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Figure 1: High bandwidth force controlled grinding, using an
ABB Irb2400 industrial robot with the extended ABB
S4CPlus control system described in this paper.

1. Introduction

Many promising robotics research results were obtained
already during the late 1970s and early 80s. Some examples
are Cartesian force control, advanced motion planning, etc.
Now, 20 years and many research projects later, much of this
has still not reached industrial usage. An important question
to consider is how this situation can be improved for future
deployment of needed technologies.

Today, modern robot control systems used in industry pro-
vide highly optimized motion control that works well in
a variety of standard applications. To this end, computa-
tionally intensive model-based robot motion control tech-
niques have become standard during the last decade. The
principles used have been known for much longer, but de-
ployment in products required affordable computing power,
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efficient engineering tools, customer needs for productiv-
ity/performance, improved end-user competence in utiliza-
tion of performance features, etc.

However, applications that are considered non-standard to-
day motivate a variety of research efforts, and system devel-
opment to package results in a usable form. Actually, robots
are not useful for many manufacturing tasks today, in par-
ticular for those in small and medium enterprises (SMEs).
Reasons include complex configuration, non-intuitive (for
the shop floor) programming, and difficulties instructing
robots to deal with variations in their environment. The lat-
ter aspect includes both task definitions and definition of
motion control utilizing external sensors. The key word here
is flexibility, and flexible motion control is particularly dif-
ficult since the user or system integrator need to influence
the core real-time software functions that are critical forthe
performance and safe operation of the system. We have to
find techniques that permit real-time motion controllers to
be extended for new demanding application areas.

Open Control Most robot control systems of today sup-
port some type of user IOs connected on local networks or
buses. A crucial issue is the achievable bandwidth for the
control loops with the external feedback. For many applica-
tions the effect of the bandwidth limitations only show up
as longer duty cycles, whereas for some applications, like
contact force control between the robot and the environ-
ment/workpiece, stability problems and severe performance
degradation may result [1],[2],[3].

From a control perspective of robotics research, direct
access to the driving torques of the manipulator and fast
feedback is very valuable, or even crucial for algorithm
evaluation and implementation of high-performance control
schemes. This made early robot systems like PUMA 560
popular. Unfortunately, this kind of low-level access is
not present in commercial robot control systems of today.
The difference is that today we should not only be able
to close fast feedback loops at a low level, but need to
do so in a consistent way, supporting supervision and



coordination with the application oriented programming on
higher hierarchical levels. Therefore, alternative ways to
obtain high-bandwidth control based on external sensors,
which maintain the existing supervision and coordination
functionality, are necessary.

An examination of five major European robot brands (ABB,
Comau, Kuka, Reis, Stäubli) shows that they all, to some
extent, provide support for application specific motion con-
trol. Some controllers are fully open but only if all original
safety and programming features are disabled. In the project
considered in this paper, we have used the ABB S4CPlus
controller as an example. Whereas S4CPlus is not an open
system, its internal design provides some features for devel-
opment of open control. Similar results have been reported
for other systems, see for instance [4].

1.1 Open issues

Developments and difficulties up to current state of the art
raise fundamental questions that form the motivation of this
paper:

• Industrial robot controllers today provide highly op-
timized model-based motion control, claimed to be
fully programmable and configurable. Still, when
new autonomous or service robot systems are de-
veloped, systems developed for industrial manipula-
tion are hardly ever used. Instead, manipulator con-
trol is redeveloped but without the full performance
and system robustness that would be possible if re-
sults/systems from industrial control were used. Can
current industrial controllers be useful as components
in future advanced robot systems?

• Twenty years ago, going from a text-book algo-
rithm to a functional implementation required ex-
tensive engineering efforts. Today, we have engi-
neering tools and code generation from specifica-
tions/descriptions/simulations of control principles.
Comparing experimental work within the academic
community with the industrial robot development,
engineering tools such as Matlab, Maple, and the
like, are quite similar, whereas code generation and
deployment of controllers/components appear to be
quite different. Deployment into a product requires
substantially more verification, optimization, and tai-
loring to the system at hand. Then, the question is:
Could commercial/optimized systems be structured
to permit flexible extensions, even on a hard real-time
level?

1.2 Objectives

We try to answer these questions by confronting theoretical
and experimental laboratory results with actual industrial
reality. A most challenging case, also representing the 20-
years lag between experiment and product, is high perfor-
mance six degree-of-freedom control of the contact forces
between the robot and its environment. As a part of the

AUTOFETT project, where the main objective was to de-
velop flexible support and handling devices for castings,
force controlled grinding was accomplished and brought to
industrial tests, and this will serve as our primary example.

What we will consider here are different aspects of incor-
porating a fast “sensor interface” into an industrial robot
controller system, where the ABB S4CPlus system will be
taken as the primary example. The name “sensor interface”
may be a bit restrictive as it not only allows for feedback
from external sensor data, but additionally for code and al-
gorithms to be downloaded and dynamically linked into the
robot control system (Fig. 2).

2. Considerations and design of system extensions

The architecture of the ABB S4CPlus control system and its
extensions are shown in Fig. 2. Task descriptions, as given
by the robot programming language RAPID, are passed
through the trajectory generation, and turned into references
for the low-level servo controllers. Extensions to the system,
based on present and future applications requiring the use
of external sensor-based control, could be made by modify-
ing references on any level (task-level, Cartesian level, joint
level, motor currents). Below we discuss the underlying de-
sign considerations and our implementation of the platform.

On a high level, there is already in the present ABB S4CPlus
(and earlier) systems the possibility to read sensors via
customer IO to influence the robot task as expressed in
programs written in the ABB RAPID language. The RAPID
program reading sensor information via the IO system
can be referred to as apull protocol which requires no
external computing, but the sensor reading/handling must
be expressed in the user program. There is today also
the possibility to change programmed motion targets via
Remote Procedure Calls (RPC) during robot motion, which
can be referred to as apush protocol, requiring external
computing but less RAPID programming, since the logic
how sensor data should influence motions is expressed in
external software. Both these alternatives are of great value
and should be maintained, but there are also two major
problems that must be resolved in future systems:

Performance: The restriction that external sensors can be
utilized on the RAPID level only implies that new
types of high-performance motions cannot be intro-
duced with a reasonable engineering effort. Some
simple cases have been solved, such as control of ex-
ternal welding equipment, but the fundamental sup-
port for motion sensing is missing. Whereas force
control is much needed within several application ar-
eas, such as foundry and assembly, it is currently quite
difficult to accomplish in the robot work cell.

Flexibility: The use of port-based IO data without self-
description leads to less flexible application programs
which require manual configuration, limiting devel-
opment of high-level application program packages.



Figure 2: Extension of industrial robot controller with sensor interface and support for external computations and synchronization, using a
Motorola PPC-G4 PrPMC-800 processor board mounted on a Alpha-Data PMC-to-PCI carrier board with a local PCI bus.

Thus, today we have high-level (user level) usage of low-
level (primitive) sensors, but to overcome the two problems
we also need low-level (motion control) usage of high-
level (force, vision, etc.) sensors. Specifically, to startwith,
interfacing with force sensors should be supported. That is
both a technically most demanding case and a most desired
one from a customer point of view.

With this overall goal, some specific topics will now be
covered.

2.1 Hardware and IO protocol

The most promising hardware interfacing possibilities
(from a cost and performance point of view) are shared
memory access via the PCI system bus, and standard high-
speed Ethernet communication. To some extent, these tech-
niques are already used in S4CPlus.

Shared memory Obtaining sensor data directly in shared
memory simplifies system development since the system
programming model is unchanged. Shared memory is as-
sumed to be provided via the PCI bus. S4CPlus already
supports installation of PCI plug-in boards, although this
feature is not made available to customers.

Presently, most sensors do not come with a PCI interface,
even if some simple sensors can be connected to PCI-based
IO boards. However, some advanced sensors, such as the
JR3 force-torque sensor, provide a PCI-based interface. The
trend is that more and more PCI-based sensors are becom-

ing available. This way of interfacing external sensors also
allows for adding “intelligent sensors” (sensor fusion or
sensors with additional computational power).

Networked Sensor interfaces can also be networked based
on field buses, which is available on the user level for
all modern controllers and on the servo level for some
controllers. However, it appears that field-bus interfacesand
communication introduce delays and limited performance,
compared to the shared memory interface.

As an alternative, our experiences from Ethernet commu-
nication using raw scheduled Ethernet or UDP/IP show
promising results [5]. The bandwidth is comparable to that
of the PCI bus, standard network-order of data bytes simpli-
fies interfacing, and with proper network/interrupt handling
the latency can be very short, showing a great potential for
future applications utilizing distributed sensors.

2.2 Safety and quality issues

Open systems require careful engineering not to exhibit un-
predictable or even unsafe behavior when confronted with
inexperienced users and extended with novel features at the
customer site. One problem within development of open
systems is the complexity in the systems engineering as
such, where the following difficulties need to be addressed.

Hardware reliability Installing third-party hardware
means there is an additional risk for system failures, de-
spite high and ensured quality of the basic robot system.



Firstly, the added hardware may fail without affecting the
robot hardware, but it can still lead to system failure from an
application point of view if the application was made depen-
dent on the added hardware. Secondly, third-party modules
may hang the buses used by the control computers. Such a
failure can be due to either faulty added hardware, or the
bus interface of the added hardware being badly configured
or accessed incorrectly.

In order to avoid these problems, customers or in-house
application developers should write the application software
in such a way that functionality can be tested based on some
dummy sensor data without using the actual hardware. That
can also be done by running the application with a virtual
controller, and hence, guides for developing sensor-based
applications could and should be supported within graphical
robot simulation and programming tools.

Sensor failures are inevitable and have since long been an
important obstacle in real applications, and in cost-efficient
production it is not as simple as saying that there should
be redundant sensors, which is costly and increases the risk
for system overload/failure. A combination of system struc-
ture, proper interface design, testing methodology includ-
ing simulation support, and well-defined fall-back control
is needed.

Data integrity A serious problem, from a safety point of
view, is the risk for external software damaging important
robot system control data, for instance, due to bad pointers
or bad array indices in the external software. Therefore,
common data areas should normally be located on the added
board, and then accessed by the robot controller.

Classified system propertiesThe definition of shared data
(control signals and other internal states) could be done
by providing available header files. However, using the
ordinary header files would expose too much of poten-
tially highly classified motion control techniques. There-
fore, there should be a neutral definition of (possibly) ex-
posed variables, preferably based on information from text
books or articles, and possibly suggested as an open stan-
dard.

Robot safety Even with hardware and software function-
ing as intended according to previous sections, in a strict
technical sense, there is a potential risk that the external
logic interacts with the control logic in an unforeseen man-
ner. That is, even if the externally added software does what
the program states, it can potentially still compromise robot
safety functions.

To overcome this difficulty, the states exposed to external
software should be copies of the internal true state, and
external states need to be cross-checked before influencing
the modes of the standard robot control. Updating can be
periodic is some cases, whereas other states (run-mode and
brakes etc.) should be updated in an event driven fashion in
order to improve consistency between internal and external

states, including generation of interrupts to the external
software.

Perhaps the most important part of safety is the ability
to keep the internal safety functions activated (possibly
with adjusted tolerances) even during sensor-based motions.
Also that problem has been solved, however the difficult
part is to combine safety with performance.

2.3 Performance

For industrial robots, control performance means produc-
tivity. Specific force control algorithms (inside the “Force
controller” block in Figure 6) are outside the scope of this
paper, but the imposed requirements on the open system de-
serve some attention.

Sampling and bandwidth considerations As an example,
force control in a non-compliant environment typically re-
quires fast sampling. The reason is that excessive contact
forces may build up very quickly, for instance during the
impact phase. It is also well known from control theory that
feedback from a sampled signal decreases the stability mar-
gin, thereby decreasing the robustness to varying operating
conditions.

In the architecture of the ABB S4CPlus system described in
Section 2, there are a number of levels in which external
control actions can enter the system. Firstly, high-level
feedback using the high level ABB RAPID language to
modify the generated trajectories, gives a sampling time of
h=0.1 s. The interface to the built-in arm servo control has
a higher sampling frequency,h=4 ms. Finally,h=0.125 ms
gives the maximum internal sampling frequency of the JR3
force/torque sensor.

A simple simulation will illustrate the effects of different
sampling intervals for a highly simplified model of a typical
force control task. A linear model with one degree of free-
dom of a controlled robot is given by the transfer function
modelF(s) = 35000k/(20s2+1500s+35000)Xr(s), where
F is the contact force,k is the stiffness, andXr is the com-
manded position reference.

In Fig. 3 we can see the results of the simulation using a
rough surface of stiffnessk = 25 N/mm, using a continuous
time proportional controller, as well as discrete time control
with the sampling times described above. The desired force
Fr was 100 N. It can be seen that the response forh = 4 ms is
almost identical to the continuous time design, thanks to the
fast position control in the inner control loop. The 4 ms level
has been determined to be a good trade-off in many force
control applications, considering also the limited available
computational power. In some applications however, such as
force control in extremely stiff environments, or where high
approach velocities are required, a higher sampling rate than
4 ms may be desired.
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Figure 3: Contact force for continuous time design (solid), h=0.1
s (dashed), h=4 ms (dash-dotted) and h=0.125 ms
(dotted).

MoveL C001, spd001, z40, grinder;
MoveL C002, spd002, z40, grinder;
!<sensor id="optidrive"
! type="force"
! interface="LTH+ABB S4C Extension">
!<force surfaceSearchDirection="1,0,0"
! forceDirection="1,0,0"
! buildForceFunc="upramp"
! buildForceTime="1000ms"
! buildForceFinalValue="150N"
! processForceFunc="constant 150N">

MoveL C003, spd003, z40, grinder;
!</force>

!</sensor>
MoveL C004, spd004, z40, grinder;

Figure 4: Sample ExtRAPID program. The extended language
constructs are located in RAPID comments and are
modeled as XML tags in order to be easily modifiable.

2.4 User and system aspects

Open controllers need ways of expressing usage of sensors.
The RAPID language of the S4CPlus controller support sen-
sor feedback through a RAPID concept called correction
generator. This language mechanism allows the robot pro-
gram to correct the robot path during operation with infor-
mation typically derived from a sensor.

Unfortunately, the built-in RAPID mechanism is not appli-
cable for use by force sensor feedback, primarily for two
reasons. The correction generators only support position-
based path correction while force feedback may require
torque-based path correction. Second, the update bandwidth
supported is much too low to apply to most force control
applications. Whereas some servo level extension is needed
to accommodate the bandwidth requirements, the user pro-
gramming level requires extensions for force control.

Language extensions The specification of desired force
control should of course be available on the user level where
the rest of the robot application is specified. The solution
was to introduce two new language scopes into the RAPID
language, integrating handling of sensor-influenced trajec-
tories into the language itself. In order to be backwards
compatible with standard RAPID, the new code was en-
coded as XML scopes and tags within RAPID comments
(Fig. 4). The processing of the XML comments is done in a
new master PC module acting as a robot proxy, see Master
PC in Fig. 2, which then communicates both with the orig-
inal program server of the S4CPlus controller and with the
added low-level control on the added PCI board.

System connections The communication between the
Master PC and the S4CPlus controller is over Ethernet
using TCP/IP and UDP/IP. This is not within the force
control loop as such; its purpose is to synchronize the robot
program execution with the low-level force control along
the programmed path. This was accomplished by:

1. The force scopes in the ExtRAPID program are
replaced by calls to a genericmotion-server, which is
written in RAPID and downloaded with the rest of the
application. The force controlled MoveL instructions
are kept in the Master PC (see Fig. 2) and fed to the
Program Server of the S4C controller via the ABB
RAP protocol.

2. The embedded motion server carries out the motions
by executing TriggL instructions (instead of the orig-
inal MoveL) with extra arguments that form a sub-
scription of an IO byte output later when the S4C
servo actually performs the motion, that output—the
sync signal from servo to master PC in Fig. 2—
forming the lower byte of the integer value of a
system-wide path coordinate.

3. The Master PC uses the received path coordinate
as the basis for the 4 ms advancement along the
path, maintaining the overall path coordinate and
computing force control set-points and parameters
accordingly.

Due to the limitations on buffering according to item 1, and
since an external set-point in real time can influence the
set-points to the Force Control Loop (Fig. 2), any external
sensors connected to or communicating with the Master PC
in real time can be used for instant feedback to the motion
control. Note that the ABB controller is then kept aware on
the top level to what target the robot is commanded.

External motion control With language extensions and
system connections in place, the implementation of the ac-
tual (to the S4C) external controller can be done. This is the
force control in Fig. 2. To accomplish interrupt driven hard
real-time execution with shared memory communication,
the force controller is run as a Linux kernel module. Such



a module can be replaced without rebooting the system, but
programming for kernel mode is a complication. However,
all parts of the force controller (including the shared mem-
ory interfaces) were implemented in C as Simulink blocks,
which (apart from being used for simulating the system)
were cross compiled to the target computer and incremen-
tally linked to form a Linux kernel module. The porting of
the Linux kernel to the specific computing and IO hardware
was carried out in our laboratory, as well as the tailoring of
the build procedure for making Linux kernel modules for
sensor feedback.

The host computer version of the Simulink blocks are first
translated for embedding by using MathWorks Real-Time
Workshop, compiled and linked with external libraries. In
the resulting system, the control engineer can graphically
edit the force control block diagram, and then build and
deploy it into the robot controller.

2.5 Simulation

Apart from simulating the force control as such, it is also
highly desirable to be able to simulate sensor based robot
control from an application point of view.

Simulation of low-level control Designing the controllers
using Matlab/Simulink, which as described above also gives
the implementation, means that the Simulink models can
also be connected directly to existing models of the robot,
and models of the environment and sensors can be used for
simulation. Tools such as Modelica and Dymola were used
and shown to be very effective for modeling and simulation
of many types of dynamical processes, including industrial
robots [6, 7, 8, 9].

External sensing in the digital factory Traditional off-
line programming does not use the full potential of virtual
models and simulation systems in industrial robot applica-
tions. The interface between the off-line programming sys-
tem and the robot controller is today restricted to program
transfer. Considerable improvements have been made in ac-
curacy of programs created off-line especially since the in-
troduction of technologies such as RRS. Extensive prob-
lems remain though, for instance, when high-level sensors
such as vision, force and laser scanning are used, no mech-
anism is available to relate the sensor information to prior
knowledge actually existing in the model created in the off-
line system.

If the virtual model could be accessed during the execution
of the robot task, intelligent decisions could be taken de-
spite changes in the state of the robot work-cell which were
not anticipated when the robot task was planned. Instead of
using a simple feedback loop to the robot movement, the
virtual model is continuously updated which allow new in-
formation and previous knowledge to be accumulated in a
common format. High level re-planning of the robot task
can then be automatically performed. Typical limitations
of robot systems that are hard to handle on-line are colli-

Figure 5: Grinding with IRB6400 at Kranendonk, the Nether-
lands, using a compliant grinding tool developed at KU
Leuven, Belgium, together with force feedback control.
The video can be found at www.robot.lth.se.

sions due to obstacles unknown to the robot program, and
deviations of the setup and kinematic singularities during
linear movements. Successful implementation and experi-
ments have been made in the present case project.

3. Case study - force controlled deburring

The use of industrial robots for automated deburring, grind-
ing and polishing is an interesting example of a process
where external sensing capabilities are crucial. Accurate
control of the contact forces can help increase the quality
of the final product, as well as the flexibility in the debur-
ring process. To handle the deviations from the nominal
workpiece geometry that are inevitable consequences of the
foundry process, some compliant behavior needs to be in-
cluded in the system used for deburring. As an alternative
to using a mechanically compliant tool or mounting of the
workpiece, force control can be used to program a desired
compliant behavior, and for maintaining a desired contact
force during the deburring process.

3.1 Hybrid force/position controller

During the deburring task only the direction perpendicular
to the surface of the workpiece is constrained, and a hybrid
force/position control strategy is employed [10]. In this type
of structure one or several degrees of freedom become force
controlled, while ordinary position control is used in the
other directions. Typically, the force controlled direction is
perpendicular to the surface, while the motion tangent to
the surface and the orientation is controlled using position
control. The directions which should be force controlled are
selected using a diagonalselection matrix, which is set as
a part of the high-level task specification. There have also
been extensions presented to the hybrid position/control
approach, which take the robot dynamics into account [3].
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Figure 7: Contact force during grinding experiment with force
reference 150 N. The disturbance at timet ≈ 13 s is
caused by a resonance in the workpiece.

3.2 Experimental results

Also included in the controller is a finite state machine re-
sponsible for switching between position- and force control,
and for handling control during the transition and impact
phases.

The grinding experiments were carried out on an ABB
Irb6400 robot, see Fig. 5, at the company Kranendonk,
the Netherlands, using a special grinding tool developed at
KU Leuven, Belgium. The results from an experiment with
referenceFr = 150 N is shown in Fig. 7. The disturbance
that can be seen at timet ≈ 13 s is caused by a resonance in
the workpiece/fixture, which occurs when the grinding tool
moves across a hole in the center of the workpiece.

4. Discussion

Robots are distinguished from other types of machines in
terms of flexibility; that is, the ability to change their behav-
ior through reprogramming, in order to be able to cope with
new situations. From the initial research on programmable
manipulation systems, recent research approaches typically
fall into one of two categories; Autonomous robotics, with
focus on handling unstructured environments but in large
neglecting performance for industrial productivity, and in-
dustrial robots, with focus on motion performance in struc-
tured environments but neglecting most of the perception
and navigation issues.

The fact that robots today handle fully structured and spec-
ified tasks in industry very well, and the lack of expe-
rience/knowledge from small-scale manufacturing within
the research community, have created the misconception
that "industrial robotics is solved". In future manufactur-
ing, however, the increased need for industrial robots that
(typically in small enterprises) understand human instruc-
tions and are able to handle larger task/work-piece varia-

tions is apparent. Then, we need to combine both theory
and system technologies from various fields of robotics re-
search. An important part is to package experimental results
as useful components (for verification and reuse), and to
find techniques that permit real-time motion controllers to
be extended for new demanding applications, typically us-
ing external sensing to substantially improve flexibility.

Many robotics labs have reported activity on open control
systems which fully satisfy the need for the above men-
tioned aspect on evaluation and implementation [11], [12].

The close cooperation and technology transfer between in-
dustry and academia has been instrumental during the de-
velopment of the platform, since control and software need
to be tightly integrated for performance and applicability.
Robotics is multidisciplinary and researchers from many
fields and different university departments have been active
in the development.

5. Conclusions

This paper describes the design and implementation of a
platform for fast external sensor integration into an indus-
trial robot control system (ABB S4CPlus). As an applica-
tion and motivating example we report on the implementa-
tion of force controlled grinding and deburring within the
AUTOFETT-project (EU Growth Programme).

The accomplished sensor interface, we believe, is unique
due to the combination of

1. A shared memory interface to the built-in motion con-
trol, enabling fast interaction with external sensors.

2. Integration of high-level and low-level control in such
a way that low-level instant compensation (within the
tolerances of system supervision limits) propagates to
higher levels of execution and control, providing state
and path coordinate consistency.

3. The external sensing and control is built on top of a
standard industrial controller with (due to the previ-
ous item) the built-in system and safety supervision
enabled, making it possible for the end-user to use all
the features (language, IO, etc.) of the original sys-
tem.

4. The add-ons to the original controller can be engi-
neered (designed and deployed) by using standard
and state-of-the-art engineering tools, thereby bridg-
ing the gap between research and industrial deploy-
ment of new algorithms.

Experiences from the fully developed prototype and the
industrial usage of it confirms the appropriateness of the
design choices, thereby also confirming the fact that control
and software need to be tightly integrated.

The new sensor platform may be used for prototyping
and development of a wide variety of new applications.
It also offers an open experimental platform for robotics



Figure 6: Force controller block structure. The force control algorithm is implemented inside the “Force controller” block.

research explored on many hierarchical levels (from control
algorithms with high bandwidth to robot programming
and task modeling with on-line sensor information). The
preserved high-level support and the integration with the
supervision and safety system of the standard industrial
robot system constitute a major difference to most “Open
Robot systems” which have been reported for academic
research.

The mutual benefits of collaboration between academia and
industry tend to be, we see, crucial for the future develop-
ment of flexible productive robots: with open systems ex-
ternal partners will be able to extend the system also on the
motion control level, and the richness of applications, their
dynamics radically increasing the need for more research.
In this process, it is not only a matter of technology transfer
going from theory to practice, but a bi-directional flow of
ideas and knowledge.
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