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ABSTRACT
Evaluation metrics play a critical role both in the context
of comparative evaluation of the performance of retrieval
systems and in the context of learning-to-rank (LTR) as ob-
jective functions to be optimized. Many different evaluation
metrics have been proposed in the IR literature, with aver-
age precision (AP) being the dominant one due a number
of desirable properties it possesses. However, most of these
measures, including average precision, do not incorporate
graded relevance.

In this work, we propose a new measure of retrieval effec-
tiveness, the Graded Average Precision (GAP). GAP gener-
alizes average precision to the case of multi-graded relevance
and inherits all the desirable characteristics of AP: it has a
nice probabilistic interpretation, it approximates the area
under a graded precision-recall curve and it can be justified
in terms of a simple but moderately plausible user model.
We then evaluate GAP in terms of its informativeness and
discriminative power. Finally, we show that GAP can re-
liably be used as an objective metric in learning to rank
by illustrating that optimizing for GAP using SoftRank and
LambdaRank leads to better performing ranking functions
than the ones constructed by algorithms tuned to optimize
for AP or NDCG even when using AP or NDCG as the test
metrics.

Categories and Subject Descriptors: H.3.3 [Informa-
tion Search and Retrieval]

General Terms: Experimentation, Measurement, Perfor-
mance

Keywords: information retrieval, effectiveness metrics, av-
erage precision, graded relevance, learning to rank
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Evaluation metrics play a critical role both in the context
of comparative evaluation of the performance of retrieval
systems and in the context of learning-to-rank (LTR) as ob-
jective functions to be optimized. Many different evaluation
metrics have been proposed and studied in the literature.
Even though different metrics evaluate different aspects of
retrieval effectiveness, only a few of them are widely used,
with average precision (AP) being perhaps the most com-
monly used such metric. AP has been the dominant system-
oriented evaluation metric in IR for a number of reasons:

• It has a natural top-heavy bias.

• It has a nice probabilistic interpretation [25].

• It has an underlying theoretical basis as it corresponds
to the area under the precision recall curve.

• It can be justified in terms of a simple but moderately
plausible user model [16].

• It appears to be highly informative; it predicts other
metrics well [2].

• It results in good performance ranking functions when
used as objective in learning-to-rank [27, 24].

The main criticism to average precision is that it is based
on the assumption that retrieved documents can be consid-
ered as either relevant or non-relevant to a user’s informa-
tion need. Thus, documents of different relevance grades are
treated as equally important with relevance conflated into
two categories. This assumption is clearly not true: by na-
ture, some documents tend to be more relevant than others
and intuitively the more relevant a document is the more
important it is for a user. Further, when AP is used as an
objective metric to be optimized in learning to rank, the
training algorithm is also missing this valuable information.

For these reasons, a number of evaluation metrics that uti-
lize multi-graded relevance judgments has appeared in the
literature (e.g. [15, 8, 9, 19, 17]), with nDCG [8, 9] be-
ing the most popular among them, especially in the context
of learning-to-rank as most learning to rank algorithms are
designed to optimize for nDCG [6, 5, 22, 24].

In the framework used to define nDCG, a relevance score
is mapped to each relevance grade, e.g. 3 for highly relevant
documents, 2 for fairly relevant documents and so on. The
relevance score of each document is viewed as the gain re-
turned to a user when examining the document (utility of
the document). To account for the late arrival of relevant
documents gains are then discounted by a function of the
rank. The discount function is viewed as a measure of the



patience of a user to step down the ranked list of documents.
The discounted gain values are then summed progressively
from rank 1 to k. This discounted cumulative gain at rank
k is finally normalized in a 0 to 1 range to enable averaging
the values of the metric over a number of queries, resulting
in the normalized Discounted Cumulative Gain, nDCG.

The nDCG metric is thus a functional of a gain and a dis-
count function and thus it can accommodate different user
search behavior patterns on different retrieval task scenar-
ios. As it has been illustrated by a number of correlation
studies different gain and discount functions lead to radi-
cally different rankings of retrieval systems [23, 12, 11].

Despite the great flexibility nDCG offers, defining gain
and discount functions in a meaningful way is a difficult
task. Given the infinite number of possible discount and
gain functions, the vast differences in users search behavior,
the many different possible retrieval tasks and the difficulty
in measuring user satisfaction, a complete and rigorous anal-
ysis of the relationship between different gain and discount
functions and user satisfaction under different retrieval sce-
narios is prohibitively expensive, if at all possible.

For this reason, in the past, the selection of the gain and
discount functions has been done rather arbitrarily, based
on speculations of the search behavior of an average user
and speculations of the correlation of the metric to user
satisfaction. For instance, Burges et al. [5], introduced an

exponential gain function (2rel(r)−1, where rel(r) is the rel-
evance score of the document at rank r) to express the fact
that a highly relevant document is very much more valuable
than one of a slightly lower grade. Further, the logarithmic
discount function (1/log(r + 1)) dominated the literature
compared to the linear one (1/r) based on the speculation
that the gain a user obtains by moving down the ranked list
of documents does not drop as sharply as indicated by the
linear discount.

Despite the reasonable assumptions behind the choice of
the gain and discount function that dominates nowadays
the literature, recent work [1] demonstrated that cumula-
tive gain without discounting (CG) is more correlated to
user satisfaction than discounted cumulative gain (DCG)
and nDCG (at least when computed at rank 100). This
result not only strongly questions the validity of the afore-
mentioned assumptions but mostly underlines the difficulty
in specifying gain and discount functions in a meaningful
manner.

Due to the above difficulties associated with the current
multigraded evaluation metrics, even when multigraded rel-
evance judgments are available, average precision is still re-
ported (together with the multigraded metrics) by convert-
ing the relevance judgments to binary [4, 3]. Thus, despite
the invalid assumption of binary relevance, average preci-
sion remains one of the most popular metrics used by IR re-
searchers (e.g. in TREC [3]).Furthermore, even though AP
is wasting valuable information in the context of learning-
to-rank, since it ignores the swaps between documents of
different positive relevance grades, it has been successfully
used as an objective metric [27]. Therefore, we believe that
a direct extension of the metric to the multigraded case in a
systematic manner is needed and it will become a valuable
tool for the community both in the context of evaluation
and in the context of LTR.

In this paper, we generalize average precision to the multi-
graded relevance case in a systematic manner, proposing a

new metric, the graded average precision (GAP). The GAP
metric is a direct extension of AP and thus it inherits all the
desirable properties that average precision has:

• It has the same natural top-heavy bias average preci-
sion has.

• It has a nice probabilistic interpretation.

• It has an underlying theoretical basis as it corresponds
to the area under the ”graded” precision-recall curve.

• It can be justified in terms of a simple but moderately
plausible user model similarly to AP

• It appears to be highly informative.

• When used as an objective function in learning-to-rank
it results in good performance retrieval systems (it out-
performs both AP and nDCG).

The incorporation of multi-graded relevance in average
precision becomes possible via a simple probabilistic user
model which naturally dictates to what extend documents of
different relevance grades account for the effectiveness score.
This user model corresponds to one of the approaches briefly
discussed in Sakai and Robertson [20]. This model offers
an alternative way of thinking about graded relevance com-
pared to the notion of utility employed by nDCG and other
multi-graded metrics.

Sakai [19] for instance has previously introduced a multi-
graded measure (the Q-measure) which has been shown to
behave similarly to AP for ranks above R (where R is the
number of relevant documents in the collection). Neverthe-
less, the incorporation of graded relevance by the Q-measure
follows the same model with nDCG. GAP on the other hand
is based on the well-trusted notions of precision and recall
as is AP.

In what follows, we first describe the user model on which
GAP is based and define the new metric. We then describe
some desirable properties GAP possesses. In particular, we
describe a probabilistic interpretation of GAP, generalize
precision-recall curves for the multigraded relevance case
and show that GAP is an approximation to the area un-
der the graded precision-recall curves. Further, we evalu-
ate GAP in terms of informativeness [2] and discriminative
power [18]. Finally, we extend two popular LTR algorithms,
SoftRank [22] and LambdaRank [6], to optimize for GAP
and test the performance of the resulting ranking functions
over different collections.

2. GRADED AVERAGE PRECISION (GAP)

2.1 User Model
We start from a rudimentary user model, as follows: as-

sume that the user actually has a binary view of relevance,
determined by thresholding the relevance scale {0..c}. We
describe this model probabilistically – we have a probabil-
ity gi that the user sets the threshold at grade i, in other
words regards grades i, ..., c as relevant and the others as
non-relevant. We consider this probability to be defined over
the space of users. These should be exclusive and exhaustive
probabilities:

Pc
j=1 gj = 1.

2.2 Definition of GAP
Now, we want some form of expected average precision,

the expectation being over this afore-defined probabilistic
event space. Simple interpretation of this (just calculate



average precision separately for each grade and take a proba-
bilistically weighted combination) has problems; for instance,
in the case of an ideal ranked list, when there are no docu-
ments in some grades, the effectiveness score returned is less
than the optimal value of 1. So, instead, we extend the non-
interpolated form of AP; that is, we step down the ranked
list, looking at each relevant document in turn (the ”pivot”
document) and compute the expected precision at this rank.
With an appropriate normalization at the end, this defines
the graded average precision (GAP).

In particular, suppose we have a ranked list of documents,
and document dn at rank n has relevance in ∈ {0..c}. If
in > 0, dn, as pivot document, will contribute a precision
value to the average precision calculations for each grade j,
0 < j ≤ in, since for any threshold set at grades less than or
equal to in, dn is considered relevant. The binary precision
value for each grade j is, 1

n
(|dm : m ≤ n, im ≥ j|), while

the expected precision at rank n over the aforementioned
probabilistic user space can be computed as,

E[PCn] =

inX
j=1

„
1

n
|dm : m ≤ n, im ≥ j|

«
· gj

Let I(i, j) be an indicator variable equal to 1 if grade i is
larger than or equal to grade j and 0 otherwise. Then, the
expected precision at rank n can also be written as,

E[PCn] =

inX
j=1

„
1

n
|dm : m ≤ n, im ≥ j|

«
· gj

=
1

n

inX
j=1

gj

nX
m=1

I(im, j)

=
1

n

nX
m=1

min(in,im)X
j=1

gj if im > 0

By observing the new form of calculation of E[PCn], we
can compute the contribution of each document ranked at
m ≤ n to this weighted sum for those grades j ≤ im. Thus
we define a contribution function:

δm,n =

 Pmin(im,in)
j=1 gj if im > 0

0 otherwise

Now the contribution from the pivot document can be
defined as, E[PCn] = 1

n

Pn
m=1 δm,n.

The maximum possible E[PCn] depends on the relevance
grade in, it is the probability that this document is regarded
as relevant by the user,

Pin
j=1 gj . We must take account

of this when normalizing the sum of E[PCn]’s. Suppose
we have Ri total documents in grade i (for this query);
then the maximum possible value of cumulated E[PCn]’s is,Pc

i=1 Ri

Pi
j=1 gj , which corresponds to the expected num-

ber of documents considered relevant in the collection, with
the expectation taken over the space of users, as above.

The graded average precision (GAP) is then defined as:

GAP =

P∞
n=1

1
n

Pn
m=1 δm,nPc

i=1 Ri

Pi
j=1 gj

Remark on thresholding probabilities: The user model
that GAP is based on dictates the contribution of different
relevance grades to the GAP calculation by considering the
probability of a user thresholding the relevance scale at a
certain relevance grade (the g values). This allows a better
understanding and an easier mechanism to determine the

relative value of different relevance grades to an average user
than the underlying model for the current multi-graded eval-
uation metrics. For instance, given the relevance grades of
documents, click through data can be utilized to conclude
relative preferences of users among documents of different
relevance grades [10, 14]. Assuming that the user only clicks
on the documents he finds relevant, the g values correspond
to the probability that a user clicks on a document of a par-
ticular relevance grade, given all the documents clicked by
the user. In this paper, given that our goal is to develop a
good system-oriented metric, we propose an alternative way
of setting the g values by considering which g = {gi} makes
the metric most informative (see Section 4.1).

3. PROPERTIES OF GAP
In this section we describe some of the properties of GAP

that make the metric understandable and desirable to use.
First, it is easy to see that GAP generalizes average preci-

sion – it reverts to average precision in the case of binary rel-
evance. With respect to the model described in Section 2.1,
binary relevance means that all users find documents with
some relevance grade t > 0 relevant and the rest non-relevant
(i.e., gj = 1 if j = t, for some relevance grade t > 0 and 0
otherwise).

Furthermore, GAP behaves in the expected way under
document swaps. That is, if a document is swapped with
another document of smaller relevance grade that appears
lower in the list, the value of GAP decreases and vice-versa.
As a corollary to this property, GAP acquires its maximum
value when documents are returned in non-increasing rele-
vance grade order.

In the following sections, we describe a probabilistic inter-
pretation of GAP and show that GAP is an approximation
to the area under a graded precision-recall curve.

3.1 Probabilistic interpretation
In this section we define GAP as the expected outcome

of a random experiment, which is a generalization of the
random experiment whose expected outcome is average pre-
cision [25], for the case of graded relevance. This offers an
intuition behind the new measure.

3.1.1 Probabilistic interpretation of AP
Yilmaz and Aslam [25] have shown that AP corresponds to

the expected outcome of the following random experiment:

1. Select a relevant document at random. Let the rank
of this document be n.

2. Select a document at or above rank n, at random. Let
the rank of that document be m.

3. Output 1 if the document at rank m, dm, is relevant.

In expectation, steps (2) and (3) effectively compute the
precision at a relevant document. Then step (1), in combina-
tion with steps (2) and (3), effectively computes the average
of these precisions. Hence, average precision corresponds to
the probability that a document retrieved above a randomly
picked relevant document is also relevant.

3.1.2 Probabilistic interpretation of GAP
Consider the case where graded relevance judgments are

available. We claim that GAP corresponds to the expected
outcome of the following random experiment:



1. Select a document that is considered relevant by a user
(according to the afore-defined user model), at ran-
dom. Let the rank of this document be n.

2. Select a document at or above rank n, at random. Let
the rank of that document be m.

3. Output 1 if the document at rank m, dm, is also con-
sidered relevant by the user.

Hence, GAP can be seen as the probability that a docu-
ment retrieved above a randomly picked“relevant”document
is also“relevant”, where relevance is defined according to the
user model previously described.

We compute the expectation of the above random exper-
iment to show that it corresponds to GAP. In expectation,
step (3) corresponds to the conditional probability of docu-
ment dm being considered as relevant given that document
dn is also considered as relevant. To calculate this probabil-
ity, let’s consider all possible cases of the relative ordering
of the relevant grades for documents dn and dm.

• (in ≤ im) : Since the relevance grade of dn is smaller
than or equal to the one for dm, if dn is considered
relevant then dm will also be considered as relevant.

Pr(dm = rel|dn = rel) =

= 1 =

Pin
j=1 gjPin
j=1 gj

=

Pmin(in,im)
j=1 gjPin

j=1 gj

since min(in, im) = in.

• (in > im) : By applying the Bayes’ Theorem,

Pr(dm = rel|dn = rel) =

=
Pr(dn = rel|dm = rel) · Pr(dm = rel)

Pr(dn = rel)

=
1 ·

Pim
j=1 gjPin

j=1 gj

=

Pmin(in,im)
j=1 gjPin

j=1 gj

since min(in, im) = im

In expectation, steps (2) and (3) together, correspond to
the value the “pivot” document dn will contribute to GAP,

1

n
·

nX
m=1

Pmin(in,im)
j=1 gjPin

j=1 gj

In step (1), the probability that a document dn is consid-

ered relevant is
Pin

j=1 gj . Thus, the probability of selecting
this document out of all documents that are considered rel-
evant is,

pdn =

Pin
j=1 gjPc

i=1 Ri

Pin
j=1 gj

Therefore, step (1) in combination with steps (2) and (3)
effectively computes the average of the contributed values,
which corresponds to GAP,

GAP =

∞X
n=1

1

n

nX
m=1

Pmin(in,im)
j=1 gjPin

j=1 gj

·
Pin

j=1 gjPc
i=1 Ri ·

Pin
j=1 gj

=

P∞
n=1

1
n

Pn
m=1

Pmin(in,im)
j=1 gjPc

i=1 Ri

Pi
j=1 gj

3.2 GAP as the area under the graded precision-
recall curves

In this section we first intuitively extend recall and preci-
sion to the case of multi-graded relevance, based on the prob-
abilistic model defined in Section 2.1. Then we define the
graded precision-recall curve, and finally show that GAP ap-
proximates the area under the graded precision-recall curve,
as AP approximates the area under the binary precision-
recall curve.

Precision-recall curves are constructed by plotting pre-
cision against recall each time a relevant document is re-
trieved. In the binary relevance case, recall is defined as the
ratio of relevant documents up to rank n to the total number
of relevant documents in the query. In the graded relevance
case, a document is considered relevant only with some prob-
ability. Therefore, recall at a relevant document at rank n
can be defined as the ratio of the expected number of rele-
vant documents up to rank n to the expected total number
of relevant documents in the query (under the independence
assumption between numerator and denominator).

In particular, according to the user model defined in Sec-
tion 2.1, documents of relevance grade im are considered rel-
evant with probability

Pim
j=1 gj , and thus, the expected num-

ber of relevant documents up to rank n is,
Pn

m=1

Pim
j=1 gj ,

while the expected total number of relevant document is,Pc
i=1 Ri

Pi
j=1 gj .

Hence, the graded recall at rank n can be computed as,

graded Recall@n =

Pn
m=1

Pim
j=1 gjPc

i=1 Ri

Pi
j=1 gj

The recall step, i.e. the proportion of relevance information
acquired when encountering a ”relevant”document at rank n
to the total amount of relevance, is,

Pin
j=1 gj/

Pc
i=1 Ri

Pi
j=1 gj .

This corresponds to the expected outcome of step (1) of the
random experiment described in Section 3.1 and expresses
the probability of selecting a ”relevant” document at rank n
out of all possible ”relevant” documents.

In the binary case, precision at a relevant document at
rank n is defined as the fraction of relevant documents up
to that rank. In the multi-graded case, precision at a ”rel-
evant” document at rank n can be defined as the expected
number of documents at or above that rank that are also
considered as ”relevant” This quantity corresponds to the
expected outcome of steps (2) and (3) of the random exper-
iment in Section 3.1,

graded Precision@n =
1

n
·

nX
m=1

Pmin(in,im)
j=1 gjPin

j=1 gj

Therefore, graded average precision can be alternatively
defined as the cumulated product of graded precision val-
ues and graded recall step values at documents of positive
relevance grade, as average precision can be defined as the
cumulated product of precision values and recall step values
at relevant documents.

Given the definitions of graded precision and graded recall,
one can construct precision-recall curves. Now it is easy to
see that GAP is an approximation to the area under the
non-interpolated graded precision-recall curve as AP is an
approximation to the area under the non-interpolated binary
precision-recall curve.

Note that Kekäläinen and Järvelin [13] have also proposed
a generalization of precision and recall. The way they gener-
alized the two statistics is radically different than the one we



propose; in their work precision and recall follow the nDCG
framework where gain values are assigned to each document.

4. EVALUATION OF GAP
There are two important properties that a system-oriented

evaluation metric should have: (1) it should be highly in-
formative [2] – that is it should summarize the quality of a
search engine well, and (2) it should be highly discriminative
– that is it should identify the significant differences in the
performance of the systems. We evaluated GAP in terms
of both of these properties. We used nDCG as a baseline
for comparison purposes. Given that our goal is to propose
a good system-oriented metric that can be used as an ob-
jective function to optimize for in LTR, in what follows we
mostly focus on the informativeness of the metric since it
has been shown to correlate well with the effectiveness of
the trained ranking function [26].

In particular, when a ranking function is optimized for
an objective evaluation metric, the evaluation metric used
during training acts as a bottleneck that summarizes the
available training data. At each training epoch, given the
relevance of the documents in the training set and the ranked
list of documents retrieved by the ranking function for that
epoch, the only information the learning algorithm has ac-
cess to is the value of the evaluation metric. Thus, the rank-
ing function will change on the basis of the change in the
value of the metric. Since more informative metrics better
summarize the relevance of the documents in the ranked list
and thus better capture any change in the ranking of doc-
uments, the informativeness of a metric is intuitively corre-
lated with the ability of the LTR algorithm to ”learn” well.

4.1 Informativeness
To assess the informativeness of the evaluation metrics we

use the Maximum Entropy Method (MEM) as proposed in
Aslam et al. [2].

Similar to Aslam et al. we make the assumption that
the quality of a list of documents retrieved in response to
a given query is strictly a function of the relevance of the
documents within that list (as well as the total number of
relevant documents for the given query). Then, the question
that naturally arises is how well does a metric capture the
relevance of the output list and consequently the effective-
ness of a retrieval system? In other words, given the value of
a metric, for a given system on a given query, how accurately
can one predict the relevance of documents retrieved?

Suppose that you were given a list of length N corre-
sponding to output of a retrieval system for a given query,
and suppose that you were asked to predict the probability
of seeing a relevant document at some rank. Since there
are no constraints, all possible lists of length N are equally
likely, and hence the probability of seeing a relevant docu-
ment at any rank is 1/2. Suppose now that you are also
given the information that the expected number of relevant
documents over all lists of length N is R. The most natural
answer would be a R/N uniform probability for each rank.
Finally, suppose that you are given the additional constraint
that the expected value of a metric is v. Under the assump-
tion that our distribution over lists is a product distribution,
i.e. p(r1, r2, ..., rN ) = p(r1) · p(r2) · ... · p(rN ) (Aslam et al.
call this probability-at-rank distribution), we can solve the
problem by using MEM. That is, we find the most random
probability-at-rank distribution (by maximizing the entropy

of p) that satisfies the following constraints: (a) the expected
value of the metric over the probability-at-rank distribution
is v, and (b) the expected number of relevant documents in
each grade ξ is Rξ).

To apply the maximum entropy method we derive the
expected GAP and nDCG over the probability-at-rank dis-
tribution. The derivations are omitted due to space limi-
tations. The maximum entropy formulations are shown in
Figure 1. Both of them are constraint optimization prob-
lems and numerical methods were used to determine their
solutions.

The result of the above optimization is a maximum en-
tropy probability-at-rank distribution (over all relevance grades).
Using this probability-at-rank distribution, we can infer the
maximum entropy precision-recall curve. If a metric is very
informative then the maximum entropy precision-recall curve
should approximate well the actual precision-recall curve.

We then test the performance of GAP and nDCG using
data from TRECs 9 and 10 Web Tracks (ad-hoc task) and
TREC 12 Robust Track (only the topics 601-650 that have
multi-graded judgments). Using the setup described above,
we first infer the probability-at-rank distributions given the
value of each metric and then calculate the maximum en-
tropy precision-recall curves when only highly relevant doc-
uments are considered as relevant and when both relevant
and highly relevant documents are considered as relevant
(the graded PR-curves described in Section 3.2 are not used
due to their bias towards GAP). As in Aslam et al. [2], for
any query, we choose those systems that retrieved at least
5 relevant and 5 highly relevant documents to have a suf-
ficient number of points on the precision-recall curves. We
use different values for g1 and g2 to investigate their effect
on the informativeness of GAP.

The mean RMS error between the inferred and the actual
precision-recall curves, calculated at the points where recall
changes, is illustrated in Figure 2. The x-axis corresponds
to different pairs of threshold probabilities, g1 and g2. The
blue solid line corresponds to the RMS error between the ac-
tual and the inferred precision-recall curves subject to GAP,
while the red dashed line indicates the RMS error of the in-
ferred precision-recall curves subject to nDCG.

As it can be observed (1) the choice of g1 and g2 ap-
pears to affect the informativeness of GAP; when g1 is high
GAP appears to summarize well the sequence of all relevant
documents independently of their grade, while when g2 is
high GAP appears to summarize well the sequence of all
highly relevant documents, (2) choosing g1 and g2 to be rel-
atively balanced (around 0.5) seems to be the best compro-
mise between summarizing well the sequence of all relevant
documents independent of their grade and highly relevant
documents only, and (3) with g1 and g2 to relatively bal-
anced GAP appears to be more informative than nDCG in
most of the cases1. Finally, note that when the threshold-
ing probability g1 = 1 (the right-most point for GAP curve
in all plots), GAP reduces to average precision since rele-
vant and highly relevant documents are conflated in a sin-

1Different gain (linear vs. exponential) and discount (lin-
ear vs. log) functions used in the definition of nDCG were
tested. The ones that utilized the log discount function ap-
peared to be the most informative, while the effect of the
gain function on informativeness was limited. The nDCG
metric used here utilizes an exponential gain and a log dis-
count function.



Maximize: H(~p) =

NX
n=1

H(pn)

Subject to:

1.

NX
n=1

cX
ξ=0

Pr(in = ξ)

n
·

0@ ξX
j=1

gj +

n−1X
m=1

cX
ζ=0

0@0@min(ζ,ξ)X
j=1

gj

1A Pr(im = ζ)

1A1A
/

“Pc
i=1 Ri

Pi
j=1 gi

”
= gap

2.
NX

n=1

Pr(in = ξ) = Rξ ∀ξ : 1 ≤ ξ ≤ c

3.

cX
ξ=0

Pr(in = ξ) = 1 ∀n : 1 ≤ n ≤ N

Maximize: H(~p) =

NX
n=1

H(pn)

Subject to:

1.

NX
n=1

cX
ξ=0

(eg(ξ) − 1) · Pr(in = ξ)

lg(n + 1)
/ (optDCG) = ndcg

2.
NX

n=1

Pr(in = ξ) = Rξ ∀ξ : 1 ≤ ξ ≤ c

3.
cX

ξ=0

Pr(in = ξ) = 1 ∀n : 1 ≤ n ≤ N

Figure 1: Maximum entropy setup for GAP and nDCG, respectively.
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Figure 2: Mean RMS error between inferred and actual PR curves when only highly relevant documents are
considered as relevant and when both relevant and highly relevant documents are considered as relevant.

gle grade. Therefore, one can compare the informativeness
of GAP with the informativeness of AP by comparing the
right-most point on the GAP curve with any other point on
the same curve. For instance one can compare GAP with
equal thresholding probabilities (g1 = g2 = 0.5) with AP
by comparing the point on the blue line that corresponds
to the [0.5,0.5] on the x-axis with the point on the blue line
that corresponds to the [1,0] on the x-axis. This way we
can test whether graded relevance add any value in the in-
formativeness of the metric on the top of binary relevance.
What is striking about Figure 2 is that in TREC 9 and 10
GAP (with g1 = g2 = 0.5) appears more informative than
AP when relevant and highly relevant documents are com-
bined (top row plots). That is, the ability to capture the
sequence of relevance regardless the relevance grade is bene-
fited by differentiating between relevant and highly relevant
documents.

4.2 Discriminative Power
A number of researchers have proposed the evaluation of

effectiveness metrics based on their discriminative power.That
is, given a fixed set of queries, which evaluation metric can
better identify significant differences in the performance of
systems? By utilizing the framework proposed by Sakai [18],
based on the Bootstrap Hypothesis Testing and using data
from TREC 9, 10 and 12, we observed that the GAP metric
appeared to outperform nDCG over TREC 12 data while

the opposite was true for TREC 9 and 10. When limiting
our experiments to the best performing systems (top 15 by
both metrics), GAP consistently outperformed nDCG in all
three data sets. The results for TREC 9 are illustrated in
Figure 3. Due to space limitations we omit the figures from
TREC 10 and 12. In the figure the more towards the origin
of the axes the curve is the more discriminative the met-
ric is. The inner plot corresponds to the test over the best
performing systems.
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Figure 3: Discriminative power based on bootstrap
hypothesis tests for TREC 9.

5. GAP FOR LEARNING TO RANK
Finally, we employed GAP as an objective function to

optimize for in the context of LTR. For comparison pur-



Test Metric
nDCG AP PC(10)

SoftRank
Opt nDCG 0.6162 0.6084 0.5329
Opt GAP 0.6290 0.6276 0.5478
Opt AP 0.6129 0.6195 0.5421

LambdaRank
Opt nDCG 0.6301 0.6158 0.5355
Opt GAP 0.6363 0.6287 0.5388
Opt AP 0.6296 0.6217 0.5360

Table 1: Test set performance for different met-
rics when SoftRank and LambdaRank are trained
for nDCG, GAP, and AP as the objective over 5K
Web Queries from a commercial search engine.

Test Metric
nDCG AP PC(10)

SoftRank
Opt nDCG 0.4665 0.4452 0.4986
Opt GAP 0.4747 0.4478 0.5001
Opt AP 0.4601 0.4448 0.4900

LambdaRank
Opt nDCG 0.4585 0.4397 0.5005
Opt GAP 0.4665 0.4432 0.5042
Opt AP 0.4528 0.4408 0.4881

Table 2: Test set performance for different met-
rics when SoftRank and LambdaRank are trained
for nDCG, GAP, and AP as the objective over the
OSHUMED data set.

poses we also optimized for AP and nDCG. In our exper-
iments we employed two different learning algorithms, (a)
SoftRank [22] and (b) LambdaRank [6] over two different
data sets, (a) a Web collection with 5K queries and 382 fea-
tures taken from a commercial search engine, and (b) the
OHSUMED collection provided by LETOR [21]. The rele-
vance judgments in the both data set are in a 3 grade scale
(non-relevant, relevant and highly relevant). Five-fold cross
validation was used in the case of OHSUMED collection.

Since the informativeness of the metric is well correlated
with the effectiveness of the constructed ranking function,
we select g1 and g2 based on the criterion of informativeness.
As we observed in Section 4.1, the values of gi that result
in the most informative GAP variation is g1 = g2 = 0.5.
Intuitively, these values of gi indicate that highly relevant
documents are ”twice as important as relevant documents.

LTR algorithms: SoftRank [22] is a neural network
based algorithm that is designed to directly optimize for
nDCG, as most other learning to rank algorithms. Since
most IR metrics are non-smooth as as they depend on the
ranks of documents, the main idea used in SoftRank to over-
come the problem of optimizing non-smooth IR metrics is
based on defining smooth versions of information retrieval
metrics by assuming that the score sj of each document j is
a value generated according to a Gaussian distribution with
mean equal to sj and shared smoothing variance σs. Based
on this, Taylor et al. [22] define πij as the probability that
document i will be ranked higher than document j. This
distribution can then be used to define smooth versions of
IR metrics as expectations over these rank distributions.

Based on these definitions, we extend SoftRank to opti-
mize for GAP by defining SoftGAP, the expected value of
Graded Average Precision with respect to these distribu-
tions and compute the gradient of SoftGAP.

Given the probabilistic interpretation of GAP defined ear-
lier and the distribution πij , the probability that document
i will be ranked higher than document j, SoftGAP can be
computed as follows:

Let PCn be:

PCn =

Pin
j=1 gj +

PN
m=1 πmn

Pmin(im,in)
j=1 gjPN

m=1,m6=n πmn + 1

then SoftGAP =

NX
n=1

PCnPc
i=1 Ri

Pi
j=1 gi

Optimizing for an evaluation metric using neural networks
and gradient ascent requires computing the gradient of the
objective metric with respect to the score of an individual

document s̄m. To compute the gradients of SoftGAP, we
use a similar approach as the one Taylor et al. [22] used
to compute the gradients of nDCG. Detailed derivations for
the computation of the gradients are omitted due to space
limitations.

LambdaRank [6] is another neural network based algo-
rithm that is also designed to optimize for nDCG. In order to
overcome the problem of optimizing non-smooth IR metrics,
LambdaRank uses the approach of defining the gradient of
the target evaluation metric only at the points needed.

Given a pair of documents, the virtual gradients (λ func-
tions) used in LambdaRank are obtained by scaling the
RankNet [5] cost with the amount of change in the value
of the metric obtained by swapping the two documents [6].

Following the same setup, in order to optimize for GAP,
we scale the RankNet cost with the amount of change in
the value of GAP metric when two documents are swapped.
This way of building gradients in LambdaRank is shown to
find the local optima for the target evaluation metrics [7].
Detailed derivations for the computation of the virtual gra-
dients for LambdaRank are also omitted due to space limi-
tations.

Results: Tables 1 and 2 show the results of training and
testing using different metrics. In particular the rows of the
table correspond to training for nDCG, GAP and AP, re-
spectively. The columns correspond to testing for nDCG
at cutoff 10, AP and precision at cutoff 10. As it can be
observed in the table training for GAP outperforms both
training for nDCG and AP, even if the test metric is nDCG
or AP respectively. The differences among the effectiveness
of the resulting ranking functions are not large, however, (1)
most of them are statistically significant, indicating that the
fact that GAP outperforms AP and nDCG is not a results
of any random noise in training data, (2) GAP consistently
leads to the best performing ranking function over two rad-
ically different data sets, and (3) GAP consistently leads
to the best performing ranking function over two different
LTR algorithms. Thus, even if the differences among the
constructed ranking functions are not large, optimizing for
GAP can only lead to better ranking functions.

These results strengthen the conclusion drawn from the
discussion about the informativeness of the metrics. First,
it can be clearly seen that even in the case that we care
about a binary measure (AP or PC at 10) the utilization of
multi-graded relevance judgments is highly beneficial. Fur-
thermore, these results suggest that even if one cares for
nDCG at early ranks, one should still train for GAP as op-
posed to training for nDCG.



6. CONCLUSIONS
In this work we constructed a new metric of retrieval ef-

fectiveness (GAP) in a systematic manner that directly gen-
eralizes average precision to the multi-graded relevance case.
As such, it inherits all desirable properties of AP: it has a
nice probabilistic interpretation and a theoretical founda-
tion; it estimates the area under the non-interpolated grade
precision-recall curve. Furthermore, the new metric is highly
informative and highly discriminative. Finally, when used
as an objective function for learning-to-rank purposes GAP
consistently outperforms AP and nDCG over two different
data sets and over three different learning algorithms even
when the test metric is AP or nDCG itself.
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