
Extendible Hashing for Concurrent Operations
and Distributed Data

Carla Schlatter Ellis
Computer Science Department

The University of Rochester
Rochester, NY 14627

TRllO
October 1982

Abstract

The extendible hash file is a dynamic data structure that is an alternative to B-
trees for use as a database index. While there have been many algorithms proposed
to allow concurrent access to Btrees, similar solutions for extendible hash files have
not appeared. In this paper, we present solutions to allow for concurrency that are
based on locking protocols and minor modifications in the data structure.

Another question that deserves consideration is whether these indexing
structures can be adapted for use in a distributed database. Among the motivations
for distributing data are increased availability and ease of growth; however, unless
data structures in the access path are designed to support those goals, they may not
be realized. We describe some first attempts at adapting extendible hash files for
distributed data.

The preparation of this paper was supported 111 part by the National Science
Foundation, under Grant No. IST8025761.

1

1. Introduction

The extendible hash file [Fagin 79] is a dynamic data structure that is an
alternative to Brtrees for use as a database index. While there have been many
algorithms proposed to allow concurrent access to Btrees [Bayer 77. Ellis 80.
Lehman 81, Kwong 82, Miller 78], similar solutions for extendible hash files have not
yet appeared. In this paper, we present solutions to allow for concurrency that are
based on locking protocols and minor modifications in the data structure. In addition
to developing new algorithms, this work aims to provide a better understanding of
techniques for adapting data structures to allow concurrent access. Thus. we
investigate what happens when one tries to apply some of the techniques used in B
tree solutions to extendible hash files.

The sequential algorithms for extendible hashing are described in [Fagin 79].
The basic ideas and terminology are summarized below. The data structure consists
of two parts: a set of buckets and the directory. The buckets reside on secondary
storage and contain keys and associated information. The order of the data within
buckets is not important for this discussion. The directory is an array of pointers to
buckets. A hash function is used that generates a very long pseudokey when applied
to a key. The number of bits of the pseudokey actually used to index into the
directory is called the depth of the directory and changes as the file grows or shrinks.
In our work, the least significant bits are used in order to simplify manipulations of
the directory. Suppose that the directory's depth is currently three. This means that
at the moment, there are eight valid directory entries. The i1h entry, 0 5 i 5 7.
points to the bucket that holds all the records whose pseudokeys end in the three bit
binary representation of i. Each bucket includes a loealdepth (5 depth) indicating
that the pseudokeys of the records it contains agree in only that number of bits.
Thus multiple directory entries will point to the same bucket if its localdepth is less
than the directory's depth. Figure 1 gives an example of an extendible hash file for
sequential access. To perform a find operation for a key, k, one would apply the hash
function to k to obtain the pseudokey (imagine it is •...101'), determine the current
depth of the directory (2 in this example), and use the appropriate bits ('01 ') as an
index. Following the pointer in the directory entry. one would search the third
bucket for k. As insertions occur, a bucket may become full (indicated by the eount
field) and split into two buckets. If the old localdepth equals depth, the directory
doubles in size and depth increases by one. Similarly. deletions may result in two
buckets merging and possibly reducing the depth of the directory. One way of
detecting the condition that allows halving the size of the directory is to keep a count
(named depthcounti of the number of buckets whose localdepth eq uals depth. Figure
2 shows how a sequence of updating operations would affect the structure given in
Figure 1 where x <y = z = maximum number of keys per bucket. This data
structure is our point of departure for introducing concurrency in Section 2.

The next step is to consider the question of whether these indexing structures
can be adapted for use in a distributed database. Among the motivations for
distributing data are increased availability and ease of growth; however. unless data
structures in the access path are designed to support those goals. they may not be

. realized. In Section 3 we describe some first attempts at adapting extendible hash
files for distributed data. Our thesis is that locking patterns and other aspects of the
solutions for concurrency in shared data structures can lead to insights into how to

2

Directory Buckets

DEPTHCOUNT • 2

DEPTH.2

LOCALDEPTH

COUNT. X

DATA"

.. 2

00: a L... --'

01 :

10:

LOCALDEPTH ..

COUNT.. Y
DATA"

2

11:

LOCALDEPTH

COUNT.. Z

DATA·

=

C

Figure 1

Sequential Access Extendible Hash File

--t--------.::~---~

3

localdepth
2

count- x+1
data"

localdeplh
2

count= y
dala"

localdepth
1

count .. z
data"

a) , after inserting record
, __J with pseudokey00

00:

01:
, 10
. :

': 11:

'b)

I-

localdeplh
2

counl =x + 1

data"

L..----l localdeplh
2

-l----:~-.-Ic'ount = 'J
1----1 dala"

__.... localdeplh

localdeplh
2

count .. -zl
data"

counr-.. -zl
data"

after inserting record

:"'h d k '11Wit pseu 0 ey .

~---l

~--1

01 0: ' '-"'---1

l-=~'';

"""-~

~--;

~-1

c) after inserting record
with pseudokey10

Figu re 2

Sequence of Updates

000:,

001:

011 :

100:

101:

110:

111:

000:

001:

,010:

011:

100:

i 101:

: 111:

~---t

~ - - 1

loo=~

J--~

~---I

[110: ~ - - - l

d) ,after deleting all records

with pseudokey101

4

partition the data among processes in a distributed environment This suggests a
methodology for developing distributed solutions.

2. Locking Protocols for Extendible Hash Files

2.1 Common Aspects

In this section, we present two solutions which have evolved from the sequential
algorithms for concurrent manipulation of a centralized extendible hash file. Figure 3
shows the modified structure used in these solutions. The fundamental change is that
the buckets are linked through a next field to allow recovery from concurrent
restructuring operations. This provides an alternate path to the desired data that call
be used by a searching process when the information is involved in a split or merge
operation. Thus when a bucket splits, the next link of the original bucket is
reassigned to point to the newly created bucket. The new bucket gets the original
bucket's old next pointer. Merging does the reverse. Figure 4 shows what happens
when the second bucket in Figure 3 splits. The approach is similar to the use of link
pointers in Lehman and Yao's Blink-tree solution [Lehman 81]. In addition, there
must be a way for a process to tell if it has the wrong bucket, We chose to include a
field (commonbils) containing the common bit pattern that characterizes the
pseudokeys that belong in the bucket. Alternatively, one could reapply the hash
function to any key stored in the bucket and use this for comparison with the target
pseudokey as long as the possibility of an empty bucket is taken care of.

The goal is to allow a number of processes to be in various stages of find, insert,
or delete operations at the same time. Each process can manipulate the data after
locking appropriate portions of the shared structure and transferring the information
into private buffers. The buckets are assumed to occupy physical pages on disk which
are read and written as single operations. The locking protocol uses various types of
locks placed on the. directory (as a whole) and on individual buckets, The
compatibility of lock types is given by the following table.

Lock request Existing lock
p ex €

p (read-lock) yes yes no

ex (selective lock) yes no no

e(exclusive lock) no no no

2.2 First Solution

The following set of algorithms is similar to top-down locking protocols for B-
tree variants (cf. [Bayer 77], [Ellis 80D, in that a lock is placed on each level of the
structure (in this case there are only two levels, the directory then a bucket) and held

 until it is found to be no longer needed. The procedures are given in Figures S, 6,
and 7 for find, insert, and delete respectively.

5

Directory Buckets

DEPTHCOUNT • 2

DEPTH.2

00:

01:

10:

11:

c

LOCALDEPTH .. 2

COMMONBITS .. 00

COUNT ..__ ~ W I

DATA"

NEXT

NEXT

LOCALDEPTH ..

COMMONBITS ..

COUNT ..

DATA"

b

LOCALDEPTH .. 2

COMMONBITS.. 10

--r------~---...I-COUNT ..

DATA"

NEXT

Figure 3

Centralized Concurrent Extendible Hash File

6

Directory Buckets

000:

001 :

010:

011 :

1 00:

101 :

110:

111 :

Figure 4

After splitting the "10" Bucket

NEXT

DEPTHCO~NT • 2

DEPTH.3

LOCALDEPTH.. 2

COMMQNBITS .. 00

COUNT ..

DATA"

NEXT

·LOCALDEPTH.. 3

COMMONBITS.. 010

~---..., COUNT ..

DATA"
NEXT

b
L...---------,,....-l

LOCALOEPTH.. 3

COMMONBITS.. 110

COUNT ..

DATA"
NEXT

d

LOCALDEPTH ..

COMMONBITS ..

COUNT ..
- ~ DATA"

7

A process executing the find operation must p-lock the directory before reading
the depth and extracting the apparent bucket pointer. The p-lock is necessary to
prevent interference from a deleting process. If the deleter did not exclude the reader
and was in the process of halving the directory. the reader might try to access an
invalid directory entry based on the old value of depth. A similar interference could
occur between readers and deleters with regard to newly deallocated buckets.
Therefore, deleting processes must place incompatible ~-locks. Readers can safely
execute in parallel with inserting processes because of the next links and the fact that
no portion of the structure is lost during bucket splitting or directory doubling
actions. After determining which bucket is to be searched, the reader places a polock
on it, releases the lock on the directory, and transfers the contents into a private
buffer. The reader may then discover that it has the wrong bucket. This means that a
split occurred after the directory was read and before the data was retrieved. Now
the localdepth low order bits of the target pseudokey do not match the commonbits
of this bucket. By following the next pointer, the right bucket will eventually be
found. The next bucket is always p-locked prior to releasing the lock on the current
bucket. This flow of locks prevents processes from leapfrogging each other.

Updating operations are serialized with respect to each other by a-a, a-~, and ~
~ lock incompatibilities. To insert, an a-lock is placed on the directory and held unlil
there is no need for further directory manipulation due to this insertion. Readers
can still proceed because of lock compatibility. Changes made by inserters to the
official shared structure appear to readers as atomic actions. Splitting a bucket
appears as an atomic action because of the order in which the new bucket pair is
written back to disk. Doubling the directory appears atomic because of the choice to
use the least significant bits of the pseudokey. Deleting processes use ~-Iocks because
of the previously mentioned problems with readers. If the target bucket is too empty,
the deleter will try to merge with the partner bucket. The simplest interpretation for
"too empty" is that the only record contained in the bucket is the one to be deleted.
Here "partner" refers to the partner with respect to the' target bucket's localdepth.
Merging is then possible if the partners have the same localdepth (and it is not 1).
Two buckets are defined as partners with respect to bit position d if their
commonbits match in bits d-1 to 1 and differ at bit d (where the least significant bit
is numbered 1). Suppose we want to merge bucket JJ with its partner bucket C. ~

locking the partner is straightforward if C follows B in the linked ordering of
buckets. Otherwise this action actually involves temporarily releasing the lock on .B
and requesting e-locks on C and B in order. This avoids deadlock with a reader
following next links from C to B. Alternatively, the reader could have held the II-lock
on the directory until it had the right bucket, but this would be a more pessimistic
approach and would have to be abandoned in the next solution anyway. Detecting
the condition necessary for halving the directory could be done in several ways.
Here, a depthcount field containing the number of buckets with localdepth = depth
is maintained by structure modifying operations (e.g. splitting a bucket of localdepth
= depth-I would add two, merging two buckets of localdepth = depth would
subtract two, halving the directory would involve a scan of directory contents to
determine depthcount for the new depth by comparing corresponding entries in the
top and bottom halves for pointers which differ, and doubling the directory would
set it to zero).

Figu re 5 Find Alga rithm

Shared data for all of the centra11zed algor1thms:

struct buffer {
1nt 10cal dept h;
1nt cOrmlonb1 ts;
1nt count;
1nt nut:
lnt data[numentrles]};

1nt depth, depthcount;
lnt dlrectory[l«maxdepth]:

'Ind(z)
{

lnt pseudokey.
oldpage, '·d1sk page address·'
newpage; '·dlsk page address·'

struct buffer B,
·current: ,. p01nter to buffer .,

uns1gned m;
current· &B;

pseudokey - hash (z):
RhoLock (d1rectory);
oldpage - lndexdlrectory (pseudokey &maSk (depth»;
RhoLoCk (oldpage):
UnRhoLock (dIrectory):
getbucket (oldpage, current);
m • maSk (current -) localdepth);
whlle «m & pseudokey) ,-

current) cOrmlonblts) {Ie wrong bucket *'
RhoLock (newpage. current) next):
getbucket (newpage. current):
m • mask (current) localdepth):
UnRhoLock (oldpage):
oldpage • newpage;

}

1f (search (currant, z»'· is z there? .,
found (z);

else
notfound (z);

UnRhoLock (oldpage):
}

8

9 Figu re 6 Inse rtion Algo rithm

1nse rt(z)
{

1nt pseudokey,
oldpage,
newpage,

1nt done;
struct buffer A,

B,
C,

*current,
*ha1fl,
*ha1f2;

current = &A;
halft .. &B;
ha1f2" &C;

pseudokey hash (z);
AlphaLock (d1rectory);
oldpage = 1ndexd1rectory (pseudokey & mask (depth»;
AlphaLock (oldpage);
getbucket (oldpage, current):
1f (search (current, z» { /* z 1s already there */

UnAlphaLock (d1rectory);
UnAlphaLock (oldpage);

}
else

1f (current -> count 1= numentr1es) {
/* current bucket not full */

UnAlphaLock (d1rectory);
add (current, z);
putbucket (oldpage, current);
UnAlphaLock (oldpage); .

}
else { /» current 1s full */

1f (current -> local depth == depth)
doubled1rectory ();

newpage" allocbucket ();
done" sp11t (current, halfl, half2, z, newpage);
putbucket (newpage, half2);
putbucket (oldpage, halfl):
UnAlphaLock (oldpage);
updated1rectory (newpage, halfl -> localdepth, pseudokey):
UnAlphaLock (d1rectory);
1f (Idone)

1nsert (z);
}

}

Figure 7 Deletion Algorithm

delete(z)
{

1nt pseudokey,
selectedb1ts,
oldpage, /- disk address -/
newpage, /- disk address -/
merged, /- disk addres.s -/
garbage; /» disk address */

struct buffer B,
C,

-brother,
-current;

unsigned m;
current • &B:
brother • &C;

pseudokey = hash (z);
X1Lock (directory):
selectedb1ts • pseudokey &mask (depth);
oldpage = 1ndexd1rectory (selectedb1ts);
X1Lock (oldpage);
getbucket (oldpage, current):
1f «current -) count) 1) II (current -) l ce a l de pth == 1» {

/* current not too empty -/
UnX1Lock (directory);
if (remove (z, current» /* successful -/ putbucket (oldpage, current);
UnX1Lock (oldpage):

}
else {

if (search (current, z» { /- z 15 there -/
m .leftsh1ft(1, current -) 10caldepth - 1):
1f «pseudokey & m) ,= m) (I- z goes 1n f1rst of pa1r -/

newpage • current -) next:
X1Lock (newpage):
getbucket (newpage, brother):
merged. oldpage:
garbage = newpage:

}
else { /* z goes 1n second of pa1r -/

newpage 1ndexd1rectory (selectedb1ts &-m);
UnX1Lock (oldpage);
X1Lock (newpage);
X1Lock (oldpage);
getbucket (newpage, brother):
merged. newpage;
garbage = oldpage;
brother -) next = current -) next:

}
1f (current -) local depth 1= brother -) Ioc a ldep t h) {

/* not poss1ble to merge these two -/
1f (remove (z, current» putbucket (oldpage, current):

}
else { /* mergable */

1f «brother -) localdepth--) == depth)
depthcount = depthcount - Z;

brother -) commonb1ts = brother -) commonb1ts &mask (brother -) 10caldepLh):
putbucket (merged, brother):
if (depthcount == 0)

halved1rectory ():
else

updated1rectory (merged, brother -) localdepth + 1, pseudokey);
deallocbucket (garbage);

}
UnX1Lock (newpage):

}
UnX1Lock (oldpage);
UnX1Lock (d1rectory);

}
}

10

11

2.3 Correctness of the First Solution

Showing the correctness of this solution requires a proof that iL is deadlock free
and that requested operations perform correctly both with respect to the target key
and the integrity of the data structure. Specifically, a key to be inserted (deleted)
should be present (absent) when the update terminates. If the desired data for a find
operation is in the file and not the subject of a concurrent update operation, it should
be found. .

The freedom from deadlock argumen t depends on the fact that locks are
requested according to an ordering on the lockable components of the structure. The
directory is always locked first, followed by one of the buckets. While a bucket is
locked, additional locks are requested only on buckets reachable from it via next
links. The only processes that ever attempt to lock more than one bucket are those
executing find or delete operations. Readers follow next links from buckets they
have locked. Deleters attempt to lock both partners of a potential merge. For as long
as any two buckets remain in the hashfile, the ordering imposed on them by
reachability through next links remains the same and between any two partner
buckets, there is a path from the "0" partner to the "1" partner. Thus a process
trying to delete from the "1" partner will have to release its lock on that bucket in
order to get both partners locked according to the ordering. In addition, it is
impossible for a process to read a pointer for a bucket that will be deallocated before
it can make its lock request since a deleter excludes other processes from parts of the
data structure that contain pointers to the buckets being removed. This point is
important to ensure that lock requests can eventually be satisfied.

It is almost trivial to show the correctness of update operations in this solution
since they are essentially sequential. Removing or adding a key to the hash file
depends first of all on the updating process getting to the right bucket. Since a lock
is held on the directory while an updater initially reads the bucket pointer and kept
until the directory reflects all changes in the structure resulting from its update, the
information seen by updaters when they read the directory is the same as it would be
if updates were completely serial. Arriving at the right bucket, the updater must also
see the right version of it. Again a lock which excludes other updaters is required in
order to read the bucket contents into private storage and is held until the bucket is
rewritten (or it is discovered that no change is needed). Thus previous updaters have
made their modifications known by the time a new updater gains its lock. Since
updates do not interfere with each other, the data structure should be correct when
no update operations are in progress.'

Finally, we must consider interactions between readers and updaters, The
locking protocol ensures that a reader and a deleter are serialized according to the
order in which they lock the directory. A deleter. exclusively locks the directory, the
target bucket, and its partner (when necessary) while modifications are taking place.
No intermediate stages of the deletion operaton will be visible to other precesses. A
deleter could potentially interfere with a reader if the effects of the deletion appeared
after the reader gained some information from the file and before that information
was acted upon (e.g, the reader gets a bucket poin ter from the directory, the deleter
merges that bucket into its partner,then the reader tries to follow the pointer).
However, this is impossible since the source of the reader's information remains /1

o •

12

locked until the next lock is granted. This is also true when the reader is following
next links. Whenever a bucket, A, can be merged into its partner, B, then 11's next
link will point to A.

By contrast, a reader may see intermediate stages of an insertion operation but
this does not prevent it from ascertaining the presence or absence of any key other
than the one being added. The possible changes in the data structure caused by an
inserting process are as follows: If the inserter's target bucket is not full, it is
replaced in a single put operation with the original contents plus the new record. A
reader will see either the old or the new bucket and the only difference is the key
being added. If the inserter's bucket is full, it will be replaced by a pair of buckets in
which the old contents are distributed between the two according to pseudokey, The
new record will be included in the appropriate partner if there is room. The second
half of the pair is written first in a newly.allocated disk page and then the old bucket
is replaced by the first half of the pair. Immediately after the first put, the new
bucket is still not reachable through pointers in the hash file. Thus writing the pair is
equivalent to the single operation of writing the rust partner. A reader which sees a
directory entry before it is updated to point to the new bucket will get either the old
bucket or the rust half of the pair. If the reader's desired data has moved to the
second half, it will detect this and follow the next link. Finally, the inserter may need
to double the directory. This appears to readers as a single operation. The directory
space is extended and the old contents copied prior to incrementing depth and it is
the act of incrementing depth that makes the new directory entries visible.

Even assuming fairness in the granting of lock requests (e.g. FIFO subject to the
compatibility relationship), lockout of readers is possible if their target buckets are
constantly changing due to a steady stream of updates.

2.4 Second Solution

The recognized problem with top-down protocols is the need to hold a lock on
the bottleneck of the structure while determining if restructuring will be required.
This is avoided in the next protocol. The idea is for updating processes to ad like
readers during their search for the right bucket. The procedure for the find operation
is the same as before. The algorithms for insert and delete are found in Figures 8 and
9.

For the insert operation, a p-lock is placed on the directory that will be
converted to an a-lock if the directory actually will be modified. Other insert or
delete operations can also be active. The next pointer is again used for recovery but
now deleted, but not yet deallocated, buckets also provide a recovery path. Because
of the additional concurrency, updaters may also find themselves with the wrong
bucket and must follow the recovery path. "Wrong bucket" now includes the case
where this bucket has been merged into a preceeding bucket. The bucket is marked
as "deleted." Since there are no circular paths through the next pointers that are not
protected with the deleting process's ~-locks, this protocol can be shown to be
deadlock free.

In addition to setting up the merged bucket, merging now involves marking the
old partner as "deleted" (we use the commonbits field for this), setting its next field

13 Figu re 8 Inse rtion Algo rithm

1nsert(z)
{

1nt pseudokey,
oldpage.
newpage:

1nt done;
struct buffer A,

B,
C,

·current,
·halfi.
·halfZ:

uns1gned m:
current • &A;
haIf 1 = &B;
ha lfZ • &C;

pseudokey • hash (z);
RhoLock (d1rectory);
oldpage = 1ndexd1rectory (pseudokey & mask (depth»;
AlphaLock (oldpage):
getbucket (01 dpage, current):
m • mask (current -) local depth);
wh1le «m & pseudokey) 1= current -) commonb1ts) {I· WRONG BUCKET ./

AlphaLock (newpage. current -) next):
getbucket (newpage. current);
m • mask (current -) localdepth);
UnAlphaLock (oldpage);
oldpage • newpage;

}
lf (search (current, z» { /. IS Z ALREADY THERE? ./

UnRhoLock (dlrectory):
UnAlphaLock (oldpage):

}
else

lf (current -) count 1= numentrles) {
/. CURRENT BUCKET NOT FULL ./

UnRhoLock (d1rectory);
add (current, z);
putbucket (oldpage, current);
UnAlphaLock (oldpage);

}
else { /. CURRENT IS FULL - DIRECTORY WILL BE AFFECHU ./

AlphaLock (d1rectory);
lf (current -) local depth == depth)

doubledlrectory ();
newpage • allocbucket ();
done· spIlt (current, halfl, halfZ. z, newpage);
putbucket (newpage, halfZ);
putbucket (oldpage, halfl);
updatedlrectory (newpage. half1 -) localdepth, pseudokey):
UnAlphaLock (oldpage);
UnAlphaLock (d1rectory):
UnRhoLock (d1rectory);
1f (I done)

lnsert (z);
}

}

Figure 9 Deletion Algorithm

delete(z)
{

Int pseudokey,
selectedbl ts,
oldpage,
newpage,
garbage,
merged;

struct buffer B,
C,

*brother,
*current:

unslgned m:
current. &B:
brother = &C:

pseudokey - hash (z);
Rholock (dlrectory):
selectedblts - pseudokey &mask (depth):
oldpage • lndexdlrectory (selectedblts);
Xilock (oldpage):
getbucket (oldpage, current):
m - mask (current -) localdepth):
while «m & pseudokey) I. current -) commonblts) {'* WRONG BUCKET *'

Xllock (newpage - current -) next):
getbucket (newpage, current);
m - mask (current -) localdepth):
UnXllock (oldpage):
oldpage - newpage:

}
if «current -) count) 1) II (current -) local depth .- 1» {

'* CURRENT NOT TOO EMPTY *'
UnRholock (dlrectory):
if (remove (z, current» p u t b ~ c k e t (oldpage, current);
UnXllock (oldpage):

}
else {
/* IF EVERYTHING STAYS THE SAME - TRY TO MERGE *'

lf (Isearch (current, z» {'* Z NOT THERE */
UnXilock (oldpage):
UnRholock (di rectory): .
return:

}
else {

m - leftshlft(1, current -) localdepth - 1):
lf «pseudokey &m) ,- m) {/* Z IN FIRST OF PAIR */

newpage - current -) next:
Xilock (newpage);
getbucket (newpage, brother):
garbage - newpage:
merged - oldpage:

}
else { /* Z IN SECOND OF PAIR */

newpage - lndexdirectory (selectedblts & -m):
UnXllock (oldpage);
Xllock (newpage):
g e t b ~ c k e t (newpage, brother):
1f (b ro the r -) next I = old page) {

/* OlDPAGE AND NEWPAGE ARE NOT MERGABlE PARTNERS *'
UnXllock (newpage);
~ n R h o l o c k (dlrectory):
delete (z):
re tu rn:

}
else {

Xllock (oldpage);
getbucket (oldpage; current);
garbage = oldpage;
merged - newpage;
brother -) next = current -) next:
if «mask (current -) localdepth) & pseudokey) ,- cu r r-en t-o commcnb t t s) {

'* Z no longer belongs 1n oldpage - wh1le

14

15 Figure 9 Deletion Algorithm

UnX1Lock
UnX1Lock
UnRhoLock

waiting to re-lock oldpage It may have
filled up and split, moving z */

(oldpage);
(newpage);
(directory);

delete (z);
return;

}
}

}
If (current -) localdepth ,- brother -) localdepth II

current -) count) 1 II (current -) count -= 1 &&

Isearch (current, z») {
/* Either It Is not possible to merge

because of localdepths or something
happened while waiting to re-lock
oldpage - more data Inserted Into
oldpage so It Is no longer empty and
maybe then z deleted */

UnX1Lock (newpage);
UnRhoLock (directory);
If (remove (z, current» putbucket (oldpage, current);
UnX1Lock (oldpage);
return;

}
/» MERGE */

AlphaLock (directory);
If «brother -) localdepth--) -- depth)

depthcount - depthcount - Z;
brother -) commonblts - brother -) commonblts &mask (brother -) localdepth);
current -) commonblts - deleted;
current -) next. merged;
putbucket (merged, brother):
putbucket (garbage, current);
updatedlrectory (merged,
UnX1Lock (oldpage); .
UnX1Lock (newpage);
UnAlphaLock (directory);
UnRhoLock (directory);
X1Lock (directory);
X1Lock (garbage);
If (depthcount •• 0)

halvedlrectory ();
deallocbucket (garbage):
UnX1Lock (directory);
UnX1Lock (garbage):

}
}

}

current -) local depth + 1, pseudokey):

16

to point to the merged bucket, updating the next field of the merged bucket, and
writing both buckets back to secondary storage. If it is necessary to release the lock
on the target bucket so that e-Iocks may be requested in order on the pair to be
merged, then a number of conditions must be checked after gaining the locks. These
will be elaborated in the proof. Deleted buckets and discarded halves of the
directory are actually deallocated only after ensuring that no process needs them
anymore.

2.5 Correctness of Second Solution

The freedom from deadlock issue has been complicated by the presence of
deleted buckets and the delayed a-locking of the directory. The key observation to
be made with regard to the a-locking is that a process requesting an a-lock on the
directory already holds a p-Iock on it (essentially doing lock conversion) and has all
the necessary locks on buckets. This lock request will be refused if there already is an
incompatible lock on the directory. If this lock is an a-lock held by another updater,
that process will make no further lock requests. The lock cannot be a e-Iock because
of the existing p-Iock. Therefore, there is no possibility of deadlock due to a-locking.
Given the way deleted buckets are handled in this solution, it is not true that the
ordering between two buckets stays the same. Thus, bucket B may be reachable from
bucket A but if they are partners this relationship may be reversed as LJ is merged
into A. However, it is not possible for processes following the old ordering to coexist
with processes following the new ordering because the deleter uses e-locks to ensure
that all the processes with old information have cleared out of the vicinity of the
merge. Extra precautions must be taken by deleters to check that the locking of
partners is consistent with reachability (line labeled A in figure 9).

This solution allows more concurrency among updaters than the first solution
because of the delay in a-locking for updating the directory and in e-Ioding the
directory for garbage collection. Updaters in their searching phase are like readers, so
arguments for getting to the right bucket hold for each type of process. Wi th this
locking scheme, processes are allowed to read out of date directory entries including
pointers to deleted buckets. Imagine a searching process that indexes into the
directory and finds a pointer to bucket A as that directory entry is about to be
changed to reflect a split or merge. If A has recently been split, A's next link will lead
to the new bucket which contains the records moved from A. If A has just been
merged into its partner, it will be marked as deleted, making it the "wrong bucket"
for any searching process and the next link again will provide recovery. The
important observation is that obsolete directory entries that are still visible always
point to a bucket from which the correct bucket is reachable via next links. Doubling
the directory appears atomic. Finally, searching processes do not access the directory
while it is being shrunk. Discarding deleted components is done in a separate phase
which is truly serialized with respect to other actions by ~-locking.

Once an updater arrives at the right bucket and gains the locks it requires, the
actual modifications are essentially serialized as in the first solution. Thus updaters
work with the most recent version of that bucket. However, for a deleter to get to the
point where it has all the locks its needs can be somewhat involved if the target
bucket is the "1" partner of a potential merge. The deleter must release its lock on
the target bucket, place a lock on the "0" partner, and then re-lock the" I" partner.

I7

While this is taking place, other update operations may be affecting these buckets. In
particular, a concurrent insertion could add new records to the target bucket once the
deleter's lock is released so that it is not longer empty enough to allow merging. It is
even theoretically possible for a stream of inserters to fill up the target bucket and
cause a split, thereby moving the key that is to be deleted. In addition, another
deleter might get the two partners locked and merged before the deleter we are
focusing on does. Each of these conditions is checked for and the pitfalls avoided.
After gaining the lock on the "a" partner, the deleter checks whether merging might
be possible (the partner's next link points to the target buckeL), and if this check fails,
it goes back to simply trying to remove its key. If the two buckets are not linked in
this way, it may mean the localdepths do not match or that the target bucket has
been deleted. Attempting to lock the target bucket under these circumstances would
carry with it the danger of deadlock. Upon finding the two buckets direcLly linked
and re-locking the "I" partner, the deleter checks the emptiness of the bucket,
whether the desired key is still there, and whether °localdepths still match before
going ahead with the merge. Unless the key has moved, the deleter at this point
would have the needed locks and no further interference could occur at the bucket
level.

Processes executing the find operation may legitimately see either an old or the
new version of the target bucket. No intermediate states are visible (i.e. adding or
removing a key is a single put operation, splitting is equivalent to a single put, and
merging is protected with e-Iocks) Differences between old and new only involve
records that are moved to a reachable bucket or that are the subject of a concurrent
update operation. Note that lockout is possible for all processes while they are trying
to get the right set of buckets locked.

3. Use with Distributed Data

We have presented two approaches to solving the problem of allowing
concurrency within a shared extendible hash file. Now we turn to the problem of
distributing this information. Developing a distributed solution raises a number of
issues; although some are unique to this particular model of computation. the aspect
of achieving a degree of concurrency is common to both distributed and shared data
systems. Thus a correct centralized solution may prove to be a good starting point in
determining how to partition structured data. We can assess the previous algorithms
on the basis of their potential for distribution.

First it must be clear what is meant by the phrase "distributing the data
structure" and what our model of a distributed system is. We assume there are a
number of processes each encapsulating some portion of the data structure (Le. the
entire directory or whole buckets) and acting as a manager for it. Certain pieces of
the data structure may be replicated in several processes. Processes do not share
storage (including secondary storage) and they communicate through asynchronous
messages. The style of message-passing used in our protocol depends on reliable
delivery, buffering, and possible anonymity of senders (e.g. port-based
communication as in [Rashid 80].) These assumptions allow the processes to reside
on different machines connected by a network, and since this is possible, interactions
between processes are potentially costly. Requests for find, insert, or delete
operations may be forwarded to the appropriate data managers for service.

18

There are a couple of principles influencing this particular design. First of all, if
distributing the data is actually going to achieve an increased level of availability, the
directory should be highly accessible. This suggests the need to replicate the directory
information and maintain consistency to the extent that a request can be made to any
of the copies and eventually it will reach the desired data. We assume that each copy
of the directory is managed as a whole (i.e. it is not partitioned). Given the decision
to replicate this component of the data structure, the consistency issue becomes
important. If a- or ~-locking the directory in the centralized solutions is
straightforwardly translated into some action involving all copies simultaneously, it
will be an expensive operation and require some strategies for avoiding deadlock and
dealing with temporarily missing copies. Thus, the analogue to global a-locking
should be avoided as much as possible: implying that the second of the two previous
solutions is more compatible with replication. Although a number of general purpose
mutual consistency algorithms are available [Gifford 79, Stonebraker 79, Thomas 79],
it may be possible to exploit certain properties of this problem to arrive at a less
synchronized method. A second goal is to minimize message traffic. Whenever
possible, the information needed for decision-making should be available locally,
Additional modifications in the data structure may be desirable. For example, in the
centralized algorithms it was acceptable to locate a partner bucket using the
directory. In the distributed case, this would involve a bucket manager sending an
inquiry message to a directory manager. Finally, there are no constraints to be put on
the placement of data. One can imagine policies that would try to group certain
buckets within one server. This is reasonable for a static data structure. However,
ease of growth is a major goal both for extendible hash files and for distributing data.
The problem of allocating buckets to servers on any basis other than availability of
space is a hard problem for a dynamic data structure such as this and is not
considered here. '

As indicated above, this distributed solution is derived fron the second set of
procedures for the centralized hash file. The replication of the directory is the main
justification for choosing this approach. The data structure would now appear as in
figure 10. Two copies of the directory are shown. A prev link has been added to
each bucket that leads to the bucket from which this bucket originally split off. This
is used to find the "0" partner of a possible merge with information local to this
manager process. Each link represents a pair consisting of a long-lived identifier for
a manager port and a bucket address that is meaningful to that manager. A version
field introduced into each bucket and each directory entry is lIsed in updating
directory copies asynchronously.

There are two types of processes, namely directory managers and bucket
managers. Each bucket manager is responsible for a disjoint subset of the buckets.
Figure 11 shows the message types that flow between the various processes. The
information contained in these messages is outlined in figure 12.

The procedure for the directory manager processes (see figure 13) is described in
terms of actions taken in response to messages received. The directory manager is
designed as a server which can keep track of several user requests. The locking of
the directory in the centralized solution is embodied in the manager's explicit
scheduling of requests for its attention. Upon receiving a request message, stale is
saved in a context table and the request is forwarded to the appropriate bucket

19

00:

01:

10:

11:

00:

01:

10:

11:

Directory

DEPTHCOUNT .. 2

DEPTH .. 2

VERSION:

VERSION:

VERSION:

Buckets

LOCALDEPTH .. 2

COMMONBITS = 00

'COUNT ..
PREV

DATA"
NEXT

VERSION:

LOCALDEPTH .. 2

COMMONBITS .. 10

COUNT ..
PREV

DATA"
NEXT

VERSION:

LOCALDEPTH ..

COMMONBITS ..

COUNT ..
PREV

DATA"
NEXT

VERSION:

Figure 10

Distributed Extendible Hash File VERSION:

VERSION:

DEPTHCOUNT .. 2

DEPTH.2

VERSION:

20

< RESPONSE

REQUEST - >
FIND • >

INSERT • >

>

Directory replicated

within each Directory

Manager

ACK

COPYUPDATE ~
DELETE • MERGEDOWN ~

GARBAGECOLLECT • >
M·DREPLV t

t WRONGBUCKET

SPLiTBUCKET ~
1:1.

ISPLITREPLV

Buckets distributed

among Bucket Managers

Figure 11

Protocols for the Distributed Hashing Algorithms

21

message id data in message

Request desired key
op: (findlinsertldelete)
user's port

Bucketdone transaction #

success: (truelfalse)

Update transaction #
old local depth.
version # of "0" partner
version # of "I" partner
newpageaddress
id of bucketmanager
success: (truelfalse)

Copy update op: (insertjdelete)
pseudokey
old localdepth
version # of "0" partner
version # of "I" partner
newpageaddress

.id of bucketmanager
acknowledgement port

Ackfor Copy update

Find, Insert, Delete desired key
transaction #
page address
user's port
directory manager's reply port
pseudokey

Garbage Collect listof pageaddresses

/

message id datain message

Wrongbuckel op: (Findlinscrtldclete)
desired key
transaction #
page address
user's port
directory manager's reply porl
pseudo key
bucket manager's reply port

Ack forWrongbucket

Splitbucket manager's reply port
buffer contents of new half

Splitreply new page address
id of bucket manager

Mergedown partner's address
local depth
bucket manager's reply port

M.D. Reply buffer contents
success: (truclfalsc)

Mergeup partner's address
bucket manager's reply port
target bucket's address
bucket manager's id

M.U. Reply local depth
version #
bucket manager's reply porl
success: (truclfalse)

Goahead next link
next bucket manager id
version #
success: (truelfalsc)

Figure 12 Messages

22

manager. Two possible responses may come from a bucket manager, either
bucketdone or update. Bucketdone will generally signify that no directory
modifications are needed and the directory manager may now forget about this
request. An update message schedules an update on the local copy according to
version number and notifies all other directory managers by broadcasting a
copyupdate message. For each outstanding unacknowledged remote directory
modification, a counter is incremented that serves one of the purposes of an a-lock
(i.e. preventing garbage collection). A bucket may not be deallocated until all
directories send an acknowledge message. Upon receiving a copyupdate message, a
directory manager schedules the update on its local copy and when the changes have
been applied (and in the case of delete operations, when the equivalent of ~-locking

occurs), acknowledgements are sent.

Because obsolete directory information is usable, the multiple copy update does
not have to be strictly synchronized (in the sense of an atomic transaction). However,
the ordering of different directory modifications due to operations on the same
bucket should be the same across all copies and determined by the order in which
the bucket operations are performed. Each bucket contains a version number that
increases with each update that causes a directory update. The version number in
each directory entry should match the version of the bucket it points to when the
directory is completely up to date. The following example illustrates why lhis
ordering approach is adopted. Suppose first a split operation is performed almost
immediately followed by a merge involving those two buckets. Imagine a directory
manager that hears about these updates in the opposite order and applies them. The
directory update related to the merge would essen tially have no effect si nee the split
had not yet been processed. The subsequent update related to the split would result
in directory entries leading to a deleted bucket. At this point the directory is usable
since next links provide recovery. However, since it appears that both messages have
been serviced, the deleted bucket could then be deallocated. This would leave that
copy of the directory in a truly incorrect state from which recovery would be
impossible.

For simplicity, the bucket manager is presented here as a front end process and
a set of associated processes that are assumed to reside at the same site and share
secondary memory. These processes taken together perform the duties of the bucket
manager and preserve the specified interface with other processes. The code for
these processes is given in figure 14. The front end process serves as the initial
contact for its set of buckets. The auxiliary processes operate much like processes in
the centralized solution until they require pieces of the data structure that are outside
this manager's domain. We have already discussed the directory update messages.
Protocols are also available for off-site searching (wrongbucket message), merging
(mergeup and mergedown messages), and splitting (splitbucket message). Taking off
site actions and the need to exchange messages into account, the procedures are not
radically different from those in the centralized solution.

In this report, we just suggest what the proof of correctness would require.
Given the correctness of the centralized algorithm, one approach is to show that the
distributed implementation is in .sorne sense equivalent. By following an execution
of a user's request through the various processes that become involved and
comparing this with the steps taken by the one process handling that request in a

23

centralized system, the correspondence between execution sequences can be seen.
This needs to be formalized. In addition, it is necessary to show that the multiple
copy update strategy applied to the replicated directories is correct We must also
demonstrate that the multiplexing of servers and the message flows between them do
not introduce deadlock. Crash tolerance has not been specifically addressed but our
solution does not appear to present major obstacles to incorporating it. These issues
will be elaborated upon in a future paper.

4. Summary

Extendible hash files have been proposed as a data structure for sequential find,
insert, and delete operations. In this report, we have presented two solutions that
allow concurrent operations on' a slightly modified structure. As in proposals for
concurrency in B'tree variants, making modifications to the data structure to provide
alternate pathways to the desired data is a fundamental technique. In a future paper,
we will evaluate the performance of these algorithms and comparable B-tree
solutions.

Starting from one of these solutions for concurrency in a centralized hash file,
we developed a distributed version. The important point is that concurrent
algorithms involving shared storage may often provide insights into how to partition
and/or replicate data. This suggests a methodology in which the problems of
correctly introducing concurrency and of distributing the computation are addresses
as distinct issues.

Acknowledgments

I would like to thank Jurg Nievergelt for stimulating this work.

Figure 13 Pseudocode for Oirectory Manager

while (true) {
messageld • GetMessage (&msg): /- Either receives a message or takes a

message off the list of delayed but now ready directory updates. -/
switch (messageld) {

case request: {
pseudokey • hash (msg.key);
transaction' • SaveState (msg, pseudokey); /- Multiplexing requesls-

remember data related to this one context of a request
consists of operation, key, userport, and pseudokey /

rho • rho + 1:
lndexdlrectory (pseudokey & mask (depth), &oldpage, &bucketmgr);
bucketport • name100kup (bucketmgr);
messageld • msg.op:
ContactBucket(bucketport, messageld, msg.key, lransactlon',

oldpage, msg.userport, myreplyport, pseudokey);
/ construct a Find, Insert, or Delele m ~ s s a g e and

send It to the appropriate buckel manager /
}
case bucketdone: {

RestoreState (msg.transactlon'); / Recall ccn te r t for this requesl/
If (Imsg.success && operation. delete) {

lndexdlrectory (pseudokey &mask (depth), &oldpage, &buckelmgr);
bucketport • namelookup (bucketmgr):
messageld. operation;
ContactBucket (bucketport, messageld, key, msg.transacllon',

oldpage. userport, myreplyport, pseudokey);
}
else {

rho • rho 1:
C1eanState (msg.transactlon'); / forget about this requesl /

}
}
case update: {

RestoreState (msg.transactlon');
broadcast(operatlon, pseudokey, msg.o1dlocaldepth, msg.verslon'l. msg.verslon'Z,

msg.newpage. msg.bucketmgr, myackport);
/ sends a copyupdate message to all other directory managers and

Increments alpha for each oUlstandlng directory updale /
If (VerslonsDoNotMatch(» save (msg); / Delay this directory update

un t t l 1ts time /
else {

If operation •• Insert) {
If (msg.old10caldepth •• deplh) doubledlrectory;
updatedlrectory (msg.newpage, msg.bucketmgr, ++msg.vers 10n'1.

++msg.oldloca1depth, pseudokey):
If (Imsg.success) {

lndexdlrectory (pseudokey & mask (depth), &oldpage, &buckelmgr);
bucketport • namelookup (buckelmgr):
messageld • context) op:
ContactBucket (bucketport, messageld, key, msg.transacllon',

oldpage, userport, myrep1yport, pseudokey):
}
else { .

rho • rho 1;
C1eanState (msg.transactlon');

}
}
else { / op • delete /

If (msg.o1dlocaldepth •• depth) deplhcounl = deplhcounl Z;
RememberDeleted(): / Keep track of deleted buckets for

the eventual garbage collection phase /
If depthcount •• 0) halvedlrectory();
else updatedlrectory (msg.newpage, msg.bucketmgr, msg.oldlocaldeplh,

max(msg.verslon'l, msg.verslon'Z) + 1, pseudokey);
}
ReleaseSaved(); / If finishing this directory update enables

previously delayed ones, make them accessible to GetMessage /
}

}

24

Figure 13 Pseudocode for Oirectory Manager_

case copyupdate: {
lf (VerSlonsDoNotMatch(» save (msg);
el se {

lf (msg.ap == lnsert) {
If (msg.oldlocaldepth == depth) doubledlrectory;
updatedlrectory (msg.newpage, msg.bucketmgr, ++msg.verston#l,

++msg.oldlocaldepth, msg.pseudokey):
SendAck(msg.ackport); /0 respond to directory manager

who lnltlated this update 0/

}
else { 1° op • delete 0/

If (msg.oldlocaldepth •• depth) depthcount = depthcount - 2;
lf depthcount •• 0) halvedlrectorY()i
else updatedirectory (msg.newpage, msg.bucketmgr, msg.oldlocaldepth.

max(msg.version'1, msg.verslon#2) + t, pseudokey);
RememberAck(msg.ackport): 1° save up acks until the

equlvalent of Xl-locking occurs °1
}
ReleaseSaved() :

}
}
case ack alpha· alpha - 1;

}
lf (lrho) SendRememberedAcks():
if (!rho && lalpha) GarbageCollect();

}

25

26

5. References

[Bayer 77] R. Bayer and M. Schkolnick
"Concurrency of Operations on B-trees",
ACTA Informatica, 9, 1977, 1-21.

[Ellis 80] C. Ellis
"Concurrent Search and Insertion in 2-3 Trees,"
ACTA Informatica 14, 1980, 63-86.

[Fagin 79] R. Fagin, 1. Nievergelt, N. Pippenger, and H.R. Strong,
"Extendible Hashing - A Fast Access Method for Dynamic Files,"
ACM TODS, Vol. 4, No.3, September, 1979, 315-355.

[Gifford 79] D. Gifford,
"Weighted Voting for Replicated Data",
Proceedings, 7lh Symposium on OS Principles, December 1979.

[Kwong 79] Y.S. Kwong and D. Wood,
"New Method for Concurrency in B-trees",
IEEE Transactions on Software Engineering, Vol. SE-8, No.3, May
1982.

[Lehman 81] P. Lehman and S.B. Yao
"Efficient Locking.for Concurrent Operations on B-Trees",
ACM TODS, Vol. 6, No.4, December 1981, 650-670.

[Miller 78] R. Miller and L. Snyder,
"Multiple Access to B-trees",
Proc. Conf Information Sciences & Systems
(preliminary report) March 1978.

[Rashid 80] R. Rashid,
"An Interprocess Communication Facility for UNIX,"
CMU-CS-80-124, Carnegie-Mellon University, June InO.

[Stonebraker 79] M. Stonebraker,
"Concurrency Control and Consistency of Multiple Copies of Data in
Distributed INGRES",
IEEE Transactions on Software Engineering, Vol. SE-5, No.3, May
1979.

[Thomas 79] R. H. Thomas,
"A Majority Consensus Approach to Concurrency Control for Multiple
Copy Databases",
ACM TODS, Vol. 4, No.2, July 1979, 180-209.

Figu re 14 Pseudocode for Bucket Managers

Bucket Manager Front End Process:

whl1e (true) {
messageld • recelvemessage (&msg);
lf (messageld •• splltbucket) {

newpage • allocbucket(): 1= assumes avallable page =1
putbucket (newpage, msg.half2);
SendSplltReply (msg.replyport, newpage, myld):

}
else {

p • createprocess (bucketslave);
forward (msg, p):

}
}

Bucket Slave Process:

messageld • recelvemessage (&msg):
If (messageld == wrongbucket) sw = msg.op;
else sw • messageld;
switch (sw) {

case flnd: {
onmachlne • true:
oldpage • msg.page:
RhoLock (oldpage);
If (messageld •• wrongbucket) SendAck (msg.buckmgrport);
else SendBucketdone (msg.dlrmgrport, msg.transactlon#, success lrue);
getbucket (oldpage, current);
m • mask (current -) localdepth);
whl1e «m &msg.pseudokey) 1=

current -) commonblts && onmachlne) {/= wrong bucket =1
newpage. current -) next;
machlne • current -) nextmgr;
lf (machIne I· me) {

SendWrongbucket (namelookup (machlne), op = flnd, msg.key, msg.lransacllon#.
newpage, msg.userport, msg.dlrmgrport, msg.pseudokey, myreplyporl);

onmachlne • false;
}
else {

RhoLock (newpage):·
getbucket (newpage, current);
m • mask (current -) localdepth);
UnRhoLock (oldpage):
oldpage • newpage;'

}
}
If (onmachlne) {

lf (search (current, msg.key»/= 15 key there? =1
foun d (msg. key) ;

else
notfound (msg.key);

}
else recelvemessage (&msg); 1= Wrong bucket reply =1
UnRhoLock (oldpage);

}
case lnsert: {

onmachlne = true;
oldpage = msg.page;
AlphaLock (oldpage);
lf (messageld =. wrongbucket) SendAck(msg.buckmgrport);
getbucket (oldpage, current);
m • mask (current -) localdepth);
whlle «m & msg.pseudokey) 1= current -) commonblts && onmachlne) (10 WHONG UUCKU °1

newpage. current -) next;
machlne • current -)nextmgr;

27

Figure 14 Pseudocode for Bucket Managers

if (machine la me) {
SendWrongbucket (namelookup (machine), op a Insert, msg.key, msg.transactlon'

newpage, msg.userport, msg.dlrmgrport, msg,pseudokey, myreplyport);
onmachlne • false;

}
el se {

AlphaLock (newpage);
getbucket (newpage, current):
m = mask (current -) localdepth);
UnAlphaLock (oldpage);
oldpage • newpage;

}
}
If (lonmachlne) {

recelvemessage (&msg): ,e Wrongbucket reply e,
UnAlphaLock (oldpage);

}
else {

If (search (current, msg.key» { ,e IS KEY ALREADY THERE? e,
SendBucketdone (msg.dlrmgrport, msg.transactlon', success true):
UnAlphaLock (oldpage);

}
else if (current -) count ,. numentrles) {

,e CURRENT BUCKET NOT FULL e,
SendBucketdone (msg.d1rmgrport, msg.transact1on', success true);
add (current, msg.key);
putbucket (oldpage, current):
UnAlphaLock (oldpage);

}
else (,e CURRENT IS FULL - DIRECTORY WILL Ul AF~lCllO e,

d1rectorymgr • msg.dlrmgrport;
trans' • msg.transactlon';
oldlocaldepth • current -) localdepth:
success • split (current, halfl, half2, msg.key):
if (AvallablePages(» {

newpage • allocbucket ();
machine a myld;
putbucket (newpage, half2);

}
else (

SendSplltbucket(MgrWlthSpace(), myreplyport, half2):
recelvemessage (&msg); ,e split bucket reply e,
machine· msg.bucketmgr;
newpage· msg.page:

}
halfl -> next· newpage:
halfl -) nextmgr • machine;
putbucket (oldpage, halfl);
UnAlphaLock (oldpage);
SendUpdate (dlrectorymgr, oldlocaldepth, trans', newpage, mach Ine, success,

halfl -) version', half2 -) version');
}

}
}
case de lete: {,e Find the right bucket as In the beginning of insert except place X1Locks e,

if (!onmachlne) {
recelvemessage (&msg); ,e Wrongbucket ack e,
UnX1Lock (oldpage);

}
else {

H «current -) count> 1) II (current -) localdepth == 1) II
(Isearch(current, msg.key» { ,e CURRENT NOT TOO EMPTY e,
SendBucketdone(msg.dlrmgrport,- msg.transactlon', success = true}:
If (remove (msg.key, current» putbucket (oldpage, current):
UnX1Lock (oldpage);

}

28

Figu re 14 Pseudocode for Bucket Managers

else (
m s leftsh1ft(l, currerrt -) localdepth - 1);
1f «msg.pseudokey & m) 1= m) (I' MSG.KEY IN FIRST OF PAIH '1

newpage s current -) next;
mach1ne s current -) nextmgr;
1f (mach1ne s me) {

/. Try to merge on s1te as 1n f1gure 9 ./
}
else (

d1rectorymgr • msg.d1nngrport;
trans's msg.transact10n';
vers10n'1 s current -) vers10n';
z • msg.key;
SendMergedown (namelookup (mach1ne), newpage, currcnl -) localdcplh,

myreplyport) ;
rece1vemessage (&msg); I' MD Reply ./
1f (msg.success) (

current· msg.buffer;
oldlocaldepth • current -) localdepth;
vers10n'2 = current -) versIon';
current -) vers10n' • max(vers10n'1, verslon'2) t 1;
current -) commonb1ts = current -) commonblts &

mask (--current -) localdepth);
putbucket (oldpage, current);
SendUpdate(d1rectorymgr, trans', oldlocaldepth, vers10n'1, verslon'2,

oldpage, my1d, success = lrue);
}
else {

SendBucketdone (d1rectorymgr, trans', success = lrue);
1f (remove (z, current» pUlbucket (oldpage, current);

}
UnX1Lock (oldpage);

}
}
else (/. MSG.KEY IN SECOND OF PAIR ./

newpage • current -) prey;
mach1ne • current -) prevmgr;
UnX1Lock (oldpage);
1f (mach1ne •• me) {

/. Try to merge on s1te as 1n f1gure 9 ./
}
else (

d1rectorymgr • msg.d1nngrport;
z • msg.key;
trans' • msg.transact10n';
pseudokey • msg.pseudokey;
SendMergeup(namelookup (mach1ne), newpage, oldpage, my1d, myreplyporl);
rece1vemessage (&msg); /. MU Reply ./
1f (Imsg.success) {

SendBucketdone(d1rectorymgr, trans', success = l r ue) ;
1f (remove (z, current» putbucket (oldpage, currenl);

}
else {

X1Lock (oldpage);
getbucket (oldpage, current);
1f «mask (current -) localdepth) & pseudokey) 1= currenl -) cOlllllonb IlS) (

UnX1Lock (oldpage);
success = false;
SendGoahead(msg.replyport, success);
S e ~ d B u c k e t d o n e (d1rectorymgr, trans', success);

}
else 1f (current -) localdepth Is msg.localdepth II

current -) count) 1 II (current -) count == 1 &&
Isearch (current, z»){

SendBucketdone(d1rectorymgr, trans', success = lruc);
1f (remove(z, current» putbucket (oldpage, current);
UnX1Lock (oldpage);
success = false;
SendGoahead(msg.replyport, success);

}

29

Figure 14 Pseudocode for Bucket Managers

1111 (

vlrs10n'l • msg.vlrs10n';
vlrslon'Z • current -) version';
currlnt-)commonb1ts • jellted;
.uccess • true;
Sln.dGoahead(msg.replyport, current -) 1l00l, currenl -) ne.lmgr,

ma. (ver.10n,t, ver.lon'Z) + I, succe ••);
current -) ne.t • current -) prevo
current -) ne.tmgr • current -) prevmgr;
putbucket (oldpage, current);
SendUpdate(d1rectorymgr, current -) localdeplh, cur ren t -) ne r t ,

current -) ne.tmgr, .UCCIS., vers10n,t, versIon'!);

}
}

}
}

}
}

}
cale mergedown: {

newpage • m.g.partner;
X1Lock (newpage);
getbucket (newpage, brother):
luccesl • brother -) local depth •• m.g.localdepth:
SendMDRlply(m.g.buckmgrport, brother, .ucce.s};
1f ('UCCIII) (

brother -) commonb1ts • deleted;
brother -) ne.t • brother -) prev:
brother -) nextmgr • brother -) prevmgr:
putbucket (newpa,e, brother):

}
UnX1lock (newpage);

}
cue me"geup: {

newpage. msg.partner:
X1lock (newpage):
getbucket (newpage, brother);
IUCCII. • (brothe,. -) nut •• msg.target) && (brother -) nUlmgr ... msg.milligerld);
Senc:lMUReply(mlg.buckmgrport, brother -) localdepth, myreplyport, success, brolher -) vers 10/1');
1f (succe..) {

rece1vemessage (&msg); '8 GoAhead 8'
1f (msg.succe••) (

brother -) commonb1t. • brother -) commonb1ts & mask (--brother -) locildeplh);
brother -)next m.g.ne.t;8

brothe r -) nu tmg" • m.g. n81 tmg r:
brother -) vers10n' • msg.ve,.s10n';
putbucket (newpage~ brother):

}
}
UnX1Lock (newpage)

}
ca.e garbagecollect: {

for each page 1n msg.li.t {
Xilock (page):
deallocate (page):
UnX1Lock (page);

}
}

}

30

