Extending Attribute Grammar and
Type Inference Algorithms

Janet Ann Walz
Ph. D. Thesis

TR 89-968
February 1989

Department of Computer Science
Cornell University
Ithaca, NY 14853-7501






EXTENDING ATTRIBUTE GRAMMAR AND
TYPE INFERENCE ALGORITHMS

A Dissertation
Presented to the Faculty of the Graduate School
of Cornell University
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by
Janet Ann Walz
January 1989



© Janet Ann Walz 1988
ALL RIGHTS RESERVED



EXTENDING ATTRIBUTE GRAMMAR AND
TYPE INFERENCE ALGORITHMS

Janet Ann Walz, Ph.D.
Cornell University 1989

Gated attribute grammars and error-tolerant unification expand upon
the usual views of attribute grammars and unification. N ormally, attribute
grammars are constrained to be noncircular; gated attribute grammars allow
fairly general circularities. Most unification algorithms do not behave well
when given inconsistent input; the new unification paradigm proposed here
not only tolerates inconsistencies but extracts information from them. The
expanded views prove to be useful in interactive language-based program-
ming environments. Generalized unification allows the environment to help
the user find the sources of type errors in a program, while gated attribute
grammars allow the environment to provide an interpreter for incremental
reevaluation of programs after small changes to the code.

The defining feature of gated attribute grammars is the appearance of
a gate attribute (indicating where cycle evaluation should begin and end)
within every cycle. Attributes are ordered by collapsing strongly connected
components in the dependency graph and topologically sorting the result.
The smaller dependency graph for each component (ignoring edges leading to
the gate) can be recursively collapsed to provide further ordering. Use of the
evaluation order defined in this manner allows gated attribute grammars to
do without the restrictions on functions within a component needed by the
other varieties of circular attribute grammars. Initial and incremental
evaluation algorithms are given, as well as a sample grammar allowing an

editor for a small language to become an incremental interpreter.



Counting unification defines unique solutions to sets of input equa-
tions that contain conflicting type information. These solutions are derived
from the potential variable constraints implied by the input equations. For
each type variable, each branch (a portion of a constraint) is assigned a
weight indicating the number of times the input set implied such a
constraint. When the input equations are derived from the static analysis of
a program, the relative branch weights for a conflicting variable give the
overall pattern of uses of that variable and can direct attention to parts of the
program that disagree with the majority of uses. A number of error-tolerant

unification algorithms are presented.



Biographical Sketch

Janet Walz was born in Ann Arbor, Michigan in 1961, but she chose to
attend Michigan State University in East Lansing. She graduated with a
B.S. in computer science (with minors in geophysics and mathematics) in
June 1983. She proceeded to Cornell University in Ithaca where she received
an M.S. in computer science (with a minor in mathematics) in January 1986

and a Ph.D.in January 1989.

11l



Acknowledgments

First, of course, I would like to thank my advisor, Greg Johnson, for his
encouragement and for his many useful comments. I would also like to thank
Chris Buckley for attempting to translate my dissertation into English, Jack
Callahan for invaluable help with the text formatting system, and Bill Pugh
for assorted comments. I also appreciate the facilities provided to me by the
University of Maryland at College Park for the past two years.

This work was partially supported by a National Science Foundation
Graduate Fellowship and a grant from the Air Force Office of Scientific
Research. Portions of this work earlier appeared in conference proceedings of

the Association for Computing Machinery.

v



Table of Contents

1. Introduction
1.1 Gated Attribute Grammars
1.2. Error-Tolerant Type Inference
2. Attribute Grammars
2.1. Standard Attribute Grammars
2.2. Attribute Grammars with Nonlocal Productions
2.3. Circular Attribute Grammars
3. Gated Attribute Grammars
3.1. Philosophy
3.2. Initial Evaluation
3.3. Incremental Evaluation
3.4. Avoiding Reevaluation of Loops
3.5. Nonlocal Predecessors of Start Attributes
3.6. Discussion
4. Unification-Based Type Inference
4.1. A Subset of ML
4.2. Generating Type Equations
4.3. Standard Unification
4.4. Recursive Unification
5. Error-Tolerant Type Inference

5.1. Desired Properties

5.2. Modifying a Standard Algorithm to Tolerate Conflicts

5.3. A Maximum-Flow Algorithm for Unique Answers

5.3.1. Deriving Implied Constraints

5.3.2. Producing Final Constraints

v

O Ot NN =

10
13
15
17
19
23
27
30
32
34
39
42
45
46
47
51
53
56
97
58
60



5.3.3. Extension to Recursive Types
5.3.4. Comparison to Standard Rules
5.3.5. Comparison to Design Criteria
6. Error-Tolerant Counting Type Inference
6.1. Single Substitution Unification
6.2. The Union of Derivation Sequences
6.3. A Set of Rules for Error-Tolerant Countable Unification
6.4. Implementing Error-Tolerant Countable Unification
6.5. Restricting the Set of Generated Equations
7. Counting Recursive Types
7.1. Rule-Based Countable Unification with Recursive Types
7.2. Implementation of Countable Recursive Types
7.3. Further Restricting the Set of Generated Equations
7.4. Presentation of the Final Answer
8. Conclusions
8.1. Gated Attribute Grammars and Environments
8.2. Counting Unification and Environments
8.3. Further Work in Counting Unification
Bibliography

vi

66
67
71
74
74
77
82
87
89
97

101
102
105
109
109
111
114
117



Figure 2.1.
Figure 2.2,
Figure 3.1.
Figure 3.2,
Figure 3.3.
Figure 3.4.
Figure 3.5.
Figure 3.6.
Figure 3.7.
Figure 3.8.
Figure 3.9.

Figure 3.10.
Figure 3.11.

Figure 4.1.
Figure 4.2.
Figure 4.3.
Figure 5.1.
Figure 5.2.
Figure 5.3.
Figure 5 .4.
Figure 5.5.
Figure 5.6.
Figure 6.1.
Figure 6.2.
Figure 6.3.

List Of Figures

A Simple Attribute Grammar.

An Attributed Parse Tree.

A Gated Attribute Grammar.

while dependencies.

Adding Nonlocal Links.

A Nonmonotonic GSCC.

Inevaluable GSCC.

Connecting Sites of Subtree Replacement.
Evaluating the Nontrivial SCC S.
Typical Loop.

Added Flow Rules.

Using Gate Pointers to Add Nonlocal Links.

Dependency Graph fori « 10 ; whilei > 0doi«i—1.

An ML Subset.

Type Constraints in an ML Subset.

Regular or Rational Trees.

Weighting by Branches.

A First-Phase Maximum Flow Graph.

A Second-Phase Maximum Flow Graph.
Algorithm for Producing Final Constraints.
Algorithm for Producing Final Options.
Revised Algorithm for Producing Final Options.
Derivation Sequences Using Single Substitution.
Deriving an Equation.

The Derivation Tree from Figure 6.2.

Vil

11
20
21
24
25
26
27
29
31
33
34
35
43
45
48
54
59
61
63
64
73
77
79
80



Figure 6.4.
Figure 6.5.
Figure 6.6.

Figure 6.7.

Figure 6.8.
Figure 6.9.

Figure 6.10.
Figure 6.11.
Figure 6.12.
Figure 6.13.
Figure 6.14.

Figure 7.1.
Figure 7.2.
Figure 7.3.
Figure 7.4.
Figure 7.5.
Figure 7.6.
Figure 7.7.
Figure 8.1.

A Union of Derivation Sequences.

Processing the Union of Derivation Sequences.
Counting Independent Equations.
Implementing Countable Unification.

Another Example of Counting Unification.

An Example of Counting Unification with Conflicts.

Duplicating an Ancestor Equation.

Substituting on Only One Branch.

Pruning Substitutions from a Derivation Tree.
Normal Form for Substitutions.

Delaying Substitutions.

Comparing Implicit and Explicit Recursive Forms.

Implementing Countable Recursive Unification.

An Example of Counting Unification with Recursion.

Substituting Recursive Forms.

Substituting for the Same Variable Once per Branch.

Recursive Types as Finite State Machines.
Minimizing Recursive Forms,

Using Counting Unification on a Program.

viil

84
85
86
88
90
90
91
92
93
94
95
100
101
102
103
104
106
107
112



Chapter One

Introduction

Gated attribute grammars and error-tolerant unification expand upon
the usual views of attribute grammars and unification. Normally, attribute
grammars are constrained to be noncircular; gated attribute grammars add a
fairly general form of circularity to this standard approach. Most unification
algorithms do not behave well when given inconsistent input; the new
unification paradigm proposed here not only tolerates inconsistencies but
extracts information from them. The expanded views prove to be useful in
interactive language-based programming environments. The generalized
unification allows the environment to help the user find the sources of type
errors in a program, while gated attribute grammars allow the environment
to provide an interpreter for incremental reevaluation of programs after
small changes to the code.

The following sections provide something of the flavor of these
extensions and their possible uses in such environments. Subsequent chap-
ters provide details of the extensions and relate them to previous work.
Chapter Two reviews previous work on attribute grammars, including the
nonlocal productions which are used to implement the novel feature of gated
attribute grammars; Chapter Three describes gated attribute grammars in
detail and relates them to earlier versions of cyclic attribute grammars.
Chapter Four provides an introduction to unification and type inference,
while Chapter Five chronicles some attempts to produce error-tolerant
unification algorithms. Chapter Six probes the meaning of type constraints

on the way to a definition of conflict-tolerant counting unification. Chapter



Seven shows how to apply the ideas developed in Chapter Six to recursive
type equations. Some concluding remarks then appear in Chapter Eight.
1.1. Gated Attribute Grammars

The strengths of attribute grammars as a basis for programming envi-
ronments are well known. Several environment research projects rely on
attribute grammars to support incremental semantic analysis ((ReT84],
[FIM83], [BaS86]). Attribute grammars provide a high-level, declarative
style for describing the static semantics of programming languages. Further,
such descriptions are amenable to automated analysis and the production of
programming environments that incrementally perform various semantic
analyses of programs. Such automatically generated environments have sev-
eral desirable properties; even though the writer of an attribute grammar
need not be concerned with dynamic editor-time issues such as order of attri-
bute evaluation, an editor generator can produce environments that incre-
mentally reevaluate attribute values in an optimal fashion after user
changes to the program ((RTD83])).

Attribute grammars have traditionally been required to be non-
circular; that is, no parse tree derivable from the associated context-free
grammar is allowed to give rise to cyclical or circular functional dependencies
among attributes. In fact, the main result of the seminal paper on attribute
grammars, [Knu68], is an algorithm for testing attribute grammars for non-
circularity. However, several researchers have discovered applications in
which relaxation of the requirement of noncircularity has given rise to
natural, elegant solutions. Among these applications are instruction selec-
tion for code generation ([Ske78]), control and data flow analyses ([Far86]),
and VLSI design problems ([JoS86]). Attention has recently been given to

incremental attribute evaluation in the presence of circular functional depen-



dencies in order to make it possible for programming environments to be
based on such circular attribute grammars. Results obtained previously have
imposed various restrictions such as monotonicity of evaluation functions
and domains that are lattices of finite height ([JoS86]) in order to assure
termination of the evaluation process. However, there are some important
classes of functions, such as those found in interpreters faced with the possi-
bility of infinite loops in user programs, for which termination is not assured.
The work described in these chapters is motivated by a desire to obtain opti-
mal or near optimal incremental reevaluation behavior for this important
category of problems.

If a user is manipulating a fairly large or computationally expensive
program and asks for it to be executed by an interpreter in the environment,
then slightly modifies the program and asks for another interpretation, the
program should be reinterpreted in a minimal way, preserving as much
information as possible from the previous execution, rather than being
reinterpreted from the beginning. This approach contrasts, for instance, with
the technique of using a noncircular attribute grammar to produce code that
is then interpreted or directly executed; in that technique, code is incre-
mentally kept in agreement with the user’s program, but interpretation or
execution always starts from the beginning rather than making use of the
results of previous interpretations. In another related approach ((BMS87])),
interpreters and debuggers are automatically generated from denotational
descriptions of programming language semantics, but subsequent reinter-
pretations of possibly slightly modified programs again result in reexecution
from the beginning.

Incremental reevaluation can provide major savings when an appli-

cation is organized as a sequence of phases. If the application has seven



phases, for example, changing something in phase six means that only the
last two phases need to be reexecuted, since the results from the first five
phases are already on hand. Applications that are naturally organized in this
manner include such diverse examples as compilers, numerical analysis
programs, and combinations of independent tools into a single pipeline.

The gated attribute grammar approach provides a general, rigorous,
generator-based framework that addresses many of the same issues in incre-
mental reevaluation as the hand-coded system of [KaW87]. The approach
gives rise to a very appealing spreadsheet-like style of programming, in
which every program modification causes fast update of the contents of
input/output windows that show the result of program execution on sample
inputs.

The use of run-time stores (sets of <variable,value> pairs) as attributes
in this new approach is very similar to the use of compile-time symbol tables
(sets of <variable,type> pairs) in other attribute grammar systems. This
similarity allows the multiple distinct store-valued attributes in a parse tree
to be managed in the same way as aggregates like symbol tables have been
((Hoo87]), which relieves the system of the burden of maintaining many
slightly different copies of the same information.

An implementation of these ideas as expressed in gated attribute
grammars was built on the POE system ([FJM83)), an attribute-grammar-
based programming environment. The addition of run-time semantics via
circular attribute grammars permits automatically generated environments
to be fairly complete, in that incremental static semantic checking and fast

incremental execution are now available within a single framework.



1.2. Error-Tolerant Type Inference

A crucial aspect of a program intended for general use is its behavior in
the presence of erroneous inputs. For instance, much attention has been
devoted to the problems of error detection, reporting, and correction in com-
pilers (FMM79], [GHJ79]). As programming languages and systems based
in one way or another on unification (originally proposed by [Rob65]) become
more common, it becomes increasingly important to develop a theory of error
detection and correction for unification-based systems.

In translating common programming languages like Pascal ([JeW78]),
in which every user-declared constant, variable, or function may have exactly
one fixed type, the common practice is to assume that the first occurrence of
the identifier in the program -- the declaration, in Pascal -- gives the correct
type for that identifier. All subsequent occurrences of the identifier in appro-
priate scopes are compared against the declaration to assure consistency.
However, it may be that the programmer declared the identifier as one type,
but during further development of the algorithm the programmer then
started consistently “misusing” the identifier as a type more appropriate to
the algorithm than the one which was anticipated at declaration time. In
such a case, it is easy to argue that it is the declaration which is in error and
the uses which are correct. Particularly when the program is being con-
structed in an interactive programming environment, it is easy to argue that
the translating system should draw the programmer’s attention to the decla-
ration instead of accepting the declaration and marking all uses as incorrect.
In the more general situation where the uses disagree among themselves,
and possibly also with the declaration, the system should mark all the

disagreeing type assertions, but the programmer’s attention should be drawn



more strongly to the occurrences which support minority type assertions as
these are more likely to be incorrect.

To accomplish such a goal, we must define a notion of the number of
times that an identifier is asserted to be of a given type. Defining such
weights directly on a monomorphic type structure such as Pascal’s would
result in types such as (int X bool X int) - bool and (int X bool X bool) —
bool being considered totally incompatible, in spite of clear similarities
between them. Moving to a polymorphic type structure (as discussed by
[Car85]), where identifier types can contain type variables instead of only
type constants, we discover that both functional types are instantiations of
the type (int X bool X a) - bool, where a is a new type variable. Thus we can
consider the two types to be “nearly” compatible, with a conflict only in the
third argument position. If these two types were both associated with the
same identifier, the polymorphic view could direct attention immediately to
the third argument position of the function instead of to the less specific
function name, which would be the only option under the monomorphic view.
By defining typing weights on a polymorphic type structure, we also gain the
ability to type identifiers of openly polymorphic languages such as ML. A
similar approach is found in [Wan86], where some conflicting constraints for
type variables over such a structure are collected, while Snelting ([Sne86])
has considered the problems of typing expressions in a system using
overloading as a more restricted form of polymorphism.

The basic paradigm for weighing type assertions holds that the weight
of an assertion is the number of times that particular assertion can be
independently derived from the program. To define these numbers, we collect
a set of type equations which represent the constraints imposed by the

various pieces of syntax in the program. We now wish to process this set to



determine whether there are any conflicting type assertions and, if so, to
which type variables the conflicts can be traced. Once we know which type
variables participate in conflicts, we can map these variables back to the
syntactic constructs which imposed the constraints. The amount of attention
drawn to each such construct can be determined by whether the construct
supported a majority or minority opinion in the conflict.

Consider a language-based editor for a variant of ML ([Mil78]) that
uses this approach to the isolation of likely causes of user errors. As the user
edits and manipulates his or her program, unification is incrementally
applied to determine the program’s type correctness. If a type inconsistency
arises, the set of type equations can be analyzed to determine the most likely
source of error. In this way a determination can be made as to the relative
strengths with which the set of type equations asserts multiple contradictory
hypotheses. In a language such as ML, the type of an object is inferred from
patterns of usage. The type inference system for MOE ([JoW86]), an ML-
oriented editor implemented using the editor-generating system PoeGen
((FJM84]), employs an extension of the ML type system in the style of
[MPS84] which permits recursive types (i.e., type expressions are allowed to
be infinite regular trees as well as the more traditional finite trees). As noted
in [MPS84], such recursive types were employed in a type inference system
for Scheme. In addition to recursive types, however, MOE’s type inference
system provides robust error handling and the potential for much easier
pinpointing of the sources of type errors.

Of paramount concern in the whole MOE project was the problem of
providing helpful and exact responses to the user in the presence of type

conflicts. This concern affected the design of the attribute grammar and led



to a new class of error-tolerant unification algorithms. In providing error

information to the user, two principles are observed:

(1) Error indications should be complete but parsimonious; the user
should see highlighted on the screen everything that contributed
directly to an error, but nothing more.

(2) The user’s attention should be drawn to what appear to be the
anomalies that are responsible for errors.

Often it is the case that most uses of a given object are mutually
consistent, whereas one or a very small number of uses conflict with the
general usage pattern. In MOE, if it is possible to discern that such a situ-
ation has arisen, likely errors are highlighted at high intensity and all other
program components that contributed to the inferred type of the object are
highlighted at a lower intensity.

Language-based editors permit a new level of quality in the process of
helping users when inputs are, for one reason or another, invalid.
Unification-based type inference in language-based editors appears to have
been first considered by Meertens ((Mee83]). Snelting and Bahlke have more
recently also explored this approach. In contrast to the approach of [BaS85],
however, the unification-based type-inference scheme for MOE is expressed
in the notation of attribute grammars.

The concepts of error-tolerant unification developed here are appli-
cable outside the realm of language-based editors that perform incremental
type inference; type-error detection and correction following these techniques
should be easily adaptable to compilers and interpreters that perform
unification-based type inference, and may have relevance more broadly in

other systems that employ unification algorithms.



Chapter Two

Attribute Grammars

An attribute grammar is a context-free grammar in which each symbol
has some number of associated attributes and each production has associated
functions which define certain attributes of symbols in the production in
terms of others. A example of an attribute grammar for a simple scoped
expressional language is shown in Figure 2.1. In this example, the grammar
symbol exp has two attributes, env, which contains the bindings for the
environment in which the expression is evaluated, and val, which indicates
the value of the expression.

An attributed parse tree is a parse tree of the context-free grammar in
which each instance of a grammar symbol has instances of the attributes
associated with that symbol, and the attribute instances are connected into a

graph by the functional dependency relations imposed by the production

start :: = exp
exp.env = Aname. L

€xp] ::= exp2 Op exp3
exp2.env = expi.env
exp3.env = expi.env
expi.val = expy.val op exp3.val

exp; ::= letid = expg in exp;
expz.env = expi.env
exp3.env = expj.envlid.nameeexp;.val]
expi.val = exps.val

exp:=id

exp.val = lookup(id.name,exp.env)
exp:=int

exp.val = int.val

Figure 2.1. A Simple Attribute Grammar.



10

instances. When the value of each attribute instance in a tree is the same as
the result of applying its evaluation function to the values of its predecessors
in the dependency graph, the parse tree is said to be consistent. A sample
consistently attributed parse tree from the expressional language can be
found in Figure 2.2, with the values of the exp.env and exp.val attributes
found in the boxes on the right.

2.1. Standard Attribute Grammars

Traditionally, work on attribute grammars has focused on those gram-
mars for which every possible attribute dependency graph is acyclic. In these
cases, each attribute can be classified as either synthesized or inherited. A
synthesized attribute can be thought of as one whose value flows up the tree.
More specifically, an attribute is synthesized if its evaluation functions
appear in productions where its symbol is on the left-hand side. An inherited
attribute can be thought of as one whose value flows down the tree, and its
evaluation functions appear in productions with its symbol on the right-hand
side. In the sample language, exp.envis inherited and exp.val is synthesized.

With an acyclic attribute grammar, a single traversal, in topological
order, of the dependency graph can consistently attribute the entire tree.
Each attribute’s defining function will be evaluated exactly once in this
initial traversal, guaranteeing that the attribution process will terminate, as
long as each defining function itself terminates.

Global topological information for ordering attribute evaluation can be
delivered to each instance of a grammar symbol by superior and inferior
characteristic graphs. An inferior characteristic graph shows the projection of
transitive dependencies from the portion of the parse tree below the symbol; a
superior characteristic graph shows the projection of transitive dependencies

from the remainder of the tree. These characteristic graphs, combined with



11

start
exp
°a @ 5
let id = exp in exp
®a N <x,7> 5
X int let id = exp in exp
® A o A <x,7> 3 |[<x,7> 5
/ /\ -
7 y in exp op exp
<x,7> 8{|<x,7> 3
\ 3> ||<y3>
3 expop exp -
o a e A <7 T 1Kx,7> 1
/ <y,3> <y,3>
id + int y
® exp.env
a exp.val
X 1

Figure 2.2. An Attributed Parse Tree.
the local dependencies imposed by production instances, allow local

evaluation to proceed in accordance with global topological order.



12

The paradigm for changing a consistently attributed parse tree calls
for replacing some subtree of the parse tree by another subtree. The two
subtrees must be rooted by the same grammar symbol, and the position of
that symbol instance in the new tree is called the point of intersection. The
second subtree is assumed to also have internally consistent attribute values.
Therefore, after the replacement, all inconsistent attributes occur in the
productions immediately above and below the point of intersection. By
propagating changes along the dependencies leaving these attributes, we will
reach every attribute whose value in the updated parse tree, when consis-
tently attributed, differs from that in the old tree.

Characteristic graphs allow optimal incremental updating after some
portion of a tree has been changed. When superior characteristic graphs are
kept for symbol instances between the cursor position, which is the point of
change, and the root of the parse tree, and inferior characteristic graphs are
kept for all other instances, [RTD83] show how updating after a subtree
replacement can be accomplished in O(AFFECTED)|), where AFFECTED is
defined as the set of attributes whose values after updating quiesces differ
from their values before the editing change. (In other words, the information
in the characteristic graphs can be used to avoid problems with naive change
propagation, such as having to redo the propagation from an intersection
attribute after discovering that one of its predecessors got a different value in
the course of change propagation from another of the intersection attributes.)

If an attribute grammar is partitionable (the class of ordered attribute
grammars being a polynomially-recognizable subset of the partitionable
attribute grammars [Kas80]), then these incremental optimality results are
obtainable without the expense of maintaining characteristic graphs at

evaluation time. In this case, it is possible to wire a strategy for optimal



13

incremental reevaluation after subtree replacement into the editor as the
editor is being created.
2.2. Attribute Grammars with Nonlocal Productions

In the discussion so far, attribute grammar dependencies have followed
the structure of the parse tree. Each evaluation function used inputs avail-
able in a single production to determine the value of another attribute in the
same production. However, attribute grammars following this framework
will typically generate long “copy chains” in the dependency graph, where
each evaluation function along the chain is an identity which merely moves
the value one step further along the tree structure. This situation occurs in
the sample grammar when there is a large, complicated arithmetic expres-
sion inside the deepest let clause. In such a case, the environment from the
deepest let clause is propagated through all the interior nodes of the arith-
metic expression only so that its value can reach those leaves which are
identifiers. If the value bound to an identifier via a let clause changes, the
attributes of all these interior nodes must also be updated to get the update to
the leaves where it may be used.

Motivated by a desire to remove such inefficiency, several people have
developed ways of easing the restriction on dependency links. Johnson and
Fischer ([JoF85]) add new symbols, called interface symbols, to some of the
productions of a grammar. They also add nonlocal productions, which turn
collections of these interface symbols into the empty string so that the addi-
tion of the interface symbols does not change the accepted language. These
nonlocal productions, with the aid of information flowing along the tree
between the interface symbols, set up and maintain nonlocal dependency
links. With the aid of a priority relation on attribute instances, which is

calculated at editor generation time, attribute evaluation can still be ordered



14

to avoid evaluating an attribute more than once during an incremental
update. This scheme works well when linking variable definitions to their
uses, as a change in the type or value of a variable can then be propagated
directly to the uses of that variable, without passing through the
intermediate tree structure. The treatment of nonlocal productions was
formalized in [JoF87], where the special interface symbols and productions
are dropped in favor of something that looks like a traditional attribute
grammar. Nonlocal dependencies are represented by chains of local
dependencies through designated imaginary attributes, which allows global
properties of the grammar to be analyzed at editor generation time by local
algorithms. Projecting onto the real attributes reveals the nonlocal
dependencies which are then used during the actual evaluation process.

Another approach is found in [RMT86], where an upward remote
reference can replace a chain of copy attributes from a symbol’s attribute to
an attribute of a descendant symbol in the parse tree. More specifically, an
evaluation function is allowed to reach back up the tree until it finds the first
instance of a desired grammar symbol, from which it can take the value of an
attribute. [Hoo86] provides yet another approach, where any copy chain can
be replaced by a copy bypass dependency which provides an approximate
topological ordering for attribute evaluation. Both of these latter approaches
can avoid propagating the environment throughout the body of a let clause by
making each use of a variable inside the body refer back to the environment
produced in the let production, although for an upward remote reference the
grammar must be changed slightly to give the expression that is the let body
a different symbol.

In [Hoo87], Hoover provides a different way of thinking about aggre-

gate attributes such as environments or states. Such aggregates consist of a



15

number of independent keyed records and are manipulated by five aggregate
operators: EMPTY, ADD, LOOKUP, COPY, and UPDATE. Since each of
these operators has a clear effect on an input aggregate, dependency chainsin
which each aggregate is the result of an operator applied to the previous
aggregate do not require recalculating and representing an entire new aggre-
gate at each step. With an aggregate environment, each use of an identifier
depends only on the appropriate record, not the rest of the environment.
Through the use of copy bypass or copy structure trees, each use is, in effect,
connected via a nonlocal dependency to the appropriate definition.
2.3. Circular Attribute Grammars

Another restriction that has recently been relaxed is the total ban on
cycles in the attribute dependency graph. One of the first researchers to
explore this area was Skedzeleski ([Ske78]). More recently, Jones and Simon
([JoS86]) allow arbitrary dependency graphs, but restrict the defining func-
tions for attributes that may appear in strongly connected components
(SCCs) of a dependency graph. These functions are required to be monotonic
and to take values from a lattice of finite height. Under these conditions,
finding a fixed point of an SCC requires only a finite number of attribute
evaluations -- the value of an attribute can only change by increasing, and
there are only a finite number of steps to go up in the lattice. By treating
each maximal strongly connected component as an attribute in a collapsed
graph for SCC scheduling, they maintain a worst-case incremental update
time of O(hk|AFFECTEDSCC|), analogous to that in [RTD83], where A is the
height of the highest lattice and & is the largest number of nodes in an
affected SCC. They also show that the local portion of the collapsed depen-
dency graph can be constructed from the locally available characteristic

graphs and production dependencies, and note the care that must be taken to



16

ensure that the SCC fixed point found by incremental evaluation is indeed
the least fixed point for that SCC.

Farrow ([Far86]) also allows arbitrary dependency graphs and restricts
the defining functions in strongly connected components to be monotonic, but
instead of requiring these functions to operate on finite-height lattices, he
requires them to satisfy an ascending chain condition. This condition, that
for every ascending chain sp < s; < ... < s, some fisk) =f(sk + 1), also guar-
antees that evaluation of each individual SCC will terminate, and thus that
the entire evaluation process will terminate.

There is some similarity between these approaches and the data-flow
technique of interval analysis as described in [ASU86]. All of them solve
equations involving monotonic functions by iterating in the manner pre-
scribed by a flow graph. The granularity of the data-flow graph, however, is
much coarser than that of the attribute dependency graph. A node in a data-
flow graph represents a statement or an entire basic block; a node in a depen-
dency graph represents an attribute associated with a single grammar
symbol. The edges in a data-flow graph actually represent control dependen-
cies among the basic blocks, so there is always a unique source node where
program execution begins. Similarly, natural loops have a single entry point
at the top which dominates the rest of the loop. With the finer granularity of
a dependency graph, these regularities no longer hold (e.g., every int.val node
from the sample grammar will be a source node). Therefore, connected com-
ponents provide a better partitioning of the graph into areas corresponding to
loops than do the dominator relationships used in interval analysis.

Further discussion of these approaches to circular attribute grammars
is postponed to sections of the next chapter, after another way of approaching

circularity in attribute grammars has been introduced.



Chapter Three
Gated Attribute Grammars

A new category of attribute grammars called gated attribute grammars
provides another approach to cyclic computations. In contrast to the earlier
approaches, evaluation functions do not need to be specially restricted when
they occur in a cycle; the more powerful partial functions used in applications
such as interpreters can be expressed directly in the grammar. In a gated
attribute grammar, every cycle in an attribute dependency graph must have
a gate attribute that specifies the location in the cycle at which evaluation is
to start. To evaluate the attributes in a parse tree, one temporarily views
strongly connected components as single nodes and evaluates the nodes of the
collapsed graph in topological order. Evaluation of a strongly connected
component involves an inductive application of this scheme: one removes
incoming arcs to the gate attribute of the outer SCC (so that at least the gate
attribute is no longer in the same SCC as the other nodes), identifies any
nested strongly connected components, and considers these nested SCCs to be
individual nodes. The evaluation of this graph then proceeds in accordance
with a topological ordering on its nodes.

The distinguishing characteristic of a gate attribute is that it has two
evaluation functions. The first evaluation function has as inputs only attri-
butes outside the gate attribute’s SCC and is used to provide an initial value
to the gate. The second evaluation function depends on attributes in the SCC,
and is used to obtain the succession of subsequent gate values. A boolean
valued pseudo-attribute named start is associated with a gate attribute to

determine which of the gate’s evaluation functions should be invoked when

17



18

the gate needs to be evaluated. Evaluation of the SCC is complete when (and
if) it reaches a fixed point; that is, when every attribute in the SCC contains a
value that is the same as the result produced by its evaluation function when
itis applied to the values of the attribute’s predecessors.

As with [JoS86], incremental evaluation at the outermost level can be
accomplished using results from [RTD83] and subsequent refinements. A
major difference, however, arises when an input to a strongly connected com-
ponent “node” changes value. We do not merely want to schedule the attri-
bute that is the successor of the changed attribute for reevaluation, since that
node might be in the middle of the SCC. Rather, we also schedule the gate of
the SCC for reevaluation, since that is the attribute at which evaluation of
the SCC is supposed to start. At evaluator time, nonlocal productions are
employed to attach inputs of an SCC to the start attribute of the SCC. The
purpose of these connections is to assert that the start attribute of the SCC is
an evaluator-time successor of each input to the SCC. The writer of an
attribute grammar designates certain attributes as gates and gives them two
evaluation functions. The whole technique results in an extended attribute
grammar notation that is applicable to a large and important class of prob-
lems, including interpreters, that are most naturally expressed using circular
attribute grammars, and from which efficient programming environments
can be automatically created.

In the following sections the class of gated attribute grammars and the
notion of gated strongly connected components are defined; this latter concept
is critical to the approach presented herein. Initial and incremental
evaluation algorithms for gated attribute grammars are presented; the
approach is quite general, and should be readily implementable in any of a

variety of attribute-grammar-based editor and compiler generating tools.



19

3.1. Philosophy

While there are application areas whose natural semantic functions
satisfy one of the previously-imposed conditions on circular attribute gram-
mars discussed in the preceding chapter, there are also some natural
functions that are not so well-behaved. An example of such functions arises
when we try to use attribute evaluation to model execution of a while loop.
Adding an indefinitely looping construct to model while execution will give
the attribute evaluation mechanism full partial recursive power to apply to
other, less easily visualized problems. The small grammar found in Figure
3.1 is a natural way to express interpretation via attribute evaluation. (In
this grammar, a value of not-reached for a state means that the corres-
ponding statement would not be executed if the program were run.)

If the while production is ignored, this attribute grammar is acyclic.
With the while production, a cycle is formed by the while.gate, B state, B.val,
S2.initst, and S.finalst attributes, as shown in Figure 3.2, where dashed links
indicate indirect dependencies. (The while.start attribute will be discussed
later in this section.)

For the class of problems and algorithms considered here, it is appro-
priate to use the standard total ordering on the integers, rather than creating
a flat cpo out of the integers. (Circular attribute grammars give rise to sets of
simultaneous equations over the integers, and, as expanded upon in the next
section, solutions of such systems with respect to the flat cpo would give the
value L to many of the variables.) Since there is no reason, under this
ordering, to expect that the body of the while loop represents a monotonic
function from initial states to final states, the previous work on circular attri-
bute grammars can not define the desired final state of this loop. Execution

of this loop, however, would result in a well-defined final state, provided that



20

Start::= S
S.initst = Aname. L
Start.finalst = S.finalst

’ S:=id «exp
exp.state = S.initst
S.finalst = if S.initst = not-reached then
not-reached
else
! S.initst[id.name«exp.vall

exp:=id
’ exp.val = lookup(id.name,exp.state)
exp :: = int
exp.val = int.val

exp] :: = expg op exp3
expz.state = expi.state
exp3.state = expj.state
expi.val = expa.val op exp3.val

S1:=S9:S3
S2.initst = Sq.initst
S3.initst = Sy.finalst
S1.finalst = S3.finalst

St ::= whileexpdo Sg
while.gate = if while.start then
<1,S1.initst>  (initial value)
else
<0,S2.finalst> (subsequent values)
exp.state = second(while.gate)
S».initst = if exp.val # 0then
second(while.gate)
else if first(while.gate) = 1 then
not-reached
else
Sa.initst
S1.finalst = if exp.val =0 then
second(while.gate)
else
not-reached

Figure 3.1. A Gated Attribute Grammar.
the loop terminates. In the next section, the usual attribute evaluation
algorithm is extended in such a way that the attribution final state coincides

with the execution final state.



21

S1.nitst  Sq.finalst

0

while.gate exp.st exp.val Sy.initst S;.finalst

\\ﬁ \\’

Figure 3.2. while dependencies.

This extended attribution algorithm does not require an attribute
grammar to be noncircular, but it still requires some order in the attribute
grammar. Every nontrivial dependency-graph cycle that can be generated
by such an attribute grammar must contain at least one attribute designated
as a gate. (Cycles such as the one for Sz.initst in Figure 3.2 with only one node
in the cycle, corresponding to an attribute depending on its prior value, are
considered trivial.) A gate attribute represents the point at which attribution
of a strongly-connected component in the dependency graph should begin.
Each gate attribute has an automatically associated start attribute that will
indicate when the gate attribute should take its value from outside its SCC
rather than from inside. In the example, while.gate is the only designated
gate and while.start is its start attribute.

A gate attribute provides the means of controlling the evaluation of
attributes within a strongly connected component. If all functions in the SCC
are monotonic and all attributes are initially L, starting propagation from

any attribute in the SCC will yield the least fixed point of the SCC; if some



22

functions are nonmonotonic, starting propagation from different attributes
can yield different fixed points, so the desired fixed point is defined to be the
one resulting from propagation starting at the gate attribute. By guaran-
teeing that each SCC has a gate attribute, we also guarantee that each SCC
has a well-defined fixed point.

Given an attribute grammar with designated gate attributes, the algo-
rithms previously used to detect circularities can now be used with only
minor modifications to detect circularities that do not pass through gate attri-
butes. If no such circularities can be found, the attribute grammar is called a
gated attribute grammar and can be evaluated with the techniques of this
chapter.

Each gate in a dependency graph defines a gated strongly connected
component (GSCC), which can be considered as the region of the graph under
the control of the gate. Those attributes used to calculate the gate value
when its start is true are outside the gate’s control, so edges from them to the
gate are not used in determining the extent of the GSCC. Any node that
remains strongly connected to the gate without these edges in the graph is in
the gate’s GSCC.

As a consequence of this definition, every nontrivial maximal SCCin a
dependency graph of a gated attribute grammar is a GSCC and, for any gate
that is not nested inside another’s GSCC, the GSCC is the maximal SCC
containing that gate.

The sub-GSCC for an interior gate node consists of those nodes in the
SCC that are strongly connected to the interior gate after removing arcs to
this gate from its start node and whichever other nodes contribute to the gate
value when its start is true. This sub-GSCC is the same as the maximal SCC

for the interior gate node would be if there were not an outer gate. The por-



23

tion of a GSCC which is not in any sub-GSCC is called its core. (In the
example, GSCCs correspond to while loops, sub-GSCCs to nested while
loops, and the core of a GSCC to that portion of the loop outside of any nested
loops.)

3.2. Initial Evaluation

Initial evaluation starts with an attributed parse tree where no attri-
butes are guaranteed to have consistent values. Therefore, every attribute
needs to be evaluated, those in nontrivial SCCs possibly more than once, for
the tree to become consistently attributed.

A parse tree is attributed by repeatedly selecting a strongly connected
component (potentially a single attribute) of its dependency graph and
evaluating the attributes in that SCC until they reach final consistent
values. SCCs can be selected in any way consistent with a topological or-
dering of the collapsed dependency graph, where each maximal SCC has been
reduced to a single node. Thus, if there are no nontrivial SCCs in the graph,
this evaluation process proceeds in the same way as the usual optimal
evaluation process.

Before evaluation of the attributes mentioned by the grammar writer
begins, certain additional links are added to the dependency graph by non-
local productions. These additional links, indicated by dotted lines in Figure
3.3, make each attribute (outside a GSCC) that is a predecessor of a node in
the GSCC also a predecessor of the start attribute of that GSCC. These links
allow the evaluator to always begin evaluation of a GSCC at its gate
attribute. The evaluation function for a start attribute returns true, indi-
cating that the gate attribute should take its value from outside the GSCC to
begin GSCC evaluation, iff any of its predecessors from these additional links

were newly set or changed value since the gate attribute last took a value



24

Figure 3.3. Adding Nonlocal Links.
from outside. Since the only successor of a start attribute is its gate attribute,
adding these additional links does not change the SCC composition of the
dependency graph.

These links are useful primarily for incremental reevaluation of a
GSCC, but even during initial evaluation sub-GSCCs may require multiple
evaluations, and any GSCC may require multiple passes to reach a fixed
point. In practice, subsequent passes and evaluations of a GSCC would be
handled by the more efficient incremental evaluation of the next section, but
for the moment we consider a simplified algorithm where all the attributes of
a GSCC are evaluated on each pass.

Since there may be nonmonotonic functions inside a GSCC, attribute
evaluation order influences correctness as well as efficiency. An example
where differing evaluation order results in different fixed points for the
GSCC is shown in Figure 3.4. The attributes are shown with consistent
values that could be left over from an earlier evaluation of the GSCC. Now
assume that the GSCC must be evaluated again, and that the gate g gets the
new initial value 20. If the GSCC is evaluated in the order acbgabcg, the



25

Figure 3.4. A Nonmonotonic GSCC.
fixed point (a:5, b:-5, ¢:10, g:15) is reached. If it is evaluated in the order
abcg, the fixed point (a:10, b:-10, ¢:20, g:20) is reached.

This example also justifies the choice of ordering for the integers made
at the beginning of Section 3.1. Using a flat cpo, we would find that the least
fixed point of this GSCC is (a: L, b: 1, c:1, g:1). While this is a solution to the
set of simultaneous equations representing the GSCC, the writer of the
attribute grammar would probably prefer to get the integer solution (a:10,
b:-10, :20, g:20). Similarly, if the cpo for states is constructed from the flat
cpo for the integers in order to guarantee monotonicity of functions, the least
fixed point of a while loop would have each attribute in the SCC at its bottom
value, meaning that the final state of every while loop would have no
identifiers defined.

The correct evaluation order within a GSCC is defined by a topological
ordering on the GSCC graph with edges leading to the gate removed (and any
sub-GSCCs collapsed to single nodes). In other words, an attribute in the
interior of a GSCC cannot be evaluated unless all attributes on paths from

the gate to it are consistent with the present gate value. There are cases,



26

such as Figure 3.5, where such an ordering cannot be obtained due to a cycle
interior to a GSCC, but such cycles are ruled out in gated attribute grammars
by the requirement that each nontrivial cycle contain a gate attribute.

A nontrivial GSCC is evaluated by alternating between evaluating the
gate and evaluating the other nodes of the GSCC in internal topological
order, with possible recursive evaluations of sub-GSCCs, until one pass is
made over the GSCC with no changes in attribute values. (The simplified
algorithm of this section ignores the possibility of aborting the last pass over
the GSCC once the gate has been evaluated without changing value. The
incremental evaluation algorithm of the next section automatically incor-
porates this by using change propagation.)

Even with monotonic functions, Jones and Simon ([JoS86]) for effi-
ciency restrict evaluation order to agree with a depth-first ordering starting
at a defined set of SCC attributes. For the first pass over the SCC, the set
consists of those SCC attributes whose predecessors outside the SCC have
changed. On succeeding passes, the set consists of the successors of leaves of
the depth-first spanning tree from the previous pass. Since all their functions
are monotonic, the evaluation ordering from these spanning trees could, for
comparison with the GSCC method, be replaced by one derived from a

topological ordering on the SCC with incoming arcs to the defined set

gate

non-gate non-gate

Figure 3.5. Inevaluable GSCC.



27

temporarily deleted. With such a replacement, the defined set for each pass
would be a subset of that for the previous pass, with nodes being dropped from
the set if their predecessors did not change on the previous pass. The GSCC
algorithm starts with only the gate attribute in the defined set, and SCC
evaluation terminates when the gate’s predecessors in the SCC do not change
on a pass.
3.3. Incremental Evaluation

At the beginning of incremental evaluation, a parse tree is consistently
attributed except for a small number of attributes corresponding to places
where changes have recently been made to the parse tree. As with noncir-
cular attribute grammars, these attributes are just those around the root of
the subtree if there has been a single subtree replacement. If more than one
subtree has been replaced since the tree was last consistently attributed, we
also need the attributes of the symbols along the branches that connect the
replacement sites, as illustrated in Figure 3.6. These additional attributes

provide the attribute evaluation sequencing between the replacement sites.

e sitesof subtree replacement

— connecting branches

Figure 3.6. Connecting Sites of Subtree Replacement.



28

The strongly connected components containing the appropriate attri-
butes are placed in the set NeedSCCEval, which throughout incremental
evaluation contains those SCCs known to need evaluation. Another set,
NeedEval(S), which contains those attributes of the GSCC S that are known
to need evaluation, is kept for each GSCC (i.e. nontrivial SCC) in
NeedSCCEval. While NeedSCCEval is not empty, an SCC is removed and
evaluated. SCCs are selected for evaluation in accordance with the
topological order imposed b’y the collapsed dependency graph.

A trivial SCC is evaluated by evaluating its node (repeatedly if the
SCC is a trivial cycle) and adding its SCC-successors to NeedSCCEval if the
value of the node changed. A nontrivial SCC is evaluated in the same spirit,
as shown in Figure 3.7. Starting from the gate, changes are propagated
around the GSCC in internal topological order until attributes settle to con-
sistent values. Then SCC-successors are added to NeedSCCEval if their
predecessor attributes have values different from before SCC evaluation.

Evaluating a sub-GSCC is identical to evaluating a GSCC, except that
old attribute values are not saved and checked to add SCC-successors, since a
sub-GSCC cannot know if its attribute values are final when they settle to
consistent values. The sub-GSCC may be reevaluated, changing its attribute
values further, in the process of evaluating the GSCC as a whole.

Whether evaluating a GSCC or a sub-GSCC, it suffices to evaluate
attributes that are in the core and are known to need evaluation. If an attri-
bute in a further nested GSCC needs evaluation, so does the start attribute of
that nested GSCC, which is in the core of the next outer GSCC. Evaluating
that start attribute will trigger evaluation of the nested GSCC, including the
needy attribute.



29

for each node n in S with a successor outside S,
j save the present value of n
| evaluate gate(S), setting start(S) false
if gate(S) changed, add successors of gate(S) in S to NeedEval(S)
while NeedEval(S) N core(S) is not empty
select n from NeedEval(S) N core(S) in
accordance with internal topological order
if n is a start node,
evaluate n
if nis true, recursively evaluate the associated sub-GSCC, T
add successors of T in S-T to NeedEval(S)
else
evaluate n
if n changed, add successors of n in S to NeedEval(S)
for each node n in S with a successor outside S,
if its present value differs from its saved value,
add its SCC-successors to NeedSCCEval
add its successors to NeedEval sets

Figure 3.7. Evaluating the Nontrivial SCC S.

Also note that the NeedEval set of the maximal GSCC can be used by
the sub-GSCC evaluation, which will look only for attributes in the core of
the sub-GSCC. Thus it is not necessary to worry about multiple NeedEval
sets for different parts of the same maximal SCC.

This incremental evaluation algorithm follows the same principles
that were developed for initial evaluation. The maximal GSCCs are selected
in accordance with a topological ordering on the collapsed dependency graph;
nodes within a GSCC are selected in accordance with the internal topological
ordering. Since every other predecessor of a sub-GSCC is also a predecessor
of the sub-GSCC'’s start node, the entire sub-GSCC (a “node” in the internal

collapsed graph) can immediately follow its start node in the internal topo-



30

logical order. The incremental algorithm, however, adds the idea of change
propagation in the hope that not every GSCC that descends from those
determined by the subtree replacement sites will have its value affected by
the updates. This change propagation allows the algorithm to reevaluate
only those GSCCs that occur in the set of affected GSCCs, as was shown in
[JoS86].

3.4. Avoiding Reevaluation of Loops

Often when an input to a loop changes, it is necessary to entirely
reevaluate the loop. Where possible, however, we would like to avoid this
expense by identifying those portions of a loop that do not affect the compu-
tation of the loop in such a way as to require an entire reevaluation. This
basic idea is somewhat reminiscent of code hoisting in optimization.

This discussion is necessarily specific to the continuing example of an
attribute-grammar-based interpreter in which attributes containing states
are passed around the tree.

Just as in standard incremental evaluation, we hope that at some point
short of reevaluating all the attributes in the tree either attributes stop
changing value or they change value in such a way as not to require further
reevaluation. To make this determination, it is useful to define input and
output variables of a loop. An input variable is one whose value is queried
somewhere inside the loop, and an output variable is one whose value is
modified somewhere inside the loop. Variables may, of course, be both input
and output variables for a given loop. For the example language, the input
variables are those that appear on the right-hand side of an instance of the
production exp ::= id and the output variables are those that appear as left-
hand sides of assignment statements. The concept of the state value not-

reached is extended to include an extra pair of integers in each state



31

attribute. These integers will record the number of the loop iteration at
which the state is first evaluated and the number of the loop iteration at
which it is last evaluated.

During change propagation, say we find that a predecessor of a state-
valued attribute in a GSCC corresponding to a loop has changed. We evalu-
ate the state inside the GSCC and note which variables inside it change
value. We consider each changed variable in turn. The first iteration in the
loop during which the state was evaluated represents the first time that the
variable being considered would actually receive the new value. If that is
after the last use (if any) of the variable in the loop, then we do not need to
reevaluate the loop; we need only update those states evaluated after the
given one to reflect the new “final value” of the variable. (Variables that are
independent of the loop are handled similarly.)

The above relatively inexpensive technique formalizes and captures
such common situations as changing the “clean-up” code in a loop such as
that in Figure 3.8, which intuitively should not require reevaluation of the
entire loop. If the loop iterated 17 times, the first and last evaluation of states
in the clean-up code occurred on iteration 17. Giving a different value to the
variable clean in the clean-up code does not require reevaluating the loop, as

no state in the loop will query the value of clean after iteration 17.

while not done do
{ main loop body }
if condition then
{clean-up code } ;
done : = true
else

{ continue iterating }

Figure 3.8. Typical Loop.



32

3.5. Nonlocal Predecessors of Start Attributes

It is necessary to create links from predecessors of a GSCC to the start
attribute of that GSCC. These links are used to make the start attribute true
and schedule the GSCC for reevaluation whenever an input to the GSCC
changes value in such a way as to require a full reevaluation of the GSCC.
Superior and inferior characteristic graphs are used as necessary to find
attributes that are in a GSCC and identify their predecessors that are not in
the GSCC. The first step in creating the needed links is to associate a pointer
to the appropriate gate attribute with each member of a GSCC. In the case of
nested GSCCs, each member gets a pointer to the gate of the smallest
containing GSCC. In this way, all exterior gates can be found by following
the chain of gate pointers outward.

For the example grammar, gate pointers can be calculated by adding
the evaluation functions in Figure 3.9 to the earlier evaluation functions
from Figure 3.1. (The notation @X.a indicates that a pointer to attribute X.a
is produced.) Statement nonterminals have initial state and final state
attributes, and the associated gate pointer attributes are abbreviated isgp
and fsgp respectively. A similar naming convention is used for gate pointers
associated with state and value attributes of expression nonterminals and
gate attributes for while symbols. Some of these gate pointers are calculated
with respect to the inferior characteristic graphs contained in the infchar
attributes of their associated grammar symbols.

Once we have the gate pointers, we can add the necessary links. An
attribute is a predecessor of a GSCC if the gate pointer of a successor does not
appear in the chain of gate pointers from the attribute (i.e., the successor is
not in a containing GSCC). Since the successor may be in several nested

GSCCs, a link is added from the predecessor attribute to the start pseudo-



33

Start::=S
S.isgp = nil

S1:: = while expdo S;
while.gategp = Sq.isgp
S1.fsgp = S1.isgp
S2.isgp = @while.gate
exp.sgp = if exp.infchar = {state=val) then

@while.gate
else nil
S:i=ideexp
S.fsgp = S.isgp
exp.sgp = if exp.infchar = <state=>val> then
S.isgp
else nil
S1::=8S9;S3

S1.fsgp = S1.isgp
S2.isgp = Sy.isgp
S3.isgp = S1.isgp

exp:=id
exp.valgp = exp.sgp

exp = int
exp.valgp = exp.sgp

€Xp1 ::= exp2 op exp3
exp2.sgp = if expa.infchar = <{state=>val) then
exp1.sgp
else nil
exp3.sgp =if exps.infchar
exp1.sgp
else nil

expi.valgp = exp1.sgp

{state=>val> then

Figure 3.9. Added Flow Rules.
attribute associated with each gate pointer in the trace-back chain from the
successor until this trace-back chain joins the one from the predecessor. A
diagram of these trace-back chains and resulting links for nested GSCCs is
found in Figure 3.10. Figure 3.11 shows a parse tree with the dotted links
added after execution of this first phase of attribute evaluation. (The GSCC

in this figure has been circled so that its predecessors are easier to identify.)



34

O start attribute
® gate attribute - — = gate pointer information
e otherattribute @ ..... added links to start attributes

normal dependency links

Figure 3.10. Using Gate Pointers to Add Nonlocal Links.
3.6. Discussion
As in [JoS86], these gated attribute grammar techniques guarantee
that each maximal SCC evaluated will be in AFFECTEDSCC, and that no
SCC will be evaluated more than once in a single incremental evaluation.
However, due to the lack of restriction on the functions within an SCC, there
cannot be a bound on the number of attribute evaluations required to

evaluate a single SCC. To gain the power to model execution of a while loop



35

®
Start.finalst

.1

St1.initst  Sq.finalst

Sa2.initst  S».finalst

)\(
id1.name exp1.state expj.val

f S3.initst  S3.finalst

intq.val

Ppeo o——)o()
while.start while.g B.st B.val Sg.is  Sa.fs

R4\ A \

e3.st esz.val id3.name eg4.st eg.val

!

id2.name *..intp.val

es.st es.val eg.st eg.val

.
.
-
‘.
-
.
.
* .
Lars
* s .

idg.name int3.val

Figure 3.11. Dependency Graph fori « 10 ; whilei > 0 do i«i—1.
in attributes, we are forced to accept that evaluation of an SCC may not

terminate if its corresponding while loop diverges. (Evaluation of an SCC




36

representing a divergent while loop will in fact terminate if the states in the
while loop stop changing, as in the loop while 1 doi « 2. Insuch a case, any
subsequent states in the program are given the not-reached value.)

The recursive synth-function evaluator described in [Far86] addresses
evaluation-process-termination problems in recursive attribute grammars by
pulling the evaluation of an SCC into a single function and then pointing out
that only a finite number of function evaluations will be attempted. For
Farrow’s finitely recursive attribute grammars, this transformation does not
generate partial evaluation functions unless some of the SCC functions were
already partial. (Most functions in traditional attribute grammars are
simple total functions, but there is no way in general for an evaluator
generator to guarantee these functions will always terminate.) However, for
general circular attribute grammars this transformation would not affect the
actual termination of the evaluation process, but would merely move
potential nontermination from the attribute selection phase to the attribute
evaluation phase.

Thus, partial functions are now allowed to be explicitly spread over the
computation of the attributes of a GSCC instead of restricted to the compu-
tation of a single attribute. This choice allows computation to be expressed
via attribute evaluation functions in whichever way seems most convenient.

By forcing attribute evaluation to occur in accordance with a topo-
logical ordering of the dependency graph, attribute evaluation is guaranteed
to terminate if interpretation of the corresponding program would terminate.
In addition to allowing a GSCC to converge to the wrong fixed point, evalu-
ation out of topological order can result in undesired nontermination. If a
GSCC were to be evaluated when some of its predecessors had yet to reach

their final values, the invalid combination of inputs might be such that the



37

GSCC has no reachable fixed point. Yet GSCC evaluation cannot stop before
it reaches a fixed point, for on valid input the evaluation must continue until
it determines that the corresponding loop converges. However, topological
ordering for the sake of efficiency will also guarantee that all GSCC inputs
are valid when the GSCC is evaluated.

To gain the ability to evaluate arbitrary functions in dependency
graph cycles, one localized timing constraint on attribute evaluation has been
accepted. A start attribute is required to know if any of its predecessors have
changed since the last time its gate attribute took a value from outside the
GSCC. This constraint is met by setting the start attribute false imme-
diately after, but conceptually at the same time as, taking a gate value from
outside the GSCC. Without some way of telling whether GSCC evaluation is
just beginning, a gate cannot know which of its evaluation functions to use.
Using the internal evaluation function at the beginning of GSCC evaluation
may abruptly end that evaluation if the gate is the only GSCC attribute with
modified predecessors; using the external function in the midst of GSCC
evaluation again brings up the problem of possible divergence due to invalid
combinations of values. Jones and Simon face a somewhat similar problem in
incrementally evaluating SCCs with monotonic functions. They must keep
track of whether an attribute has been evaluated in the current round of SCC
traversal to ensure that a left-over value does not cause SCC evaluation to
miss its new least fixed point.

With the use of an efficient representation, such as may be found in
[Hoo87], for aggregate attributes like states that differ only slightly from one
another, the performance penalty for propagating state information around a
dependency graph may be substantially reduced from that of a naive imple-

mentation. Any remaining penalty should be more than offset by the



38

advantage of being able to automatically start reexecution at the point of

change in a program.



Chapter Four

Unification-Based Type Inference

In many modern programming languages, a program is considered
well-typed if and only if types can be consistently assigned to all expressions
in the program. If every expression, including such intermediate-level ex-
pressions as i+j—3, is explicitly typed by the programmer, the compiler or
interpreter need only check that the type conversion rules of the language are
followed to verify the typing of the program. If some expressions are untyped,
the compiler or interpreter must infer the types of those expressions from con-
text and the types of component expressions. In languages such as Pascal and
C, the programmer associates a specified type with each identifier and the
compiler then uses these types to infer the types of intermediate-level
expressions. The compiler produces a type error if it cannot consistently type
such an expression. Under other typing schemes, however, a compiler will
associate a type with every expression of a type-correct program without the
aid of identifier declarations. Even in these cases, declarations remain useful
both as a reference for the human programmer and as a statement to the
compiler of the programmer’s intended use of an identifier.

Whatever the typing scheme, type inconsistencies may occur between
the declaration and uses, or simply between different uses, of an identifier.
The usual way of dealing with such inconsistencies is to assume that the
declaration, if any, gives the proper typing of the identifier. If there is no
declaration, the first use in the program determines the type. Unfortunately,
while simple to implement, this approach can be misleading as to the real

source of the type errors. Often, an identifier may be used many times in a

39



40

program in a way consistent with the programmer’s idea of its type. The
identifier may have been misdeclared as a different type, the programmer
may misremember its type, or the declaration may be left over from an
earlier sketch or version of the program. In any case, if the usage is consis-
tent, the minimal change to bring the program to type consistency involves
changing the declaration. The common simple approach to type inconsis-
tencies would flag each “incorrect” use as a type error, but not flag the decla-
ration or any uses consistent with the declaration. A better way to determine
the “correctness” of each occurrence of an inconsistently typed identifier
would be to figure out how many times the identifier was indicated to be of
each inconsistent type and then to flag each occurrence with an intensity
depending on the relative popularity of the type it supported.

As an example of the difference in philosophy, consider a program in a
language without declarations, where each occurrence of the variable x isin a
context permitting only a boolean or an integer value. If there are a number

of inconsistent uses, scattered through the program, appearing in the order

use x as boolean; *
use x as integer; ook *x
use X as boolean; *

use X as boolean;
use x as boolean;
use x as integer;
use x as boolean;
use x as boolean;

use x as boolean;

*

*

*kk *k

*

*

*

the common approach of believing the first use would flag only the integer

uses (and perhaps also the first boolean use as an indication of the “correct”



41

type). These flags are shown in the second column. A voting approach
capable of distinguishing majority and minority opinions, however, would
flag all the uses with the intensities shown in the third column. In a similar

program where the first two uses were interchanged to give the order

use x as integer; Hok
use x as boolean; ko *
use x as boolean; Hokk *
use x as boolean; dokok *
use x as boolean; ok *
use x as integer; ok
use x as boolean; Hokok *
use x as boolean; ok *
use x as boolean; ok *

the voting approach still flags each use with the same severity as before, but
the flags from the more common approach have changed drastically. If the
program is at all large, with the uses of x scattered throughout it, the pro-
grammer is unlikely to be immediately aware of the context of all the uses if
they are not flagged. However, the knowledge of the overall pattern of uses is
exactly the information needed to decide whether some contexts are in error
and should be changed (when all the uses of x are conceptually the same
variable) or whether all the contexts are “right” but some uses of x refer to
what is conceptually a different variable, in which case those uses should be
replaced by uses of a new variable.

In real languages and programs, of course, there are a number of
complications that do not appear in this simple example. Context may not be
able to constrain x to be an integer but only to be the same type as y.

Similarly, a function f may be known only to take three arguments of as-yet



42

unknown types. The presence of such complications requires care in defining
the number of times a type constraint is asserted by a program.
4.1. A Subset of ML

A type theory capable of counting the support for type options has been
developed based on the polymorphic type theory exemplified in the language
ML ([Mil78], [Car83]). ML is a statically scoped functional language resem-
bling a typed lambda calculus that provides type operators for constructing
functions, cartesian products, and lists. Having several operators enriches
the available types, but the product and list operators add no essential
complexity beyond that of function abstraction to the type theory. Therefore,
explanations of type systems, including those in this thesis, often use only
function abstraction.

A monomorphic language like Pascal needs to declare separate func-
tions with types integer list - integer and boolean list —» integer to be able to
find the lengths of both integer lists and boolean lists. In ML, a single
function length can be applied to a list of elements of any given type. Thus,
length has the polymorphic type a list - integer, where a is a type variable
that can unify with any type expression, including integer or boolean. In
general, a type expression in ML will consist either of a type variable or of a
type operator applied to other type expressions. Type constants like integer
and boolean are treated as the operators integer() and boolean(), which take
no arguments. (Type expressions may be considered to be implicitly quan-
tified at the outermost level, so that length would actually have type V a.a list
— integer.)

ML’s type theory, while much stronger than that of monomorphic
languages, is still decidable at compile time. That is, during compilation, ML

can infer the most general type for each expression in a program and check



43

that all syntactic combinations of expressions are type correct. For any ex-
pression that has been explicitly typed by the programmer, ML also checks
the inferred type against the specified type. Any program that passes type-
checking during compilation is then guaranteed not to generate type errors
at run-time.

The subset of ML that provides the basis for the language accepted by
the MOE editor ([JoW86]) was described in [Car85] and is reproduced in
Figure 4.1. Most of the syntax of this subset is a straightforward represen-
tation of function abstraction and application, conditional expressions, and
the usual glue common to programming language grammars. This subset
has the polymorphism of the full language, but it does not have type
overloading, which would allow each occurrence of an identifier to have any
of an enumerated set of types. For example, in many programming
languages the operator + is overloaded so that it can take either integer or
real operands, but not types such as boolean or string. The semantic interest

of this subset language lies in the Term :: = let Declaration in Term and

Term:: =
Identifier |
if Term then Term else Term |
fun Identifier. Term |
Term Term |
let Declaration in Term |
(Term)

Declaration :: =
Identifier = Term |
Declaration and Declaration |
rec Declaration |
( Declaration)

Figure 4.1. An ML Subset.



44

Declaration :: = rec Declaration productions. The rec keyword changes the
type environment scoping slightly to allow an identifier to be bound to a term
with a recursive type. The special semantics of the let clause allow an
identifier to be used polymorphically.
In some sense both
(fun f. pair (f 3) (f true)) (fun x.x)
and
let f = fun x.x in pair (f 3) (f true)
want to create an ordered pair from the results of applying the identity
function to 3 and true and thus will B-reduce to
pair ((fun x.x) (3)) ((fun x.x) (true))
and then to
pair (3) (true)
when treated as pure A-terms. However, in the first case, f, as a parameter, is
constrained to be used as a single type over all of its occurrences. Therefore,
although an identity function can be sensibly applied to both integers and
booleans, there is an error on the type of f since it must take an argument of a
type which is both integer and boolean. In the second case, f is bound to the
polymorphic type a—a by the declaration, and each occurrence of f within the
body of the let clause is only constrained to be consistent with the declaration
(i.e., two occurrences in the body do not have to be consistent with each other).
This is done by defining type variables introduced by let declarations to be
generic, as in [Mil78]. Each occurrence of f within the let body starts out with
a type in which each generic type variable has been replaced by a new type
variable unique to that occurrence. In this case, the two occurrences of f

might start with types B—f and y—y, which would then become



45

boolean-sboolean and integer—integer on the way to generating a correct
typing for the entire term.
4.2. Generating Type Equations

In the usual setting for automatic type inference, parsing a syntactic
fragment provides a number of type constraints that are expressed as a set of
type equations. The standard unification algorithm, discussed in the next
section, then proceeds to further constrain variables found in these equations
by adding those constraints that can be generated by substituting for
variables and by equating arguments of functions according to a set of
standard rules.

In the ML subset, an identifier is associated with a different type
variable each time it is redeclared in the new scope provided by a fun or a let
clause. A parser would maintain a type environment as discussed in the
previous section to allow it to retrieve the type variable associated with each
identifier occurrence. The productions that directly impose type constraints

are shown in Figure 4.2, along with their constraints. As a simple example,

Term:: =
if Term then Term; else Terms |
type(Term ) = boolean()
type(Termy) = type(Terms)
Term Term>
type(Termy) = a»B (where a and B are new type variables)
type(Termy) = a
Declaration :: =
Identifier = Term
type(ldentifier) = type(Term)

Figure 4.2. Type Constraints in an ML Subset.



46

the term fun x. if x then x else 3 generates the conflicting type constraints
type(x) = boolean() and type(x) = integer().
4.3. Standard Unification
Several current systems, such as the ML interpreter, extract type
equations imposed by a program. These systems use variants of the standard
unification algorithm first proposed by Robinson ([Rob65]) to prucess their
equations and determine the full constraints on the type variables. Con-
ceptually, unification solves the system of constraints found in the input
equations and yields a concise listing of the full constraints with one equation
per constrained variable. One of the many equivalent algorithms to perform
standard unification, found in [MaM82], can be stated in the following
manner:
Given a set of type equations, apply the following rules until no rule is
applicable. The remaining equations give the final constraints on type
variables. (By notational convention, x is a type variable, f is a type
constructor, t is a functional term, and u is either a type variable or a
functional term.)
(1) Given an equation x=x, delete the equation from the set.
(2) Given t=x, replace the equation by x =t.
(3) Given fluy,...,un)=f"(uy’,...,uy"), where f=f’ and n =m, replace the
equation by the n equations uj=u;’.
(4) Given x=u, where x does not occur in u but x does occur in some other
equation, replace all occurrences of x in other equations by u.
This standard algorithm has several desirable properties. It is guar-
anteed to find a conflict if one exists and to find the least constrained (“most
general”) type for each type variable if there are no conflicts. It is guaran-

teed, in the absence of conflicts, to produce the same final constraint (up to



47

renaming of unconstrained variables) for each variable regardless of the
order of application of the rewrite rules. Also, it can be implemented fairly
efficiently. Most unification algorithms have an exponential worst-case
behavior, since the size of a term can grow exponentially. The classic
example of this exponential growth is the set {x=1(x1,x1), x1 =f(x9,x9), ...,
Xn-1=1(xn,Xn) }, where the solution for x contains O(2n) fs and xpn's. The
algorithm discussed in [PaW78] and [dCh86], however, runs in linear time by
using pointers to subterms and thus never creating multiple copies of one
subterm; the final answer remains implicit in the data structures.
4.4. Recursive Unification

A drawback of the standard unification definition for some appli-
cations is its use of the “occurs check” in rule (4). This check exists because,
in many applications, the mere appearance of a recursive type signals an
error. In addition, the check helps to guarantee termination by preventing
an infinite number of substitutions for the same variable. (With non-
recursive types, no occurrences of the variable x would remain in other
equations once the equation x=t was used for substitution, so that equation
could not be used for substitution again.) However, newer functional lan-
guages allow self-application of functions and other means of producing
objects that are only correctly described by recursive types ((MPS84]).
Among the terms which cannot be correctly typed in a nonrecursive system is
any syntactic representation of the paradoxical combinator, Y, which finds
the least fixed point of functionals. Languages restricted to nonrecursive
types often hardwire some special fixpoint operator into the language (e.g.
the functional and applicative languages in [Bro86]), but it seems more
intuitively pleasing to allow languages the ability to define such operators on

their own. Since we would like to be able to use our ideas in environments for



48

these stronger languages, we must use an extended definition of unification
that admits the legality of such types.

Many people ([Col82], [CKv83], [MPS84], [MaR84]) have extended the
definition of unification to allow recursive types. This relaxation is done by
removing the occurs check and explicitly or implicitly creating represen-
tations for infinite types as they are found. Colmerauer uses the concept of
representing terms as rational trees (sometimes known as regular trees by
analogy with regular expressions), which are trees with a finite number of
different subtrees. All trees representing finite types are therefore rational,
as are some, but not all, infinite trees. Figure 4.3 shows several represen-
tations of an infinite tree with only two distinct subtrees.

The primary formulation used in this thesis is a modification of that
presented in [JoW86]. That set of rewrite rules, reproduced below to intro-
duce the concepts, involves removal of the occurs check in rule (4) of the stan-
dard set and modification of the other rules. The notation fi(@1i) is used to

represent the infinite regular tree f{f(f(...))). The occurrence of the label “@i”

A G\
NN <

ANNATRAT

f p g .'f N .'g'. .'f B fgi .'f B fgi fl(@l,gZ(@l’@z))

Figure 4.3. Regular or Rational Trees.



49

inside an expression stands for a copy of the expression whose root symbol is
subscripted by the label i.

This set of rewrite rules is nonstandard in that it does not remove or
replace equations. A given rewrite rule that would normally involve replace-
ment of an equation by other equations simply causes the other equations to
be added. To insure that a given equation is not used more than once by the
same rule, a clause is added to the guard of each rewriting rule, requiring
that an application of a rule to a candidate equation result in equations that
are not already present. The approach makes the termination proof of the
algorithm easy, and anticipates further modifications to the standard set of
rewrite rules that will appear later.

After the algorithm has terminated, every nonvacuous variable will
appear exactly once as the left-hand side of some equation, so constraints on
variables are easy to identify even in the presence of extraneous equations
that the standard unification procedure would have eliminated.

The rules are given below.

(1) If t=x is present in the set of equations and x=t is not present, add
x=t.

(2) Ifin fluy,...,un)=f"(uy’,...,un’) some u;=u;' is not already in the set of
equations, add from {u;=uy’,...,un=up'} those uj=u;’ that are not
already in the set of equations. If f (or f') is subscripted, replace any
occurrences of the subscript in any u;j (or u;’) by a copy of the entire
expression.

(3) If there is an equation x=u, u is not %, and x appears in some other

equation:



50

1) If x occurs in u then, since u is not X, u must be a function.
Subscript the root symbol of u with a new label and replace
occurrences of x in u by that label.

ii) Replace occurrences of x in other equations by the possibly
modified u.

Using this new term for replacement avoids the potential termination
problem, as there will no longer be an occurrence of x in any other equation
after x =fj(@1i) is used for substitution. The equate-arguments rule requires
that a pair of regular trees be tested for equality to other pairs of regular
trees. An algorithm to perform this test can be found in [Knu73].

Cardelli presents a sample ML implementation of type inference using
environments ([Car85]). That algorithm can be modified to implement recur-
sive unification by adding mark bits for the traversal of the now-recursive
data structures. The other error-tolerant unification schemes found in the

following chapters will also permit recursive sets of unification equations.



Chapter Five

Error-Tolerant Type Inference

For sets of type equations without conflicts, standard unification and
its extension to recursive unification produce well-defined answers. How-
ever, standard unification is not nearly so well-behaved when presented with
a conflicting set of type equations.

One form of poor behavior is reflected in the lack of relationship be-
tween the set of input equations and the resulting error indications. While a
conflict will be found if one exists, there may be no way to tell which type
variables caused the conflict. As an example of this, consider the two sets of
type equations {x=f(z), x=g(2), y=fz)} and {x=f2), y=g(2), y=fz)}. By
using the first equation with the substitution rule from the standard unifi-
cation set of the previous chapter, the first set can be rewritten to give
{x=f(2), f(z) =g(2), y=f(z)}. By using the third equation with that rule, the
second set also gives {x=1(z), f(z) =g(z), y=f(z)}. Although these rewritten
sets are identical, the “blame” for the conflict in the first case should be given
to x while in the second case it should be given to y. The standard definition
of unification does not retain the information we need to pinpoint the cause of
the conflict.

Another facet of this drawback, also due to the inability to remember
earlier versions of an equation, is that the constraints produced for variables
from a conflicting set of equations will depend on the order in which rules
were applied. Consider the set {x=f(z), x=g(z)}. We must choose one of the
two equations to use with substitution. These two choices give us the final

sets { x=f(z), f(z) =g(2) } and { g(z) =f(z), x=g(z) }. Both results tell us that the

51



52

original set had conflicts, but the results have different constraints on x.
Since we would like to extract useful constraints from a unification algorithm
even when there are conflicts in the input set, neither of these choices can be
considered a satisfactory final answer. As the original set asserts x to be both
f(z) and g(2), the final constraint on x should indicate this by some means such
as x=f(z) | g(z), which shows the conflicting alternative options f(z) and g(z).

A second drawback of the standard definition is its failure to preserve
any information regarding strengths of assertions. Given {x=fly), x=1ly),
x=1f(y) }, it will generate a sequence of sets similar to

{x=1(y), fly)=fy), y)=fy) }

{x=fly),y=y,fly)=f(y)}

{x=1fly), fly)=f(y)}

{x=fly),y=y}

{x=f(y)}.

The initial set asserted x=f(y) three times, yet this information has
been lost. For a set of equations without conflicts, the only kind for which the
standard definition is expected to provide constraints, such information is not
important. However, the ability to retain assertion strength information
would make it possible to use the relative strengths to indicate the most
probable error sites in the program. (The most probable error sites would be
those supporting the weakest of the conflicting assertions.)

The set of equations {x=f(y), x=fy), x=f(y), x=g(z)} should imply
that x is predominantly the same type as f(y), while { x=f(y), x=g(z), x= g(z),
x=g(z) } should imply that x is predominantly the same type as g(z). By this
standard, an unweighted constraint of the form f(y) | g(z) for x would be

considered an incomplete solution.



53

5.1. Desired Properties

When the type variable x is involved in conflicts as in the previous
section, it is useful to write its final constraint in the form f(y)[m] | g(z)(n].
This notation, where m and n are the numbers of times that x has been
indicated to be the same type as f(y) and g(z), respectively, retains much more
information about the implications of the original equations and allows easy
determination of the predominant constraint on x. In a constraint of this
form, f(y)[m] and g(z)[n] are called weighted options while the type of x is the
disjunction of these two options.

In general, every part of a term that is a function or a recursive
variable (i.e., not an ordinary variable) will get a weight. Ordinary variables
do not get weights because they do not provide any further information about
the term; recursive variables get weights because they stand in the place of
functional subterms. This weight is the number of independent votes for a
term of that particular functional form, or when the term is thought of as a
tree, the number of votes for that branch of the tree. The example in Figure
5.1 displays the weighting concepts graphically. A * serves as a placeholder
for a subtree or subterm whose identity is unimportant for the moment; it can
be thought of as a pattern matching any set of subtrees. As this example
suggests, the weight of a form such as f(* h(f(*,*))) cannot exceed the weight
of higher forms such as f(*,h(*)).

A branch is defined as a path from the root of the tree, together with
the portions of the overall tree structure visible from that path. Being able to
see the local tree structure allows branches to know how many arguments
each of their functions take, which in turn allows functions with the same
name but different numbers of arguments (whether by design or by

programmer error) to coexist peacefully. Treating such duplicated function



54

f [4]
J x=flv,w) g (1] h [2]
x=1(v,h(f(z,y)))
x=flg(y),w) y f [1]
x=f(v,h(u)) /
z y
i+, h(f(*,%))) x=fg(y)[11,h(f(z,y)[1]D[2])[4]
original a branch and final weighted
equations functional form constraint on x

that get weight 1

Figure 5.1. Weighting by Branches.
names as the same function is quite possible, but it does not seem particularly
useful. Treating them as different, as would be suggested by the standard
unification rules and by the standard definition of functions with fixed
numbers of arguments in predicate calculus (e.g. [End72]), generates conflicts
such as f(x) | f(y,x); treating the duplicated function names as the same, as
might be suggested by the denotational semantics practice of treating
functions in multiple stages of Currying as “identical” due to their iso-
morphism, would in that case equate x and y. This could be a valid constraint
if a function is being used as a—(f—y) with either one argument of type a or
two arguments of types a and B being supplied, but the function could as
easily be being used as both (axp)-y and a—(B-y). In this latter case,
equating the first argument positions equates a x f with a, thus implying a

recursive type where none should exist. This uncertainty of interpretation,



35

along with the idea that the programmer is expected to make mistakes such
as leaving out or inserting extra arguments, leads to the idea that a type
function should accept only a fixed number of arguments, with any variation
in that number indicating an error.

The first property that any new style of constraints must satisfy is
compatibility with the standard unification algorithm in cases without
conflicts. Since {x=f(y), x=filw), w=g(z)} is a consistent set of equations,
any algorithm tolerating type conflicts must give the same final constraint
for x (modulo weighting) that the standard algorithm does, namely f(g(z)).
Thus the modified algorithm must merge consistent constraints to avoid
returning a constraint of f(y)[1] | flg(z)[1])[1]. As x is twice indicated to be an
application of the function f, the most reasonable new-form constraint would
be f(g(z)[1])(2].

However, the original equations may contain multiple constraints
which are pairwise consistent but not totally consistent, as in the case of
{x=f(y,y), x=1(z,int()), x =f(bool(),w) }. In such a situation, whichever two
constraints are merged first can dominate the third constraint in the final
result, if consistent constraints are merged as they are found. In other words,
although consistent alternatives must be merged to obtain the same answer
as the standard algorithm in the absence of conflicts, merging alternatives
can make the outcome dependent upon the order in which rewrite rules are
applied in the presence of conflicts.

Therefore, to satisfy the second desired property, that a given set of
equations should have a single solution independent of the order of original
equations or rule applications, the generation of implied constraints must be

separated from the merging of those constraints.



96

5.2. Modifying a Standard Algorithm to Tolerate Conflicts

A number of alternate definitions of unification have been examined to
see which ones can overcome the drawbacks in standard unification. The
first attempt, implemented in Pascal under 4.2 BSD UNIX*, involves a
simple modification to the unification algorithm presented by Cardelli in
[Car85]. Cardelli’s algorithm infers potentially polymorphic types for the
identifiers of a program written in the ML subset of the previous chapter as
the program was typed in by a programmer. The algorithm was expanded to
deal with recursive and conflicting types, and to provide approximate weights
for various conflicting options. This is done by merging constraints on the
same variable as they are found and incrementing the weights for consistent
portions of the constraint. As an example of this, consider the set {x=f(y,w),
x=flg(z),w), x=g(y), x=1f(y,h(z)) }. If the constraints are encountered in order
from left to right, the first step would be to merge f(y,w)[1] and flg(z){1],w)(1]
to get f(g(2)[1],w)(2]. This constraint would then be merged with g(y)[1] to
give f(g(2)(11,w)[2] | g(y)(1] and then finally merged with f(y,h(z)[1])[1] to
yield flg(z)[1],h(z)[1])[3]] g(y)(1].

The costs of allowing for and dealing with recursive types are the usual
ones associated with any recursive data structure, namely more complex
traversal and replication. The cost of allowing for conflicting types is an
extra level of indirection in referencing functional types. The cost of actually
dealing with conflicting types when they do occur is O(mn) where m and n are
the numbers of conflicting types for two variables involved in a unification.
As both m and n are expected to be very small, indeed normally 1, the

efficiency of the implementation does not suffer greatly from allowing far

t As anyone who's read this far doubtless knows, UNIX is a registered
trademark of AT&T Bell Laboratories.



57

more type information to be retained. Thus we see that a conflict-tolerant
unification algorithm meeting the first criterion can be implemented with
acceptable efficiency. Unfortunately, this algorithm does not meet the second
criterion, that of providing unique answers, in cases with pairwise but not
total consistency. Using the earlier example of {x=1(y,y), x=1(z,int()),
x=f(bool(),w) }, merging the first two constraints first would give flint()[1],
int()[1D[2] and f(bool()[1],w)(1] which then form f(int()[1] | bool()[1],
int([1])[3]. Merging the first and third constraints together first would give
f(bool()[1], bool()[11(2] and f(z,int()[1])[1] which then form f(bool()[11],
bool()[1]|int()[1])[3], which shows the conflict in the other argument position.

Discrepancies of that sort seem to be minor and uncommon, as the
implementation has given reasonable results, including variable option
weightings, for a variety of sample programs. Predefined functions, such as
plus and equals, can be handled by simply placing their initial definitions in
the initial environment. As these functions are not reserved words of the
language but merely predefined identifiers, the definitions can be changed
either by introducing a new scope or by causing type conflicts which intro-
duce new options for the identifiers.
9.3. A Maximum-Flow Algorithm for Unique Answers

The second attempt, a graph-based maximum flow algorithm
([JoW86]), satisfied both criteria by separating the derivation of implied
constraints from the production of constraints in their final form. To derive
all constraints implied by the original set of equations, there must be a means
to coordinate pairwise-consistent constraints without explicitly merging
them. This coordination is supplied by applying a flow detection algorithm to
a graphical representation of constraints. Each node in the graph represents

a term or subterm in the original set of equations; each (undirected) edge in



58

the initial graph has a weight which is the number of original equations
whose left and right sides correspond to the endpoints of the edge. The
amount of flow between two functional terms in this graph indicates the
number of times these terms could be equated by using transitive rewrite
rules, such as replacing equations t; =t and t; =t3 by tg=t3, on the original
equations. The next three subsections provide a full description of the
specific algorithm which processes this graph. The last two subsections show
the relationship between such an algorithm and various modifications to the
standard set of unification rules and set the stage for further modifications in
the next chapter.
5.3.1. Deriving Implied Constraints

To provide the effects of equating arguments of equated terms, addi-
tional edges are added to the graph by examining the maximum flow between
various pairs of terms. If two terms with the same functional symbol have a
nonzero flow between them, their corresponding arguments are equated with
a weight equal to the maximum flow between the terms. (If the arguments
had already been equated, this new weight is added to the previous weight.)
All pairs of functional terms are repeatedly considered, with additional
weight being added to edges between corresponding arguments if additional
flow has appeared between the terms, until no changes are made to the graph
on some pass over the pairs. The flow between two nodes in the final graph is
designed to indicate the maximum number of simultaneously existing
equations relating those nodes that could be derived from the original set of
equations by some ordering of rewrite rules for transitivity and for equating
arguments,

A simple example of this derivation of implied constraints is found in

Figure 5.2. Here the graph edges derived directly from the set of equations



59

x=1(y)
x=1(g(z))
x=f{y)
x=f(g(h(w)))
z=h(w) w
[ ]
fy)
* 22 ‘
7" !
| y /// I
| — f(g(z) “ L (D) 1@
(1)\\ |
Q!
¥ g(h(w))
h(w)
flg(h(w)))

Figure 5.2. A First-Phase Maximum Flow Graph.
are solid lines with their original weights marked; graph edges added by this
phase are dashed. Each pair of f terms is connected by one unit of flow and so
generates a dashed line connecting the arguments. The g(z)-g(h(w)) edge
then strengthens the z-h(w) edge. All the edges have their final weight
shown in parentheses.

As this phase of the algorithm makes no provision for creating new
functional terms by substitution into existing ones, it alone cannot generate
all equations that could be derived by the standard rules. However, a second
phase can examine the final graph and determine all constraints on each type
variable in the original set of equations along with votes for the dominance of

each constraint.



60

5.3.2. Producing Final Constraints

The first step in determining the final constraint on some variable x is
to accumulate the set of functional terms connected, possibly indirectly, to x
in the final graph. If the set is empty, x is unconstrained, but its constraint is
considered to be the earliest variable (in some variable ordering) equated to
x. Although this earliest variable must also be unconstrained, using it as a
constraint allows all mutually equated but unconstrained variables to appear
as the same variable in final constraints. If the set of functional terms is not
empty, it is subjected to a cleaning process in which mutually consistent
constraints are merged into a single term.

The set is broken into subsets with one subset for each outermost func-
tional symbol among its terms. As the option corresponding to each subset in
the final constraint on x is to be a single term with the appropriate weighting,
the subset must be consolidated if there is more than one term. For example,
the constraint resulting from the subset {f(g(z)), f(y), f(h(z))} will be of the
form f(u)[w1] where u will have at least the options g(z) and h(z). (As
discussed later in this subsection, u may have more options if y is equated to
other functional terms.) The weight wj is calculated by introducing a
temporary node into the final graph and connecting this node to all terms of
the subset with edges of infinite weight. The maximum flow between x and
this temporary node is assigned to w; and indicates the number of times that
x could independently be inferred to be an application of the function f.

The same weighting principle is applied throughout the algorithm so
that the weight for each option and suboption in the final constraint for x
reflects the number of times the type of x could independently be inferred to
contain that option or suboption. The maxflow method used above to deter-

mine how many times x is an application of f will also be used to determine



61

how many times x is independently asserted to be of any particular functional
form. The terms connected to x which share the common functional form are
connected to a temporary node with edges of infinite weight, and the maxi-
mum flow between x and the temporary node is then the number of times x is
directly asserted to be of that form.

As an example of the application of this principle, assume that the
variable v is connected to the terms f(g(g(w))), f(g(h(w))), and f(h(y)) as sug-
gested in Figure 5.3. The constraint on v implied by these terms is of the form
fig(g(w)|h(w))[w3] | h(y)[w4])[we]. The weight wo, representing the number of
times v is asserted to be an f(*), is determined by setting wg to the flow from v
through the set { flg(g(w)), f(g(h(w))), fth(y)) }. In the figure, this would be the
flow between v and the temporary “for f(*)” node. Similarly, w3, representing
the number of times v is asserted to be an f(g(*)), is to be the flow from v
through terms of that form to “for f(g(*))”, and wy, representing the number of

times v is asserted to be an f(h(*)), is to be the flow from v to “for fth(*))”. (The

flg(g(w))) .-® for f(h())

-~
~
- :/- for f(*)

flg(h(w)))

Figure 5.3. A Second-Phase Maximum Flow Graph.




62

weights associated with the inner terms, f(g(g(*))) and f(g(h(*))) are not
shown in this example.)

In addition to direct constraints caused by functional terms connected
to a variable, there can also be indirect constraints derived from constraints
on variables in those connected terms. In the earlier example, the final con-
straint for y must include g(z)[ws] | h(z)[wg] for some weights ws and wg as
there is nonzero flow through x from f(g(z)) to f(y) and from f(h(z) to fly)). Ify
were also equated to other terms, there may be additional options in u,
leading to additional options for x. If the only constraints on y are those
derived from equating arguments of terms connected to x, y’s constraints
cannot be used to constrain x because they themselves were derived from
constraints on x. If y and g(z) had also been equated for some reason having
nothing to do with x, a portion of the g(z) option for y is independent of the
terms connected to x and this portion may be used to strengthen the f(g(z))
option for x. If y had been equated to a term q(z) for some reason, the q(z)
option for y will generate a f(q(z)) option for x.

However, if x is equated to f(y) with weight 1 and y is equated to q(z)
with weight 17, the f(q(z)) option for x should be restricted to weight 1
because there is only one x =f(y) equation in which q(z) can be substituted for
y. In general, the contribution of an option for y toward an option for x, where
y is a variable found in some subterm of a term connected to x, may be found
by first removing the portion of the y option’s weight attributable to equating
¥ to corresponding subterms of other terms connected to x and then further
limiting the y option’s contribution to the number of times x is inferred to be
of a type with y occurring in that particular subterm position.

In the algorithm given in Figure 5.4, this approach is used to induc-

tively derive the final constraint on a variable x. The terms connected to x



63

to determine FinalConstraint(x) for a variable x:

1. let S = {functional terms (indirectly) connected to x in final graph }
if S is empty, return y[1] where y is the earliest variable that is
connected to x

2. split S into subsets S.f with one subset for each outermost function
symbol in S

3. initialize Options to be empty

| for each subset S.fdo

g add FinalOption(S.f,f(*),x) to Options

L 4. return the disjunction of the elements of Options

Figure 5.4. Algorithm for Producing Final Constraints.

are broken into subsets on their outermost function symbols, and a single
final option is found for each subset. This final option is an appropriately-
weighted term which may have options in its subterms. Final options from
different subsets are known to be incompatible, as each option inherits the
root symbol from its subset and each subset is defined to have a different root
symbol. Thus the final constraint for the variable is simply the disjunction of
the subset options as no further merging can take place. As the algorithm
stands, functions with the same name but different numbers of arguments
are treated as the same function, although it would be a simple matter to
insert a test to force them to be treated differently.

To determine the final option for a subset via the algorithm in Figure
9.5, consider the functional form common to the terms of the subset. Looking
at the terms as trees, this common form precisely meets the earlier definition
of a branch. When FinalOption is called directly from FinalConstraint, the
common functional form is a common root symbol with only placeholders as
arguments. When FinalOption calls itself for the first time, the common
functional form is a root symbol with one of the argument placeholders

replaced by a function symbol with placeholder arguments. One of these




64

to determine FinalOption(S,9,x) for a set of terms S connected to the
variable x where all elements of S have the common functional form ¢:
1. let q be the deepest function specified in ¢
(i.e., Sis to be broken into subsets on the arguments of q)
2. determine weight(S) by finding the maxflow from x through members
of S to a temporary node
3. for each argument slot i of q do
split S into subsets S.u with one subset for each function symbol or
variable uin slot i
initialize T}, the set of fully expanded versions of terms in slot i, to
be empty
for each subset S.f, f a functional term, do
for each subset S.v, v a variable, do
determine maxflow(v,S.f), the maximum flow from v through
terms in slotiin S.f to a temporary node
add FinalOption(S.f,[i/f],x), a weighted term with no variables
which can be further constrained, to T}
(9[i/f] is the functional form produced by substituting f(*) into
sloti of d)
for each subset S.v, v a variable, do
determine weight(S.v) by finding the maxflow from x through
members of S.v to a temporary node
find FinalConstraint(v)
for each option o[w] in FinalConstraint(v) do
limit weight(o) to min(w-maxflow(v,S.f),weight(S.v)) where S.f
is the (possibly empty) set with function corresponding to o
descend o and make sure that no weights exceed weight(o)
if there is an element u of T} with the same outer function as o
descend o and add the weights of u to the appropriate
suboptions of o
remove u from T; and add o
else
addoto T;
set Oj, the final options for slot i, to be the disjunct of the terms in T}
4. return q(Oj,...,0p){weight(S)]

Figure 5.5. Algorithm for Producing Final Options.




65

placeholders may in turn be replaced by a function symbol with placeholder
arguments, but the common functional form is always of finite depth with
only one function symbol at each level of nesting.

The final option for the subset is the deepest function symbol in the
common functional form, applied to the result of independent processing for
each argument slot, weighted by the strength of connection of terms sharing
the common functional form to the variable whose constraint is being deter-
mined. The caller of FinalOption will then bundle this option with any other
contradictory options at the current level.

The result of argument slot processing in FinalOption is a weighted
disjunction of the various incompatible options that could occur in that slot.
The processing for an argument slot of the deepest function begins, as in
FinalConstraint, by breaking the subset into smaller subsets based on the
function symbols and variables found in that argument slot. For each func-
tion symbol, FinalOption is called recursively with an updated common
functional form and set of terms to determine the weight and suboptions of
the option derivable from terms with that function symbol. This option is
incompatible with the option from any other function symbol, so it is added to
the set of incompatible options. At the same time, the contribution of this
function symbol to the constraints of any variables in this slot is calculated.

For each variable in the slot, consider the options in its final con-
straint. The same reasoning given in the earlier example for the constraint
on y will generalize to show that the variable constraint must include
information gathered from other terms in the slot, so a variable option
already contains all suboptions of the option derived from any terms in the
slot with the same function symbol. Thus after removing the contributions of

slot terms and limiting the variable option’s weight to the strength of



66

connection between the original variable and terms containing the slot vari-
able, one is left with the contributions unique to that variable. At this point,
one may merely add the weights of suboptions derived from slot terms to the
weights of the corresponding suboptions derived from the slot variable (which
amounts to merging the term and variable contributions), remove the term
options from the incompatible set, and add the newly-weighted variable
options to that set.

5.3.3. Extension to Recursive Types

The above discussion of type inference in the presence of conflicts has
assumed that no recursive type constraints were implied by the original set of
equations. However, modifying the algorithm to deal with recursive types is
a simple process.

Having recursive constraints implied by the original set of equations
requires no modifications whatsoever to the first phase of the algorithm, as
shown by:

Theorem 5.3.3.1. The first phase of this conflict-tolerant algorithm will
terminate even in the presence of recursive types.

Proof: As there are a finite number of subterms in the original equations,
there are a finite number of possible links. For nontermination to occur,
some link (ty,t2) must be strengthened an infinite number of times. After the
initial pass over pairs of functional subterms, a link (t1,t2) will be strength-
ened only if t; and tg are corresponding arguments of two functional subterms
whose connection strength has been increased. As there are a finite number
of pairs of subterms that can strengthen the (tj,t2) link, some pair <fy,f2>
must have its connection strength increased an infinite number of times.
Since the connection strength between f] and fs cannot exceed the sum of the

weights of edges leading from f1, some link (f1,t3) must be strengthened an



67

infinite number of times. By the same argument, this infinite strengthening
is possible only if f] is an argument of some functional subterm f3, which must
in turn be an argument of some functional subterm fs. As all subterms from
the original set of equations are of finite size, this regression cannot be con-
tinued indefinitely as demanded by the premise that some link is strength-
ened infinitely often. ]

Dealing with recursive constraints in the second phase of the algo-
rithm is merely a matter of keeping track of the variables on which work is
being done. If a variable is encountered again during the derivation of its
constraint, the algorithm does not try to reanalyze the same constraint but
instead marks that variable occurrence as recursive. If types are being main-
tained as a data structure with pointers to various records, a recursive
occurrence will be replaced by a pointer to the final constraint on the vari-
able, when determined. The same effect is achieved when types are main-
tained as character strings by replacing a recursive occurrence of x by a
string such as “@x” and marking the final constraint with a subscript as in
(fl@x)[2]|g(@x)[3])x. Any recursive occurrence is considered incompatible
with other options (although it must subsume them) because there seemed to
be no clean way to combine the weights from other options with those from
the options of an unrolled form of the recursion marker.

5.3.4. Comparison to Standard Rules

The algorithm described in the previous sections determines the same
type for a variable as do the standard rewrite rules in those cases for which
the standard rules apply. (These are the cases with no type conflicts and no
implied recursion.)

Consider the following set of transitive rewrite rules which does not

distinguish between the left and right sides of equations. (By expanding rule



68

(iii) into four rules and adding a rule to reverse t =x to x =t, these rules could
be transformed to an equivalent set which distinguishes between the sides of
equations.)

(1) Given x=u where x does not occur in u, replace occurrences of x in

other equations with u.

(ii) Given fluy,...,un) =flvy,...,vp), replace the equation by n equations,

u] =Vi,...,Un = Vp.

(iii) Givenu; =uzand ug=us, add the equation u; =us.
(Note that this set of rules adds new equations through transitivity instead of
replacing two old equations with a new equation as was suggested to moti-
vate the subsection on deriving implied constraints.)

While the rules as written above give the spirit of the proposed unifi-
cation process, two modifications are made to the conditions for applying
these rules to ensure termination. First, rule (ii) is modified to leave the
given equation in the set but to mark it so that it cannot be used again for
argument equation. Second, a set of ancestor equations is associated with
each equation. An equation is considered to be an ancestor of itself, and a
new equation generated by rule (iii) will get the union of the ancestors of its
parents. (Original equations and equations generated by rule (ii) have no
explicit ancestors in this scheme.) Before a proposed application of rule (iii), a
check must be made to ensure that no equation that is identical to the one
proposed by the rule application and that has an ancestor in common with the
proposed equation already exists in the equation set. This restriction, which
basically prohibits any equation from being used in more than one similar
transitive chain, prevents any pair of equations from generating multiple
new equations through rule (iii) and also prevents cycles where equations

regenerate their ancestors through rule (iii). As these modifications do not



69

restrict the set of equations which can be generated by the transitive rule set,
but merely ensure termination., we proceed with the analysis of possible
equations derived by the transitive rule set.
Theorem 5.3.4.1. Unification using this set of transitive rewrite rules is
equivalent to unification using the standard set of rules:

(I)  Given x=u where x does not occur in u, replace occurrences of x in

other equations with u.
(I) Given f(uy,...,un) =f(vy,...,vpn), replace the equation by n equations,
U] =vi,...,Up =Vp.

(IIT) Given x=x, discard the equation.

(IV) Given t=x, replace the equation by x =t.
The sets of rules are equivalent in the sense that both will produce the same
constraints on variables as long as there are no conflicts inherent in the
original set of equations.
Proof:
Rules (i) and (ii) are identical to rules (I) and (II).
Rule (IV) puts an equation into a form acceptable to rule (I) by interchanging
the left- and right-hand sides. Rule (i) can already handle an equation with
left- and right-hand sides reversed as its algorithm does not distinguish the
left side from the right. Rules (II) and (ITT) treat their left- and right-hand
sides identically so there is no need to distinguish between the sides.
Therefore rules (i) and (ii) can generate all equations generated by rules (I),
(I), and (IV). Rule (IIT) does not generate any new equations.
Thus the transitive set of rules can generate any equation (and thereby any
constraint) generated by the standard set, and we need only show that the

standard set can generate any variable constraint that the transitive set can.



70

If the transitive set is to generate anything extra, it must be by way of rule

(iii).

Let us consider the cases in which rule (iii) is applied.

(1)

(2)

(3)

(4)

U] =x,X=ug
The equation uj =ug is also generated by rule (I).

x1 =f(uy,...,upn), fluy,...,un) =x9

The types of x1 and x3 are forced to be identical under the standard set
of rules because rule (I) will make the same substitutions into both
occurrences of f(uy,...,up).

x=fi(uy,...,un), fi(uy,...,un) =fo(vy,...,vp)

If f1 is not the same function as fs, there is a conflict in the system of
equations. If f; is the same as fy, rule (II) will equate their arguments.
Any resulting restrictions of variables in the terms uj,...,u, will be
substituted back into the equation x =f}(uy,...,u,). Thus x will be equa-
ted to the unifier of fi(uy,...,un) and fo(vy,...,vy). This is the same result
as would be produced from x=fy(uy,...,uy) and x=fo(vy,...,vn) after
applying rule (iii).

fi1(uy,...,up) =fo(vy,...,vn), fa(v,,...,vn) =f3(w1,...,wp)

Rule (iii) would produce fi(uy,...,un) =f3(wy,...,wn) which would then
become uj; =wi,...,un=wn. Rule (II) would produce u;=v; and v;=w;
for each argument position. By induction on the nesting depth of these
subterm equations, nothing extra is gained by adding the equations

uj=wi. [J

Theorem 5.3.4.2. A unification algorithm using the set of transitive rules

which performs all possible applications of transitivity and equating argu-

ments before doing any substitution is equivalent to an algorithm which

interleaves applications of all three rules.



71

Proof: The only way in which this equivalence could fail to hold is for a
substitution to allow the production of new equations. For these equations to
be new, they cannot have been produced by transitivity and equating argu-
ments alone, nor by applications of substitutions after the other rules are
finished.

Substituting y=g(...) into u=y gives the same result as transitivity, so a
problem could only arise when substituting y into a functional term. Con-
sider the substitution of y=g(...) into the equation u=f{...y...), with y being
the ith argument, yielding u=f{...g(...)...). If uis a functional term fluy,...,up),
a new equation uj=g(...) can be generated by equating arguments. However,
this equation had already been produced by using transitivity on y=g(...) and

uj =y which was obtained by equating arguments prior to the substitution.

can be generated from u=v and u=f{...g(...)...) by transitivity after the substi-

tution for y. However, this equation could also be produced by substitution

Thus there is no need for additional applications of transitivity and equating
arguments to be interspersed with substitutions. []
Taken together, these theorems show that the main ideas of the maximum-
flow algorithm, transitive unification and moving substitution into a second
phase, are sound.
5.3.5. Comparison to Design Criteria

The earlier algorithm is subject to pairwise consistency discrepancies
due to early merging, but such merging allows for a much simpler and faster
one-phase algorithm. This second algorithm avoids the pairwise consistency
problems by separating constraint derivation into two phases but incurs a

considerable cost in complexity and loss of intuition about its workings.



72

Although the maximum-flow algorithm produces unique, reproducible,
weighted constraints from a set of input equations, these weights are not
necessarily the intuitively “correct” ones. This second algorithm produces
every constraint implied by the original set, and it produces intuitively
acceptable weights for nonrecursive cases. However, when presented with
multiple forms of “the same” recursive equation, the weighting seems wrong.
For example, given { x=f(x), x =f(f(x)) }, this algorithm concludes (by adding
in the result of equating the terms’ arguments) that x is an application of f
with weight 3. There are two arguments against this being correct. First, the
occurrences of x inside the terms are perhaps best thought of as implicit
recursion markers instead of actual occurrences. Second, even if they are
treated as normal occurrences, the x=f(x) equation created by equating the
arguments cannot be considered to be independent of the parent equations.
Without recursive occurrences, parents and children cannot try to constrain
the same variable, so the problem does not arise in the nonrecursive case.

Given the relative lack of intuition behind the weights of the
maximum-flow algorithm and its disagreement with intuition in some recur-
sive cases, it is time to step back and carefully define weights in a way that
better accords with intuition. And yet, the maximum-flow algorithm need
not be discarded. Since it does derive all possible constraints and give them
unique weights, it can be useful in determining everything contributing to a
conflict in those cases where an error-tolerant, order-independent algorithm
is necessary but recursive types are not allowed or the exact weightings are
not critical. If the application demands only a solution with all possible
constraints (and perhaps the reasons behind any conflicting constraints) but
does not care about the weighting information, the algorithm can be simpli-

fied considerably (compare Figures 5.5 and 5.6) by merely checking the graph



73

to determine FinalOption(S,,x) for a set of terms S connected to the
- variable x where all elements of S have the common functional form ¢:
1. let q be the deepest function specified in ¢
(i.e., S is to be broken into subsets on the arguments of q)
3. for each argument slot i of q do
split S into subsets S.u with one subset for each function symbol or
variable u in slot i
initialize T}, the set of fully expanded versions of terms in slot i, to
be empty
for each subset S.f, f a functional term, do
add FinalOption(S.f,®[i/f],x), a term with no variables which
can be further constrained, to T;
($(i/f] is the functional form produced by substituting f{*) into
slot i of 9)
for each subset S.v, v a variable, do
find FinalConstraint(v)
for each option o in FinalConstraint(v) do
if there is an element u of T; with the same outer function as o
remove u from T; and add o
else
addoto T;
set Oj, the final options for slot i, to be the disjunct of the terms in T;
4. return q(0;,...,0p)

Figure 5.6. Revised Algorithm for Producing Final Options.
for connectivity instead of calculating the maximum flow between nodes.
Even this simplification provides more information than many algorithms in
current use, which complain whenever something is not of the “correct” type
without giving any indication of whether different “incorrect” types were
encountered. The algorithms developed in the next two chapters give
answers agreeing with intuition in both nonrecursive and recursive cases,

but such algorithms cannot be easily modified to perform the simpler task of

extracting only unweighted constraints.



Chapter Six

Error-Tolerant Counting Type Inference

Since there is occasional disagreement between the counts produced by
unaided intuition and the counts defined by an algorithm developed from the
sole intuitive idea of maximum flow, there must be another intuitive princi-
ple at work. The basis for the maximum flow idea was that no type constraint
should be allowed to influence another constraint more strongly than either
constraint was asserted independently. As another formulation of this basis,
the intrinsic strength of an input equation does not depend upon any other
input equations -- a single y = g(z) equation asserts y is a g(*) with strength 1,
no matter how many x=f(y) equations there are, so the single y=g(z) can
only help assert that x is a f(g(*)) with strength 1. A way to express this idea
in the rule-based unification framework is to modify the substitution rule to
allow only a single substitution by each equation, instead of allowing a single
y =g(2) to help create indefinitely many x =f(g(z)) equations. One derivation
sequence using single substitution may not derive all the constraints from a
consistent set of equations that would show up when using the standard
rules, but each standard constraint will appear at some point in some single-
substitution derivation sequence. Proper coordination of single-substitution
derivations, as presented in succeeding sections, will provide us with all
possible constraints, whether consistent or not, along with their appropriate
weights.

6.1. Single Substitution Unification
Single substitution unification can be expressed by the following four

rules, three of which come directly from the standard unification set:

74



75

(1) Given an equation x =x, delete the equation from the set.

(2) Givent=x, replace the equation by x=t.

(3) Given f(uy,...,un)=f"(ur’,...,um’), where f=f’ and n= m, replace the
equation by the n equations u;=u;’.

(4) Given x=u, where x does not occur in u but x does occur in some other
equation, replace one occurrence of x in another equation by u and
remove the x=u.

Note that the transitivity so natural to the graphical approach is not
reflected in this set of rules. Adding a transitive rule to this set does not
change the character of any of the development that follows, but it would
seem to decrease the usefulness of the unified solutions. Given both x =int()
and x=bool(), transitivity would propagate this conflict to every other
variable equated to int() or bool(). This propagation would seriously hamper
attempts to pinpoint the source of type errors.

Theorem 6.1.1. Repeated application of these single-substitution unification
rules will always terminate.

Proof: For a finite set S of equations, let s(S) be the number of occurrences of
function and variable symbols in S, and let r(S) be the number of equations of
the form t=xin S. Both s(S) and r(S) are well-defined nonnegative integers
for any such set S. Now let d(S)=<s(S), r(S)> and use a lexicographic
ordering on these pairs. Each of the rules decreases the value of this function
d in a way that excludes the possibility of an infinite sequence of rule appli-
cations. For each case, let S be the set of equations before the rule application
and T be the set afterwards.

Using rule (1), d(T)=<s(S)-2,r(S)>. Using rule (2), d(T) =<s(S),r(S)-1>.
Using rule (3), d(T) =<s(8)-2,r(T)> where r(T) may be greater than r(S), but

the amount of increase is limited to the number of arguments of the function



76

in the deleted equation. Using rule (4), d(T)=<s(S)-2,r(T)> where r(T) may
be one more than r(S) if the x substituted for was the left-hand side of an
equation in S. Since the value of s never increases and the value of r
increases by a bounded amount at the time of a decrease in s, there cannot be
an infinite sequence of rule applications. ]

Since the parent equations are removed during the application of each
rule, there is no temptation to reuse an equation inappropriately. Sets like
{x=fly), x=1(y), x=fy), y=g(2) } and {x=fly), y=g(2), y=g(2), y=g(z) } can
each only produce one x=f(g(z)) equation, while {x=f(y), x=1fy), y=g(2),
y=g(2) } can produce two. For all three sets, the answer agrees with intuition
(and incidentally with the maximum flow answer). In general, the weight of
a constraint option should be the number of independent assertions
supporting that option, which under this algorithm is the number of simul-
taneous equations making that assertion.

However, removing equations when they are used for substitution
again makes the generated equations sensitive to the order in which rules are
applied, as shown in Figure 6.1. Each path from the original set of equations
is a possible derivation sequence. Each node on that path is a stage of the
derivation sequence. To reduce the clutter in the figure, stages with the same
sets of equations, even if from different derivation sequences, have been
identified with each other. Depending on the derivation sequence, zero to two
x=1(g(z)) equations are produced. Even more strikingly, for this set of input
equations, the final set of equations will always be empty. Clearly, this
formulation of the single-substitution unification rules is not the final
answer. To weigh branches properly (as defined in Section 5.1) we will have

to coordinate the various derivation sequences.



77

x=1f(y)

£=1ly)

y=g(z)

y=g(2)
x={ly) fly)=1ly) x=1ly)
x=f(y) y=g(z) x=f(g(z))
g(z) =g(z) y=g(z) y=g(z)

/N TN T

fly)=f(y)

x=1{y) fly)=fly)  y=y fly) =f(g(2)) x =flg(z))
x=1f(y) g(z)=g(z) y=g(z) y=g(z) x =f(g(2))
1 / \y = 1\

x= ﬂw fly)=1fly) y=y y=g(z) flg(z)) =flg(z))
x=1f(y) Z=12

g(z) =g(z) y=mi////

l/\/ N

g(z)=g(z)

NN

N

Figure 6.1. Derivation Sequences Using Single Substitution.
6.2. The Union of Derivation Sequences
In the above definition of the weight of a constraint option, “the
number of simultaneous equations making that assertion” was implicitly the
maximum number of simultaneous equations that could appear in any stage
of any derivation sequence. However, as can be seen from a glance at Figure
6.1, the large number of possible derivation sequences makes computing

weights directly from this definition (by enumerating all the possible stages)



78

prohibitively expensive. What we need is a way to compute the union of the
equations appearing in all possible derivation sequences, with ways to tell
which equations appear at the same time (i.e., in the same stage) in some
derivation sequence.

For the moment, this concept of union is necessarily fuzzy as we have
not yet defined a clear notion of when equations are “the same”. Intuitively,
the two x =f(y) equations in the stage at the left of the second row in Figure
6.1 are the same two as in the initial set, but in collapsing these four
equations to two in the union, we must be careful not to further collapse them
to a single x=f(y) equation if we are to have any hope of counting equations
properly.

Since set union is a commutative and associative operation, we can
expect that the union over all derivation sequences from an original set of
equations should be independent of the order in which equations were added
to the union. Of course, before we can prove this, we must formally define
what we mean by “the union over all derivation sequences”.

Since the concept of “union” implies that any equation added to the set
must stay in the set, we can no longer remove equations to prevent them from
being used too often. Instead, we can keep track of which equations and
which rule created each additional equation. (Doing this requires that every
equation be uniquely identified to distinguish it from other, identical
equations; equations will later get unique numbers for this purpose.) By
backtracking along these parent pointers, we can find a derivation tree
consisting of every equation used in the process of constructing a particular
equation. Technically, the structure resulting from these parent pointers
would be a derivation DAG, but we are more interested in tracing ancestry

than in the actual DAG nature. (Similarly, genealogical family trees are



79

often really family DAGs after a few generations, but as long as the
rejoinings are sufficiently remote, people are much more interested in the
tree structure than in the existence of the joins.) Figure 6.2 shows the
derivation of y=w from two original equations. Reversing the direction of
these derivation arrows yields the parent pointers, and thus the derivation
tree, for each equation, as shown in Figure 6.3. In both figures, dashed lines
indicate that an equation was created by equating arguments, and thus that
the equation depends on only one argument position of its parent.

Derivation trees, when combined with the unique numbering of
original equations, give us a clean definition of when textually identical
equations in different stages of derivation sequences are “the same”. As the
base case, two occurrences of original equations are the same equation iff
they have the same number. Then inductively, two derived equations are the

same iff they have the same parents and were derived by the same rule

x=flg(y),z) x=f(z,g(w))

N .

flg(y),z) =flz,g(w))

I =~

~
v =~

gly)=z

N

g(y)=g(w)

|
L

y=w

Figure 6.2. Deriving an Equation.



80

x=flg(y),2) x = f(z,g(w))

N 7

flg(y),z) =f(z,g(w))

A S~
| \\\\\
g(y)=z z=g(w)
gy)=g(w)

[ [ Sy .

y=w

Figure 6.3. The Derivation Tree from Figure 6.2.
applied to the same sites in the parents. From here on, an “equation” should
be taken to be a uniquely identified equation from this definition.

We say that derivation trees have a dependency conflict (or simply that
they conflict) if they share a subtree, unless each tree equated the arguments
of the root of the (maximal) shared subtree and then used a child equation
from a different argument slot. As a shorthand notation, two equations are
said to conflict if their derivation trees do. Therefore, in the sample
derivation shown in Figure 6.3, the equations g(y)=z and z=g(w) do not
conflict since they use different arguments of the shared subtree root
fg(y),2) =f(z,g(w)), but the equations x=1(g(y),z) and g(y) =g(w) do conflict
since x =f(g(y),2) appears in both trees. The following important theorem
shows why this definition of conflicts is both natural and useful:

Theorem 6.2.1. Two equations appear at the same time (i.e., in the same

stage) in some derivation sequence iff their derivation trees do not conflict.



81

Proof: The single-substitution unification rules remove parent equations in
the process of creating new equations. Thus, the equations found in a deriva-
tion tree (except for the equation at the root of the tree) are those which would
necessarily have been removed in any derivation sequence containing the
tree. (A derivation sequence contains a tree if the sequence contains the deri-
vations indicated by the nodes of the tree.) Also note that equating argu-
ments is the only rule which can create more than one child equation from a
parent.

Assume two equations appear at the same time in some derivation sequence.
If their derivation trees do not share any subtrees, the equations do not
conflict, so assume the trees share a subtree rooted by the equation E. E
cannot be the root of both derivation trees, or we would have only one
equation instead of two. E cannot be the root of one derivation tree, because
an equation cannot exist at the same time as any of its descendants (e.g. the
root of the other derivation tree). Only one rule in the derivation sequence
can use E, as the first rule application will remove it, making it unavailable
for any subsequent applications. The descendants of E used in the two trees
must be different, or E would not be the root of a maximal shared subtree.
Thus E was used by the argument equation rule, and different argument
positions were used in the different trees. Therefore the derivation trees do
not conflict.

Conversely, assume two derivation trees do not conflict. The nodes of the first
derivation tree can easily be written linearly and applied to the initial set of
equations to give a minimal derivation sequence containing that tree.
Trimming any shared subtrees from the second tree and appending a linear
form of the remainder of that tree to the first sequence gives a derivation

sequence which ends with both root equations appearing at the same time.



82

The only way in which this concatenated sequence could fail to be a valid
derivation sequence would be if the second part tried to use an equation
which no longer existed. To eliminate this possibility, we need only show
that all the leaves of the trimmed tree exist after the end of the first part of
the sequence. Leaves which were leaves of the full second tree are original
equations which are not mentioned by the first tree and so are not used in the
first sequence. Leaves which were not leaves of the full second tree are chil-
dren of shared equations. Since the trees did not conflict, the shared equa-
tions must have produced equated arguments with the trees using different
positions. Therefore the first sequence has, in the process of getting the
argument position it needs, already produced the other argument positions
for the second part to use, and the constructed derivation sequence is valid. [J

Using induction to extend these ideas to multiple trees, we find:
Theorem 6.2.2. A set of equations appears together in some derivation
sequence iff none of the derivation trees for those equations conflict.

This theorem tells us how to identify equations that appear together at
a stage of a derivation sequence, so to define the union of the derivation
sequences algorithmically, we need only make sure that every equation that
can occur in a derivation sequence is actually generated and that this process
of generating equations eventually terminates.
6.3. A Set of Rules for Error-Tolerant Countable Unification

To ensure termination in this rule-based setting, we record which
equations have reacted under each rule and specify that the same rule may
not be applied again to the same set of equations. We also record the creators
of each new equation, so that we are able to restrict rule applications to

equations that can exist at the same time. Putting these ideas into the formal



83

rule-based setting leads to the following set of rules for error-tolerant
counting unification:

(1) Given an equation x =x, mark the equation as deleted.

(2) Given t=x which has not been reversed, add x=t with creators
Reversal and the parent equation; record that the parent has under-
gone Reversal.

(3) Given f(uy,...,un)=f(uy’,...,un") which has not had its arguments
equated, add ui=uy’, ..., up=u,’ with creators EquateArgs and the
parent equation; record that the parent has undergone EquateArgs.

(4) Given x=u where x does not occur in u, and v=w where x occurs in v or
w, where the parents do not conflict and x =u has not been substituted
into v=w, for each occurrence of x in v=w, add a new equation with
that single occurrence replaced by u with creators Subst and the parent
equations; record that x =u has been substituted into v=w.

Before proceeding with an analysis of this set of rules, consider the
very simple example shown in Figure 6.4. The first list of equations is the
desired union over all derivation sequences from the first three equations.
The subsequent equations, all of which are created by substitution in this
case, are marked with their parents. The second equation list, giving the
final weights for each branch equated to each variable, is the result of exam-
ining the first list to count the independent (i.e. nonconflicting) occurrences of
each branch. As would be expected from the input set, this final answer gives
everything a weight of one. (Equations 6 and 7 conflict because their deriva-
tion trees, shown at the right of the figure, share leaves.)

The algorithms for processing a union of derivation sequences are
given in Figure 6.5. Asin the graph algorithm, terms are recursively divided

for counting based on their structure. In this case, however, the complex



84

| Equation list:
1: x = f(y)
2: 'y = glz)
3: z = h(w)
4: x = fg(2) ([ 2,1]]
9: y = g(h(w)) ([ 3, 2]]
6: x = f(gth(w))) ([ 3, 4]]
7: x = flg(h(w))) [[ 5, 1]]
Equation list:
8: x = flg(h(w)[1])[1])[1]

9: y = gth(w)[1D[1]
10: z = h(w)[1]

Figure 6.4. A Union of Derivation Sequences.

problem of determining the independent strength of an assertion vanishes.
Given the set of equations asserting a branch, the weight of the branch is
simply the maximum number of those equations that could exist at the same
time. This weight is determined by recursively marking the derivation trees
rooted by the branch equations and seeing how many such trees can coexist.
Such a weighting algorithm, intended to be called as Count(S,0,maxcount)
with maxcount initially 0 to find the maximum number of independent
equations in a list S, can be found in Figure 6.6.

Now that we have an algorithm that purports to define the union of
derivation sequences and another that can (by Theorem 6.2.2) properly count
the branches in such a union, we must show that the purported union is
correct.

Theorem 6.3.1. The union of derivation sequences as defined by repeated

applications of the error-tolerant countable unification rules is the union of



85

to find the constraints on the variable x from a union U of derivation
sequences,
1l.extract the set S of x =u equations from U
2.split S into subsets S.f with one subset for each outermost function
symbol (and each different number of arguments) in the right-hand sides
3.if there are no S.f’s,
let Options be the earliest variable in the right-hand sides of S
else
initialize Options to be empty
for each S.f,
add BranchCount(f(*),S.f) to the disjuncts in Options

4.return Options

to determine the weighted BranchCount(9,S) for a set of equations S with
the same left-hand-side variable and with right-hand sides consistent with
the functional form ¢,
1.let q be the deepest function specified in ¢
2.for each argument sloti of q do
split S into subsets S.f with one subset for each function symbol in
slotiof a right-hand side
if there are no S.f’s,
let O; be the earliest variable in slot i
else
initialize Oj to be empty
foreach S.f
add BranchCount(®[i/f],S.f) to the disjuncts in Oy
(®[i/f] is the functional form produced by substituting f(*) into
slot i of )
3.return q(Oy,...,0pn)[weight(S)]

Figure 6.5. Processing the Union of Derivation Sequences.




86

finding the maximum number of independent branches via
Count(eqnlist,incount,maxcount), where incount is the number of
derivation trees marked before Count is called and maxcount is the
(updatable) maximum number that have been marked at one time:
1. thiseqn « first equation in eqnlist

2. while thiseqn exists do

| mark thiseqn’s derivation tree using its unique number
if the tree does not conflict with the other marked trees,
if maxcount = incount, then increment maxcount
Count(next equation in eqnlist, incount + 1, maxcount)
clear marks of thiseqn’s number from its derivation tree
thiseqn « next equation in eqnlist

Figure 6.6. Counting Independent Equations.
all stages of all derivation sequences using the single-substitution unification
rules.
Proof: Comparing Theorem 6.2.1 with the conditions needed to apply each
error-tolerant countable unification rule, we know that every equation
inserted into the union will occur in some stage of some derivation sequence,
as its nonconflicting parents occur together in some stage of some sequence.
Conversely, by induction on the number of steps in a derivation sequence,
every equation occurring in some stage of some derivation sequence will be
inserted into the union, as its parents occur together in the preceding stage of
that sequence and so do not conflict. []
Theorem 6.3.2. The union of the derivation sequences is always finite, so the
algorithm to find this union will always terminate.
Proof: Theorem 6.1.1 shows that the length of any given derivation sequence
is finite. Since the original set of equations is assumed to be finite and each
single-substitution unification rule adds only a finite number of equations,

the number of equations at each stage of a derivation sequence is finite. With



87

a finite number of equations, there are only a finite number of possible appli-
cations of single-substitution rules available at each point. This number of
possible applications limits the splitting into distinct derivation sequences.
Finite splitting at each of a finite number of steps means there are only a
finite number of distinct derivation sequences. Since each derivation
sequence contains only a finite number of equations, the union of the deriva-
tion sequences is also finite.
Since the conditions for applying each of the error-tolerant countable unifica-
tion rules prohibit multiple applications to the same equations, an equation
cannot be inserted into the union infinitely often, so the algorithm always
terminates. [J
6.4. Implementing Error-Tolerant Countable Unification

While the rule-based setting is convenient for proofs about the set of
possible equations, it is not particularly convenient for implementation on a
sequential computer. The rules have elaborate guards which ensure their
correctness and termination for any possible ordering of derivation steps --
that is, for nondeterministic selection of the rules. The nondeterministic
selection process always creates the same set of equations for the union of the
derivation sequences; only the order in which equations enter that set varies.
A deterministic algorithm for rule selection can use far simpler and less
expensive guards by inserting equations in a definite, repeatable order based
on the ordering of the input equations. Since the counting procedure is
sensitive only to the elements in the union, not the order in which they were
inserted, selecting rules deterministically does not affect the analyses of the
preceding section.

The particular deterministic algorithm used by the implementation

represents a set of equations as a linked list. The starting list consists of the



88

input equations, each of which is marked as not having undergone argument
equation, as never having been used for substitution, and as having no
parents. Each equation added to the tail of the list by some rule is then
marked as not having undergone argument equation and as never having
been used for substitution in addition to being marked with its creating rule
and parents.

This algorithm, as sketched in Figure 6.7, then repeatedly traverses
the list from head to tail. For each equation, any possible rule applications
which could not be done on earlier passes through the list are performed. The
argument equation and substitution markers are combined into a pointer,
lasteqn, representing the last equation which was tested against a given
equation. (When an equation is inserted into the list, it has been tested

against no other equations, so the pointer is null. After an equation has been

while equations are being added do
thiseqn « the head of the list
while thiseqn exists do
if thiseqn’s lasteqn is null then
try to equate the arguments of thiseqn
thateqn « the head of the list
else
thateqn « the successor of thiseqn’s lasteqn
mark thiseqn’s derivation tree with its equation number
while thateqn exists do
if thateqn’s derivation tree does not conflict,
try to substitute thiseqn into thateqn
thateqn « the successor of thateqn
clear the marks from thiseqn’s derivation tree
thiseqn’s lasteqn « the last existing equation

thiseqn « the successor of thiseqn

Figure 6.7. Implementing Countable Unification.



89

checked for equating its arguments and tested against other existing
equations, the pointer will be no longer be null and picking up the testing
from the subsequent equation allows us to avoid repeating previous tests.)
Since each equation is tested against each other equation exactly once, this
algorithm’s running time is quadratic in the total number of equations
produced.

Only two of the four rules are being actively used in the algorithm
sketch. The rest of the implementation is not sensitive to which side of an
equation a term is on, so the reversal rule is no longer necessary. The
removal of x =x equations has been extended to the removal of any identity
equation (u =u), as such identities do not serve to constrain anything. Input
identities are removed before the main loop is started; identities which might
be created later are detected before they can be inserted into the list.

These algorithms were earlier applied by hand to create the example of
a union of derivation sequences in Figure 6.4. Other examples, this time the
actual output of the implementation, are shown in Figures 6.8 and 6.9.
Figure 6.9 also shows how little complexity the actual occurrence of conflicts
adds. For reasons which will become clear over the next few sections, the
implementation keeps track of the substitution history of terms by retaining
vestiges of the variables for which substitutions have been made.

6.5. Restricting the Set of Generated Equations

Since in many cases the same information can be obtained by any of a
number of different derivations, we would, for efficiency’s sake, like to be able
to eliminate some derivations from the union of derivation sequences pro-
cessed by the separate counting phase. Before eliminating any derivations,
however, we must be certain that the remaining derivations still have the

same number of independent assertions for each branch as did the full union.



90

Equation list:

1 x = fly)

y = g(2)

x = f(w)

f\x(y) = flw) [[ 1, 3]]
flg\y(z) = x [[2,1]]
f\x(w) = f(y) [[3,1]]
: f\x(w) = flg\y(2)) [[ 3, 5]]
ry=w [[4]]

w =1y [[6]]
:w=g(2) [[8,2]]
rw=g(2) [[9,2]]

1 g\y(z) = w [[2,8]]

: g\y(z) = w [[2,9]]

s AN - I N

— e
W N =~ O

Equation list:

14: x = flg(z)[1])[2]
15: y = g(z)[1]

16: w = g(z)[1]

Figure 6.8. Another Example of Counting Unification.

Equation list:

: x = fl(y)

x = g(z)

x = fly)

f\x(y) = g(z) ([ 1,2]]
: gx(z) = fly) ([ 2, 1]]
g\x(z) = fly) [[ 2, 3]]
f\x(y) = g(2) [[ 3, 2]]

O AN

Equation list:
10: x = g(2)[1]] f(y)[2]

Figure 6.9. An Example of Counting Unification with Conflicts.




91

(A branch is still the augmented path from the root of a type tree, as in
Section 5.1.)

One restriction, already mentioned in the preceding section, involves
immediately removing any identity equations from the set. Another easily
understood restriction involves removing any equation which is an exact
duplicate of one of its ancestors. Looking at the derivation in Figure 6.10, it
is clear that the second x=f(y) equation gives no information not found in its
ancestor. In the general case, we have two identical equations, one of whose
derivation trees is a subtree of the other. The identical equations themselves
conflict, as will the identical results of any rule applied to both equations.
Since these two equations cannot generate more independent votes than a
single equation, one of them should be unnecessary. The descendant
equation conflicts with everything its ancestor does, as well as with some
additional equations. Therefore the ancestor is the equation that should be
kept, and any equation which duplicates one of its ancestors may be discarded
immediately. (Any derivation tree for E containing an equation D which is a
duplicate of one of its ancestors, D', can be transformed into another valid
derivation tree for E by replacing the subtree rooted by D with the smaller
subtree rooted by D’.)

x=1f(y) X=2z

N

z=1(y) X=z

l
! x=f(y)
|

Figure 6.10. Duplicating an Ancestor Equation.



92

A somewhat more subtle restriction can be placed on the sites where
substitution is allowed to occur. Specifically, it is sufficient to substitute
along only one branch of each term. Consider the situation in Figure 6.11,
where the central term is one side of a particular equation. There is another
equation y =h(x), not conflicting with the equation holding the central term,
which gives a possible replacement for the y’s in the central term. The
central term already has one substitution site, where h(f(z,y)) was substituted
for w. Substituting on only one branch means that the y in h(f(z,y)) may be
substituted for, but the one in g(y) may not. The correctness of this restric-
tion is based on each branch’s being counted separately. Substituting into
h(f(z,y)) gives a new, longer branch which could not be created without that
substitution. Substituting into g(y) also gives a new, longer branch, but that
same branch could be created by substituting into the earlier version,

f(g(y),w), of the central term. The equations with the terms f(g(h(x)),h(f(z,y)))

Figure 6.11. Substituting on Only One Branch.




93

and f(g(h(x)),w) will not be independent of each other, so there is no need to
keep both equations as support for the f(g(h(x)),*) branch. More formally:
Theorem 6.5.1. Every derivation tree supporting a particular branch can be
pruned to give a similar derivation tree supporting that branch with no
substitutions on other branches of the term.

Proof: Assume we have an equation x =t with derivation tree T. Let b be the
branch of t in which we are interested. Let s be a node in the derivation tree
where a substitution in t but not on b was made by substituting equation s;
into equation s2. (See Figure 6.12 for a diagram of the situation.) Further,
select s so that no other node meeting these conditions is on the path from s to
the root of T. Replacing the subtree of the derivation tree which is rooted by s
with the tree rooted by sg and backing out the substitution in the equations
between sg and the root of the derivation tree yields a new derivation tree T
for the equation x =t’, where t’ is t with one off-b substitution removed.

T’ can be shown to be a valid derivation tree by induction on the number of

equations between sg and the root of the tree. Each step in the induction con-

S )

ri S ri D)

!

x=t: :x=t

Figure 6.12. Pruning Substitutions from a Derivation Tree.




94

sists of proving that a similar child equation without the extra substitution
can be created once a parent equation without that extra substitution exists.
Suppose the equation r, the child of s in T, was created by substitution as in
Figure 6.12. The derivation trees rooted by s2 and r; are known to be valid
and nonconflicting. Due to the selection of s, r1 does not try to substitute into
the term previously added by s1, so r; still has the same place available for
substitution in sg, and this substitution creates the similar equation r’
without the extra off-b substitution that wasinr.
Alternatively, suppose r was created by equating the arguments of s. Since
substituting for a side consisting of a variable cannot qualify as an off-b sub-
stitution, s; must have been substituted into a functional term of sgtogive an
equation (s) where both sides were functional terms; therefore both sides of s2
must already have been functional terms. Thus sg’s arguments may be
equated, creating the similar equation r’ without the extra off-b substitution
thatwasinr. (J

Another simple restriction involves selecting a normal order for
substitution applications. Consider the situation in Figure 6.13, where the
same three input equations produce identical equations by means of different

derivation trees. The two x=f(g(h(w))) equations together give no more

x=fly)| |y=g(2 y=g(z)| |z=h(w)
x=1f(g(z)) z=h(w) x=1(y) y=g(h(w))
x=flg(h(w))) x=f(g(h(w)))

Figure 6.13. Normal Form for Substitutions.



95

constraints, support for constraints, or distinct opportunities for further rule
application than either one alone. Therefore we add the restriction that we
cannot substitute a term that already contains substitutions, with the under-
standing that there will always be a normal ordering of substitutions to
generate each equation prevented by this restriction. Following this
ordering, the first x =f(g(h(w))) equation and the y =g(h(w)) equation will be
formed, but the second x =f{g(h(w))) equation will not be.

In addition to this normal ordering on substitutions alone, we can
define a normal ordering on combinations of substitution and equating argu-
ments. Figure 6.14 shows two derivations, both again using the same
starting equations, of the equation uj=g(...). Since the lower derivation
shows an explicit uj =y constraint not found in the upper while the upper
derivation has no additional explicit constraints, we add the restriction that
we cannot substitute into an equation which is ready for equating arguments.
Following this ordering, the two derivations represented by dotted arrows in

Figure 6.14 will not occur.

— equate
substitution  .--"> fuy,...un)=fl...g(.)) .. _ arguments
J | J

y=g(..) uj=gl(...)
f(111,...,un)=f(...y...)

;

‘! v=g(.) substitution

equate =gt..
l arguments uj=y

Figure 6.14. Delaying Substitutions.



96

While each of these restrictions looks like it would save only one or two
equations, the cumulative effect is quite impressive. Merely following the
single-substitution rules on the input set { f(y,y) = flg(z),x), w=1(y,x), y=g(2),
y=g(z), y=g(z) } resulted in 435 equations appearing in the union of deri-
vation sequences (54 of them were promptly discarded as being identities, so
the true number resulting from blind rule application is even higher).
Following the restrictions discussed in this section resulted in only 40
equations appearing in the union, yet these 40 equations were guaranteed to
give the same answer ({ w=f(g(2)[1],g(2)[1])[1], y=g(2)[4],x=g(z)[1]}) as the

435 earlier equations.



Chapter Seven

Counting Recursive Types

The previous chapter developed the ideas and formalism used to define
unique, order-independent, weighted solutions to sets of conflicting type
equations. Implicit in that development was the assumption that there
would be no recursive type constraints in the input equations. The single-
substitution rule,

Given x=u, where x does not occur in u but x does occur in some other

equation, replace one occurrence of x in another equation by u and

remove the x=u,
refuses to consider a recursive type equation for substitution. In some appli-
cations, finding x occurring in u calls for an error indication and often an
immediate halt of the unification process. However, for generality as well as
the ability to type self-application of functions, we need to allow the substi-
tution rule to use recursive terms.
7.1. Rule-Based Countable Unification with Recursive Types

Section 4.4 introduced the notation fi(@1) to represent the infinite
regular tree f(f(f(...))). Using this notation, we can transform the implicitly
recursive equation x =f(x) into an explicitly recursive form, x=f](@1). Simi-
larly, x=g(x,y) can be rewritten as x=go(@2,y) and x =f(g(x),h(x)) can
become x =f3(g(@3),h(@3)). In Chapter Four, this sort of transformation was
included in the substitution rule itself, which was written as

If there is an equation x=u, u is not x, and x appears in some other

equation:

97



98

1)  If x occurs in u then, since u is not x, u must be a function.
Subscript the root symbol of u with a new label and replace
occurrences of x in u by that label.

ii) Replace occurrences of x in other equations by the possibly
modified u.

The transformation was done once, when an equation was used with the
substitution rule, and the explicitly recursive form then replaced all other
occurrences of the appropriate variable. The single-substitution rule as
modified to allow for creating the union of derivation sequences, in contrast,
is applied to an equation x=u once for each other nonconflicting equation
containing x. Therefore it is more efficient to move the transformation to
explicitly recursive form into a separate rule, whose result will be available
for substitution.

Once we have such a rule to create explicitly recursive terms, the
single-substitution and equate-arguments rules require minor adjustment.
In the single-substitution rule, we merely replace “x does not occur in u” by “x
is not u”. In the equate-arguments rule, we will have to unroll recursive
terms as it becomes necessary. As an example, equating the arguments of
fi(g(@1)) =f(g(2)) should yield g(f1(g(@1))) =g(z) and eventually fi(g(@1))=z.
The @1 in such an equation must not lose its reference as arguments are
equated. This “unrolling if necessary” function is denoted by p, so that in this
example p(g(@1)) is g(f1(g(@1))) while p(g(2)) is simply g(z).

Making these adjustments gives us the following final set of unifica-
tion rules, which will give us the union of possible derivation sequences from
any set of equations, whether or not they imply recursive types:

(1) Given an equation x =%, mark the equation as deleted.



99

(2) Given t=x which has not been reversed, add x=t with creators
Reversal and the parent equation; record that the parent has under-
gone Reversal.

(3) Given f(uy,...,un) =f(uy’,...,un’) which has not had its arguments
equated, add p(u;)=p(u1’), ..., p(up) =p(un’) with creators EquateArgs
or UnrollEquateArgs and the parent equation; record that the parent
has undergone EquateArgs. (p(u;j)=p(u;’) gets UnrollEquateArgs as a
creator if at least one side of the equation had to be unrolled: otherwise
it gets EquateArgs.)

(4) Given x=u where x is not u, and v=w where x occurs in v or w, where
the parents do not conflict and x =u has not been substituted into v = w,
for each occurrence of x in v=w, add a new equation with that single
occurrence replaced by u with creators Subst and the parent equations;
record that x=u has been substituted into v=w.

(5) Given x=u where x is not u but x occurs in u and the equation has not
been made recursive, create the explicitly recursive term @ from u by
subscripting the root function of u with a new label and replacing
occurrences of x in u by that label; add x=10 with creator MakeRecurs
and the parent equation; record that the parent has undergone
MakeRecurs.

Figure 7.1 helps to explain the distinction between an equation created
by EquateArgs and one created by UnrollEquateArgs. As in the previous
chapter, an equation created by EquateArgs depends on only one argument
position of its parent equation. An equation created by UnrollEquateArgs,
however, contains at least one copy of an entire side of the parent equation, so

it must be said to depend upon the entire parent. Depending on the entire



100

x=f(g(y,w),w) x=flg(x,u),v)

l

x=f1(g(@1,u),v)

/

flg(y,w),w) =f{g(x,u),v) flg(y,w),w)=f1(g(@1,u),v)
, . .
!/ \ AN
/ \ / \\
4 \ A
gly,w)=g(x,u) W=V gly,w)=g(fi(g(@1,u),v),u) wW=v
HER / \
\ / \
y N ¥ .
y=x w=u y=fi(g(@1,u),v) w=u

Figure 7.1. Comparing Implicit and Explicit Recursive Forms.

parent is indicated by a solid derivation line in the figure; depending on only
one argument position is indicated by a dashed line. |

This figure also illustrates the different behavior of implicit and
explicit recursion. The derivations on the left ignored the signs of implicit
recursion in the top right equation and thus produced equations with no
indication of recursion. Offspring of different argument positions, such as
w=uand w=v, were always independent. However, these derivations could
not meaningfully constrain y. The derivations on the right produced explicit
recursion which allowed a nontrivial constraint on y to appear, but w=u and
w =V are no longer independent. Since both kinds of behavior produce addi-
tional useful constraints, both implicit and explicit recursive types are toler-

ated in the first phase of the unification process, which consists of finding the



101

union of derivation sequences. The second phase, however, will always
produce an explicitly recursive type as the solution for any variable with a
recursive nature.
7.2. Implementation of Countable Recursive Types

As in the nonrecursive case, the formal unification rules with their
nondeterministic guards are not particularly convenient for sequential
implementation. Again we can simplify the rule guards considerably by
representing the set of equations as a list and accepting a deterministic order
for rule application. In fact, assuming that the “equate the arguments” sub-
routine is extended to unroll arguments as necessary, we need only add one
line, corresponding to the newly added rule which creates explicitly recursive

terms, to the earlier sketch of the algorithm for nonrecursive countable unifi-

while equations are being added do
thiseqn « the head of the list
while thiseqn exists do
if thiseqn’s lasteqn is null then
try to create an explicitly recursive form of thiseqn
try to equate the arguments of thiseqn
thateqn « the head of the list
else
thateqn « the successor of thiseqn’s lasteqn
mark thiseqn’s derivation tree with its equation number
while thateqn exists do
if thateqn’s derivation tree does not conflict,
try to substitute thiseqn into thateqn
thateqn < the successor of thateqn
clear the marks from thiseqn’s derivation tree
thiseqn’s lasteqn « the last existing equation
thiseqn « the successor of thiseqn

Figure 7.2. Implementing Countable Recursive Unification.



102

cation. Since we want to try to make a recursive form of each equation
exactly once, just as we wanted to try to equate the arguments of each
equation exactly once, both rule applications can be attempted under the
same condition, namely that the equation has never been examined before.
The updated algorithm sketch appearsin Figure 7.2.

The result of using this algorithm on an implicitly recursive set of
input equations can be found in Figure 7.3. The implementation denotes a
function subscript by prefixing the function symbol with the subscript in
angle brackets and references a subscripted term by prefixing the subscript
with ‘v’ (for ‘variable’). Thus, <256 g is alternate notation for gos6 and v256
is alternate notation for @256. All the other notation is the same as in the
nonrecursive case. (As a quirk of the implementation, generated subscripts
begin with 256 to avoid potential conflicts with variablesin trial input lists.)
7.3. Further Restricting the Set of Generated Equations

Most of the means of restricting the set of generated equations that
were discussed in the previous chapter remain equally valid in the recursive

case. Removing identities, substituting on only one branch, and delaying

Equation list:
1: x = fly)
2: y = g(x)

3: gf'\x(y) =y [[1,2]]
4: flg\y(x)) = x [[ 2, 1]]
5: y = <256> g(f\x(v256)) [[ 3]]
6: x = <257> flg\y(v257)) [[ 4]]

Equation list:
7: x = <257> flg(v257[1DI1D[1]
8: y = <256> g(f(v256[1])[1])[1]

Figure 7.3. An Example of Counting Unification with Recursion.



103

substitution until after arguments have been equated all work exactly as
before.

Avoiding the creation of duplicates of ancestor equations also works
exactly as before, but its use becomes imperative in the recursive case.
Instead of merely being inefficient, recreating ancestors is now a potential
source of nontermination. The equation fi(g(@1))= flgo(fl@2))), for example,
yields g(fi(g(@1))) = g2(f(@2)) when its arguments are equated. Equating the
arguments of this second equation recreates the first equation. Without a
check for duplicated ancestors, this process would continue indefinitely.

The idea of not substituting a term that already contains substitutions
remains valid, with the exception of terms that are explicitly recursive at
their roots. Consider the situation in Figure 7.4. Unless we are allowed to
substitute the f3 term into the z equation, we will never be able to determine
that z has a recursive character. This exception is required because we can
only detect that a term is implicitly recursive when it is at the top level, i.e.
when it is the u of an x=u equation; lower-level recursion can be found only

by substituting explicitly recursive terms.

z=h(x) x=1ly) y=g(x)

N

x=f(g\y(x))

/

x=f3(g\y(@3))

s

z=h(f3\x(g\y(@3)))

Figure 7.4. Substituting Recursive Forms.




104

A new restriction for the recursive case involves substituting for the
same variable only once on a branch. The opportunity to substitute for a vari-
able more than once on the same branch can arise only when that variable is
recursive, since both situations require a variable to appear within a term
which is equated to itself. Each occurrence of a variable must be equivalent
to the same regular tree in a nonconflicting solution. Thus, subsequent
occurrences of variables on a branch can be considered more as implicit
recursion markers than as substitution loci. As an illustration, consider the
situation in Figure 7.5. We have an equation with the large term, in which
h(f(z,y)) has already been substituted for y, appearing as one side and also a
second nonconflicting equation y =h(x) ready to use for substitution. We do
not want to substitute h(x) for the y in h(f(z,y)) in the large term, because that
would be a second substitution for y on the same branch. The side f(g( w),y) in

the ancestral equation is, however, open for substitution to become either

f

Figure 7.5. Substituting for the Same Variable Once per Branch.



105

flg(w),h(z)) (using the y=h(x) equation) or f(g(w),h4(f(z,@4))) (using the
explicitly recursive form of the ancestral y = h(f(z,y)) equation).

As a matter of principle, we want all potential conflicts on y to be
apparent at the highest possible level instead of being spread out over several
levels. To achieve this, we fold all substitutions for a variable back to the
highest level on which the variable occurred on that particular branch. The
reasoning behind folding conflicts to the highest level is perhaps more readily
apparent if the second equation in the example is changed from y=h(x) to
y=g(x). Since there will now be a conflict on y due to the equations
y=h(f{z,y)) and y=g(x), this conflict should appear in the context of the
larger term as f(g(w), h4(fz,@4)) | g(x)) instead of fig(w), ha(f(z,@4|g(x))) | g(x))
as it would appear without this restriction. The process of constructing the
second form, in fact, could be interpreted as first claiming that y was an h(*),
and, after accepting that claim, then claiming that y was a g(*). By accepting
the once-per-branch restriction, we can maintain the idea that each branch
option represents one internally consistent alternative.

7.4. Presentation of the Final Answer

Once we accept recursive solutions with infinite regular trees as types,
we no longer automatically have a single representation for our types. The
regular tree represented by fi(@1) is “the same” as that represented by
fo(fl@2)) or f3(ff{@3))). Each of these regular trees can be considered as a
finite state machine with each function or variable occurrence becoming a
state and the various argument indices providing the transitions between
states. For each such finite state machine, there is a minimal equivalent
finite state machine which can be found by algorithms such as those in
[HoU79]. The minimal finite state machine can then be rewritten as a min-

imal equivalent regular tree. The minimal equivalent types for the three



106

Figure 7.6. Recursive Types as Finite State Machines.
regular trees in question are all of the form fi(@1). As another example of
this transformation, Figure 7.6 shows the immediate and minimal finite
state machines for the term f4(g(f(g(@4),h(@4))),h(@4)).

As long as the solution is consistent, we would like to get the solution
in minimal form, since that is the shortest and easiest to comprehend. To
allow this, we perform a preliminary pass over the set of generated equations
before the main part of the second, or counting, phase of the unification
process. For each explicitly recursive equation which is not in minimal form,
this pass adds a minimal-form equivalent, with creators MinRecurs and the
nonminimal-form equation. Figure 7.7 shows the behavior of the implemen-
tation when given two consistent recursive input equations. The two added
minimal form equations are shown between the equation lists resulting from

the two main phases. Since there is no conflict, only a minimal-form equation



107

Equation list:

x = f(f(x))

x = f{x)

x = <256> f(f(v256)) [ 1]]

f\x(flx)) = fix) [[ 1, 2]]

fif\x(fix))) = x [[ 1, 2]]

x = <257> f(v257) [[ 2]]

f\x(x) = f(fix)) [[2,1]]

ff(f\x(x))) = x [[ 2, 1]]

f\x(x) = <258> f(fiv258)) [[ 2, 3]]

10: <259> f\x(f(v259)) = f(x) [[ 3, 2]]

11: f{ <260> f\x(f(v260))) = x [[ 3, 2]]

12: <261> f\x(flv261)) = <262> f(v262) [[ 3, 6]]
14: <263> f\x(v263) = f(f(x)) [[ 6, 1]]

15: flf( <264> f\x(v264))) = x [[ 6, 1]]

16: <265> f\x(v265) = <266> f{f(v266)) [[ 6, 3]]
18: x = f(<267> f(fiv267))) ([ 9]]

19: f(<268> f\x(f(v268))) = x [[10]]

20: f<269> f\x(f(v269))) = <270> f(v270) [[12]]
21: <271> f\x(v271) = f(x) [[14]]

22: <272> f\x(v272) = f( <273> f(f(v273))) [[16]]
26: f\x(f(x)) = <279> fiv279) [[ 1, 6]]

27: flx) = <280> f(v280) [[26]]

29: x = <282> fv282) [[3]]
30: x = <283> f(v283) [[18]]

Equation list:
31: x = <256> f{v256[2])(2]

Figure 7.7. Minimizing Recursive Forms.
indicating that x is an f(*x) with weight 2 and, within that term, is recursive

with weight 2 is returned as the final answer.




108

In a situation with conflicts, however, the user may be interested in
knowing at just what level recursion was implied. Given the equations
x={(f(f(x))) and x=f(f(g(y))), for example, the implementation returns the
answer x= <260> f(v260(1] | fifilv260[1])(1] | g(y)[1D[2])[2], which indicates
both that there was an attempt to make x recursive which reduced to
x=f260(@260) and that the recursive attempt was three levels deep.
Returning options for both the immediate and minimal forms of conflicting
recursive types gives users the opportunity to analyze or ignore these forms
as they see fit. If a given application knows that it will only be interested in
immediate or minimal forms, it is a simple matter to not create the minimal
forms at all or to use the minimal forms to replace instead of augment the

immediate forms.



Chapter Eight

Conclusions

The preceding chapters have developed two major expansions to the
common approaches to attribute grammars and unification algorithms.
Gated attribute grammars provide a much more general way of dealing with
circularity in attribute dependency graphs, and this generality allows pro-
gramming environments that could previously incrementally analyze pro-
grams to incrementally execute them as well. Counting unification provides
a rigorous way of dealing with compile-time type errors. By examining all
the type information derivable from an incorrectly typed program, counting
unification provides a much better overall picture of type usage in the
program, and this overall picture then allows programming environments
and compilers to give the user reasonable suggestions about the sources of the
type errors.

8.1. Gated Attribute Grammars and Environments

Traditional approaches to attribute grammars ((Knu68], [RTD83])
have required that the attribute dependency graph for every parse tree
derivable from the grammar be acyclic. To avoid unnecessary reevaluation,
attribute instances from any parse tree are evaluated in accordance with the
topological order imposed by the dependency graph. Some more recent
approaches ([JoS86], [Far86]) allow restricted cycles, but these approaches
require every evaluation function appearing in a cycle’s strongly connected
component to be monotonic, in addition to other conditions that guarantee
termination of the attribute evaluation process. In these approaches, SCCs

are scheduled for evaluation in accordance with the topological order imposed

109



110

by a collapsed dependency graph where each SCC becomes a single node.
Attribute instances within an SCC are evaluated as they are encountered by
a depth-first search starting from points of change. These depth-first
searches are repeated until the attributes of the SCC reach their guaranteed
least fixed point.

Gated attribute grammars require only that every nontrivial SCC
contain a gate attribute. Gated strongly connected components are again
scheduled in accordance with the collapsed dependency graph, but the
evaluation of attributes of a GSCC alternates between the gate attribute and
the other attributes, which are scheduled in accordance with the internal
topological order of the GSCC (as revealed by removing links leading to the
gate attribute). Automatically added nonlocal dependencies link prede-
cessors of GSCC attributes to the start attribute associated with the GSCC’s
gate attribute. These nonlocal links tell the start attribute when any of the
GSCC’s predecessors change value, and thus allow the start attribute to know
whether a GSCC is just beginning evaluation or whether it is iterating. If
evaluation has just reached a GSCC, its gate attribute takes a value
depending on predecessors outside the GSCC; if evaluation is iterating over
the GSCC, the gate takes a value depending on attributes inside the GSCC.
The nonlocal links to start attributes, combined with the order of evaluation
within a GSCC, prevent a GSCC from incrementally reaching different fixed
points from the same predecessor values, which would otherwise be a danger
when nonmonotonic functions are in the GSCC.

Because the dependency functions in a GSCC are no longer restricted
to ensure termination, a wider variety of information can be computed by the
attribute grammar. For example, an attribute grammar can be used to

specify an interpreter which incrementally updates the output of the program



111

as the program itself is modified. Since the halting problem is undecidable
for any reasonable programming language, the earlier approaches to attri-
bute grammars do not permit such interpretation via attributes. Therefore,
the stronger gated attribute grammars can provide a rigorous new declar-
ative way of handling incremental evaluation. Gated attribute grammars in
general make run-time semantics available in the same framework that has
been used so successfully for incremental compile-time semantics.
8.2. Counting Unification and Environments

Standard unification algorithms either halt when they detect an
inconsistency in their input or reject that portion of the input which they
believe to be incorrect. Unfortunately, these algorithms do not make helpful
choices about which portion of the input is incorrect. The most common
approach will believe whichever constraint is encountered first. If all the
other constraints participating in a conflict agree with each other, however, it
is that first constraint which should be suspected of being incorrect. Under
the common approach, there is no way of even knowing whether all the
“incorrect” constraints imply the same type. The expanded unification algo-
rithms discussed here provide a formal, rigorous, and order-independent
definition of the number of times the input equations imply each of the
conflicting options. By comparing the relative strengths of the options, an
application using one of these algorithms can make a reasoned judgment as
to which options are likely to be incorrect. The maximum-flow algorithms
from Chapter Five can be simplified to quickly determine all the various con-
flicting types associated with a variable. The single-substitution algorithms
from Chapters Six and Seven give answers that agree with intuition in recur-
sive as well as nonrecursive cases and can be modified for different styles of

computing environments.



112

As an example of an application using a single-substitution algorithm,
consider an interactive programming environment for a simple ML-like
language which includes terms like fun x . if x then 3 else x. Following the
type constraints for such a language from Section 4.2, we notice that as the
guard of the if expression, x must be a boolean but as the body of the else
expression, x must be of the same type as 3. These constraints are shown in
the first section of Figure 8.1. Since the programming environment wants to
highlight pieces of syntax contributing to a type error, it needs some way to
map the results of counting unification back to the parse tree. To do this
mapping, a new type variable is introduced whenever the syntax imposes
another type constraint. In this example, guardl is the variable which
coordinates the guard constraint and thenelsel the one which coordinates the
types of the then and else expressions. After the counting unification algo-
rithm has determined that each of these variables is implied to be an integer
once and a boolean once, the environment can fish out the final constraints on
the introduced type variables and check them for conflicts. Since the guard
constraint (as represented by guardl) participated in a conflict, the if syntax

can be highlighted to show this. The intensity of the highlighting depends on

Collected from parse tree, the equation list is:
typex = guardl

| bool() = guardl

| int() = thenelsel

’[ typex = thenelsel

After counting unification, the equation list is:
guardl = int()[1]|bool(){1]
thenelsel = bool()(1]|int()[1]
typex = int()[1]| bool()[1]

Figure 8.1. Using Counting Unification on a Program.



113

the relative weight of the constraint option (bool() in this case) imposed at
that point. Support of a clear minority opinion would be highlighted much
more strongly than a majority opinion. In this case, the if and the then-else
expressions would be highlighted with the same intensity to show the reasons
for the conflict over x’s type.

This usage of introduced variables to map back to the syntax imposing
the constraints can be avoided if the original equations are tagged with the
locations in the program (or parse tree) which imposed them. This tagging
approach would create only two original equations, typex =bool() and
typex=int(), from the sample expression. After counting unification had
determined that the result was typex =int()[1] | bool()[1], the ancestry of each
equation supporting one of these options could be traced and the location of
each ancestral original equation highlighted with the appropriate intensity.

Relatively complex algorithms used in inherently incremental appli-
cations such as language-based editors ought to be incrementally computable
themselves. The single-substitution counting unification algorithm is com-
posed of a relatively slow first phase (equation generation) and a much faster
second phase (equation counting). It is not obvious how to do incremental
equation counting, but it is fortunately very easy to incrementally update the
results of the first phase, which will give most of the benefits of making the
entire algorithm incremental. Assume that between two invocations of the
counting unification algorithm some input equations (D) have been deleted
while others (A) have been added to the input set. Even without the benefit of
any additional data structures, all generated equations with ancestors in D
can be removed in a single pass over the previous first-phase results. (This
discussion presupposes the implementation decisions outlined in Section 6.4.)

All equations which can be generated from the remaining input equations



114

remain in the resulting equation list. Once the equations in A are added to
the end of this equation list, equation generation can start again, but, thanks
to the leftover lasteqn pointers, all newly generated equations will have
ancestors in A and thus could not have been in the previous first-phase
results. Therefore we have very simply removed exactly those equations
which needed to be removed from the previous first-phase results and added
in exactly those equations which needed to be added, so the incremental
update is, in this sense, optimal.
8.3. Further Work in Counting Unification

One interesting possibility for further investigation involves devel-
oping parallel versions of the single-substitution unification algorithms for
use with large software systems. Examining the output of the first phase
shows that even when the total number of generated equations reaches
several hundred, any given equation will have no more than eight or ten
ancestors. This observation, coupled with the fact that the order in which
equations are generated is unimportant, suggests that a parallel imple-
mentation could achieve significant speedup compared to the sequential one.
As usual, the problems would involve either sequencing updates to a shared
linked list of equations (retaining the structure from the sequential imple-
mentation) or developing ways to distribute the equation data structure
among the processors. A compromise between the complexity of rule guards
seen in the formal unification rules and the inflexibility of application order
seen in the sequential implementation may be appropriate for the parallel
case.

In the second phase of the counting unification process, it would be
easy to assign the counting of branches for different variables to different

processors and slightly more complicated to assign the counting of different



115

branches for the same variable to different processors. Both cases are concep-
tually simple because the counting of each branch is independent of the
existence or weight of any other branches. However, in the second case, the
different branches would need to be merged together (and have consistent
recursive forms cleaned up), whereas in the first case each processor could
simply report its result at any time.

Another possibility for further investigation involves adapting the
counting unification approach to other kinds of languages. Traditional
strongly-typed procedural languages such as Algol, Pascal, and Ada do not
provide the same sort of clean type constraints as ML does. The primary
reason, of course, is that the type systems of these languages are not based on
the general polymorphism that underlies ML and the entire counting
unification development. A secondary reason is that these languages were
designed more to allow efficient type checking proceeding from declarations
than to allow type inference in the absence of declarations. ML, on the other
hand, is designed for type inference and performs type checking by comparing
inferred types against the optional types in declarations. In spite of these
problems, it should be possible to let the syntax for any given procedural
language provide some type constraints which can be used in the polymorphic
framework. An editor for such a language is then free to consider it an error
if unification does not provide a sufficiently monomorphic solution to fit into
its type system. Ad hoc polymorphism such as overloading is likely to require
ad hoc pre- or post-processing of the type constraints. (It is tempting, for
example, to regard overloaded functions that take either integer or real
arguments as taking a general numeric type for the purposes of unification,

and then to straighten out the exact flavors of numeric types at a later stage.)



116

Whether an application uses the exact counts derived from the theory
in Chapters Six and Seven, relies on approximations as in Chapter Five, or
requires extra help to use either of these frameworks, a solution based on the
overall pattern of type constraints induced by a program will undoubtedly
provide far better data to guide error correction strategies than can be
produced by the usual algorithms found in compilers and programming lan-

guage environments.



[ASUS86]

[(BaS86]

(BMS87]

[Bro86]

[Car83]

[Car85]

[CKv83]

[Col82]

[DaM82]

[dCh86]

[End72]

[Far86]

Bibliography

Aho, Alfred V., Ravi Sethi, and Jeffrey D. Ullman, Compilers:
Principles, Techniques, and Tools, Addison-Wesley, Reading MA
(1986). (Chapter 10).

Bahlke, R. and G. Snelting, “The PSG System: From Formal
Language Definitions to Interactive Programming Environ-

ments,” ACM Transactions on Programming Languages and
Systems 8(4), pp. 547-576 (October 1986).

Bahlke, Rolf, Bernhard Moritz, and Gregor Snelting, “A Generator
for Language-Specific Debugging Systems,” Proceedings of the
ACM SIGPLAN 87 Symposium on Interpreters and Interpretive
Techniques, SIGPLAN Notices 22(7), pp. 92-101 (June 1987).

Broy, Manfred, “An Assessment of Programming Styles:
Assignment-oriented Languages versus Functional and Applica-
tive Languages,” Fundamenta Informaticae 9, pp. 169-204 (1986).

Cardelli, Luca, “ML under Unix,” Polymorphism 1(3) (December
1983).

Cardelli, Luca, “Basic polymorphic typechecking,” Polymorphism
2(1) (January 1985).

Colmerauer, Alain, Henry Kanoui, and Michel van Caneghem,
“Prolog, theoretical principles and current trends,” Technology
and Science of Informatics 2(4), pp. 255-292 (1983).

Colmerauer, Alain, “Prolog and Infinite Trees,” in K. L. Clark and
S.-A. Téarnlund, eds., Logic Programming, Academic Press, Lon-
don (1982). (pp.231-251).

Damas, Luis and Robin Milner, “Principal type-schemes for
functional programs,” Proceedings of the Ninth ACM Symposium
on Principles of Programming Languages, pp. 207-212 (January
1982).

de Champeaux, Dennis, “About the Paterson-Wegman Linear
Unification Algorithm,” Journal of Computer and S ystem Sciences
32, pp. 79-90 (1986).

Enderton, Herbert B., A Mathematical Introduction to Logic,
Academic Press, New York (1972).

Farrow, Rodney, “Automatic Generation of Fixed-Point-Finding
Evaluators for Circular, but Well-Defined, Attribute Grammars,”
Proceedings of the ACM SIGPLAN 86 Symposium on Compiler
Construction, SIGPLAN Notices 21(7), pp. 85-98 (July 1986).

117



[FJM83]

[FJM84]

[FMM79]

[GHJ79]

[HeS83]

[HoU79]

[(Hoo86]

[Hoo87]

[JeW78]

[JoF85]

[(JoF87]

[JoW86]

118

Fischer, C.N., G.F. Johnson, J. Mauney, A. Pal, and D.L. Stock,
“An Introduction to Editor Allan POE,” Proceedings of Softfair, A
Conference on Software Development Tools, Techniques. and Alter-
natives (July 1983).

Fischer, C.N., G.F. Johnson, J. Mauney, A. Pal, and D.L. Stock,
“The POE Language-Based Editor Project,” Proceedings of the
ACM SIGSOFT/SIGPLAN Software Engineering Symposium on
Practical Software Development Environments, SIGPLAN Notices
19(5), pp. 21-29 (May 1984).

Fischer, Charles N., Donn R. Milton, and Jon Mauney, “A Locally
least-cost LL(1) error corrector,” Technical Report #371, Univer-
sity of Wisconsin (August 1979).

Graham, Susan L., Charles B. Haley, and William N, Joy, “Prac-
tical LR error recovery,” Proceedings of the ACM SIGPLAN
Symposium on Compiler Construction, SIGPLAN Notices 14(8),
pp. 168-175(1979).

Henhapl, W. and G. Snelting, Context Relations -- a concept for
incremental context analysis in program fragments, Technical
Report PU1R8/83, Technische Hochschule Darmstadt (August
1983).

Hopcroft, John E. and Jeffrey D. Ullman, Introduction to Au-
tomata Theory, Languages, and Computation, Addison-Wesley,
Reading MA (1979). (Section 3.4).

Hoover, Roger, “Dynamically Bypassing Copy Rule Chains in
Attribute Grammars,” Proceedings of the Thirteenth ACM Sym-
posium on Principles of Programming Languages, pp. 14-25
(January 1986).

Hoover, Roger, Incremental Graph Evaluation, Ph.D. thesis, Tech-
nical Report 87-836, Cornell University (May 1987).

Jensen, Kathleen and Niklaus Wirth, Pascal User Manual and
Report, Second Edition, Springer-Verlag, New York (1978).

Johnson, Gregory F. and C. N. Fischer, “A Meta-Language and
System for Nonlocal Incremental Attribute Evaluation in
Language-Based Editors,” Proceedings of the Twelfth ACM Sym-
postum on Principles of Programming Languages, pp. 141-151
(January 1985).

Johnson, Gregory F. and Charles N. Fischer, “Nonlocal Attribute
Grammars and Incremental Attribute Evaluation,” submitted to
ACM Transactions on Programming Languages and Systems,

December 1987.

Johnson, Gregory F. and Janet A. Walz, “A Maximum Flow
Approach to Anomaly Isolation in Unification-Based Incremental



[JoS86]

[KaW87]

[Kas80]

[Knu68]

[Knu73]

[MPS84]

[MaM82]

[MaR84]

[Mee83]

[Mil78]

[PaW78]

[ReT84]

119

Type Inference,” Proceedings of the Thirteenth ACM Symposium
on Principles of Programming Languages, pp. 44-57 (January
1986).

Jones, Larry G. and Janos Simon, “Hierarchical VLSI Design
Systems Based on Attribute Grammars,” Proceedings of the Thir-
teenth ACM Symposium on Principles of Programming Languages,
pp. 58-69 (January 1986).

Karinthi, Raghu R. and Mark Weiser, “Incremental Re-Execution
of Programs,” Proceedings of the ACM SIGPLAN 87 Symposium
on Interpreters and Interpretive Techniques, SIGPLAN Notices
22(7), pp. 38-44 (June 1987).

Kastens, Uwe, “Ordered Attributed Grammars,” Acta [ nformatica
13(3), pp. 229-256 (1980).

Knuth, Donald E., “Semantics of Context-free Languages,” Mathe-
matical Systems Theory 2(2), pp. 127-145 (June 1968). Correction
5(1), pp. 95-96 (March 1971).

Knuth, Donald E., The Art of Computer Programming: Volume 1,
Fundamental Algorith ms, Second Edition, Addison-Wesley, Read-
ing MA (1973). (Section 2.3.5, Exercise 11).

MacQueen, David, Gordon Plotkin, and Ravi Sethi, “An ideal
model for recursive polymorphic types,” Proceedings of the Elev-
enth ACM Symposium on Principles of Programming Languages,
pp. 165-174 (January 1984).

Martelli, Alberto and Ugo Montanari, “An Efficient Unification
Algorithm,” ACM Transactions on Programming Languages and
Systems 4(2), pp. 258-282 (April 1982).

Martelli, Alberto and Gianfranco Rossi, “Efficient Unification
with Infinite Terms in Logic Programming,” Proceedings of the

International Conference on Fifth Generation Computer Systems,
pp.202-209(1984).

Meertens, Lambert, “Incremental Polymorphic Type Checking in
B,” Proceedings of the Tenth ACM Symposium on Principles of
Programming Languages, pp. 265-275 (January 1983).

Milner, Robin, “A Theory of Type Polymorphism in Program-
ming,” Journal of Computer and System Sciences 17(3), pp. 348-
375 (December 1978).

Paterson, M. S. and M. N. Wegman, “Linear Unification,” Journal
of Computer and System Sciences 16(2), pp. 158-167 (April 1978).

Reps, Thomas and Tim Teitelbaum, “The Synthesizer Generator,”
Proceedings of the ACM Software Engineering Symposium on
Practical Software Development Environments, pp. 42-48 (April
1984).



120

[(RMT86] Reps, Thomas, Carla Marceau, and Tim Teitelbaum, “Remote

(RTD83]

[Rob65]

[Ske78]

[Sne86]

(WaJ88]

[Wan86]

Attribute Updating for Language-Based Editors,” Proceedings of
the Thirteenth ACM Symposium on Principles of Programming
Languages, pp. 1-13 (January 1986).

Reps, Thomas, Tim Teitelbaum, and Alan Demers, “Incremental
Context-Dependent Analysis for Language-Based Editors,” ACM
Transactions on Programming Languages and Systems 5(3), pp.
449-477 (July 1983).

Robinson, J. A., “A Machine-Oriented Logic Based on the Reso-
lution Principle,” Journal of the ACM 12(1), pp. 23-41 (January
1965).

Skedzeleski, Stephen K., Definition and Use of Attribute Re-
evaluation in Attributed Grammars, Ph.D. thesis, University of
Wisconsin (December 1978).

Snelting, Gregor, “Unification in Many-Sorted Algebras as a
Device for Incremental Semantic Analysis,” Proceedings of the
Thirteenth ACM Symposium on Principles of Programming Lan-
guages, pp. 229-235 (January 1986).

Walz, Janet and Gregory Johnson, “Incremental Evaluation for a
General Class of Circular Attribute Grammars,” Proceedings of
the ACM SIGPLAN 88 Conference on Programming Language
Design and Implementation (June 1988).

Wand, Mitchell, “Finding the Source of Type Errors,” Proceedings
of the Thirteenth ACM Symposium on Principles of Programming
Languages, pp. 38-43 (January 1986).



	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif
	pdftemp/0023.tif
	pdftemp/0024.tif
	pdftemp/0025.tif
	pdftemp/0026.tif
	pdftemp/0027.tif
	pdftemp/0028.tif
	pdftemp/0029.tif
	pdftemp/0030.tif
	pdftemp/0031.tif
	pdftemp/0032.tif
	pdftemp/0033.tif
	pdftemp/0034.tif
	pdftemp/0035.tif
	pdftemp/0036.tif
	pdftemp/0037.tif
	pdftemp/0038.tif
	pdftemp/0039.tif
	pdftemp/0040.tif
	pdftemp/0041.tif
	pdftemp/0042.tif
	pdftemp/0043.tif
	pdftemp/0044.tif
	pdftemp/0045.tif
	pdftemp/0046.tif
	pdftemp/0047.tif
	pdftemp/0048.tif
	pdftemp/0049.tif
	pdftemp/0050.tif
	pdftemp/0051.tif
	pdftemp/0052.tif
	pdftemp/0053.tif
	pdftemp/0054.tif
	pdftemp/0055.tif
	pdftemp/0056.tif
	pdftemp/0057.tif
	pdftemp/0058.tif
	pdftemp/0059.tif
	pdftemp/0060.tif
	pdftemp/0061.tif
	pdftemp/0062.tif
	pdftemp/0063.tif
	pdftemp/0064.tif
	pdftemp/0065.tif
	pdftemp/0066.tif
	pdftemp/0067.tif
	pdftemp/0068.tif
	pdftemp/0069.tif
	pdftemp/0070.tif
	pdftemp/0071.tif
	pdftemp/0072.tif
	pdftemp/0073.tif
	pdftemp/0074.tif
	pdftemp/0075.tif
	pdftemp/0076.tif
	pdftemp/0077.tif
	pdftemp/0078.tif
	pdftemp/0079.tif
	pdftemp/0080.tif
	pdftemp/0081.tif
	pdftemp/0082.tif
	pdftemp/0083.tif
	pdftemp/0084.tif
	pdftemp/0085.tif
	pdftemp/0086.tif
	pdftemp/0087.tif
	pdftemp/0088.tif
	pdftemp/0089.tif
	pdftemp/0090.tif
	pdftemp/0091.tif
	pdftemp/0092.tif
	pdftemp/0093.tif
	pdftemp/0094.tif
	pdftemp/0095.tif
	pdftemp/0096.tif
	pdftemp/0097.tif
	pdftemp/0098.tif
	pdftemp/0099.tif
	pdftemp/0100.tif
	pdftemp/0101.tif
	pdftemp/0102.tif
	pdftemp/0103.tif
	pdftemp/0104.tif
	pdftemp/0105.tif
	pdftemp/0106.tif
	pdftemp/0107.tif
	pdftemp/0108.tif
	pdftemp/0109.tif
	pdftemp/0110.tif
	pdftemp/0111.tif
	pdftemp/0112.tif
	pdftemp/0113.tif
	pdftemp/0114.tif
	pdftemp/0115.tif
	pdftemp/0116.tif
	pdftemp/0117.tif
	pdftemp/0118.tif
	pdftemp/0119.tif
	pdftemp/0120.tif
	pdftemp/0121.tif
	pdftemp/0122.tif
	pdftemp/0123.tif
	pdftemp/0124.tif
	pdftemp/0125.tif
	pdftemp/0126.tif
	pdftemp/0127.tif
	pdftemp/0128.tif
	pdftemp/0129.tif
	pdftemp/0130.tif
	pdftemp/0131.tif
	pdftemp/0132.tif

