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ABSTRACT

Traditional probabilistic relevance frameworks for informa-
tional retrieval refrain from taking positional information
into account, due to the hurdles of developing a sound model
while avoiding an explosion in the number of parameters.
Nonetheless, the well-known BM25F extension of the suc-
cessful Okapi ranking function can be seen as an embryonic
attempt in that direction. In this paper, we proceed along
the same line, defining the notion of virtual region: a virtual
region is a part of the document that, like a BM25F-field,
can provide a (larger or smaller, depending on a tunable
weighting parameter) evidence of relevance of the document;
differently from BM25F fields, though, virtual regions are
generated implicitly by applying suitable (usually, but not
necessarily, positional-aware) operators to the query. This
technique fits nicely in the eliteness model behind BM25 and
provides a principled explanation to BM25F; it specializes
to BM25(F) for some trivial operators, but has a much more
general appeal. Our experiments (both on standard collec-
tions, such as TREC, and on Web-like repertoires) show that
the use of virtual regions is beneficial for retrieval effective-
ness.
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1. INTRODUCTION
Modern information retrieval ranking functions, like the

ones used in today’s search engines, employ a large num-
ber of features derived from different sources of evidence:
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matches of query terms in documents, document query-in-
dependent quality measures, and click-through information
among others. Prevalent among those signals, and central to
most standard retrieval approaches such as BM25 and lan-
guage models, is the term frequency (tf) information (i.e.,
the number of times a term appears in a document). Ap-
proaches derived from the probabilistic retrieval model are
implemented as a summation of“weights”of the query terms
that appear in the document, where the weight is essentially
a normalized version of term frequency.

Traditional probabilistic relevance frameworks for infor-
mational retrieval [30] refrain from taking positional infor-
mation into account, both because of the hurdles of develop-
ing a sound model while avoiding an explosion in the number
of parameters and because positional information has been
shown (somehow surprisingly) to have little effect on aver-
age [34]. Recently, though, it has been proved that consider-
ing sequences of terms that form query concepts is beneficial
for retrieval [6]. Those extensions build up on the Markov
Random Field retrieval model (MRF) and use a linear com-
bination of different concepts and query-term scores in or-
der to derive a final score for a document. Furthermore, the
well-known BM25F extension of the successful Okapi rank-
ing function (the latter of which we are aiming on building
upon) can be seen as an embryonic attempt in the same di-
rection: the basic idea there is that each document is made
of regions (fields) and some fields may provide stronger evi-
dence of relevance than others.

In this paper, we proceed along the same line, defining
the notion of virtual region: a virtual region is a part of the
document that, like a BM25F-field, can provide a different
evidence of relevance of the document (the amount of evi-
dence is, like in BM25F, expressed by a weight). Differently
from BM25F fields, though, virtual regions are generated
implicitly by applying suitable operators to the query: such
operators may (and typically will) use positional informa-
tion.

The techniques we propose can be seen as a two-stage
ranking: in the first stage, a number of operators are ap-
plied to the incoming query to individuate virtual regions
within the document; in the second stage, the regions are
ranked much in the same way as with BM25F, using the
weights attached to each operator. The idea is that there
are “stricter” operators, that give a stronger evidence (e.g.,
“I want that at least three of the query terms appear in a
span of at most ten words”), but are less likely to appear
in document, and other that are “weaker” (e.g., “I want at
least one of the query terms appearing somewhere”, that is
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the standard bag-of-words requirement) and contribute to
recall.

The operator-based technique that we propose fits nicely
in the usual eliteness model behind BM25 and provides a
principled explanation to BM25F; it specializes to BM25(F)
for some trivial operators, but we believe it has a more gen-
eral appeal.

Abstracting from the positional aspect, we can think of
our method as an attempt to understand more deeply the
user’s intent underlying a query [2], following the increas-
ing interest in extracting features and learning about the
query itself. For example, all major search engines are able
to detect entities in queries in order to shortcut the user
to an appropriate vertical (e.g., for e-commerce or news),
to trigger different visualization schemes or simply to help
ranking better the results that are being produced. The
basic idea is that of being able to pre-process a plain set
of query terms that a user submitted to build a model of
the query (possibly with the help of contextual informa-
tion, e.g., about the query session and/or the user’s pro-
file). This model might simply contain spelling corrections,
term annotations or may exhibit more sophisticated expan-
sions, obtained through gazetteers, synonym dictionaries or
query-logs, just to name a few.

In general, we observe that information retrieval is moving
from a document-centric to a query/user-centric approach,
and modern search engines are investing large amounts of re-
search in building better, more comprehensive query models.
The question that we address in this paper is whether it is
possible to extend the classical probabilistic formulation so
as to accommodate in a natural way these extended query
models for enhancing ranking, in both Web search and more
classical TREC-like retrieval settings.

Contribution.
Summing up, this paper aims at proposing an extension

of the probabilistic retrieval framework [30] that accounts
for the information coming from queries and documents.
Our approach can be seen as a principled way of integrating
query-document features into a BM25-based model [32], by
extending the event space using a number of operators that
derive from a query model [7]. For instance, both BM25
and BM25F [33] could be regarded as a special case of the
method presented here. The framework operates in a general
manner by means of a set of operators that are materialized
using query-derived information; each operator determines a
(possibly empty) virtual region within the document, that is
treated as a (weighted) field; query-term frequencies in each
virtual region are used to compute the final score of the
document. We shall frame our technique as an extension of
BM25(F) and describe how it can be implemented efficiently.
Finally, we provide experimental evaluation of our approach
showing that the usage of operators outperforms state-of-
the-art ranking that use just matching of query terms and
is especially helpful for difficult queries. The software im-
plementing our technique and used for the experiments will
be made available at http://mg4j.dsi.unimi.it/.

2. RELATED WORK
Some lines of research attempt at addressing the issue of

adding semantic information to documents and queries [22].
The model that we present (which could indeed encode [22]

as a special case) can be seen as a template for grounding
different graphical model instances, in the spirit of Markov
Logic Networks [18, 29], even though in this paper we make
no attempt to generalize the learning procedure of the prob-
abilities involved in the model, and the inference we perform
is restricted to one particular formulation and combination.
However, the very structure of our method allows one to
extend it to different combinations and aggregation func-
tionals over probability distributions. Robertson et al. [33]
introduced BM25F, a variation of BM25 that is able to deal
with matches of query terms in different fields of the docu-
ment, boosting them differently. Our framework stems from
the same fundamental notions of BM25F and BM25 (term
eliteness, re-weighting of term matches) and it is able to
extend/accommodate both.

There are several recent papers that deal with spans of
terms in ranking. Svore et al. [35] show that introducing
spans of terms as a further feature for machine learning
to rank model gives improvements over BM25. Other au-
thors have dealt with the issue of incorporating these spans
of terms into the language model framework, the first one
being the Markov Random Field (MRF) model of Metzler
and Croft [26], extending the language modeling framework
for information retrieval [27, 39] to handle term dependen-
cies. Some other approaches [11] compute the aggregated
distance of matches and add it to the BM25 score, or define
a kernel-like distance [23, 24] that can be successfully used
for ranking by plugging it into a language-model divergence
between the query and document estimation. One remark-
able model close to ours is that of Bendersky et al. [5], who
weight different query concepts using a parameterized com-
bination of diverse importance features: those concepts can
be single query keyword, phrases matching in the document,
or matches of keywords that span a window of a certain size.
The amount of matching concepts in the document are later
integrated into the MRF ranking model. In our case we
focus on extending BM25 and not the language modeling
framework, the core difference being in the way information
is aggregated for each term during ranking.

Besides taking spans into account, it may be beneficial to
adopt some additional query segmentation technique, try-
ing to grasp which words in a query should appear in shorter
spans (or even consecutively), as successfully attempted in [28,
19].

3. GOALS AND GUIDING EXAMPLES
As explained in the introduction, the basic approach of

this paper is to extract, from a given query, a number of
regions in the document using suitable operators. Alterna-
tively, you can think that a given input query is refined in a
number of different ways using some refinement operators,
that may (and typically will) use positional information; vir-
tual regions are then the regions matching each of the refined
queries.

As a concrete example, consider the following two opera-
tors:

• Φ1 requires that at least any two words in the query
appear either consecutively or with an extra word be-
tween them;

• Φ2 just requires that at least one of the query words
appears.
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One could think of them as query-refinement operators; for
example, using the query language syntax of MG4J [9], Φ1

applied to the query young nice girl gives rise to the query:1

(young nice)˜3 OR (young girl)˜3 OR (nice girl)˜3.

When a document is considered against this query, all the
areas where at least two of the three queried word appear
either consecutively or one word apart are selected. This
will determine a (possibly empty) sub-document, in which
we can count the frequency of each of the three query words.

Operators Φ2, instead, applied to the same query will pro-
duce

young OR nice OR girl;

and would just extract the occurrences of either of the three
query words from the document.

Clearly, a large frequency in the virtual region determined
by Φ1 would be far more predictive of relevance than that de-
termined by Φ2 (the latter would amount to actually count-
ing the usual term frequency in the whole document).

To gain some experimental support for this intuition we
performed the following experiment: we considered the top-
ics 701-850 from the TREC GOV2 collection, and built que-
ries using the words in their title. To each query, we applied
three operators: the plain or operator (corresponding to the
usual bag-of-words interpretation of the query), the 2-and

operator (satisfied only by documents that contain at least
any two of the query terms) and the 2-gram operator (sat-
isfied by documents that contain two terms consecutively).

Then, for each matching document, we computed the fre-
quency of the query terms within the virtual region and we
determined if the document was relevant or not; the frac-
tion of relevant documents is plotted against term frequency.
Figure 1 shows the results of the experiment, and provides
two fundamental evidences: first of all, stricter operators
(2-grams, for instance) provide for the same term frequency
a larger probability of relevance, as expected; secondly, the
behavior shows in all cases the well-known phenomenon of
saturation — as the frequency increases, relevance also in-
creases but at a slower and slower pace, giving rise to the
typical sigmoid-shaped function.

Our approach is blind with respect to the operators be-
ing considered, which is part of its generality. In our ex-
periments, among other operators, we employ a supervised
phrase and entity detection algorithm and feed the differ-
ent query chunks through the model in order to produce a
document score.

Most previous works have addressed the combination of
scores in a linear fashion: Bendersky et al. [5, 6] and Li
et al. [20] focused on extensions of the language modeling
framework. Linear combinations of features are able to bring
increased performance; however, when taking into account
evidence coming from the same source of information it is
beneficial to understand the distributional properties of the
signal the model has to deal with. In these cases, the in-
formation employed for ranking is always taken from the
number of times one term or a sequence of terms matches
a document. In contrast, if one was to incorporate other
features, like query-independent document quality [17], or
click-based information [1], a linear combination might be

1In MG4J, the ˜ operator restricts matches to a span of
words of a given maximum length.
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Figure 1: Term frequency versus probability of be-
ing relevant, depending on the operator applied to
the query. Curves are obtained fitting the points
through a spline with three degrees of freedom.

good enough, as long as the features integrated into the
model are not correlated. Note however that (somehow sur-
prisingly) even link-based features such as PageRank [10]
and BM25 [32] turn out to be non-independent, given the
presence of query terms in the anchor text of Web pages [17].

Not assuming feature independence is especially impor-
tant when devising more complex ranking models that em-
body a large number of features, such as those employed
in learned ranking functions [21]. In case of machine learn-
ing frameworks, this dependence is somehow captured by
the complexity of learned functions, which in general might
incorporate an over-engineering of features.

4. THE OPERATOR-BASED FRAMEWORK
Traditional probabilistic models, like BM25, assume that

the relevance of a document to a query can be determined
by aggregating individual contributions of the query terms.
That is, given the binary random variable R representing
relevance, and the vectors of random variables representing
the document D and query Q, we want to rank documents
according to their increasing odds-probability [30]. Here Q
is (or can be thought of as) a set of terms, while Dt is a
multi-state variable that encodes the features about the oc-
currence of term t in D (term frequency, position, etc.); we
assume that those features contain a natural zero, corre-
sponding to the absence of t and represented by 0. We let
d and q denote two actual realizations of D and Q, and r
(r) represent the event R = 1 (R = 0, respectively), i.e., the
document being relevant (irrelevant, respectively). Then,
within the probabilistic framework, documents are ranked
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t ∈ q

R
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Et

Figure 2: BM25 plate diagram representing the as-
sumptions over variable independence

according to p(r | Q = q,D = d), or equivalently

p(r | Q = q,D = d)

p(r | Q = q,D = d)
∝q

p(D = d | r,Q = q)

p(D = d | r,Q = q)

∝q

∏

t∈q

p(Dt = dt | r)

p(Dt = dt | r)

∝q

∑

t∈q,dt>0

log
p(Dt = dt | r) · p(Dt = 0 | r)

p(Dt = dt | r) · p(Dt = 0 | r)

∝q

∑

t∈q,dt>0

wt,d,

where wt,d is the weight assigned for term t in document d,
and you can think of dt as being the term frequency of t in
d, later on denoted by tft,d.

In the derivation above, we assumed the terms to be con-
ditionally independent, that is, p(Dt = x,Dt′ = y | r,Q) =
p(Dt = dt | r,Q) · p(Dt′ | r,Q) and p(Dt = x,Dt′ =
y|r,Q) = p(Dt = dt|r,Q) ·p(Dt′ |r,Q) for any pair of terms t
and t′; this is a weaker assumption than term independence,
in that we only require terms to be independent for each
fixed query and relevance; this assumption is fundamental
in practice, because it leads to tractable models, but it also
has a deeper justification: as [16] proved, conditional term
independence can be obtained when, for any given query,
terms are statistically correlated but the correlation is the
same on relevant and on non-relevant documents. Empir-
ical evidence on retrieval performances of BM25 suggests
that this indeed is often the case. For example, it is true
that query terms New and York are correlated in relevant
documents for the query New York pizza, but they are also
correlated in the whole collection.

Further, the derivation imposes a vague prior assumption
over terms not appearing in the query (p(Dt = x | r) =
p(Dt = x | r) if t /∈ Q). This can be weakened in the case of
query expansion by explicitly linking unseen query terms to
relevance.

The final arithmetic trick in the above derivation, known
as removing the zeroes, is used to eliminate from the final
score calculation terms that are not present in the document.

The determination of term weights in BM25 is based on
the assumption that there is an Elite random variable, which
can be cast as a simple topical model that perturbs the dis-
tribution of words over the text. That is [30], the author

is assumed first to choose which topics to cover, i.e., which
are the elite terms and which are not. Furthermore, it is
assumed that frequencies of terms on both the elite and the
non-elite set follow a Poisson distribution, with two different
means; in other words, for a given term t and for e ∈ {0, 1}
(denoting whether we are considering the term to be in the
elite or not), there is a random variable Et,e that expresses
the distribution of the frequencies of the (elite or non-elite)
term t in a document, and Et,e ∼ Poisson(λt,e); clearly,
we expect λt,1 > λt,0 (i.e., a single term will appear more
frequently if it is elite than if it is not). Plugging this as-
sumption in the general formula derived above determines
a monotonic weighting function with an horizontal asymp-
tote that may be interpreted as a form of saturation: the
probability of relevance increases with term frequency, but
the amount of increase is ultimately close zero when the fre-
quency becomes large. In practice, this is well approximated
by

wBM25
t,d =

t̂ft,d

t̂ft,d + k1
· widf

t

where widf
t is the inverse document frequency for term t (that

determines the asymptotic behavior when the frequency goes
to infinity), k1 is a parameter and t̂ft,d is a normalized term
frequency with respect to the document length, i.e.,

t̂ft,d =
tft,d

(1− b) + b · |d|/avdl
, (1)

where |d| is the length of document d, avdl the average length
of documents in the collection, and b ∈ [0, 1] is a tunable
parameter. Putting things together, the weight derived from
the 2-Poisson elite assumption wBM25

t,d is UBM25(t̂ft,d) where

UBM25(x) =
x

x+ k1
.

Regions and virtual regions.
In the following derivation we start again from the above-

mentioned estimation of

wBM25
t,d = log

p(tft,d = x | r) · p(tft,d = 0 | r)

p(tft,d = x | r) · p(tft,d = 0 | r)
.

Here, the only features that we need to observe are term
frequencies; this is a quite mild assumption and stems from
the idea that documents are a single body of text with no
structure whatsoever. Some earlier refinements of the prob-
abilistic model, however, already introduced the idea that
documents may have some structure. In BM25F [33], for ex-
ample, a notion of region was introduced: each document is
made up of regions, or fields, (e.g., title, body, footnotes etc.)
and it is possible to observe term frequencies separately in
each region. This extension accounts for the fact that some
fields may be more predictive for relevance than others (for
example, title will be more predictive than footnotes), and
fits well in the eliteness model. The idea is that eliteness of
terms is decided beforehand, for every given document, and
it is the same across fields; term-frequency, instead, will be
again modeled as in standard BM25, although it will be in-
fluenced by the length of each field—of course, shorter fields
(such as title) are expected to contain more elite terms than
longer ones.
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As said, the present paper extends this idea by defining
what we call virtual regions. Ideally, suppose that you have
some way (as yet unspecified) to single out some parts of the
document that you know will provide high-quality informa-
tion about relevance; then, you may think of that area as a
single virtual region, and apply to that region the evaluation
described for BM25F. Those virtual regions are actually ob-
tained by the query itself, through a process that we shall
now describe.

An operator is a function that associates, to a given query
and a given document, another document2 called a “virtual
region”. We are given a set of such operators, each endowed
with a weight, {〈Φj , wj〉}j∈M: for each query q and doc-
ument d, we individuate the virtual regions Φj(d, q) (the
region of document d matching query q according to opera-
tor Φj), and for each of them we count the term frequency
of each term t ∈ q in that virtual region; such a frequency is
denoted by tf

q,j
t,d (the term frequency of term t in the virtual

region of document d matching query q according to opera-
tor Φj); as it is customary in the RSJ model [31], we shall
omit the query q, and just write tf

j
t,d.

To capture this idea, as with BM25F, we proxy the depen-
dence of the eliteness of the occurrences using a set {Θj}j∈M

of Bernoulli random variables, which reflect the probability
of occurrences in each region generated from a particular
operator. De Finetti [8] proved that any set of exchangeable
random variables has a representation as a mixture distribu-
tion, in general an infinite mixture. Therefore we represent
the operators as

p(tfjt,d = x | r) =
∑

e∈{0,1}

p(tfjt,d = x | e, r)p(e | r) =

∑

q∈Q

∑

e,θ∈{0,1}

p(tfjt,d = x | Θj = θ, e, r)p(Θj = θ | e, r)p(e | r)

and similarly for p(tfjt,d = x | r). For x > 0, the first of the
three factors in the summation is zero if θ = 0, otherwise it
is λx

t,e ·e
−λt,e/x! (for the Poisson-mixture assumption). The

second factor for θ = 1 is just βj , the parameter that governs
the j-th Bernoulli Θj . The last factor is the probability that
the document is elite for the term if it is relevant.

Let us write λ (µ) for λt,1 (λt,0, respectively) and let p
(q) be the probability that a document is elite for the term,
given that it is relevant (irrelevant, respectively).

So

p(tfjt,d = x | r) =
λx

x!
e−λβjp+

µx

x!
e−µβj(1− p),

and similarly

p(tfjt,d = x | r) =
λx

x!
e−λβjq +

µx

x!
e−µβj(1− q).

Now following Robertson [30], we can divide both probabil-
ities by λxe−λ/x! getting

p(tfjt,d = x | r)

p(tfjt,d = x | r)
=

βjp+
(

µ

λ

)x
eλ−µ(1− p)

βjq +
(

µ

λ

)x
eλ−µ(1− q)

.

Observe that, since λ > µ, the latter tends to p/q as x → ∞,
as in [30].
2As explained in the next section, technically the operator
produces a set of queries that is then matched against the
document to obtain a virtual region, but the difference is
immaterial for the moment.

t ∈ q

j ∈ M

R

tf
j
t

Et

Θj

Figure 3: Plate diagram with the extended event
space.

The treatment for the case x = 0 is slightly more involved,
because

p(tfjt,d = 0 | r) = e−λβjp+ e−µβj(1− p) + (1− βj)

and similarly for the case of irrelevant documents: the last
summand depends on the fact that a term can have zero
occurrences in a region simply because of Θj ; so

p(tfjt,d = 0 | r)

p(tfjt,d = 0 | r)
=

e−λβjq + e−µβj(1− q) + (1− βj)

e−λβjp+ e−µβj(1− p) + (1− βj)

or equivalently

eµ−λq + (1− q) + 1
βj

− 1

eµ−λp+ (1− p) + 1
βj

− 1
.

This term behaves like (1 − q)/(1 − p), under the usual as-
sumption [30] that µ−λ is small, and assuming further that
βj is sufficiently close to 1.

4.1 Implementation of the system
We observe that our underlying retrieval system has a rich

query language, the set of whose queries is denoted by Q.
Every document d can be matched against the query q ∈ Q
producing a sub-document M(d, q) (i.e., a subsequence of
the words the document d is made of).3 This function is
naturally extended to sets of queries, by letting M(d,A) be
the union of all sub-documents M(d, q) for q ∈ A.

Conversely, a raw query is just a sequence of terms r =
〈t1, . . . , tu〉: this is what we suppose that the user inputs to
the system; the set of all raw queries is denoted by R.

An operator is a function Φ : R → 2Q mapping a raw
query to a set of queries. Here are some simple examples of
operators that we will be using in our experiments:

3The exact semantics of the match depends on the query
language and on the retrieval system used and will be not
described further, but see [9, 13] for two examples.
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• Φbag−of−words: maps a raw query 〈t1, . . . , tu〉 to the set
of queries whose element are the single terms (i.e., to
{t1, . . . , tu});

• Φp−grams: maps a raw query 〈t1, . . . , tu〉 to the set of
all p-grams of p consecutive terms in the query (i.e., to
{“t1 · · · tp”, “t2 · · · tp+1”, . . . , “tu−p+1 · · · tu”});

• Φp−AND: maps a raw query 〈t1, . . . , tu〉 to the set of
all conjunctions of p arbitrary terms in the query (e.g.,
for p = 2, to {ti AND tj | i 6= j});

• Φphrasal: maps a raw query 〈t1, . . . , tu〉 to the single
phrasal query “t1 · · · tu”;

• Φsegments: maps a raw query to the set of consecutive
terms that make up a concept (see Section 5 for a
complete description).4

Let now {〈Φj , wj〉}j∈M be a set of operators and weights;
for a fixed raw query r = 〈t1, . . . , tu〉, let tf

j
t,d be the number

of occurrences of term t in M(d,Φj(r)). The average term
frequency of term t in document d is then defined to be5

t̂ft,d =
∑

j∈M

wj · tf
j
t,d

(1− bj) + bj · |d|/avdl
.

The score of document d for query q is then computed as

∑

t∈q

t̂ft,d

t̂ft,d + k1
· widf

t ,

where the latter is the standard term idf.

BM25(F) as a special case.
Note that using a single bag-of-words operator reduces

our scoring formula to the usual BM25 score. Conversely,
suppose your collection has G fields, and let Φ1, . . . ,ΦG are
operators that work like a standard bag-of-words, but where
Φi tries to find matches only in field i. So, for example,
M(d,Φtitle(t)) would return the sub-document of the title
made only by the occurrences of term t. Then, an appli-
cation of the above formula would reduce to the standard
BM25F score.

4.2 Remarks and variants
BM25, following the original probabilistic relevance frame-

work, adopts a disjunctive semantics, that is, there is no
need for a document to contain every query term in order
to receive a non-zero score. The key point behind this as-
sumption is that we need an external mechanism to decide
which eliteness models we want to take into account for each
query, and this will simplify the number of estimations and
scores we need to compute. After that, it is important to

4Both the p-gram, the phrasal and the segment operators
can be endowed with an enlargement factor that allows for
some extra word to sneak in—also this point will be fully
explained in Section 5.
5The length-normalization factor here might actually be dif-
ferent for each virtual region, but this solution turns out to
be extremely expensive to implement, because the average
region length is unknown unless the whole collection is ex-
amined. A good approximation can be obtained by using
the standard document length as a measure of “verbosity”
of all the virtual regions it contains.

decide what is an appropriate shape of the functional esti-
mating relevance probability as a function of term scores: in
Section 3 we showed empirically that conjunctive and prox-
imity operator produce the same shape as in the 2-Poisson
eliteness model.

An issue raised by our model, and that we must take into
account, is the fact that the very same occurrence of a term
within a document will be counted more than once, because
virtual regions (differently from BM25F fields) may over-
lap. For instance, if we want to score separately matches
of stemmed query terms and matches of unstemmed query
terms we would be double-scoring some of the occurrences.
This remark calls for discounting signals coming from the
same source; one way to obtain this result would be to
establish some dependence between the operators Φj : in
the example above, we might correct the estimation using a
p(Θst

j | Θex
j , r) correction factor (here, and in the following,

the superscripts st and ex stand for “stemmed” and “exact”,
respectively).

In practice, however, we can avoid this estimation by re-
calibrating the different weights. We empirically know that
both exact and stemmed matches should contribute to the
score on which the saturation function is applied, and we
want to aggregate those contributions together, using the
proper weights. We can then correct the double counting
and substitute accordingly in equation (1) as

t̂ft,d =
wex · tfext,d · wex

idf

1− b0 + b0 · |dex|/avdl
ex +

wst · tfstt,d · wst
idf

1− b1 + b1 · |dst|/avdl
st

Some observations about possible variants of our model
are worth being remarked here:

• We could have used a different saturation function at
the eliteness level; in fact, as with BM25, we could in
principle learn the real function shape using an appro-
priately large dataset (but we would run the risk of

over-fitting, though). The one we adopted t̂f/(t̂f + k)
is appealing: it resembles a logistic function passing
through the origin and when the class conditional dis-
tributions p(x|r), p(x|r) belong to the same exponen-
tial family, the log-odds ratio of the class posteriors

log
(

p(r|x)
p(r|x)

)

will belong to a logistic family [4] (see also

[25] for a connection of the log-logistic model and the
term frequency normalization of BM25).

• We could have tackled the problem of incorporating
positional information within the probabilistic frame-
work by coming up with a higher-order model adding
the positions of terms as variables; as noticed, though,
this approach would lead either to an ad-hoc kernel-like
method or to an exponential number of parameters to
estimate. Given the scarcity of publicly available train-
ing data, and for the sake of domain transparency, we
believe that the proposed framework provides an ac-
ceptable solution and a good trade-off between learn-
ing requirements, complexity and performance.

• The operators that form the basis upon which our sys-
tem builds can be introduced in many ways: a set
of operators can be fixed and applied silently to all
queries introduced by the user, as a form of multi-
level enrichment (this is what we are assuming in the
rest of the paper), or it can be defined externally on a
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per-query basis, or on a per-query-type basis; we may
instead think that it is the user herself to introduce op-
erators in the query, which may be sensible and may
find applications in some contexts where users are ex-
pected to adopt a richer query language. Finally, it
is certainly possible to mix the two approaches, hav-
ing some operators introduced directly by the user and
others added automatically by the system.

5. QUERY CONCEPT SEGMENTATION
Albeit today’s search engines offer a limited number of op-

erators (phrasal, proximity etc.) most users tend to stick at
introducing plain queries, typically a sequence of few words
(about 3.08 on average, according to recent studies [36]).
Nonetheless, as observed previously [37], many queries are
actually made up by some basic conceptual units, each of
them being formed possibly by many words. For exam-
ple, the query indian summer victor herbert is clearly
formed by two conceptual elements (“indian summer” and
“victor herbert”, the former referring to a meteorological
phenomenon, the second to a person); breaking such concep-
tual units apart, or inverting the order of the words that la-
bel them, would produce information loss—of course, many
documents will contain both the words “indian” and “sum-
mer” without referring to “indian summer”; also “summer
indian”will also probably appear in some document, for ex-
ample in reference to summer indian food, without any rele-
vance to the concept sought. In some cases, it may be wise to
allow for one spurious word to be inserted within a segment
(so that, for example, san jose airport can also match the
sequence “San Jose international airport”, or george bush

match “George W. Bush”).
Among our goals, we would like the model to accommo-

date for query term-dependence, or concept-detection, at
the query level. For example, if there is evidence that the
query san jose aiport consists of two concepts, one re-
ferring to a city and the other one denoting a place or an
action, we would like the model to be able to weight dif-
ferently documents that only match one concept from those
that match both, taking also into account the distance be-
tween the terms making up the concepts. To this end, one of
our operators will employ query segmentation, an emerging
NLP task that aims at identifying sub-sequences of strings
that refer to a single unit or concept [7, 37], as described
above. There have been limited attempts to integrate seg-
ments into ranking [5, 6, 20] in the context of the language
modeling framework [39], but to the best of our knowledge
this is the first time that a similar attempt is being applied
to BM25-like techniques.

In the experimental section, we use both a segmentation
operator based on generative language models andWikipedia
(as described in [37]) and a simple operator extracting p-
grams of consecutive terms: the latter is of course less pre-
cise (because some p-grams do not correspond to concepts),
and is given a lower weight — it serves the purpose of identi-
fying possible word-sequences that for some reason the seg-
mentation algorithm failed to guess. Moreover, for both
types of operators we allowed for a variety of amount of
spurious words appearing in the segment: this is obtained
by introducing different enlargement factors µ (a multiplica-
tive factor determining the maximum allowed ratio between
the length of the span found and the length of the segment);

an enlargement factor µ = 1 corresponds to accepting only
exact matches, whereas for example allowing for an enlarge-
ment µ = 2 corresponds to accepting at most one extra word
for every single word in the segments (e.g., if the segment
is made up of two words, it is still acceptable if we find
them two words apart). Different enlargement factors are
used in the experiments, of course assigning larger weights
to smaller enlargements.

Collection Size Documents Topics
TERA04 436G 25M TREC 701-750
TERA05 436G 25M TREC 751-800
TERA06 436G 25M TREC 801-850
WEB 100G 10M 1000
WEB-Phrasal 100G 10M 400

Table 1: Data collections

6. EXPERIMENTAL RESULTS
We tested the usefulness and accuracy of the operators

described in Section 4.1 and 5 in a series of experiments.
We posit that query segments will only affect to a limited
number of queries in the data-set; however the working ques-
tion is whether combining them has some positive retrieval
effect or not. Retrieval performance is optimized iteratively
using MAP as a target metric. We sweep one parameter
at a time over the allowed parameter range, holding every
other parameter fixed, in a similar fashion to the method of
Metzler and Croft [26]. Each operator introduces two pa-
rameters: a weight wj controlling the relative importance of
the operator, and a factor bj determining the impact of term-
frequency normalization with respect to the corresponding
operator. Different enlargement factors µ (for segments, p-
grams and phrasal operators) are reported in separate rows
of the table, as well as different values for the number p
of consecutive terms that are considered while building p-
grams.

We report on MAP and P@10 and check for statistical
significance using a one-sided t-test with p < 0.05. The op-
erators are trained on two different Web collections: GOV2,
TREC’s Terabyte track collection [14, 15, 12], and a sub-
sample of the Web from 2011. The collections are described
in Table 1. Training and testing is performed on different
topic sets; for TREC topics, we train and test on differ-
ent years (train on TERA04, test on TERA05/06; train on
TERA05, test on TERA04), and for the Web collection we
perform 10-fold cross validation across the whole topic set.
For the TREC collection, we used the topic title as raw
query.

Table 2 presents the results of applying one single oper-
ator, combined with BM25 (that is, with the bag-of-words
operator). Experiments show that all the operators are able
to improve the performance on their own to a reasonable ex-
tent. The impact of single operators, specially the segments,
is limited. However, it is worth noting that the methods us-
ing a single operator that restrict the semantics of the match-
ing (like AND or segments) perform comparably to the best
values reported at TREC for early precision (P@20) [14, 15,
12]. Table 3 presents the results of combining segment and
p-gram operators with BM25 and BM25F. The different op-
erators have been chosen using various enlargement factors;
we further enriched the segment combination with a 2-gram
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TERA04 TERA05 TERA06
MAP P@10 P@20 MAP P@10 P@20 MAP P@10 P@20

BM25 0.2648 0.5327 0.5071 0.3228 0.6140 0.5600 0.2928 0.5380 0.5140
BM25F 0.2697 0.5510 0.5143 0.3284 0.6200 0.5570 0.2935 0.5460 0.5160
p-AND p = 2 0.2679 0.5429 0.5286 0.3396* 0.6260 0.5920 0.3069 0.5900 0.5300
phrasal µ = 3 0.2673 0.5306 0.4939 0.3369* 0.6060 0.5790 0.3082* 0.5720 0.5290
segment µ = 1 0.2685* 0.5143 0.4970 0.3274 0.6080 0.5580 0.3180* 0.5860 0.5350
segment µ = 1.5 0.2695* 0.5347 0.5010 0.3272 0.6140 0.5620 0.3122* 0.5940 0.5460
segment µ = 3 0.2690* 0.5143 0.5204 0.3295* 0.6300 0.5840 0.3277* 0.5940 0.5460
p-grams p = 2,µ = 1 0.2786* 0.5530 0.5120 0.3294 0.5860 0.5470 0.3137* 0.5860 0.5470
p-grams p = 3,µ = 1 0.2670 0.5060 0.4950 0.3272 0.5980 0.5560 0.3198* 0.6160 0.5600

Table 2: Performance of single operators (* = statistical significance at p < 0.05 using a one-sided t-test with
respect to BM25, MAP only).

operator. The purpose of this experiment is to determine
whether the sigmoid-like term-frequency normalizing func-
tion is able to accommodate for different features which stem
from the same source of evidence (matches of the query term
in the document). Results are significantly better than the
baseline and outperform state-of-the-art ranking functions
that just use matching of query terms (note we are not
adding query-independent evidence, like link information,
click-through data, etc.). For instance, the best MAP value
for TREC 2004 at TERA04 [14] was 0.2844, the sequential
dependence model of the Markov random field for IR peaks
at MAP 0.2832 [26] and the two-stage segmentation model
of Bendersky et al. had an average MAP of 0.2711 over the
150 topics [5].

In order to explore further the usefulness of query segmen-
tation and p-grams for difficult queries, we selected a sub-
sample of 1000 queries taken from Yahoo! Search; the data
corpus was a 100GB sub-sample of the Web. The queries
had been evaluated by a trained editorial team, with about
130 judged documents per query on average: relevance was
assigned on a 4-level scale, from Bad to Excellent ; given
that we had graded relevance available, we report on NDCG
(gain values at the relevance level, from 0 to 4) and MAP.
The average query length was 3.14. We report the perfor-
mance of BM25 and BM25F as baselines. In addition, we
selected a sub-sample of 400 queries where the user herself
had employed query segments (i.e., phrasal queries), and re-
moved the segmentation information. This experiment was
aimed at establishing if a more elaborate query interpreta-
tion mechanisms is able to be of help in these cases.

Table 4 shows that segmentation and p-grams, when mixed
with the operator combination are able to improve the per-
formance of a large number of Web queries. When looking
at the differences between the regular and phrasal queries,
we observe that gains, even if consistent over the two differ-
ent sets, are slightly higher in the second group (≈ 12.3%
vs. ≈ 7.1% in MAP for p-grams vs. BM25F). This fact in-
dicates that the method is helpful for queries that contain
difficult concepts, as they have been expressed by users man-
ually, whereas maintaining the performance of queries in
which identifying concepts is not so critical and standard
bag-of-word approaches perform as well.

Anecdotal study.
It is useful to look into the reasons behind the increased

retrieval performance we observed in our experiments; with
this goal, we considered separately the mean average pre-

cision on each of the TREC topics 701-850 and examined
the ten queries that produced the largest difference in pre-
cision between our system and the BM25 baseline. Table 5
shows the queries that obtained the greatest benefit from the
use of segmentation and/or p-gram operators: in the right-
most column of the table, we identified the segments (or the
p-grams) that most contributed to the increased precision,
allowing to retrieve relevant documents that BM25 missed
(because they were ranked too low).

7. CONCLUSIONS AND FUTURE WORK
In this paper we proposed a way to extend the proba-

bilistic relevance framework with a notion of virtual region
based on the use of operators applied to the query. Our
experiments (both on standard collections, such as TREC,
and on other Web-like repertoires) show that the use of vir-
tual regions is especially beneficial for hard queries where
positional information is actually precious. The method has
room for improvements and further study should be under-
taken to understand which operators are more useful and
under which circumstances. Even if we explored a reason-
able number of combinations, we have not made any sys-
tematic attempt to develop a method to select the individ-
ual best operators; we just limited ourselves to handpick a
few—it was out of the scope of this paper to analyze auto-
mated operator selection. In contrast, a machine learning
approach [3] would derive features for as many operators as
possible and try to combine them optimizing a loss function
of MAP or NDCG [38]. One might even envisage the adop-
tion of a query-classification tool to decide which operators
should be used, based on the presumed nature of the query.
In any case, our experiments show the practical usefulness of
the non-linear operator score combination for retrieval [33].
As a final remark, it is interesting to observe that most of
the studied operators (actually, all of them except for seg-
ments) do not employ any source of external information,
and still produce a significant performance improvement.
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