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Abstract  

The extendible hash  file  is a dynamic data structure  that is  an alternative  to  B-
trees for use  as a database  index.  While  there  have  been  many  algorithms  proposed 
to allow  concurrent access  to Btrees,  similar solutions  for  extendible  hash  files  have 
not appeared.  In  this  paper, we  present solutions  to allow  for  concurrency  that  are 
based  on  locking  protocols  and  minor  modifications  in  the  data  structure. 

Another  question  that  deserves  consideration  is  whether  these  indexing 
structures can be adapted for use  in a distributed  database.  Among  the  motivations 
for  distributing  data are increased  availability  and ease  of growth;  however,  unless 
data structures in the access  path are designed  to support  those  goals,  they  may  not 
be  realized.  We  describe  some  first  attempts  at adapting  extendible  hash  files  for 
distributed  data. 
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1. Introduction 

The  extendible  hash  file  [Fagin  79]  is  a  dynamic  data  structure  that  is  an 
alternative  to  Brtrees  for use  as  a  database  index.  While  there  have  been  many 
algorithms  proposed  to  allow  concurrent  access  to  Btrees  [Bayer  77.  Ellis  80. 
Lehman 81,  Kwong  82,  Miller 78],  similar solutions  for  extendible  hash  files  have  not 
yet appeared.  In  this  paper,  we  present  solutions  to allow  for  concurrency  that are 
based on locking  protocols and minor modifications  in  the data structure.  In  addition 
to developing  new  algorithms,  this  work  aims  to provide  a  better  understanding  of 
techniques  for  adapting  data  structures  to  allow  concurrent  access.  Thus.  we 
investigate  what happens  when  one tries  to apply  some of the techniques  used  in B
tree solutions to extendible hash files. 

The sequential algorithms for extendible hashing are described in [Fagin 79]. 
The basic ideas and terminology are summarized below. The data structure consists 
of two parts: a set of buckets and the directory. The buckets reside on secondary 
storage and contain keys and associated information. The order of the data within 
buckets is not important for this discussion. The directory is an array of pointers to 
buckets. A hash function is used that generates a very long pseudokey when applied 
to a key. The number of bits of the pseudokey actually used to index into the 
directory is called the depth of the directory and changes as the file grows or shrinks. 
In our work, the least significant bits are used in order to simplify manipulations of 
the directory. Suppose that the directory's depth is currently three. This means that 
at the moment, there are eight valid directory entries. The i1h entry, 0 5 i 5 7. 
points to the bucket that holds all the records whose pseudokeys end in the three bit 
binary representation of i. Each bucket includes a loealdepth (5 depth) indicating 
that the pseudokeys of the records it contains agree in only that number of bits. 
Thus multiple directory entries will point to the same bucket if its localdepth is less 
than the directory's depth. Figure 1 gives an example of an extendible hash file for 
sequential access. To perform a find operation for a key, k, one would apply the hash 
function to k to obtain the pseudokey (imagine it is •...101'), determine the current 
depth of the directory (2 in this example), and use the appropriate bits ('01 ') as an 
index. Following the pointer in the directory entry. one would search the third 
bucket for k. As insertions occur, a bucket may become full (indicated by the eount 
field) and split into two buckets. If the old localdepth equals depth, the directory 
doubles in size and depth increases by one. Similarly. deletions may result in two 
buckets merging and possibly reducing the depth of the directory. One way of 
detecting the condition that allows halving the size of the directory is to keep a count 
(named depthcounti of the number of buckets whose localdepth eq uals depth. Figure 
2 shows how a sequence of updating operations would affect the structure given in 
Figure 1 where x <y = z = maximum number of keys per bucket. This data 
structure is our point of departure for introducing concurrency in Section 2. 

The next step is to consider the question of whether these indexing structures 
can be adapted for use in a distributed database. Among the motivations for 
distributing data are increased availability and ease of growth; however. unless data 
structures in the access path are designed to support those goals. they may not be 

. realized. In Section 3 we describe some first attempts at adapting extendible hash 
files for distributed data. Our thesis is that locking patterns and other aspects of the 
solutions for concurrency in shared data structures can lead to insights into how to 
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partition the data among processes in a distributed environment This suggests a 
methodology for developing distributed solutions. 

2. Locking Protocols for Extendible Hash Files 

2.1 Common Aspects 

In this section, we present two solutions which have evolved from the sequential 
algorithms for concurrent manipulation of a centralized extendible hash file. Figure 3 
shows the modified structure used in these solutions. The fundamental change is that 
the buckets are linked through a next field to allow recovery from concurrent 
restructuring operations. This provides an alternate path to the desired data that call 
be used by a searching process when the information is involved in a split or merge 
operation. Thus when a bucket splits, the next link of the original bucket is 
reassigned to point to the newly created bucket. The new bucket gets the original 
bucket's old next pointer. Merging does the reverse. Figure 4 shows what happens 
when the second bucket in Figure 3 splits. The approach is similar to the use of link 
pointers in Lehman and Yao's Blink-tree solution [Lehman 81]. In addition, there 
must be a way for a process to tell if it has the wrong bucket, We chose to include a 
field (commonbils) containing the common bit pattern that characterizes the 
pseudokeys that belong in the bucket. Alternatively, one could reapply the hash 
function to any key stored in the bucket and use this for comparison with the target 
pseudokey as long as the possibility of an empty bucket is taken care of. 

The goal is to allow a number of processes to be in various stages of find, insert, 
or delete operations at the same time. Each process can manipulate the data after 
locking appropriate portions of the shared structure and transferring the information 
into private buffers. The buckets are assumed to occupy physical pages on disk which 
are read and written as single operations. The locking protocol uses various types of 
locks placed on the. directory (as a whole) and on individual buckets, The 
compatibility of lock types is given by the following table. 

Lock request Existing lock  
p ex €  

p (read-lock) yes yes no 

ex (selective lock) yes no no 

e(exclusive lock) no no no 

2.2 First Solution 

The following set of algorithms is similar to top-down locking protocols for B-
tree variants  (cf.  [Bayer  77],  [Ellis  80D,  in  that a lock  is  placed  on each  level  of  the 
structure (in this case  there are only  two  levels,  the directory  then  a bucket) and held 

 until  it is found  to be no longer  needed.  The procedures  are given  in Figures  S,  6, 
and  7  for  find,  insert,  and  delete  respectively. 
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A process executing the find operation must p-lock the directory before reading 
the depth and extracting the apparent bucket pointer. The p-lock is necessary to 
prevent interference from a deleting process. If the deleter did not exclude the reader 
and was in the process of halving the directory. the reader might try to access an 
invalid directory entry based on the old value of depth. A similar interference could 
occur between readers and deleters with regard to newly deallocated buckets. 
Therefore, deleting processes must place incompatible ~-locks.  Readers can safely 
execute in parallel with inserting processes because of the next links and the fact that 
no portion of the structure is lost during bucket splitting or directory doubling 
actions. After determining which bucket is to be searched, the reader places a polock 
on it, releases the lock on the directory, and transfers the contents into a private 
buffer. The reader may then discover that it has the wrong bucket. This means that a 
split occurred after the directory was read and before the data was retrieved. Now 
the localdepth low order bits of the target pseudokey do not match the commonbits 
of this bucket. By following the next pointer, the right bucket will eventually be 
found. The next bucket is always p-locked prior to releasing the lock on the current 
bucket. This flow of locks prevents processes from leapfrogging each other. 

Updating operations are serialized with respect to each other by a-a, a-~,  and ~
~  lock incompatibilities. To insert, an a-lock is placed on the directory and held unlil 
there is no need for further directory manipulation due to this insertion. Readers 
can still proceed because of lock compatibility. Changes made by inserters to the 
official shared structure appear to readers as atomic actions. Splitting a bucket 
appears as an atomic action because of the order in which the new bucket pair is 
written back to disk. Doubling the directory appears atomic because of the choice to 
use the least significant bits of the pseudokey. Deleting processes use ~-Iocks  because 
of the previously mentioned problems with readers. If the target bucket is too empty, 
the deleter will try to merge with the partner bucket. The simplest interpretation for 
"too empty" is that the only record contained in the bucket is the one to be deleted. 
Here "partner" refers to the partner with respect to the' target bucket's localdepth. 
Merging is then possible if the partners have the same localdepth (and it is not 1). 
Two buckets are defined as partners with respect to bit position d if their 
commonbits match in bits d-1 to 1 and differ at bit d (where the least significant bit 
is numbered 1). Suppose we want to merge bucket JJ with its partner bucket C. ~

locking the partner is straightforward if C follows B in the linked ordering of 
buckets. Otherwise this action actually involves temporarily releasing the lock on .B 
and requesting e-locks on C and B in order. This avoids deadlock with a reader 
following next links from C to B. Alternatively, the reader could have held the II-lock 
on the directory until it had the right bucket, but this would be a more pessimistic 
approach and would have to be abandoned in the next solution anyway. Detecting 
the condition necessary for halving the directory could be done in several ways. 
Here, a depthcount field containing the number of buckets with localdepth = depth 
is maintained by structure modifying operations (e.g. splitting a bucket of localdepth 
= depth-I would add two, merging two buckets of localdepth = depth would 
subtract two, halving the directory would involve a scan of directory contents to 
determine depthcount for the new depth by comparing corresponding entries in the 
top and bottom halves for pointers which differ, and doubling the directory would 
set it to zero). 



Figu re 5 Find Alga rithm 

Shared data for all of the centra11zed algor1thms: 

struct buffer { 
1nt 10cal dept h; 
1nt cOrmlonb1 ts; 
1nt count; 
1nt nut: 
lnt data[numentrles]}; 

1nt depth, depthcount; 
lnt dlrectory[l«maxdepth]: 

'Ind(z) 
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lnt pseudokey. 
oldpage, '·d1sk page address·' 
newpage; '·dlsk page address·' 

struct buffer B, 
·current: ,. p01nter to buffer ., 

uns1gned m; 
current· &B; 

pseudokey - hash (z): 
RhoLock (d1rectory); 
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RhoLoCk (oldpage): 
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m •  mask  (current  )  localdepth): 
UnRhoLock  (oldpage): 
oldpage  •  newpage; 
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1f  (search  (currant,  z»'·  is  z  there?  ., 
found  (z); 

else 
notfound  (z); 

UnRhoLock  (oldpage): 
} 
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9 Figu re 6 Inse rtion Algo rithm 

1nse rt( z) 
{ 

1nt  pseudokey,  
oldpage,  
newpage,  

1nt  done; 
struct buffer  A,  

B,  
C,  

*current,  
*ha1fl,  
*ha1f2;  

current = &A;  
halft .. &B;  
ha1f2" &C;  

pseudokey hash (z);  
AlphaLock (d1rectory);  
oldpage = 1ndexd1rectory (pseudokey & mask (depth»;  
AlphaLock (oldpage);  
getbucket (oldpage, current):  
1f (search (current, z» { /* z 1s already there */  

UnAlphaLock (d1rectory); 
UnAlphaLock (oldpage);  

}  
else  

1f (current -> count 1= numentr1es) {
/* current bucket not full */ 

UnAlphaLock (d1rectory); 
add (current, z); 
putbucket (oldpage, current); 
UnAlphaLock (oldpage); . 

} 
else { /» current 1s full */  

1f (current -> local depth == depth)  
doubled1rectory (); 

newpage" allocbucket (); 
done" sp11t (current, halfl, half2, z, newpage); 
putbucket (newpage, half2); 
putbucket (oldpage, halfl): 
UnAlphaLock (oldpage);
updated1rectory (newpage, halfl -> localdepth, pseudokey): 
UnAlphaLock (d1rectory); 
1f (Idone) 

1nsert (z); 
} 

} 



Figure 7 Deletion Algorithm 

delete(z) 
{ 

1nt  pseudokey,  
selectedb1ts,  
oldpage, /- disk address -/  
newpage, /- disk address -/  
merged, /- disk addres.s -/  
garbage; /» disk address */  

struct buffer B, 
C,  

-brother,  
-current;  

unsigned m;  
current • &B:  
brother • &C;  

pseudokey = hash (z);  
X1Lock (directory):  
selectedb1ts • pseudokey &mask (depth);  
oldpage = 1ndexd1rectory (selectedb1ts);  
X1Lock (oldpage);  
getbucket (oldpage, current):  
1f «current -) count) 1) II (current -) l ce a l de pth == 1» {  

/* current not too empty -/ 
UnX1Lock (directory); 
if (remove (z, current» /* successful -/ putbucket (oldpage, current); 
UnX1Lock (oldpage): 

} 
else { 

if (search (current, z» { /- z 15 there -/  
m .leftsh1ft( 1, current -) 10caldepth - 1):  
1f «pseudokey & m) ,= m) (I- z goes 1n f1rst of pa1r -/  

newpage • current -) next:  
X1Lock (newpage):  
getbucket (newpage, brother):  
merged. oldpage:  
garbage = newpage:  

}
else { /* z goes 1n second of pa1r -/  

newpage 1ndexd1rectory (selectedb1ts &-m);  
UnX1Lock (oldpage);  
X1Lock (newpage);  
X1Lock (oldpage);  
getbucket (newpage, brother):  
merged. newpage;  
garbage = oldpage;  
brother -) next = current -) next:  

} 
1f (current -) local depth 1= brother -) Ioc a ldep t h) { 

/* not poss1ble to merge these two -/ 
1f (remove (z, current» putbucket (oldpage, current): 

} 
else { /* mergable */ 

1f «brother -) localdepth--) == depth) 
depthcount = depthcount - Z; 

brother -) commonb1ts = brother -) commonb1ts &mask (brother -) 10caldepLh): 
putbucket (merged, brother): 
if (depthcount == 0) 

halved1rectory ():
else 

updated1rectory (merged, brother -) localdepth + 1, pseudokey); 
deallocbucket (garbage); 

} 
UnX1Lock (newpage): 

} 
UnX1Lock (oldpage);  
UnX1Lock (d1rectory);  

} 
} 
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2.3 Correctness of the First Solution 

Showing the correctness of this solution requires a proof that iL is deadlock free 
and that requested operations perform correctly both with respect to the target key 
and the integrity of the data structure. Specifically, a key to be inserted (deleted) 
should be present (absent) when the update terminates. If the desired data for a find 
operation is in the file and not the subject of a concurrent update operation, it should 
be found. . 

The freedom from deadlock argumen t depends on the fact that locks are 
requested according to an ordering on the lockable components of the structure. The 
directory is always locked first, followed by one of the buckets. While a bucket is 
locked, additional locks are requested only on buckets reachable from it via next 
links. The only processes that ever attempt to lock more than one bucket are those 
executing find or delete operations. Readers follow next links from buckets they 
have locked. Deleters attempt to lock both partners of a potential merge. For as long 
as any two buckets remain in the hashfile, the ordering imposed on them by 
reachability through next links remains the same and between any two partner 
buckets, there is a path from the "0" partner to the "1" partner. Thus a process 
trying to delete from the "1" partner will have to release its lock on that bucket in 
order to get both partners locked according to the ordering. In addition, it is 
impossible for a process to read a pointer for a bucket that will be deallocated before 
it can make its lock request since a deleter excludes other processes from parts of the 
data structure that contain pointers to the buckets being removed. This point is 
important to ensure that lock requests can eventually be satisfied. 

It is almost trivial to show the correctness of update operations in this solution 
since they are essentially sequential. Removing or adding a key to the hash file 
depends first of all on the updating process getting to the right bucket. Since a lock 
is held on the directory while an updater initially reads the bucket pointer and kept 
until the directory reflects all changes in the structure resulting from its update, the 
information seen by updaters when they read the directory is the same as it would be 
if updates were completely serial. Arriving at the right bucket, the updater must also 
see the right version of it. Again a lock which excludes other updaters is required in 
order to read the bucket contents into private storage and is held until the bucket is 
rewritten (or it is discovered that no change is needed). Thus previous updaters have 
made their modifications known by the time a new updater gains its lock. Since 
updates do not interfere with each other, the data structure should be correct when 
no update operations are in progress.' 

Finally, we must consider interactions between readers and updaters, The 
locking protocol ensures that a reader and a deleter are serialized according to the 
order in which they lock the directory. A deleter. exclusively locks the directory, the 
target bucket, and its partner (when necessary) while modifications are taking place. 
No intermediate stages of the deletion operaton will be visible to other precesses. A 
deleter could potentially interfere with a reader if the effects of the deletion appeared 
after the reader gained some information from the file and before that information 
was acted upon (e.g, the reader gets a bucket poin ter from the directory, the deleter 
merges that bucket into its partner,then the reader tries to follow the pointer). 
However, this is impossible since the source of the reader's information remains /1

o • 
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locked until the next lock is granted. This is also true when the reader is following 
next links. Whenever a bucket, A, can be merged into its partner, B, then 11's next 
link will point to A. 

By contrast, a reader may see intermediate stages of an insertion operation but 
this does not prevent it from ascertaining the presence or absence of any key other 
than the one being added. The possible changes in the data structure caused by an 
inserting process are as follows: If the inserter's target bucket is not full, it is 
replaced in a single put operation with the original contents plus the new record. A 
reader will see either the old or the new bucket and the only difference is the key 
being added. If the inserter's bucket is full, it will be replaced by a pair of buckets in 
which the old contents are distributed between the two according to pseudokey, The 
new record will be included in the appropriate partner if there is room. The second 
half of the pair is written first in a newly.allocated disk page and then the old bucket 
is replaced by the first half of the pair. Immediately after the first put, the new 
bucket is still not reachable through pointers in the hash file. Thus writing the pair is 
equivalent to the single operation of writing the rust partner. A reader which sees a 
directory entry before it is updated to point to the new bucket will get either the old 
bucket or the rust half of the pair. If the reader's desired data has moved to the 
second half, it will detect this and follow the next link. Finally, the inserter may need 
to double the directory. This appears to readers as a single operation. The directory 
space is extended and the old contents copied prior to incrementing depth and it is 
the act of incrementing depth that makes the new directory entries visible. 

Even assuming fairness in the granting of lock requests (e.g. FIFO subject to the 
compatibility relationship), lockout of readers is possible if their target buckets are 
constantly changing due to a steady stream of updates. 

2.4 Second Solution 

The recognized problem with top-down protocols is the need to hold a lock on 
the bottleneck of the structure while determining if restructuring will be required. 
This is avoided in the next protocol. The idea is for updating processes to ad like 
readers during their search for the right bucket. The procedure for the find operation 
is the same as before. The algorithms for insert and delete are found in Figures 8 and 
9. 

For the insert operation, a p-lock is placed on the directory that will be 
converted to an a-lock if the directory actually will be modified. Other insert or 
delete operations can also be active. The next pointer is again used for recovery but 
now deleted, but not yet deallocated, buckets also provide a recovery path. Because 
of the additional concurrency, updaters may also find themselves with the wrong 
bucket and must follow the recovery path. "Wrong bucket" now includes the case 
where this bucket has been merged into a preceeding bucket. The bucket is marked 
as "deleted." Since there are no circular paths through the next pointers that are not 
protected with the deleting process's ~-locks,  this protocol can be shown to be 
deadlock free. 

In addition to setting up the merged bucket, merging now involves marking the 
old partner as "deleted" (we use the commonbits field for this), setting its next field 



13 Figu re 8 Inse rtion Algo rithm 

1nsert(z) 
{ 

1nt  pseudokey,  
oldpage.  
newpage:  

1nt  done; 
struct buffer  A,  

B,  
C,  

·current,  
·halfi.  
·halfZ:  

uns1gned m:  
current • &A;  
haIf 1 = &B;  
ha lfZ • &C;  

pseudokey • hash (z);  
RhoLock (d1rectory);  
oldpage = 1ndexd1rectory (pseudokey & mask (depth»;  
AlphaLock (oldpage):  
getbucket (01 dpage, current):  
m • mask (current -) local depth);  
wh1le «m & pseudokey) 1= current -) commonb1ts) {I· WRONG BUCKET ./  

AlphaLock (newpage. current -) next):  
getbucket (newpage. current);  
m • mask (current -) localdepth);  
UnAlphaLock (oldpage);  
oldpage • newpage;  

}
lf ( search (current, z» { /. IS Z ALREADY THERE? ./  

UnRhoLock (dlrectory):  
UnAlphaLock (oldpage):  

}  
else  

lf (current -) count 1= numentrles) { 
/. CURRENT BUCKET NOT FULL ./ 

UnRhoLock (d1rectory); 
add (current, z); 
putbucket (oldpage, current); 
UnAlphaLock (oldpage); 

}
else { /. CURRENT IS FULL - DIRECTORY WILL BE AFFECHU ./ 

AlphaLock (d1rectory); 
lf (current -) local depth == depth) 

doubledlrectory (); 
newpage • allocbucket (); 
done· spIlt (current, halfl, halfZ. z, newpage); 
putbucket (newpage, halfZ); 
putbucket (oldpage, halfl); 
updatedlrectory (newpage. half1 -) localdepth, pseudokey): 
UnAlphaLock (oldpage); 
UnAlphaLock (d1rectory): 
UnRhoLock (d1rectory); 
1f (I done) 

lnsert (z);  
}  

} 



Figure 9 Deletion Algorithm 

delete(z) 
{ 

Int  pseudokey,  
selectedbl ts,  
oldpage,  
newpage,  
garbage,  
merged;  

struct buffer B, 
C,  

*brother,  
*current:  

unslgned m:  
current. &B:  
brother = &C:  

pseudokey - hash (z); 
Rholock (dlrectory):  
selectedblts - pseudokey &mask (depth):  
oldpage • lndexdlrectory (selectedblts);  
Xilock (oldpage):  
getbucket (oldpage, current):  
m - mask (current -) localdepth):
while «m & pseudokey) I. current -) commonblts) {'* WRONG BUCKET *'  

Xllock (newpage - current -) next):  
getbucket (newpage, current);  
m - mask (current -) localdepth):  
UnXllock (oldpage):  
oldpage - newpage:  

}  
if «current -) count) 1) II (current -) local depth .- 1» {  

'* CURRENT NOT TOO EMPTY *'  
UnRholock (dlrectory):  
if (remove (z, current» p u t b ~ c k e t  (oldpage, current);  
UnXllock (oldpage):  

} 
else {  
/* IF EVERYTHING STAYS THE SAME - TRY TO MERGE *'  

lf (Isearch (current, z» {'* Z NOT THERE */  
UnXilock (oldpage):  
UnRholock (di rectory): .  
return:  

} 
else {  

m - leftshlft(1, current -) localdepth - 1):  
lf «pseudokey &m) ,- m) {/* Z IN FIRST OF PAIR */  

newpage - current -) next:  
Xilock (newpage);  
getbucket (newpage, brother):  
garbage - newpage:  
merged - oldpage:  

} 
else { /* Z IN SECOND OF PAIR */  

newpage - lndexdirectory (selectedblts & -m):  
UnXllock (oldpage);  
Xllock (newpage):  
g e t b ~ c k e t  (newpage, brother):  
1f (b ro the r -) next I = old page) {  

/* OlDPAGE AND NEWPAGE ARE NOT MERGABlE PARTNERS *' 
UnXllock (newpage); 
~ n R h o l o c k  (dlrectory): 
delete (z): 
re tu rn: 

} 
else { 

Xllock (oldpage); 
getbucket (oldpage; current); 
garbage = oldpage; 
merged - newpage; 
brother -) next = current -) next: 
if «mask (current -) localdepth) & pseudokey) ,- cu r r-en t-o commcnb t t s ) { 

'* Z no  longer belongs 1n oldpage - wh1le 

14 



15 Figure 9 Deletion Algorithm 

UnX1Lock 
UnX1Lock 
UnRhoLock 

waiting to re-lock oldpage It may have 
filled up and split, moving z */ 

(oldpage); 
(newpage); 
(directory); 

delete (z);  
return;  

}  
}  

}  
If (current -) localdepth ,- brother -) localdepth II  

current -) count) 1 II (current -) count -= 1 &&  

Isearch (current, z») {  
/*  Either It Is not possible to merge 

because of localdepths or something 
happened while waiting to re-lock 
oldpage - more data Inserted Into 
oldpage so It Is no longer empty and 
maybe then z deleted */ 

UnX1Lock (newpage);  
UnRhoLock (directory);  
If (remove (z, current» putbucket (oldpage, current);  
UnX1Lock (oldpage);  
return;  

} 
/» MERGE */ 

AlphaLock (directory); 
If «brother -) localdepth--) -- depth) 

depthcount - depthcount - Z; 
brother -) commonblts - brother -) commonblts &mask (brother -) localdepth); 
current -) commonblts - deleted; 
current -) next. merged; 
putbucket (merged, brother): 
putbucket (garbage, current); 
updatedlrectory (merged,  
UnX1Lock (oldpage); .  
UnX1Lock (newpage);  
UnAlphaLock (directory);  
UnRhoLock (directory);  
X1Lock (directory);  
X1Lock (garbage);  
If (depthcount •• 0)  

halvedlrectory (); 
deallocbucket (garbage): 
UnX1Lock (directory); 
UnX1Lock (garbage): 

} 
} 

} 

current -) local depth + 1, pseudokey): 
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to point to the merged bucket, updating the next field of the merged bucket, and 
writing both buckets back to secondary storage. If it is necessary to release the lock 
on the target bucket so that e-Iocks may be requested in order on the pair to be 
merged, then a number of conditions must be checked after gaining the locks. These 
will be elaborated in the proof. Deleted buckets and discarded halves of the 
directory are actually deallocated only after ensuring that no process needs them 
anymore. 

2.5 Correctness of Second Solution 

The freedom from deadlock issue has been complicated by the presence of 
deleted buckets and the delayed a-locking of the directory. The key observation to 
be made with regard to the a-locking is that a process requesting an a-lock on the 
directory already holds a p-Iock on it (essentially doing lock conversion) and has all 
the necessary locks on buckets. This lock request will be refused if there already is an 
incompatible lock on the directory. If this lock is an a-lock held by another updater, 
that process will make no further lock requests. The lock cannot be a e-Iock because 
of the existing p-Iock. Therefore, there is no possibility of deadlock due to a-locking. 
Given the way deleted buckets are handled in this solution, it is not true that the 
ordering between two buckets stays the same. Thus, bucket B may be reachable from 
bucket A but if they are partners this relationship may be reversed as LJ is merged 
into A. However, it is not possible for processes following the old ordering to coexist 
with processes following the new ordering because the deleter uses e-locks to ensure 
that all the processes with old information have cleared out of the vicinity of the 
merge. Extra precautions must be taken by deleters to check that the locking of 
partners is consistent with reachability (line labeled A in figure 9). 

This solution allows more concurrency among updaters than the first solution 
because of the delay in a-locking for updating the directory and in e-Ioding the 
directory for garbage collection. Updaters in their searching phase are like readers, so 
arguments for getting to the right bucket hold for each type of process. Wi th this 
locking scheme, processes are allowed to read out of date directory entries including 
pointers to deleted buckets. Imagine a searching process that indexes into the 
directory and finds a pointer to bucket A as that directory entry is about to be 
changed to reflect a split or merge. If A has recently been split, A's next link will lead 
to the new bucket which contains the records moved from A. If A has just been 
merged into its partner, it will be marked as deleted, making it the "wrong bucket" 
for any searching process and the next link again will provide recovery. The 
important observation is that obsolete directory entries that are still visible always 
point to a bucket from which the correct bucket is reachable via next links. Doubling 
the directory appears atomic. Finally, searching processes do not access the directory 
while it is being shrunk. Discarding deleted components is done in a separate phase 
which is truly serialized with respect to other actions by ~-locking.  

Once an updater arrives at the right bucket and gains the locks it requires, the 
actual modifications are essentially serialized as in the first solution. Thus updaters 
work with the most recent version of that bucket. However, for a deleter to get to the 
point where it has all the locks its needs can be somewhat involved if the target 
bucket is the "1" partner of a potential merge. The deleter must release its lock on 
the target bucket, place a lock on the "0" partner, and then re-lock the" I" partner. 
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While this is taking place, other update operations may be affecting these buckets. In 
particular, a concurrent insertion could add new records to the target bucket once the 
deleter's lock is released so that it is not longer empty enough to allow merging. It is 
even theoretically possible for a stream of inserters to fill up the target bucket and 
cause a split, thereby moving the key that is to be deleted. In addition, another 
deleter might get the two partners locked and merged before the deleter we are 
focusing on does. Each of these conditions is checked for and the pitfalls avoided. 
After gaining the lock on the "a" partner, the deleter checks whether merging might 
be possible (the partner's next link points to the target buckeL), and if this check fails, 
it goes back to simply trying to remove its key. If the two buckets are not linked in 
this way, it may mean the localdepths do not match or that the target bucket has 
been deleted. Attempting to lock the target bucket under these circumstances would 
carry with it the danger of deadlock. Upon finding the two buckets direcLly linked 
and re-locking the "I" partner, the deleter checks the emptiness of the bucket, 
whether the desired key is still there, and whether °localdepths still match before 
going ahead with the merge. Unless the key has moved, the deleter at this point 
would have the needed locks and no further interference could occur at the bucket 
level. 

Processes executing the find operation may legitimately see either an old or the 
new version of the target bucket. No intermediate states are visible (i.e. adding or 
removing a key is a single put operation, splitting is equivalent to a single put, and 
merging is protected with e-Iocks) Differences between old and new only involve 
records that are moved to a reachable bucket or that are the subject of a concurrent 
update operation. Note that lockout is possible for all processes while they are trying 
to get the right set of buckets locked. 

3. Use with Distributed Data 

We have presented two approaches to solving the problem of allowing 
concurrency within a shared extendible hash file. Now we turn to the problem of 
distributing this information. Developing a distributed solution raises a number of 
issues; although some are unique to this particular model of computation. the aspect 
of achieving a degree of concurrency is common to both distributed and shared data 
systems. Thus a correct centralized solution may prove to be a good starting point in 
determining how to partition structured data. We can assess the previous algorithms 
on the basis of their potential for distribution. 

First it must be clear what is meant by the phrase "distributing the data 
structure" and what our model of a distributed system is. We assume there are a 
number of processes each encapsulating some portion of the data structure (Le. the 
entire directory or whole buckets) and acting as a manager for it. Certain pieces of 
the data structure may be replicated in several processes. Processes do not share 
storage (including secondary storage) and they communicate through asynchronous 
messages. The style of message-passing used in our protocol depends on reliable 
delivery, buffering, and possible anonymity of senders (e.g. port-based 
communication as in [Rashid 80].) These assumptions allow the processes to reside 
on different machines connected by a network, and since this is possible, interactions 
between processes are potentially costly. Requests for find, insert, or delete 
operations may be forwarded to the appropriate data managers for service. 
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There are a couple of principles influencing this particular design. First of all, if 
distributing the data is actually going to achieve an increased level of availability, the 
directory should be highly accessible. This suggests the need to replicate the directory 
information and maintain consistency to the extent that a request can be made to any 
of the copies and eventually it will reach the desired data. We assume that each copy 
of the directory is managed as a whole (i.e. it is not partitioned). Given the decision 
to replicate this component of the data structure, the consistency issue becomes 
important. If a- or ~-locking  the directory in the centralized solutions is 
straightforwardly translated into some action involving all copies simultaneously, it 
will be an expensive operation and require some strategies for avoiding deadlock and 
dealing with temporarily missing copies. Thus, the analogue to global a-locking 
should be avoided as much as possible: implying that the second of the two previous 
solutions is more compatible with replication. Although a number of general purpose 
mutual consistency algorithms are available [Gifford 79, Stonebraker 79, Thomas 79], 
it may be possible to exploit certain properties of this problem to arrive at a less 
synchronized method. A second goal is to minimize message traffic. Whenever 
possible, the information needed for decision-making should be available locally, 
Additional modifications in the data structure may be desirable. For example, in the 
centralized algorithms it was acceptable to locate a partner bucket using the 
directory. In the distributed case, this would involve a bucket manager sending an 
inquiry message to a directory manager. Finally, there are no constraints to be put on 
the placement of data. One can imagine policies that would try to group certain 
buckets within one server. This is reasonable for a static data structure. However, 
ease of growth is a major goal both for extendible hash files and for distributing data. 
The problem of allocating buckets to servers on any basis other than availability of 
space is a hard problem for a dynamic data structure such as this and is not 
considered here. ' 

As indicated above, this distributed solution is derived fron the second set of 
procedures for the centralized hash file. The replication of the directory is the main 
justification for choosing this approach. The data structure would now appear as in 
figure 10. Two copies of the directory are shown. A prev link has been added to 
each bucket that leads to the bucket from which this bucket originally split off. This 
is used to find the "0" partner of a possible merge with information local to this 
manager process. Each link represents a pair consisting of a long-lived identifier for 
a manager port and a bucket address that is meaningful to that manager. A version 
field introduced into each bucket and each directory entry is lIsed in updating 
directory copies asynchronously. 

There are two types of processes, namely directory managers and bucket 
managers. Each bucket manager is responsible for a disjoint subset of the buckets. 
Figure 11 shows the message types that flow between the various processes. The 
information contained in these messages is outlined in figure 12. 

The procedure for the directory manager processes (see figure 13) is described in 
terms of actions taken in response to messages received. The directory manager is 
designed as a server which can keep track of several user requests. The locking of 
the directory in the centralized solution is embodied in the manager's explicit 
scheduling of requests for its attention. Upon receiving a request message, stale is 
saved in a context table and the request is forwarded to the appropriate bucket 
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10: 
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Directory 

DEPTHCOUNT .. 2 

DEPTH .. 2 

VERSION: 

VERSION: 

VERSION: 

Buckets  

LOCALDEPTH .. 2 

COMMONBITS = 00 

'COUNT .. 
PREV

DATA" 
NEXT  

VERSION:  

LOCALDEPTH .. 2 

COMMONBITS .. 10 

COUNT .. 
PREV

DATA" 
NEXT 

VERSION: 

LOCALDEPTH .. 

COMMONBITS .. 

COUNT .. 
PREV 

DATA" 
NEXT 

VERSION: 

Figure 10 

Distributed Extendible Hash File VERSION: 

VERSION: 

DEPTHCOUNT .. 2 

DEPTH.2 

VERSION: 
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< RESPONSE 

REQUEST - > 
FIND • > 

INSERT • > 

> 

Directory replicated 

within each Directory 

Manager 

ACK 

COPYUPDATE ~  
DELETE • MERGEDOWN ~  

GARBAGECOLLECT • > 
M·DREPLV t

t WRONGBUCKET 

SPLiTBUCKET ~  
1:1.

ISPLITREPLV 

Buckets distributed 

among Bucket Managers 

Figure 11 

Protocols for the Distributed Hashing Algorithms 
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message id data in message 

Request desired key 
op: (findlinsertldelete) 
user's port 

Bucketdone transaction # 

success: (truelfalse) 

Update transaction # 
old local depth. 
version # of "0" partner 
version # of "I" partner 
newpageaddress 
id of bucketmanager 
success: (truelfalse) 

Copy update op: (insertjdelete) 
pseudokey 
old localdepth 
version # of "0" partner 
version # of "I" partner 
newpageaddress 

.id of bucketmanager 
acknowledgement port 

Ackfor Copy update 

Find, Insert, Delete desired key 
transaction # 
page address 
user's port 
directory manager's reply port 
pseudokey 

Garbage Collect listof pageaddresses 

/ 

message id  datain message 

Wrongbuckel  op: (Findlinscrtldclete) 
desired key 
transaction # 
page address 
user's port 
directory manager's reply porl 
pseudo key 
bucket manager's reply port 

Ack forWrongbucket 

Splitbucket  manager's reply port 
buffer contents of new half 

Splitreply  new page address 
id of bucket manager 

Mergedown  partner's address 
local depth 
bucket manager's reply port 

M.D. Reply buffer contents 
success: (truclfalsc) 

Mergeup  partner's address 
bucket manager's reply port 
target bucket's address 
bucket manager's id 

M.U. Reply local depth 
version # 
bucket manager's reply porl 
success: (truclfalse) 

Goahead  next link 
next bucket manager id 
version # 
success: (truelfalsc) 

Figure 12 Messages 
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manager. Two possible responses may come from a bucket manager, either 
bucketdone or update. Bucketdone will generally signify that no directory 
modifications are needed and the directory manager may now forget about this 
request. An update message schedules an update on the local copy according to 
version number and notifies all other directory managers by broadcasting a 
copyupdate message. For each outstanding unacknowledged remote directory 
modification, a counter is incremented that serves one of the purposes of an a-lock 
(i.e. preventing garbage collection). A bucket may not be deallocated until all 
directories send an acknowledge message. Upon receiving a copyupdate message, a 
directory manager schedules the update on its local copy and when the changes have 
been applied (and in the case of delete operations, when the equivalent of ~-locking  

occurs), acknowledgements are sent. 

Because obsolete directory information is usable, the multiple copy update does 
not have to be strictly synchronized (in the sense of an atomic transaction). However, 
the ordering of different directory modifications due to operations on the same 
bucket should be the same across all copies and determined by the order in which 
the bucket operations are performed. Each bucket contains a version number that 
increases with each update that causes a directory update. The version number in 
each directory entry should match the version of the bucket it points to when the 
directory is completely up to date. The following example illustrates why lhis 
ordering approach is adopted. Suppose first a split operation is performed almost 
immediately followed by a merge involving those two buckets. Imagine a directory 
manager that hears about these updates in the opposite order and applies them. The 
directory update related to the merge would essen tially have no effect si nee the split 
had not yet been processed. The subsequent update related to the split would result 
in directory entries leading to a deleted bucket. At this point the directory is usable 
since next links provide recovery. However, since it appears that both messages have 
been serviced, the deleted bucket could then be deallocated. This would leave that 
copy of the directory in a truly incorrect state from which recovery would be 
impossible. 

For simplicity, the bucket manager is presented here as a front end process and 
a set of associated processes that are assumed to reside at the same site and share 
secondary memory. These processes taken together perform the duties of the bucket 
manager and preserve the specified interface with other processes. The code for 
these processes is given in figure 14. The front end process serves as the initial 
contact for its set of buckets. The auxiliary processes operate much like processes in 
the centralized solution until they require pieces of the data structure that are outside 
this manager's domain. We have already discussed the directory update messages. 
Protocols are also available for off-site searching (wrongbucket message), merging 
(mergeup and mergedown messages), and splitting (splitbucket message). Taking off
site actions and the need to exchange messages into account, the procedures are not 
radically different from those in the centralized solution. 

In this report, we just suggest what the proof of correctness would require. 
Given the correctness of the centralized algorithm, one approach is to show that the 
distributed implementation is in .sorne sense equivalent. By following an execution 
of a user's request through the various processes that become involved and 
comparing this with the steps taken by the one process handling that request in a 
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centralized system, the correspondence between execution sequences can be seen. 
This needs to be formalized. In addition, it is necessary to show that the multiple 
copy update strategy applied to the replicated directories is correct We must also 
demonstrate that the multiplexing of servers and the message flows between them do 
not introduce deadlock. Crash tolerance has not been specifically addressed but our 
solution does not appear to present major obstacles to incorporating it. These issues 
will be elaborated upon in a future paper. 

4. Summary 

Extendible hash files have been proposed as a data structure for sequential find, 
insert, and delete operations. In this report, we have presented two solutions that 
allow concurrent operations on' a slightly modified structure. As in proposals for 
concurrency in B'tree variants, making modifications to the data structure to provide 
alternate pathways to the desired data is a fundamental technique. In a future paper, 
we will evaluate the performance of these algorithms and comparable B-tree 
solutions. 

Starting from one of these solutions for concurrency in a centralized hash file, 
we developed a distributed version. The important point is that concurrent 
algorithms involving shared storage may often provide insights into how to partition 
and/or replicate data. This suggests a methodology in which the problems of 
correctly introducing concurrency and of distributing the computation are addresses 
as distinct issues. 
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Figure 13 Pseudocode for Oirectory Manager 

while ( true) { 
messageld • GetMessage (&msg): /- Either receives a message or takes a 

message off the list of delayed but now ready directory updates. -/ 
switch (messageld) { 

case request: { 
pseudokey • hash (msg.key); 
transaction' • SaveState (msg, pseudokey); /- Multiplexing requesls-

remember  data  related  to  this  one   context  of  a  request 
consists  of  operation,  key,  userport,  and  pseudokey  / 

rho  •  rho  + 1: 
lndexdlrectory  (pseudokey  & mask  (depth),  &oldpage,  &bucketmgr); 
bucketport  •  name100kup  (bucketmgr); 
messageld  •  msg.op: 
ContactBucket(bucketport,  messageld,  msg.key,  lransactlon', 

oldpage,  msg.userport,  myreplyport,  pseudokey); 
/ construct  a  Find,  Insert,  or  Delele  m ~ s s a g e  and 

send  It  to  the  appropriate  buckel  manager  /  
}  
case  bucketdone:  {  

RestoreState  (msg.transactlon');  / Recall  ccn te r t  for  this  requesl/ 
If  (Imsg.success  &&  operation.  delete)  { 

lndexdlrectory  (pseudokey  &mask  (depth),  &oldpage,  &buckelmgr); 
bucketport  •  namelookup  (bucketmgr): 
messageld.  operation; 
ContactBucket  (bucketport,  messageld,  key,  msg.transacllon', 

oldpage.  userport,  myreplyport,  pseudokey); 
} 
else  { 

rho •  rho  1: 
C1eanState  (msg.transactlon');  / forget  about  this  requesl  / 

} 
} 
case  update:  { 

RestoreState  (msg.transactlon'); 
broadcast(operatlon,  pseudokey,  msg.o1dlocaldepth,  msg.verslon'l.  msg.verslon'Z, 

msg.newpage.  msg.bucketmgr,  myackport); 
/ sends  a  copyupdate  message  to  all  other  directory  managers  and 

Increments  alpha  for  each  oUlstandlng  directory  updale  / 
If  (VerslonsDoNotMatch(»  save  (msg);  / Delay  this  directory  update 

un t t l  1ts  time  / 
else  { 

If  operation  ••  Insert)  { 
If  (msg.old10caldepth  ••  deplh)  doubledlrectory; 
updatedlrectory  (  msg.newpage,  msg.bucketmgr,  ++msg.vers 10n'1. 

++msg.oldloca1depth,  pseudokey): 
If  (Imsg.success)  { 

lndexdlrectory  (pseudokey  & mask  (depth),  &oldpage,  &buckelmgr); 
bucketport  •  namelookup  (buckelmgr): 
messageld  •  context  )  op: 
ContactBucket  (bucketport,  messageld,  key,  msg.transacllon', 

oldpage,  userport,  myrep1yport,  pseudokey): 
} 
else  { . 

rho •  rho  1;  
C1eanState  (msg.transactlon');  

} 
} 
else  {  / op  •  delete  / 

If  (msg.o1dlocaldepth  ••  depth)  deplhcounl  = deplhcounl   Z; 
RememberDeleted():  / Keep  track  of  deleted  buckets  for 

the  eventual  garbage  collection  phase  / 
If  depthcount  ••  0)  halvedlrectory(); 
else  updatedlrectory  (  msg.newpage,  msg.bucketmgr,  msg.oldlocaldeplh, 

max(msg.verslon'l,  msg.verslon'Z)  +  1,  pseudokey); 
} 
ReleaseSaved();  / If  finishing  this  directory  update  enables 

previously  delayed  ones,  make  them  accessible  to  GetMessage  / 
} 

} 
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Figure 13 Pseudocode for Oirectory Manager_ 

case copyupdate: {  
lf (VerSlonsDoNotMatch(» save (msg);  
el se {  

lf (msg.ap == lnsert) { 
If (msg.oldlocaldepth == depth) doubledlrectory; 
updatedlrectory ( msg.newpage, msg.bucketmgr, ++msg.verston#l, 

++msg.oldlocaldepth, msg.pseudokey): 
SendAck(msg.ackport); /0 respond to directory manager 

who lnltlated this update 0/ 

} 
else { 1° op • delete 0/ 

If (msg.oldlocaldepth •• depth) depthcount = depthcount - 2; 
lf depthcount •• 0) halvedlrectorY()i 
else updatedirectory ( msg.newpage, msg.bucketmgr, msg.oldlocaldepth. 

max(msg.version'1, msg.verslon#2) + t, pseudokey); 
RememberAck(msg.ackport): 1° save up acks until the 

equlvalent of Xl-locking occurs °1 
} 
ReleaseSaved() :  

}  
} 
case ack alpha· alpha - 1;  

}  
lf (lrho) SendRememberedAcks():  
if (!rho && lalpha) GarbageCollect();  

} 

25  
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Figu re 14 Pseudocode for Bucket Managers 

Bucket Manager Front End Process: 

whl1e (true) { 
messageld • recelvemessage (&msg); 
lf (messageld •• splltbucket) { 

newpage • allocbucket(): 1= assumes avallable page =1  
putbucket (newpage, msg.half2);  
SendSplltReply (msg.replyport, newpage, myld):  

} 
else {  

p • createprocess (bucketslave);  
forward (msg, p):  

} 
} 

Bucket Slave Process:  

messageld • recelvemessage (&msg):  
If (messageld == wrongbucket) sw = msg.op;  
else sw • messageld;  
switch (sw) {  

case flnd: {  
onmachlne • true:  
oldpage • msg.page:  
RhoLock (oldpage);  
If (messageld •• wrongbucket) SendAck (msg.buckmgrport);  
else SendBucketdone (msg.dlrmgrport, msg.transactlon#, success lrue);  
getbucket (oldpage, current);  
m • mask (current -) localdepth);  
whl1e «m &msg.pseudokey) 1=  

current -) commonblts && onmachlne) {/= wrong bucket =1  
newpage. current -) next;  
machlne • current -) nextmgr;  
lf (machIne I· me) {  

SendWrongbucket (namelookup (machlne), op = flnd, msg.key, msg.lransacllon#. 
newpage, msg.userport, msg.dlrmgrport, msg.pseudokey, myreplyporl); 

onmachlne • false; 
} 
else {  

RhoLock (newpage):·  
getbucket (newpage, current);  
m • mask (current -) localdepth);  
UnRhoLock (oldpage):  
oldpage • newpage;'  

}  
}  
If (onmachlne) {  

lf (search (current, msg.key»/= 15 key there? =1  
foun d (msg. key) ;  

else  
notfound (msg.key);  

}  
else recelvemessage (&msg); 1= Wrong bucket reply =1  
UnRhoLock (oldpage);  

} 
case lnsert: { 

onmachlne = true; 
oldpage = msg.page; 
AlphaLock (oldpage); 
lf (messageld =. wrongbucket) SendAck(msg.buckmgrport); 
getbucket (oldpage, current); 
m • mask (current -) localdepth); 
whlle «m & msg.pseudokey) 1= current -) commonblts && onmachlne) (10 WHONG UUCKU °1 

newpage. current -) next;  
machlne • current -)nextmgr;  
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if (machine la me) {
SendWrongbucket (namelookup (machine), op a Insert, msg.key, msg.transactlon' 

newpage, msg.userport, msg.dlrmgrport, msg,pseudokey, myreplyport); 
onmachlne • false; 

} 
el se { 

AlphaLock (newpage);  
getbucket (newpage, current):  
m = mask (current -) localdepth);  
UnAlphaLock (oldpage);  
oldpage • newpage;  

}  
}  
If (lonmachlne) {

recelvemessage (&msg): ,e Wrongbucket reply e,  
UnAlphaLock (oldpage);  

} 
else {

If ( search (current, msg.key» { ,e IS KEY ALREADY THERE? e, 
SendBucketdone (msg.dlrmgrport, msg.transactlon', success true): 
UnAlphaLock (oldpage); 

}
else if (current -) count ,. numentrles) {

,e CURRENT BUCKET NOT FULL e, 
SendBucketdone (msg.d1rmgrport, msg.transact1on', success true); 
add (current, msg.key); 
putbucket (oldpage, current): 
UnAlphaLock (oldpage); 

} 
else ( ,e CURRENT IS FULL - DIRECTORY WILL Ul AF~lCllO  e, 

d1rectorymgr • msg.dlrmgrport; 
trans' • msg.transactlon'; 
oldlocaldepth • current -) localdepth: 
success • split (current, halfl, half2, msg.key): 
if (AvallablePages(» { 

newpage • allocbucket (); 
machine a myld;  
putbucket (newpage, half2);  

} 
else ( 

SendSplltbucket(MgrWlthSpace(), myreplyport, half2): 
recelvemessage (&msg); ,e split bucket reply e, 
machine· msg.bucketmgr; 
newpage· msg.page: 

} 
halfl -> next· newpage:  
halfl -) nextmgr • machine;  
putbucket (oldpage, halfl);  
UnAlphaLock (oldpage);  
SendUpdate (dlrectorymgr, oldlocaldepth, trans', newpage, mach Ine, success,  

halfl -) version', half2 -) version'); 
}  

}  
} 
case de lete: {,e Find the right bucket as In the beginning of insert except place X1Locks e,

if (!onmachlne) { 
recelvemessage (&msg); ,e Wrongbucket ack e,  
UnX1Lock (oldpage);  

} 
else { 

H «current -) count> 1) II (current -) localdepth == 1) II 
(Isearch(current, msg.key» { ,e CURRENT NOT TOO EMPTY e, 
SendBucketdone(msg.dlrmgrport,- msg.transactlon', success = true}: 
If (remove (msg.key, current» putbucket (oldpage, current):
UnX1Lock (oldpage); 

} 
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else ( 
m s leftsh1ft(l, currerrt -) localdepth - 1); 
1f «msg.pseudokey & m) 1= m) (I' MSG.KEY IN FIRST OF PAIH '1 

newpage s current -) next;  
mach1ne s current -) nextmgr;  
1f (mach1ne s me) {  

/. Try to merge on s1te as 1n f1gure 9 ./ 
} 
else ( 

d1rectorymgr • msg.d1nngrport; 
trans's msg.transact10n'; 
vers10n'1 s current -) vers10n'; 
z • msg.key;
SendMergedown (namelookup (mach1ne), newpage, currcnl -) localdcplh, 

myreplyport) ; 
rece1vemessage (&msg); I' MD Reply ./ 
1f (msg.success) ( 

current· msg.buffer;  
oldlocaldepth • current -) localdepth;  
vers10n'2 = current -) versIon';  
current -) vers10n' • max(vers10n'1, verslon'2) t 1;  
current -) commonb1ts = current -) commonblts &  

mask (--current -) localdepth); 
putbucket (oldpage, current); 
SendUpdate(d1rectorymgr, trans', oldlocaldepth, vers10n'1, verslon'2, 

oldpage, my1d, success = lrue); 
} 
else { 

SendBucketdone (d1rectorymgr, trans', success = lrue); 
1f (remove (z, current» pUlbucket (oldpage, current); 

} 
UnX1Lock (oldpage); 

}  
}  
else ( /. MSG.KEY IN SECOND OF PAIR ./  

newpage • current -) prey;  
mach1ne • current -) prevmgr;  
UnX1Lock (oldpage); 
1f (mach1ne •• me) {  

/. Try to merge on s1te as 1n f1gure 9 ./ 
} 
else ( 

d1rectorymgr • msg.d1nngrport; 
z • msg.key;  
trans' • msg.transact10n';  
pseudokey • msg.pseudokey; 
SendMergeup(namelookup (mach1ne), newpage, oldpage, my1d, myreplyporl);  
rece1vemessage (&msg); /. MU Reply ./  
1f (Imsg.success) {  

SendBucketdone(d1rectorymgr, trans', success = l r ue) ; 
1f (remove (z, current» putbucket (oldpage, currenl); 

} 
else { 

X1Lock (oldpage);  
getbucket (oldpage, current);  
1f «mask (current -) localdepth) & pseudokey) 1= currenl -) cOlllllonb IlS) (  

UnX1Lock (oldpage);  
success = false;  
SendGoahead(msg.replyport, success);  
S e ~ d B u c k e t d o n e  (d1rectorymgr, trans', success);  

} 
else 1f (current -) localdepth Is msg.localdepth II 

current -) count) 1 II (current -) count == 1 && 
Isearch (current, z»){ 

SendBucketdone(d1rectorymgr, trans', success = lruc);  
1f (remove(z, current» putbucket (oldpage, current);  
UnX1Lock (oldpage);  
success = false;  
SendGoahead(msg.replyport, success);  

} 
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1111 ( 

vlrs10n'l • msg.vlrs10n'; 
vlrslon'Z • current -) version';  
currlnt-)commonb1ts • jellted;  
.uccess • true;  
Sln.dGoahead(msg.replyport, current -) 1l00l, currenl -) ne.lmgr,  

ma. (ver.10n,t, ver.lon'Z) + I, succe •• ); 
current -) ne.t • current -) prevo 
current -) ne.tmgr • current -) prevmgr; 
putbucket (oldpage, current);
SendUpdate(d1rectorymgr, current -) localdeplh, cur ren t -) ne r t , 

current -) ne.tmgr, .UCCIS., vers10n,t, versIon'!); 

}  
}  

}  
}  

}  
}  

} 
cale mergedown: {  

newpage • m.g.partner; 
X1Lock (newpage);  
getbucket (newpage, brother): 
luccesl • brother -) local depth •• m.g.localdepth:  
SendMDRlply(m.g.buckmgrport, brother, .ucce.s};  
1f ('UCCIII) (  

brother -) commonb1ts • deleted;  
brother -) ne.t • brother -) prev:  
brother -) nextmgr • brother -) prevmgr:  
putbucket (newpa,e, brother):  

} 
UnX1lock (newpage);  

}  
cue me"geup: {  

newpage. msg.partner:  
X1lock (newpage):  
getbucket (newpage, brother);  
IUCCII. • (brothe,. -) nut •• msg.target) && (brother -) nUlmgr ... msg.milligerld);  
Senc:lMUReply(mlg.buckmgrport, brother -) localdepth, myreplyport, success, brolher -) vers 10/1');  
1f (succe.. ) {  

rece1vemessage (&msg); '8 GoAhead 8' 
1f (msg.succe•• ) ( 

brother -) commonb1t. • brother -) commonb1ts & mask (--brother -) locildeplh);
brother -)next m.g.ne.t;8 

brothe r -) nu tmg" • m.g. n81 tmg r:  
brother -) vers10n' • msg.ve,.s10n';  
putbucket ( newpage~  brother):  

}  
}  
UnX1Lock (newpage)  

}  
ca.e garbagecollect: {  

for  each page 1n msg.li.t {  
Xilock (page):  
deallocate (page):  
UnX1Lock (page);  

} 
} 

} 
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