moreover, we expect the number 
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Fig. 15. Access time. Analytic approximation to expected access time for index sixes plotted on a log 
scale. The time to fetch a page is 1000. The maximum number of entries on a page is 400. The 

analytic model depends on simulation for the page utilization: the average number of entries per 

page at a given index size. 
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Fig. 16. Access time. Analytic approximation to expected access time for index sixes plotted on a log 

scale. The time to fetch a page is 1060. The maximum number of entries on a page is 40 as opposed 

to 400 for Figures 12 through 15. As in Figure 15 the analytic model depends on simulation for page 
utilization. For index sixes greater than 100,000, this simulation is unstable for extendible hashing. 

Different simulations give widely varying results, so we have plotted an upper bound to our 

approximation to expected access time based on 30 simulation runs. 
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of directory pages for EXHASH to be significantly less than the number of second 
level pages for B-TREE. Thus it should not be surprising that the difference in 
expected access times between B-TREE and EXHASH grows proportional to 

the log of the database size. Figure 15 plots our approximations for expected 
access times out to n = one billion entries, given the parameters of our earlier 
simulation. Here we have assumed a steady UT(n) = 0.69 for B-tree (see Section 

5). 
Simulation of space utilization for EXHASH indicates that the function f(n) 

= UT(2”) is roughly periodic (as predicted in Section 5), with period 1, for n < 9. 
For n 2 9, we expect 0.53 < f(n) < 0.94 (cf. Section 5). The small waves in the 

access time graphs for EXHASH correspond to this periodic behavior. In partic- 
ular, for integers n, f(n) = 0.64, and for n equal to an integer plus 0.17, f(n) = 
0.72. We have also simulated space utilization for the case of 40 keys per page 
(Figure 16). 
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