
Institute of Architecture of Application Systems
University of Stuttgart
Universitätsstraße 38
D–70569 Stuttgart

Diplomarbeit Nr. 3389

Extending BPMN for Wireless
Sensor Networks

C. Timurhan Sungur

Course of Study: Computer Science

Examiner: Frank Leymann

Supervisor: Oliver Kopp, Patrik Spiess, Nina Oertel,
Sema Zor

Commenced: August 17, 2012

Completed: February 16, 2013

CR-Classification: H.4.1, K.1

Abstract

As theWireless sensor/actuator networks (WSNs) started to be deployed in enterprise scenarios,
the need of integration of WSN applications with enterprise business processes has emerged.
Creation of the WSN applications in enterprises, however, requires much low-level programming,
and this causes the loss of focus on the high level goals. Therefore a model-driven approach
is needed. As Business Process Model and Notation (BPMN) is the de-facto standard of
modeling business processes, it is suitable for companies to use BPMN for the model-driven
approach. In this work, first we analyze the WSN properties, which distinguish them from
traditional IT systems. Thereafter, we analyze the general properties of BPMN which need
to be preserved to keep the common understanding that BPMN brings. As a result, we end
up with some properties that are relevant with modeling WSN processes in BPMN. From
these properties, we derive the requirements for modeling WSNs and propose some extensions
to standard BPMN. These extensions include a new type of task, a new type of pool and
a new grouping structure to set performance goals of the corresponding WSN. Afterwards,
we analyze the current state of art to compare our approach with other possible approaches.
Specifically, we compare our approach with standard BPMN, BPM4People extensions with
respect to requirements and show that why our proposals provide a more comprehensive and
suitable approach.

3

Contents

1 Introduction 11
1.1 Motivation . 13

1.1.1 Reasons for Choosing BPMN . 14
1.1.2 Model-driven Development of WSNs . 14

1.2 Methodology . 15

2 Background on WSNs and BPMN 19
2.1 WSN Properties . 19

2.1.1 Dynamic Addition and Removal of Wireless Sensor Nodes (WP1) 19
2.1.2 Categories of WSN Operations (WP2) 19
2.1.3 Limited Operations Available in WSNs (WP3) 20
2.1.4 Parallel Execution of the Same Process Logic in one Application (WP4) 20
2.1.5 Distributed Nature of WSN Applications (WP5) 21
2.1.6 Limited Resources and Error-prone Nature of WSN Nodes (WP6) . . . 21
2.1.7 Event-driven Nature of WSNs (WP7) 21
2.1.8 Different Type of Nodes (WP8) . 21
2.1.9 Dense Deployment of Nodes (WP9) . 22
2.1.10 Different Interaction Patterns in WSNs (WP10) 22

2.2 BPMN Properties . 22
2.2.1 Dimensions of a Business Process Activity (BP1) 22
2.2.2 Different Levels of Modeling (BP2) . 23
2.2.3 Cognitive Effectiveness of BPMN (BP3) 23
2.2.4 Extensbility Mechanism of BPMN (BP4) 24
2.2.5 Modifiability of Process Models (BP5) 29

2.3 Summary . 29

3 Requirements for WSN-specific BPMN 31
3.1 Evaluation of WSN Properties . 31

3.1.1 Dynamic Addition and Removal of Wireless Sensor Nodes (WP1) 31
3.1.2 Categories of WSN Operations (WP2) 31
3.1.3 Limited Operations Available in WSNs (WP3) 32
3.1.4 Parallel Execution of the Same Process Logic in one Application (WP4) 32
3.1.5 Distributed Nature of WSN Applications (WP5) 32
3.1.6 Limited Resources and Error-prone Nature of WSN Nodes (WP6) . . . 32
3.1.7 Event-driven Nature of WSNs (WP7) 32
3.1.8 Different Type of Nodes (WP8) . 32
3.1.9 Dense Deployment of Nodes (WP9) . 33

5

3.1.10 Different Interaction Patterns in WSNs (WP10) 33
3.2 Evaluation of BPMN Properties . 33

3.2.1 Dimensions of a Business Process Activity (BP1) 33
3.2.2 Different Levels of Modeling (BP2) . 33
3.2.3 Cognitive Effectiveness of BPMN (BP3) 33
3.2.4 Extensbility Mechanism of BPMN (BP4) 34
3.2.5 Modifiability of Process Models (BP5) 34

3.3 Requirements . 34
3.3.1 Support for Indirect and Dynamic Addressing of Nodes (R1) 34
3.3.2 Support and Restrict User to WSN Operation Categories (R2) 35
3.3.3 Limit Available Operations for WSNs (R3) 35
3.3.4 Support for Multiple Instances of the Same Process (R4) 35
3.3.5 Distribution of Execution Logic into WSN (R5) 36
3.3.6 Prioritization of Performance Goals (R6) 36
3.3.7 Support for Event-driven Actions in Modeling (R7) 36
3.3.8 Models should be stable on minor WSN changes (R8) 36

3.4 Summary . 37

4 Solution Proposals 39
4.1 WSN Task . 39

4.1.1 tWSNOperation . 40
4.1.2 actionType . 42
4.1.3 isCommandAction . 42
4.1.4 tWSNPerformer . 43
4.1.5 isEventDriven . 45

4.2 WSN Pool . 45
4.3 Performance Annotations . 46
4.4 Summary . 48

5 Related Work 51
5.1 Summary . 53

6 Evaluation 55
6.1 Support for Indirect and Dynamic Addressing of Nodes (R1) 55

6.1.1 Standard BPMN . 55
6.1.2 BPM4PEOPLE . 56
6.1.3 BPMN4WSN . 56

6.2 Support and Restrict User to WSN Operation Categories (R2) 56
6.2.1 Standard BPMN . 56
6.2.2 BPM4PEOPLE . 56
6.2.3 BPMN4WSN . 57

6.3 Limit Available Operations for WSNs (R3) . 57
6.3.1 Standard BPMN . 57
6.3.2 BPM4PEOPLE . 57
6.3.3 BPMN4WSN . 57

6

6.4 Support for Multiple Instances of the Same Process (R4) 58
6.4.1 Standard BPMN . 58
6.4.2 BPM4PEOPLE . 58
6.4.3 BPMN4WSN . 58

6.5 Distribution of Execution Logic into WSN (R5) 58
6.5.1 Standard BPMN . 58
6.5.2 BPMN4WSN . 58

6.6 Prioritization of Performance Goals (R6) . 59
6.6.1 Standard BPMN . 59
6.6.2 BPMN4WSN . 59

6.7 Support for Event-driven Actions in Modeling (R7) 59
6.7.1 Standard BPMN . 59
6.7.2 BPMN4WSN . 59

6.8 Models should be stable on minor WSN changes (R8) 60
6.8.1 Dynamic Addition and Removal of Wireless Sensor Nodes (WP1) 60
6.8.2 Categories of WSN Operations (WP2) 60
6.8.3 Limited Operations Available in WSNs (WP3) 61
6.8.4 Limited Resources and Error-prone Nature of WSN Nodes (WP6) . . . 61
6.8.5 Event-driven Nature of WSNs (WP7) 62
6.8.6 Conclusions . 62

6.9 Interpretation of the Comparison . 63
6.10 Classification of BPMN4WSN Extensions . 64
6.11 Summary . 66

7 Architecture and Implementation 67
7.1 Architecture . 68

7.1.1 Signavio Core Components . 68
7.1.2 Extension Mechanism of SCC . 69
7.1.3 Application Flow . 70
7.1.4 Updated SCC with the Extensions . 70

7.2 Implementation . 72
7.2.1 WSN Task . 72
7.2.2 WSN Pool . 74
7.2.3 Performance Annotations . 74

7.3 Summary . 76

8 Summary and Outlook 77
8.1 Summary . 77
8.2 Outlook . 79

Bibliography 81

7

List of Figures

1.1 The model-driven development of WSNs. 16
1.2 The thesis methodology model. 17

2.1 Busines Process Life-cycle [Obj11] . 23
2.2 Manual Task Extension: Telephone Task . 27

4.1 WSN Task class diagram. 39
4.2 The WSN Task with different action type representations. 41
4.3 WSN Pool and Performance Annotations class diagram. 46
4.4 A ventilation business process with the extended BPMN. 48

6.1 A ventilation business process with standard BPMN. 55
6.2 The aggregation is now done at the “Room Controller” pool. 61

7.1 Deployment diagram of “Signavio Core Components”. 67
7.2 Activity diagram of modeling with “Signavio Core Components”. 71
7.3 Activity diagram of modeling WSN processes in makeSense. 73

8.1 Thesis methodology model with results. 78
8.2 The place of this thesis work in the model-driven chain. 79

List of Tables

2.1 BPMN XML Schema and MOF Meta-model Extension Element Mappings [SCV11] 25

3.1 Evaluation of WSN properties. 34
3.2 This table shows which requirements are based on which properties. 37

4.1 Solution Requirement Mapping . 47

6.1 Evaluation of the requirement “Models should be stable on minor WSN changes
(R8)”. 62

6.2 Evaluation of different approaches with requirements. 63

8

List of Listings

2.1 baseElement schema definition [Obj11] . 25
2.2 extensionElements XML Schema [Obj11] . 25
2.3 Extension Schema Example: Telephone Task 26
2.4 Extension Schema Example: Telephone Task (Modified) 27
2.5 A Concrete Example Based on the Created Schema 28

4.1 WSN Task XSD definition . 40
4.2 WSNOperation XSD definition . 41
4.3 WSN ActionType XSD definition . 42
4.4 WSN isCommandAction XSD definition . 42
4.5 WSNPerformer XSD definition . 44
4.6 WSN isEventDriven XSD definition . 45
4.7 WSNPool XSD definition . 46
4.8 Performance Annotation XSD definition . 47
4.9 XML excerpts of the extended BPMN model from the Figure 4.4 48
4.10 <extensionElements> of the "Calculate CO2" WSN Task from the extended

BPMN model in Figure 4.4 . 49

9

1 Introduction

Internet of Things (IoT) by definition references two different concepts: “Internet” and “Things”.
‘Things” refers to smart objects which provide a way of communicating with real world [Fri11].
Those things or objects are currently examples of RFID tags, wireless sensors, actuators, mobile
phones, etc. Because of non-passive and reactive behavior of WSNs unlike the most RFID tags,
they will be an important part of IoT [AIM10]. Technological advances of Wireless Sensor
Networks provided easier establishment and operating of Wireless Sensor Networks (WSNs).
Low costs resulted in new types of application fields of WSNs [SMZ07]. WSNs provide a way of
communication with real world by sensing it and reacting to the values sensed [MP11] [AIM10].
As a more concrete definition: “A WSN is a distributed system, namely a network of wireless,
battery-powered, autonomous, small-scale devices, so called nodes, each of which is equipped
with one or more sensors or actuators or both.” [TSD+12]

A WSN node can also have different type of components such as location finder, mobilizer,
power generator etc [ASSC02a]. These difference between type of hardware on nodes would
define their role assignments, e.g., the nodes with temperature sensors would have sensor and
temperature roles [CB11]. With variety of sensors provided on wireless sensor nodes, different
type of application scenarios can be created. The type of sensors can be listed as [ASSC02a]:

• “temperature,

• humidity,

• vehicular movement,

• lightning condition,

• pressure,

• soil makeup,

• noise levels,

• the presence or absence of certain kinds of objects,

• mechanical stress levels on attached objects, and

• the current characteristics such as speed, direction, and size of an object”.

Some of the application scenarios that can be created using the type of sensors mentioned
above can be listed as [ASSC02b]::

• Military applications

– Monitoring friendly forces, equipment and ammunition

11

1 Introduction

– Battlefield surveillance

– Reconnaissance of opposing forces and terrain

– Targeting

– Battle damage assessment

– Nuclear, biological and chemical attack detection and reconnaissance

• Environmental applications

– Forest fire detection

– Biocomplexity mapping of the environment

– Flood detection

– Precision agriculture

• Health applications

– Telemonitoring of human physiological data

– Tracking and monitoring doctors and patients inside a hospital

– Drug administration in hospitals

• Home applications

– Home automation

– Smart environment

• Other commercial applications

– Environmental control in office buildings

– Interactive museums

– Managing inventory control

– Vehicle tracking and detection

Some of the scenarios that have been listed above can be used in enterprises, e.g., “Environmen-
tal control in office buildings”, “Managing inventory control”, “Vehicle tracking and detection”,
etc. Some of these industrial applications have been surveyed in the works of Pentikainen
et al. [PHM+08] and Edwin et al. [EPKG12]. In enterprise scenarios, usage of WSNs can
lower the maintenance costs and can result in more flexible applications because no wired
infrastructure is needed. Moreover they can make possible some maintenance applications
which are not normally possible with a wired infrastructures [PHM+08]. WSNs are ad-hoc net-
works with special characteristics. These characteristics can be listed as [PHM+08, ASSC02b]:
[GZBD11, TSD+12]

• Dense deployment and large number of nodes

• Nodes are failure-prone

12

1.1 Motivation

• There is dynamic topology formation which changes frequently

• Limited resources (computation, power, memory)

Because of characteristic properties of WSNs, realization of WSNs is a challenge. During this
realization, one should consider the following properties of the network [ASSC02a]:

• Fault-tolerance

• Scalability

• Cost

• Hardware

• Topology

• Environment

• Power Consumption

Among the above constraints, especially, power-constraints play an important role in realization
of sensor networks, since the sensor network nodes carry limited or irreplaceable energy units
all design decisions should consider limitation on power consumption [TSD+12]. Changing the
battery of the nodes increase the operation costs of the WSNs and this change might take the
feasibility of establishing a WSN.

The current state of art in the development of WSNs is model-driven development due to too
much effort spent during development of low level functionality (see Subsection 1.1.2). The
modeling need of WSN enabled business processes is emerged with enterprise usage scenarios
of WSNs. As BPMN is a commonly used modeling language for business processes and the
created models can be executed with necessary execution details, BPMN would be a good
candidate to create models of WSN processes (see Subsection 1.1.1).

makeSense project is an EU project1 which delivers a tool-chain to create deployable binaries
fromWSN process models which have been modeled using BPMN. This thesis work is conducted
under makeSense and concentrated on BPMN part of the tool chain. Moreover this work is
based on the extensions provided by Tranquillini et al. [TSD+12]. In the following section,
we will define motivations behind choosing BPMN as the modeling language and behind the
model-driven approach of WSN applications. After that, we will explain the methodology of
this thesis work and give an outline of the thesis.

1.1 Motivation

In the following subsections, we will describe the motivations behind choosing BPMN and why
a model-driven development is needed for WSN applications.

1http://www.project-makesense.eu

13

http://www.project-makesense.eu

1 Introduction

1.1.1 Reasons for Choosing BPMN

It is easier for business experts to model their business processes in a visual way [KAA97].
A well-known OMG standard is UML and its activity diagrams (ADs) is suitable for that
however the aim of UML is not business processes but software systems. Even though business
experts can reflect their business processes using UML ADs, they want an executable model
which is not provided by ADs.

For such situations BPMN 2.0 is suitable, because BPMN 2.0 has its operational semantics, i.e.,
there are workflow engines which run BPMN and also BPMN has a subset of elements from
BPEL [Org07] and this makes BPMN 2.0 partially convertible to BPEL [SKI08]. Hereafter
BPMN 2.0 will be used interchangeably with BPMN.

Because the business processes reflected will be executable business processes partially on
WSNs and workflow engines, we opt for BPMN to model such processes. BPMN has the
properties that satisfy our requirements, i.e.:

• BPMN 2.0 has a well-known visual representation and is commonly used.

• BPMN 2.0 is executable.

• Direct conversion from BPMN 2.0 to BPEL is possible to some extend.

• There are open-source workflow engines which support BPMN 2.0, e.g., Activiti.

• BPMN 2.0 is extendable in case it is needed.

However, standard BPMN might be an over generalization and an extension might be required
to address domain specific properties of WSNs.

1.1.2 Model-driven Development of WSNs

In WSNs, the importance of hardware cannot be undervalued but in order to use this hardware
effectively, there is a need of proper software platforms available to software developers [MP11].
Sensing, processing and communication under a resource-constrained environment requires
consideration from different layers of network stack, i.e., distributed signal/data processing,
medium access control, communication protocols [BCDV09]. These programming challenges
including scale and complexity of application, make the development effort complicated, time
consuming and error-prone and creates a need for higher level of abstractions [ADBS09]. There
are some approaches being proposed to achieve easy development, and provide users higher-level
constructs for programming, e.g., node-centric programming and macro-programming. The
former represents an abstraction at a level of node, local actions of a node and the latter
represents a higher level of abstraction, i.e., at the level of network [GGG05]. Regardless from
these advancements, still the weakest link of Wireless Sensor Networks is programming of
these networks [MP11]. By raising the level of abstraction for programmers instead of making
them to deal with too many low-level details, this problem can be solved [EBSK10].

14

1.2 Methodology

High coupling between application logic and underlying sensor leaves WSN projects with
platform dependent code which is difficult to maintain, modify and re-use. This can be avoided
by using abstraction of low-level details and by representing the domain features with the
languages that domain experts are familiar to [RDD+11]. These abstractions should not be
over generalized nor over specialized [ADBS09].

The programming challenges of WSNs can be overcome by using model-driven approaches. By
this way WSNs can be used without dealing with low-level programming details. WSNs have
enterprise usage scenarios, these scenarios would make BPMN a suitable modeling language to
integrate enterprise scenarios in enterprises. makeSense is an European Union (EU) project
where a tool-chain has been propose to model business processes in BPMN. The necessary
implementation details are added to these BPMN models afterwards these models are used to
create binaries which will be deployed on WSN nodes. To achieve this we need a means to
create BPMN models with necessary details that cover all relevant WSN properties.

The general flow of the model-driven code generation is shown in Figure 1.1. A BPMN model
references WSN operations, modes, etc. This BPMN model is used to generate binaries in
a tool chain which are deployed on the nodes as a next step. After WSN application is
set-up using these WSN execution ready nodes, the WSN nodes execute the process modeled
previously.

1.2 Methodology

In this thesis work, we define some BPMN extensions, which do not change semantics of
standard BPMN and adds the necessary details to make models executable. To create these
extensions, we need to analyze the properties that make WSNs unique and we need to analyze
important and relevant BPMN properties which might be important during creation of the
WSN extensions. These properties are later on used to derive our requirements from which
we create our extensions. During extensions we do not change existing BPMN semantics. A
summary of the thesis work can be found in the Figure 1.2

The “Literature Review” task in this work can be described in three steps as suggested by Eli
et al. [LE06]. As the input phase, we analyzed literature related with WSNs, BPMN, BPM,
Cognitive Effectiveness of BPMN etc. Main focus during literature review was to understand
distinguishing properties of WSNs from standard business processes and the properties of BPMN
properly. After necessary processing, the list of properties and corresponding descriptions can
be found in Chapter 2. Another part of the literature review was analyzing the input about
the current state of art which can be found in Chapter 5. During literature review, we used
backward and forward search methods as suggested by Eli et al. [LE06].

The properties found during “Literature Review” are analyzed in the following tasks, i.e.,
“Analyze BPMN Properties” and “Analyze WSN Properties”. The analysis can be found
in Chapter 3. From this analysis, we elect related properties from different both BPMN and
WSN domains (see Section 3.2 and Section 3.1).

15

1 Introduction

BPMN Model

WSN Related
Data

deployed-on

used-by

used-by

creates

WSN Nodes

references

Deployable
Binaries

Code Generator

Figure 1.1: The model-driven development of WSNs.

In the Section 3.3, we derive our requirements from the properties that we have found related.
By defining our requirements, we conclude the task “Derive Requirements” in the methodology
model (Figure 1.2).

In the next task “Create Solution Proposals”, we propose our extensions which satisfy the
requirements that we have previously defined (see Chapter 4). During creation of these
extensions, we use the BPMN extension methodology and we preserve semantics of the existing
BPMN properties (see Section 2.2).

As final step task, we evaluate our approach by comparing it with the current state of art.
The evaluation can be found in chapter 6. By providing this evaluation, we conclude the task
“Evaluate Solution Proposals”.

16

1.2
M
ethodology

Literature
Review

Other
Approaches

(Chapter 5)
BPMN Properties
(Section 2.2)

WSN Properties
(Section 2.1)

Analyze BPMN
Properties

Related BPMN
Properties

(Section 3.2)

Related WSN
Properties

(Section 3.1)

Analyze WSN
Properties

Derive
Requirements

Create Solution
Proposals

Solution Proposals
(Chapter 4)

Requirements
(Section 3.3)

Evaluate Solution
Proposals

Other
Approaches

(Chapter 5)

Figure 1.2: The thesis methodology model.

17

1 Introduction

This work is conducted under makeSense project and solutions are based on the extensions
provided by Tranquillini et al. [TSD+12]. In the following chapters we will firstly analyze
WSN and BPMN properties (see Chapter 2), define our requirements based on these prop-
erties (see Chapter 3), propose our extensions (see Chapter 4) and compare our solution
proposals with already existing solutions (see Chapter 6). In the following chapter, we describe
how we extended a modeler with our extensions (see Chapter 7). In the last chapter, we will
give a summary and an outlook about our contribution (see Chapter 8).

18

2 Background on WSNs and BPMN

In the following sections, we will first introduce properties of WSNs. Other properties can
be added to these properties however we present the ones that we found most significant.
After presenting WSN properties, we go through some general properties of BPMN and
corresponding business management systems.

2.1 WSN Properties

In the following sections, we will introduce some general properties of WSNs. Although all of
these properties are important for wireless sensor networks, not all of them are relevant during
business process modeling. In Section 3.1, we will give the reasoning of which properties are
relevant with business process modeling.

2.1.1 Dynamic Addition and Removal of Wireless Sensor Nodes (WP1)

In WSNs, to increase sensing accuracy or to increase the coverage area of the WSN, new nodes
can be added even after application has been started. Moreover, nodes might turn off as a
result of exhausting their limited energy resources [SMZ07, ASSC02b]. This is why, for WSNs,
direct addressing, i.e., addressing single nodes by unique identifiers, is in general not beneficial.
An attribute based, indirect addressing can solve this problem [MP11]. For indirect addressing,
general common properties of the nodes are used to address them instead of their uniquely
identifying properties, e.g., “sensors”, “temperature sensors”, “sensors in room number 5”, etc.
In contrast, direct addressing of a node can be the MAC address of this node where a unique
identifier of the respective node is used. The target nodes referred to by indirect addressing
can either be identified during run-time or during creation of executable code which will be
deployed on nodes.

2.1.2 Categories of WSN Operations (WP2)

Regarding WSN operations, one can distinguish between local and command actions. A local
action is an operation that is actually executed at a specific node on which it is invoked. A
command action involves sending a message to remote nodes, triggering them to perform an
operation. Command actions enable a more dynamic environment, because WSN nodes can be
commanded to execute operations based on run-time decisions, e.g., after a local sense action,

19

2 Background on WSNs and BPMN

based on the results, nodes might be commanded to actuate. Both the command and local
actions can be type of either [TSD+12]:

• Sense Used to analyze surrounding environment,e.g., sensing temperature, pressure, etc.
Usually, this operation creates some output data.
• Actuate Used to manipulate surrounding environment (e.g., increase ventilation) or to
signal to the user (e.g. by flashing an LED indicator)
• Intermediary operation

– Send/receive data from outer world, e.g., the sensed values.
– Make decisions, e.g., decide if the temperature is above the threshold.
– Do computations on received data, e.g., average of CO2 data.

Both local and command actions may create output values, which are consumed by other
nodes [AK04]. Especially, sense actions create data, which is consumed by other nodes later
on for some application specific purposes. Successively sensing and using this created data can
be called combined operations because they can not be executed independently, i.e., execution
of the latter operation depends on the created output data of the former one. Sensing presence
data (of people in a space) would be composed of two steps: sensing presence and aggregating
it to predict presence more precisely. This implies that a WSN action might be composed of
an initial operation which outputs data and another operation which inputs the output data
of the initial one.

2.1.3 Limited Operations Available in WSNs (WP3)

WSN applications are applications with no human involvement. After deployment, they
operate automatically [ASSC02b]. Usually, WSNs do not receive manual input and none of
the tasks in a WSN centric process is executed manually. Changing some WSN nodes can be
an example of a manual operation however this would not affect the process flow.

2.1.4 Parallel Execution of the Same Process Logic in one Application (WP4)

Computations in a WSN can be done as local on node, as a group or in a global setting. Some
WSN applications can execute the same process logic at different regions of the WSN in one
application [MP11]. A simple example is an air-conditioner system of multiple meeting rooms
that is operated with a WSN. In this example, there might be multiple meeting rooms running
different instances of the same process.

In case of Wireless Sensor Network applications, there can be two level of parallelism. The
first is at the node level and the second is at process level. Different nodes in the same process
might be executing the same operation. Usually, these group of nodes are selected by using
attribute based addressing, by this way addition and removal of nodes are more flexible than
direct addressing.

20

2.1 WSN Properties

2.1.5 Distributed Nature of WSN Applications (WP5)

To reduce the power consumption and to remove a central point of failure, WSN applications
are executed in a distributed fashion, i.e., by not making computations on a single powerful
node. The execution logic is distributed on multiple powerful nodes. Moreover, by having
multiple nodes executing operations instead of a single powerful node, the response time of
WSNs to events and power consumption of nodes decrease. This makes WSNs more suitable
for real-time applications and prolongs the life time of the WSN application [AK04].

2.1.6 Limited Resources and Error-prone Nature of WSN Nodes (WP6)

WSN sensor nodes typically have limited resources, among which battery plays a critical
role. These limited resources and their deployment environment make nodes prone to fail-
ures [ASSC02b]. There is a tradeoff between power-consumption and amount of communication
in WSNs [ASSC02b]. WSNs provide different routing protocols with different properties such
as low-cost maintenance, simplicity, network life time, node life time, etc... [SMZ07, ASSC02b]
and currently available programming abstractions of WSNs can hide these details under
some level of abstraction. By reducing constraints on power consumption, nodes can can
communicate more effectively and reliably, however this would result in shorter running WSN
application. The degree of power consumption would affect the non-functional properties of
the respective WSN application such as response time, total running time of the WSN, etc.

2.1.7 Event-driven Nature of WSNs (WP7)

Communication is the most expensive operation in WSNs [ASSC02b]. Behavior of event-driven
operations is quite different from periodic operations because they are halted until an event
triggers them whereas periodic operations are executed in certain time intervals and return
the result as soon as they are called [MP11, CB11]. During the execution, event-driven
operations communicate less than periodic operations since they go into an idle mode until the
specified event happens. Consequently, event-driven operations consume less energy compared
to periodic operations [MP11, CB11]. An example of event-driven operations in a WSN can be
a set of nodes that check if a door is open or not. If the observed door has been opened, they
communicate to inform the sinks. In case of periodic action, the sensors would not wait for
event to happen but they would inform the sinks periodically about the status of the door.

2.1.8 Different Type of Nodes (WP8)

In a WSN, there can be nodes with various hardware specifications. The selection of hardware
can prolong life time of the WSN, increase data accuracy and decrease failure ratio. With the
help of hardware specifications, roles can be assigned to nodes which can be used during the
node selection later on [CB11, ASSC02b].

21

2 Background on WSNs and BPMN

2.1.9 Dense Deployment of Nodes (WP9)

In WSN nodes are densely deployed in order to decrease communication costs [ASSC02b]. This
property is important during creating routing algorithms, failure tolerance levels, scalability,
etc. of WSN however, they do not add a business value and there is nothing to be represented
about them at the level of business modeling. After business analysis if there was a problem
at that step, then these properties might be re-configured.

2.1.10 Different Interaction Patterns in WSNs (WP10)

There are three categories of interactions in Wireless Sensor Networks [MP11]:

• Many-to-one,

• One-to-many,

• Many-to-many

Application goal of WSN has a high affect on this interaction pattern. In sense-only applications,
mostly, there are a many-to-one interaction pattern and as well some one-to-many interactions
for configuration purposes. In sense-and-react applications, many-to-many interaction pattern
is a common thing.

2.2 BPMN Properties

BPMN is the de-facto standard for business process modeling [Rec10] and business experts
model their business processes mostly using BPMN [SAP09]. BPMN models can be executed
on business engines. Therefore it is used by developers and business experts and bridges the
gap among them. BPMN uses visual constructs to model business processes which are high
level abstractions of actual activities that occur in business processes. The current standard
represents a BPMN model which is aimed to be readable, flexible and expandable. In the
following subsections, we will give some properties of general business process management
concepts and BPMN.

2.2.1 Dimensions of a Business Process Activity (BP1)

The BPMN users wanted their models to be executed and with the version 2.0 of BPMN
standard BPMN 2.0 has its operational semantics and can be executed on its own workflow
engine. [Ley10]. The life cycle of a business process can be observed in Figure Figure 2.1.

In workflows, typically there are three dimensions to define workflow items [LR00]:

• “What”: What is the work item?, e.g., “Check Customer”

• “With”: With what should this work item be accomplished?,e.g., “a Web Service”

22

2.2 BPMN Properties

Development Implementation

Execution

MonitoringAnalysis

Figure 2.1: Busines Process Life-cycle [Obj11]

• “Who”: Who will accomplish this work item?, e.g., “Computing Resources”

2.2.2 Different Levels of Modeling (BP2)

BPMN has 3 levels of modeling, "Descriptive Modeling", "Analytical Modeling" and "Executable
Modeling". The first 2 levels of modeling are for documentation purposes. In the first level,
there can be errors in the model whereas in the second level there is expected to be no errors.
In the 3rd level of modeling, software developers adds execution details to the existing modeling
constructs and make the models ready for execution on business process engine [Sil11]. The
generated BPMN file is executed on a business process engine and process engine orchestrates
defined set of activities.

There are some BPMN vendors who created their execution engines, e.g., Activiti, jBPM,
Bonitasoft, etc. Such BPMN vendors provide certain extensions points that they think these
extensions will be needed in most of the business cases [Act, jBP12]. There are also some
extensions included on some BPMN engines, .e.g, Activiti and jBPM. The list of available
BPMN elements including their extensions can be found under [Act, jBP12].

2.2.3 Cognitive Effectiveness of BPMN (BP3)

The cognitive effectiveness of BPMN model is also important because it is used by different
group of users with different backgrounds. With high cognitive effectiveness, a better common
understanding can be achieved. In [GHA11] BPMN analyzed using principles of the “Physics
of Notation” theory and how BPMN provides cognitive effectiveness is explained including its
missing points. An example of “Physics of Notation” is “Semiotic Clarity”. “Semiotic Clarity”
means a 1-1 relation between semantic description and the visual constructs [Moo09].

23

2 Background on WSNs and BPMN

2.2.4 Extensbility Mechanism of BPMN (BP4)

In certain domain applications, modeling elements of BPMN might not be sufficient. In these
situations domain experts can extend BPMN meta-model to achieve a better reflection of their
own application domains. BPMN extensions are done by adding new elements and attributes to
existing BPMN elements. These new elements and attributes should not contradict with already
existing elements and attributes. This approach guarantees interchangeability of existing BPMN
constructs and possible interchangeability of extension element and attributes [Obj11].

There are 4 BPMN Elements defined to extend BPMN [Obj11]:

• Extension

– This is used to bind independent ExtensionDefitinion elements to the model defini-
tion.

– It is contained in a Definition element.

– Has following attributes.

∗ mustUnderstand: It is a Boolean (default: false) and it is used to if this
extension must be understood in order to process model correctly.

∗ definition: In XML schema, this definition is provided by an external XML
Schema file by using its QName

• ExtensionDefinition

– Defines groups of additional attributes.

– This is not used when XML Schema interchange is used since <xs:complexType>
type already satisfies this requirement.

• ExtensionAttributeDefinition

– A list of attributes which can be attached to any BPMN elements and this list
defines name and type of the new attributes.

– This is not used when XML Schema interchange is used since <xs:AnyAttribute>
and <xs:Any> type already satisfy this requirement.

• ExtensionAttributeValue

– Value of the newly defined attribute.

– This is not used when XML Schema interchange is used since <xs:AnyAttribute>
and <xs:Any> type already satisfy this requirement.

24

2.2 BPMN Properties

Meta Object Facility (MOF) XML Schema
Extension <extension>
ExtensionDefinition <xsd:group>
ExtensionAttributeDefinition <xsd:element> in a <xsd:group»
ExtensionAttributeValue <extensionElements> of BPMN XML Schema meta-model

Table 2.1: BPMN XML Schema and MOF Meta-model Extension Element
Mappings [SCV11]

Listing 2.1 baseElement schema definition [Obj11]
<xsd:element name="baseElement" type="tBaseElement"/>

<xsd:complexType name="tBaseElement" abstract="true">
<xsd:sequence>

<xsd:element ref="documentation" minOccurs="0" maxOccurs="unbounded"/>
<xsd:element ref="extensionElements" minOccurs="0" maxOccurs="1" />

</xsd:sequence>
<xsd:attribute name="id" type="xsd:ID" use="optional"/>
<xsd:anyAttribute namespace="\#\#other" processContents="lax"/>

</xsd:complexType>

MOF meta-model description and XML Schema description of BPMN are not equivalent
with respect to extensions. Table 2.1 shows the corresponding mappings between MOF
interchange and XML Schema interchange with respect to the extensions. These types are
created using <xsd:simpleType> and <xsd:complexType> [SCV11]. BPMN adopters can use
the methodology and tool support mentioned [SCV11].

To extend BPMN schema using XML Schema interchange, BPMN adopters need to first
define the extensions in an external schema definition, where new elements and attributes
are defined. Using <extension> and <import> tag, this externally defined schema is linked
to the model and new elements are ready to use under <extensionElements>. As it can be
observed from Listing 2.1 and Listing 2.2, additional attributes and also additional elements
have “##other” namespace definitions which means they should be defined in other namespace
but not in “http://www.omg.org/spec/BPMN/20100524/MODEL”.

To illustrate an example meta-model extension, the method and tool provided in [SCV11]. We
will give a simple example, i.e., a telephone task, which is an extension of a “Manual Task”
and has additional following attributes:

Listing 2.2 extensionElements XML Schema [Obj11]
<xsd:element name="extensionElements" type="tExtensionElements" />
<xsd:complexType name="tExtensionElements">

<xsd:sequence>
<xsd:any namespace="##other" processContents="lax" minOccurs="0"

maxOccurs="unbounded" />
</xsd:sequence>

</xsd:complexType>

25

2 Background on WSNs and BPMN

Listing 2.3 Extension Schema Example: Telephone Task
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema elementFormDefault="qualified" attributeFormDefault="unqualified"

xmlns="http://www.project-makesense.eu/bpmn/extensions/TelephoneTask"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:bpmn="http://www.omg.org/spec/BPMN/20100524/MODEL"
targetNamespace="http://www.project-makesense.eu/bpmn/extensions/TelephoneTask">
<xsd:import namespace="http://www.omg.org/spec/BPMN/20100524/MODEL"

schemaLocation="BPMN20.xsd"/>
<xsd:group id="TelephoneTask" name="TelephoneTask">

<xsd:sequence>
<xsd:element name="nameOfContact" type="xsd:string" minOccurs="1"

maxOccurs="1"/>
<xsd:element name="numberToDial" type="xsd:string" minOccurs="1"

maxOccurs="1"/>
<xsd:element name="conversationTopic" type="xsd:string" minOccurs="1"

maxOccurs="1"/>
</xsd:sequence>

</xsd:group>
</xsd:schema>

• numberToDial: String

• nameOfContact: String

• conversationTopic: String

When we apply the method using Eclipse1 and the plug-in which is provided by [SCV11]
and found on “http://code.google.com/p/bpmnx/”, we end up with Figure 2.2. To create
this UML model we used the rules 3, 4a, 5, 7 found in [SCV11]. after running necessary
transformations with the tool provided, the resulting extensions schema can be observed
in Listing 2.3. In a concrete model, we need to add an extension and import tags under
definitions and we need to link generated extension schema. A more convenient way of
integrating our schema can be observed in Listing 2.4. During our extensions, we will not
follow the tool support and methodology proposed by [SCV11] because it brings additional
modeling effort and does not bring extra advantages.

The extended BPMN model will have a tag as <extension mustUnderstand="true"
definition="http://www.project-makesense.eu/bpmn/extensions/TelephoneTask"> and then
the extension elements will be stored under <extensionElements> tag as illustrated in List-
ing 2.5.

This example is only given to show how extensions are defined in BPMN standard. Changing
BPMN schema is not the way defined in BPMN standard and in such cases interoperability of
created BPMN models would diminish significantly.

1http://www.eclipse.org/

26

http://code.google.com/p/bpmnx/
http://www.eclipse.org/

2.2 BPMN Properties

Listing 2.4 Extension Schema Example: Telephone Task (Modified)
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema elementFormDefault="qualified" attributeFormDefault="unqualified"

xmlns="http://www.project-makesense.eu/bpmn/extensions/TelephoneTask"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:bpmn="http://www.omg.org/spec/BPMN/20100524/MODEL"
targetNamespace="http://www.project-makesense.eu/bpmn/extensions/TelephoneTask">
<xsd:import namespace="http://www.omg.org/spec/BPMN/20100524/MODEL"

schemaLocation="BPMN20.xsd"/>
<xsd:element name="TelephoneTaskProperties">

<complexType>
<xsd:group ref="TelephoneTask"/>

</complexType>
</xsd:element>
<xsd:group id="TelephoneTask" name="TelephoneTask">

<xsd:sequence>
<xsd:element name="nameOfContact" type="xsd:string" minOccurs="1"

maxOccurs="1"/>
<xsd:element name="numberToDial" type="xsd:string" minOccurs="1"

maxOccurs="1"/>
<xsd:element name="conversationTopic" type="xsd:string" minOccurs="1"

maxOccurs="1"/>
</xsd:sequence>

</xsd:group>
</xsd:schema>

Figure 2.2: Manual Task Extension: Telephone Task

27

2 Background on WSNs and BPMN

Listing 2.5 A Concrete Example Based on the Created Schema
<?xml version="1.0" encoding="UTF-8"?>
<definitions xmlns="http://www.omg.org/spec/BPMN/20100524/MODEL"

xmlns:bpmndi="http://www.omg.org/spec/BPMN/20100524/DI"
xmlns:omgdc="http://www.omg.org/spec/DD/20100524/DC"
xmlns:omgdi="http://www.omg.org/spec/DD/20100524/DI"
xmlns:signavio="http://www.signavio.com"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" exporter="Signavio Process Editor,
http://www.signavio.com" exporterVersion=""
expressionLanguage="http://www.w3.org/1999/XPath"
id="sid-1ecbd0d2-3ab7-400c-b889-224d0df734a8"
targetNamespace="http://www.signavio.com/bpmn20"
typeLanguage="http://www.w3.org/2001/XMLSchema"
xsi:schemaLocation="http://www.omg.org/spec/BPMN/20100524/MODEL
http://www.omg.org/spec/BPMN/2.0/20100501/BPMN20.xsd">

<import importType="http://www.w3.org/2001/XMLSchema" location=""
namespace="http://www.project-makesense.eu/bpmn/extensions/TelephoneTask"/>

<extension definition="bpmntel:TelephoneTaskProperties" mustUnderstand="true"/>
<process id="sid-ff1b100c-d527-4a74-af24-b3df4fd3994c" isExecutable="false">

<manualTask completionQuantity="1" id="sid-28B5FA9F-26C1-4C9E-85EC-5FB1E3663A50"
isForCompensation="true" name="Make New Order" startQuantity="1">

<extensionElements>
<bpmn4tel:TelephoneTaskProperties

xmlns:bpmn4tel="http://www.project-makesense.eu/bpmn/extensions/TelephoneTask">
<bpmn4tel:nameOfContact></bpmn4tel:nameOfContact>
<bpmn4tel:numberToDial>00 49 711 1 2 3</bpmn4tel:numberToDial>
<bpmn4tel:conversationTopic>New Order</bpmn4tel:conversationTopic>

</bpmn4tel:TelephoneTaskProperties>
</extensionElements>

</manualTask>
</process>
<bpmndi:BPMNDiagram id="sid-88456aa5-2408-496a-a617-32e9753b1f0a">

<bpmndi:BPMNPlane bpmnElement="sid-ff1b100c-d527-4a74-af24-b3df4fd3994c"
id="sid-7c10069a-9729-41d3-8a62-fc58f563c3bb">

<bpmndi:BPMNShape bpmnElement="sid-28B5FA9F-26C1-4C9E-85EC-5FB1E3663A50"
id="sid-28B5FA9F-26C1-4C9E-85EC-5FB1E3663A50_gui">

<omgdc:Bounds height="80.0" width="100.0" x="75.0" y="210.0"/>
</bpmndi:BPMNShape>

</bpmndi:BPMNPlane>
</bpmndi:BPMNDiagram>

</definitions>

28

2.3 Summary

2.2.5 Modifiability of Process Models (BP5)

Some of the created models are representations of internal business processes and they are
executed by automated execution engines. These models are refined after each execution of
the modeled business process [Wes07]. An easier modifiability provided by the business model,
will ease these modifications.

2.3 Summary

In this section, we provided background on WSNs, BPMN and general business process
management. The properties of WSNs are general identifying properties and their relevance
will be evaluated in Chapter 3. It is similar in case of BPMN. Even though some of the BPMN
and business process management properties are not relevant for our requirements, they are
relevant while creating our extensions and we need to keep them in our minds during this
process. The properties of WSNs can be listed as:

• Dynamic Addition and Removal of Wireless Sensor Nodes (WP1): New nodes
can be added or existing nodes can be removed from WSNs so there exists a dynamic
topology. Nodes can be addressed directly or indirectly, i.e., with their unique identifiers
or with logical addresses, which are assigned by the system respectively.

• Categories of WSN Operations (WP2): In WSNs there exits command and local
actions, during command actions one node commands another node to execute an action
whereas a local action is executed without any communication. This action can be a
type of sense, actuate and intermediary action. After execution of command and local
actions, there might exist an output data which is returned to a group of nodes and
there might exist some operations on the output data such as aggregation.

• Limited Operations Available in WSNs (WP3): The operations executed on
WSNs are autonomous, they usually execute without human involvement.

• Parallel Execution of the Same Process Logic in one Application (WP4): The
same process logic can be executed at the different places in the same WSN in parallel.

• Distributed Nature of WSN Applications (WP5): There might be multiple nodes
which control the execution of the WSN application.

• Limited Resources and Error-prone Nature of WSN Nodes (WP6): Resources
on WSN nodes are limited and because of this there are trade-offs such as reliable
communication and application life time.

• Event-driven Nature of WSNs (WP7):There are event-driven and periodic actions
in WSNs from time perspective. Event-driven actions release the execution flow directly
whereas periodic actions wait until the task is completed to release the control.

• Dense Deployment of Nodes (WP9): Nodes are densely deployed in WSNs.

29

2 Background on WSNs and BPMN

• Different Interaction Patterns in WSNs (WP10): There might be one-to-many,
many-to-one and many-to-many interaction patterns in WSNs.

After that we defined general properties of BPMN, please note that these properties can be
only a small subset of all BPMN properties:

• Dimensions of a Business Process Activity (BP1): A business process item
consists of three dimensions: “What is the work item?”, “With what should this work
item be accomplished?” and “Who will accomplish this work item?”.

• Different Levels of Modeling (BP2): There are three levels of BPMN modeling:
“Descriptive Modeling”, “Anayltical Modeling” and “Executable Modeling”. The first
two levels are used for documentation whereas the third level is used for execution.

• Cognitive Effectiveness of BPMN (BP3): BPMN brings a common understanding
to the people with different background. Therefore the cognitive effectiveness of BPMN
is important. An example of measuring cognitive effectiveness is “Semiotic Clarity” and
this is defined in “Physics of Notation” [Moo09].

• Extensbility Mechanism of BPMN (BP4): BPMN is designed to be extensible for
domain specific applications. These extensions should be contained under <extensionEle-
ments> tag and the extensions schema should be imported with <import> tag. With
the <extension> tag an extension is bound to the BPMN model.

• Modifiability of Process Models (BP5): BPMN models are revised iteratively
therefore the modifiability of BPMN models is important.

30

3 Requirements for WSN-specific BPMN

There are some properties that need to be preserved during BPMN modeling, on the other
hand there are some properties which are critical for WSNs and these should be represented in
BPMN models to integrate WSNs to business processes. Some of those requirements might not
appear in some BPMN models because not all the diagrams have the same nature, i.e., some
diagrams are for documentary purposes not execution purposes. In the next section, relevance
of WSN and BPMN properties will be evaluated afterwards in the next section, requirements
for WSN-specific BPMN will be introduced.

3.1 Evaluation of WSN Properties

To evaluate WSN properties, we need to consider their importance during BPMN modeling and
also their importance for WSNs. In the next sections, we will make our evaluations and state
if they are relevant for business process modeling or not. Relevancy can be for two different
purposes in our approach, i.e., for documentation purposes and for execution purposes because
BPMN is used for documentation or execution purposes. With a relevancy for documentation,
we mean that the inclusion of this property enriches the model expressiveness in case of WSN
modeling. With a relevancy for execution, we mean that this property could be used for
execution of the corresponding property.

3.1.1 Dynamic Addition and Removal of Wireless Sensor Nodes (WP1)

WSNs have a dynamic topology and the WSN nodes which execute WSN operations might
change. We need to have the ability to define the nodes which are responsible for execution of
some operations. This makes this property relevant for the execution purposes because during
execution we would need a means to address nodes.

3.1.2 Categories of WSN Operations (WP2)

The type of operation executed by a WSN would be affect the creation of the deployable binaries
and the expressiveness of the models. Operation categories on a visual level would increase the
expressiveness of the models and only with the necessary operation details execution would be
possible. Therefore this property is relevant for execution and documentation purposes.

31

3 Requirements for WSN-specific BPMN

3.1.3 Limited Operations Available in WSNs (WP3)

Not all the operations provided by visual constructs can be executed in a WSN. The operation
constrained by the underlying WSN should also constrain the models in a visual way. Moreover,
as expected a WSN cannot provide more than it offers. Therefore this property is relevant for
both execution and documentation.

3.1.4 Parallel Execution of the Same Process Logic in one Application (WP4)

Parallel execution of the same process logic is a usual thing in case of standard business
processes. However, in case of WSNs, concurrent WSN processes can be executed on WSN
itself not on a central execution engine. This critical difference makes this property relevant
for documentation and execution purposes.

3.1.5 Distributed Nature of WSN Applications (WP5)

As the WSN processes executed on WSNs themselves, process orchestration is not managed by
the central process execution engine. This difference makes this property relevant for execution
purposes.

3.1.6 Limited Resources and Error-prone Nature of WSN Nodes (WP6)

Limited resources and error-prone nature of WSNs should be considered during BPMN so
that no critical failures occur. This property is relevant for execution and documentation
purposes because the regions where the performance changes can be documented moreover
performances can be set for the execution.

3.1.7 Event-driven Nature of WSNs (WP7)

The difference in timing of operations would bring different expectations. This difference
makes this property relevant for documentation purposes.

3.1.8 Different Type of Nodes (WP8)

Different type of nodes does not affect the model because by properties WP1 and WP2 cover
this property indirectly. The difference between hardware would result in different addressing
or different operations. Therefore this property is irrelevant.

32

3.2 Evaluation of BPMN Properties

3.1.9 Dense Deployment of Nodes (WP9)

Dense deployment of WSN nodes is not a relevant property during business process modeling
of WSNs.

3.1.10 Different Interaction Patterns in WSNs (WP10)

The interaction patterns in WSNs are not relevant with BPMN modeling due to their low-level
nature. As a result of different interaction patterns, different application goals can be observed,
e.g., sense, react, etc., however this has been covered in another property (see section 2.1.2).

3.2 Evaluation of BPMN Properties

The BPMN Properties are mostly included in extensions, i.e., proposed extensions will not
remove the property given. In the following sections, we will analyze relevance of the provided
BPMN properties with our requirements.

3.2.1 Dimensions of a Business Process Activity (BP1)

The dimensions of the workflow items are also important for the business processes which
include WSNs. This property is relevant to create a valid activity in a workflow engine which
executes a business process of WSN, i.e., in our case WSN is the workflow engine.

3.2.2 Different Levels of Modeling (BP2)

The different levels of modeling is also similar in case of modeling the business processes which
include WSNs. First a valid business process model is created and afterwards execution details
are added however this property is not relevant with requirements. This property will be useful
during evaluation of different approaches.

3.2.3 Cognitive Effectiveness of BPMN (BP3)

This property is important to preserve the common understanding of the BPMN. The created
extensions should give the same look and feel as the existing BPMN constructs and the
suggestions given by Genon et al. [GHA11] should be followed. This property has been taken
as a guide during creation of our visual extensions and it is also relevant for our requirements.

33

3 Requirements for WSN-specific BPMN

Property Name Relevant
Dynamic Addition and Removal of Wireless Sensor Nodes (WP1) Yes
Categories of WSN Operations (WP2) Yes
Limited Operations Available in WSNs (WP3) Yes
Parallel Execution of the Same Process Logic in one Application (WP4) Yes
Distributed Nature of WSN Applications (WP5) Yes
Limited Resources and Error-prone Nature of WSN Nodes (WP6) Yes
Event-driven Nature of WSNs (WP7) Yes
Different Type of Nodes (WP8) No
Dense Deployment of Nodes (WP9) No
Different Interaction Patterns in WSNs (WP10) No
Dimensions of a Business Process Activity (BP1) Yes
Modifiability of Process Models (BP5) Yes
Cognitive Effectiveness of BPMN (BP3) Yes
Different Levels of Modeling (BP2) No
Extensbility Mechanism of BPMN (BP4) No

Table 3.1: Evaluation of WSN properties.

3.2.4 Extensbility Mechanism of BPMN (BP4)

This property is only informal and is not a relevant property with the requirements. This
information contained in this property has been used during creation of our BPMN extensions.

3.2.5 Modifiability of Process Models (BP5)

The base modifiability of the BPMN needs to be preserved or the changes in modifiability
should be minimized. Therefore this property is a relevant property.

3.3 Requirements

In this section, we will derive our requirements from the relevant properties (see Table 3.1).

3.3.1 Support for Indirect and Dynamic Addressing of Nodes (R1)

For the purpose of supporting a dynamically changing set of nodes (WP1), we need a means to
address nodes indirectly. To increase flexibility of the created WSN applications, designer may
want to use indirect addressing. For instance, in case of direct addressing, a re-initialization
might be required to add a new node to the system. Moreover, indirect addressing provides a

34

3.3 Requirements

method of grouping nodes, e.g., sensors, actuators, temperature sensors, etc. By this way, one
can give common attributes to nodes and later on use them to address these nodes. Indirect
addressing would provide programmers a type of reference autonomy, i.e., it would avoid
coupling between model and individual nodes. For instance, in a WSN application, instances
of the same process might be executed at different regions of the WSN application, in this
case there would be a need of dynamic selection to address the correct region of the WSN.

3.3.2 Support and Restrict User to WSN Operation Categories (R2)

Sense, actuate, and intermediary operations (WP2) behave differently during execution: Sense
operations are used to observe the environment, intermediary operations are usually used to
do some computation on sensed values, and actuate operations are used to manipulate the
environment. Local actions are initiated by the executing nodes themselves, whereas command
actions are initiated by some nodes and executed by other nodes. This difference in execution
logic demands necessary differentiation between local and command actions at the modeling.
The executed operation might create some output data and this data might be an input for a
consequent operation. Therefore, we need the ability to define the nodes which receive the
created output data and the possible operation they might apply on the output data. The
nodes have to be specified following the result of R1 and thus allow for a resolution to multiple
target nodes. In summary, we need a 6-tuple to define a WSN operation comprehensively:

1. The type of operation: {Sense, Actuate, Intermediary Operation}.
2. Location of the operation: {Local, Command}.
3. Target nodes which will execute this operation.
4. An operation definition.
5. Output target nodes, which will receive the output results.
6. An operation definition, which is applied on the output data.

With this 6-tuple, we can define ‘what’, ‘with’ and ‘who’ dimensions of the corresponding
workflow item BP1 (Subsection 2.2.1).

3.3.3 Limit Available Operations for WSNs (R3)

During modeling of businesses processes that run on WSNs, modelers should be limited with
the operations provided by the underlying WSN to create their business processes (WP3).
BPMN provides some constructs which cannot be executed on a WSN, e.g., “Manual Task”.
We need a means to limit such BPMN constructs in WSN pools. Otherwise the created BPMN
models might be unrealistic moreover, there could be problems while creating the deployable
binaries.

3.3.4 Support for Multiple Instances of the Same Process (R4)

From an execution point of view, there is a significant difference between execution of a WSN
business process and a conventional business process: WSN processes are usually executed

35

3 Requirements for WSN-specific BPMN

inside of a WSN itself, whereas standard BPMN processes are executed inside of a business
process engine. Moreover, similar to standard business processes, in a WSN multiple instances
of the same process can exist concurrently (WP4). Therefore, explicit separation of WSN
processes from standard business processes and support for the visual representation of parallel
processes are needed.

3.3.5 Distribution of Execution Logic into WSN (R5)

In a WSN process, there are events and data, which are produced and consumed by some
nodes in a WSN (WP5). The produced data and events can be used to make decisions in
the business process. This decision mechanism is executed seamlessly in business process
execution engines in case of conventional business processes; however, this is not the case for
the processes executed in a WSN. As we want to execute the modeled processes completely in a
WSN, we need a means to provide information about which nodes are expected to orchestrate
the executing WSN process. These orchestrating nodes would be responsible for holding
information about the current state of the process instance, coordination operations executed
in the process instance, etc.

3.3.6 Prioritization of Performance Goals (R6)

In WSNs, there may be application specific conflicting performance goals, e.g., shorter-response
time, reliable communication, lower power consumption (WP6). To achieve more reactive
behavior, preserve resources and in general adapt application specific needs, there is a need to
define these non-functional properties during BPMN modeling. By defining these performance
goals, we are expecting a WSN to execute the corresponding operations aligned with the
performance goals defined. For instance, in case a fire is detection scenario, reliable message
transmission will be needed and response time needs to be short.

3.3.7 Support for Event-driven Actions in Modeling (R7)

WSNs provide both event-driven and periodic operations, the behavior of event-driven WSN
actions (WP7) is different from behavior of periodic actions. Representation of different
behaviors with the same visual construct would decrease the understandability of the BPMN
process models (BP3). For the purpose of avoiding this reduction in understandability, we need
a means to provide necessary distinguishability between an event-driven task and a periodic
task.

3.3.8 Models should be stable on minor WSN changes (R8)

Business processes run on WSNs should be as flexibly modifiable as standard BPMN process
models. The changes in the deployment of a specific network on which the process runs such as
its topology, changing the orchestrating nodes, changing the implementation details of a WSN

36

3.4 Summary

Requirement Name Properties
Support for Indirect and Dynamic Ad-
dressing of Nodes (R1)

Dynamic Addition and Removal of Wireless Sensor Nodes
(WP1)

Support and Restrict User to WSN
Operation Categories (R2)

Categories of WSN Operations (WP2)
Dimensions of a Business Process Activity (BP1)

Limit Available Operations for WSNs
(R3)

Limited Operations Available in WSNs (WP3)

Support for Multiple Instances of the
Same Process (R4)

Parallel Execution of the Same Process Logic in one
Application (WP4)

Distribution of Execution Logic into
WSN (R5)

Distributed Nature of WSN Applications (WP5)

Prioritization of Performance Goals
(R6)

Limited Resources and Error-prone Nature of WSN
Nodes (WP6)

Support for Event-driven Actions in
Modeling (R7)

Event-driven Nature of WSNs (WP7)
Cognitive Effectiveness of BPMN (BP3)

Models should be stable on minor
WSN changes (R8)

Modifiability of Process Models (BP5)

Table 3.2: This table shows which requirements are based on which properties.

task, etc. should not affect the model itself. By this way, we will end up with a BPMN process
model which conforms to standard BPMN regarding to modifiability of process models.

3.4 Summary

In this section, we evaluated the properties investigated in previous section and created our
requirements using the relevant properties. The relevant properties are shown in Table 3.1.
Using these properties we created these requirements:

• Support for Indirect and Dynamic Addressing of Nodes (R1): The indirect
addressing of nodes and dynamic addressing of nodes need to be supported in BPMN
models.

• Support and Restrict User to WSN Operation Categories (R2): The BPMN
models should have a means to define: type of the operation (sense, actuate or interme-
diary operation), location of the operation, operation definition, output nodes for the
output data and an operation definition for the output nodes.

• Limit Available Operations for WSNs (R3): The created models should realistic,
i.e., the constructs that are not possible in WSNs should not be possible.

• Support for Multiple Instances of the Same Process (R4): The BPMN models
should support multiple instances of the same WSN process as it does in standard BPMN
processes and similarly WSN processes should be modeled as standard BPMN processes.

37

3 Requirements for WSN-specific BPMN

• Distribution of Execution Logic into WSN (R5): The modelers should have the
ability to define orchestrating nodes of a WSN process.

• Prioritization of Performance Goals (R6): The prioritization of the performance
goals should be supported in BPMN models to define application goals, e.g., consume
energy.

• Support for Event-driven Actions in Modeling (R7): There should be an explicit
separation between event-driven operations and periodic operations.

• Models should be stable on minor WSN changes (R8): Models should be as
stable as possible whenever a WSN property changes.

A table of relationships between relevant properties and requirements is shown in Table 3.2.
In this table, we have shown which property has been a basis for which requirement.

38

4 Solution Proposals

To satisfy the requirements presented in Section 3.3, we propose extensions to standard BPMN.
These extensions are WSN Task, WSN Pool, and Performance Annotations. These proposals
are built on the work by Tranquillini et al. [TSD+12]. We define a WSN Task is an extension
of Service Task of standard BPMN, a WSN Pool is an annotated standard BPMN pool and a
Performance Annotation is an extension of BPMN groups. In the following sections, we will
define these extensions in detail.

4.1 WSN Task

A WSN Task corresponds to a task executed in a WSN process. The visual representation of
a WSN Task is the same with a standard BPMN task except an additional antenna marker on
the left top corner.

A class diagram of a WSN Task is presented in Figure 4.1. It extends Service Task to provide
backward compatibility with standard web services. The instances based on tWSNPerformer
are used to address nodes dynamically and indirectly which satisfies the requirement R1.
OrchestrationPerformers are used to change the orchestrating nodes of the WSN and by
providing that we meet the requirement R5. The outputTarget element stands for the set
of nodes to which output data of the executed task is sent. The actionPerformer elements
are used to address the nodes which will execute the corresponding task. ActionType and
isCommandAction elements are used to define type of the WSN Task. TargetOperation and

BPMN 2.0::tPerformer

BPMN4WSN::tWSNPerformer

1..*

1
actionPerformer

0..11
dynamicTarget

0..11
staticTarget

0..1

 1
outputTarget

BPMN4WSN::WSNTask
isEventDriven: Boolean
isCommandAction: Boolean

0..1

 1
orchestrationPerformer

BPMN 2.0::tResourceAssignmentExpression

BPMN 2.0::ServiceTask
BPMN4WSN::tParametersBPMN4WSN::tParameter

name: String
value: String

0..* 1
parameter

 1

 1
parameters

BPMN4WSN::tActionPerformer
index: Integer

«Enumaration»
BPMN4WSN::tActionType
sense
actuate
intermediaryOperation

 1 1
actionType

BPMN4WSN::tWSNOperation
implementationRef: QName
name: String

0..1
 1

targetOperation

0..11
returnOperation

Figure 4.1: WSN Task class diagram.

39

4 Solution Proposals

Listing 4.1 WSN Task XSD definition
<xsd:element name="WSNTask" type="tWSNTask"></xsd:element>
<xsd:annotation>

<xsd:documentation>
Definition of WSN Task with the element types defined previously.

</xsd:documentation>
</xsd:annotation>

<xsd:complexType name="tWSNTask">
<xsd:sequence>

<xsd:element ref="actionType" maxOccurs="1" minOccurs="1"></xsd:element>
<xsd:element ref="isLocalAction" maxOccurs="1" minOccurs="1"></xsd:element>
<xsd:element ref="targetOperation" maxOccurs="1" minOccurs="0"></xsd:element>
<xsd:element ref="isEventDriven" maxOccurs="1" minOccurs="1"></xsd:element>
<xsd:element ref="actionPerformer" maxOccurs="unbounded"

minOccurs="0"></xsd:element>
<xsd:element ref="outputTarget" maxOccurs="1" minOccurs="0"></xsd:element>
<xsd:element ref="returnOperation" maxOccurs="1" minOccurs="0"></xsd:element>
<xsd:element ref="orchestrationPerformer" maxOccurs="1" minOccurs="0"></xsd:element>

</xsd:sequence>
</xsd:complexType>

returnOperation are type of tWSNOperation and they are used to reference available WSN op-
erations of underlying WSN. By introducing this 6-tuple, i.e., {actionType, isCommandAction,
actionPerformer, outputTarget, targetOperation, returnOperation}, we meet requirement R2.
The isEventDriven extension is used to mark a WSN Task as either periodic or event-driven
and use of it satisfies the requirement R7. Extension element parameters, which is an instance
of tParameters, fulfills the requirement R6 partially and with Performance Annotations (see
Section 4.3), we fulfill corresponding requirement completely. Listing 4.1 shows the XSD
definition of a WSNTask. In the following sub-sections, we explain the extension elements of a
WSN Task in detail.

4.1.1 tWSNOperation

In standard BPMN, the standard operation construct is of type tOperation; however, this
construct does not suffice in case of WSN operations. The tWSNOperation type is used
to bind a WSN operation to a WSN Task. The corresponding task is expected to execute
this referenced WSN operation during the execution. To define the namespace for available
operations, implementationRef of type tWSNOperation is used. Type of the implementationRef
is a qualified name. In defined namespace, the operationName can be used to select a unique
operation. The operations can take parameters which are defined by parameters extension
element of the type tWSNOperation. The first operation whose input parameters are the
same as the provided parameters extension element will be selected. The targetOperation
and returnOperation elements are instances of tWSNOperation. They are used to define the
operations that are executed on actionPerformers and outputTargets respectively. Parameters
element of type tWSNOperation contains a list of parameters used to pass configuration
variables to corresponding operations referenced in WSN Tasks. A parameter is composed of

40

4.1 WSN Task

Listing 4.2 WSNOperation XSD definition
<xsd:element name="parameters" type="tParameters"></xsd:element>
<xsd:complexType name="tParameters">

<xsd:annotation>
<xsd:documentation>

Static parameters that will be passed to operations in WSN tasks.
</xsd:documentation>

</xsd:annotation>
<xsd:sequence>

<xsd:element ref="parameter" maxOccurs="unbounded" minOccurs="0"></xsd:element>
</xsd:sequence>

</xsd:complexType>

<xsd:element name="parameter" type="tParameter"></xsd:element>
<xsd:complexType name="tParameter">

<xsd:annotation>
<xsd:documentation>

Parameter definition for parameter list. Target operation stands for
the operation this parameter refers to.

</xsd:documentation>
</xsd:annotation>
<xsd:attribute name="name" type="xsd:string"></xsd:attribute>
<xsd:attribute name="value" type="xsd:string"></xsd:attribute>

</xsd:complexType>

<xsd:element name="targetOperation" type="tWSNOperation"></xsd:element>
<xsd:element name="returnOperation" type="tWSNOperation"></xsd:element>
<xsd:element name="WSNOperation" type="tWSNOperation"></xsd:element>
<xsd:complexType name="tWSNOperation">

<xsd:sequence>
<xsd:element name="implementationRef" type="xsd:string"></xsd:element>
<xsd:element name="operationName" type="xsd:string"></xsd:element>
<xsd:element ref="parameters"></xsd:element>

</xsd:sequence>
</xsd:complexType>

? !

(a) Sense

? !

(b) Actuate

? !

(c) Intermediary Operation

Figure 4.2: The WSN Task with different action type representations.

name, value pair to define the parameter. The XSD representation of the tWSNOperation
and its instances are shown in Listing 4.2.

41

4 Solution Proposals

Listing 4.3 WSN ActionType XSD definition
<xsd:element name="actionType" type="tActionType"></xsd:element>
<xsd:complexType name="tActionType">

<xsd:annotation>
<xsd:documentation>

An action type is either a local action or a command action.
</xsd:documentation>

</xsd:annotation>
<xsd:attribute name="type" type="xsd:string" default="sense"></xsd:attribute>

</xsd:complexType>

Listing 4.4 WSN isCommandAction XSD definition
<xsd:element name="isCommandAction" type="tIsCommandAction"></xsd:element>
<xsd:simpleType name="tIsCommandAction">

<xsd:annotation>
<xsd:documentation>

An action type is either a local action or a command action.
</xsd:documentation>

</xsd:annotation>
<xsd:restriction base="xsd:boolean"></xsd:restriction>

</xsd:simpleType>

4.1.2 actionType

The actionType element is used to define a WSN operation as a sense (?), an actuate (!) or an
intermediary operation (�) where sense is the default value. The icon of the selected type is
filled with black. The XSD representation of the actionType of the WSNTask can be found in
Listing 4.3

4.1.3 isCommandAction

The extension element isCommandAction is of type Boolean and its default value is false. By
setting this element true will define this task as a command action. This would semantically
mean that the underlying task execution would involve a command action. The XSD represen-
tation of the isCommandAction property of the WSNTask can be found in Listing 4.4. In the
following paragraphs, we will describe local and command actions.

LocalAction

This is the default selection for a WSN Task. There is no message exchange is needed to
execute the targetOperation as the execution has been initiated and accomplished by the the
same nodes.

CommandAction

42

4.1 WSN Task

? ! The command action stands for commanding nodes for executing the action
referenced by the targetOperation. There is a communication to initiate a
command and multiple commands can be observed in case multiple actionPer-
formers have been defined. The additional arrow icon represents a command

message sent to the nodes which are responsible for execution.

4.1.4 tWSNPerformer

In standard BPMN, tPerformer is the class defining the resource that will perform the activity.
The tWSNPerformer extends tPerformer and used to associate WSN nodes with a WSN Task.
Therefore, we add a dynamicTarget element and a staticTarget element. The dynamicTarget
refers to an expression suited to find performer nodes during run-time of the WSN process.
A staticTarget refers to an expression which is evaluated and used to address WSN nodes
before deployment of WSN node binaries. We need to distinguish between these two attributes
as it is not possible to derive from a resource assignment expression itself whether it should
be evaluated during run-time of the WSN or before deployment time. Technically, both
dynamicTarget and staticTarget are of type tResourceAssignmentExpression, which is the
BPMN standard type for resource assignments. OutputTarget and OrchestrationPerformer
extension elements are instances of the type tWSNPerformer and in the following paragraphs
we will explain them. The XSD representation of the tWSNPerformer and its instances can be
found in Listing 4.5.

43

4 Solution Proposals

Listing 4.5 WSNPerformer XSD definition
<xsd:element name="orchestrationPerformer" type="tWSNPerformer"></xsd:element>
<xsd:element name="outputTarget" type="tWSNPerformer"></xsd:element>
<xsd:element name="WSNPerformer" type="tWSNPerformer"></xsd:element>
<xsd:complexType name="tWSNPerformer">

<xsd:annotation>
<xsd:documentation>

This type is used to define a set of nodes in a WSN. Which has both zero to many static
attributes and zero or one dynamic attribute.

</xsd:documentation>
</xsd:annotation>
<xsd:complexContent>

<xsd:extension base="BPMN:tPerformer">
<xsd:sequence>

<xsd:element name="staticTarget"
type="BPMN:tResourceAssignmentExpression"></xsd:element>

<xsd:element name="dynamicTarget"
type="BPMN:tResourceAssignmentExpression"></xsd:element>

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

outputTarget

? ! The outputTarget represents the set of nodes to which the output data should
be sent. If the returnOperation has been defined, the targeted nodes are
expected to execute the referenced operation. The outputTarget is an optional
element and in case it is defined, an additional return arrow is added to the

WSN task visual element. The prerequisite of having a returnOperation is having a valid
outputTarget because the nodes which are defined by outputTarget will execute the operation
referenced by returnOperation.

orchestrationPerformer

This is an optional element used to change the orchestrating nodes of a WSN process instance.
This element is of type tWSNPerformer. If a WSN task is defined with an orchestrationPer-
former, the execution of the the WSN task and the execution constructs on the outgoing
sequence flows are orchestrated by the defined orchestration performers until a new definition
occurs. Multiple orchestrationPerformers might exist as parallel execution flows are possible.
In case of merging execution flows, the set of orchestrating nodes is the union of both execution
flows. The coordination techniques of these orchestrating nodes are out of scope of this work
and a further reading can be found in [AK04].

44

4.2 WSN Pool

Listing 4.6 WSN isEventDriven XSD definition
<xsd:element name="isEventDriven" type="tIsEventDriven"></xsd:element>
<xsd:simpleType name="tIsEventDriven">

<xsd:annotation>
<xsd:documentation>

An annotation in order to differentiate between periodic and event-driven operations.
</xsd:documentation>

</xsd:annotation>
<xsd:restriction base="xsd:boolean"></xsd:restriction>

</xsd:simpleType>

actionPerformer

This extension is an instance of tActionPerformer which is a sub-class of tWSNPerformer.
Additionally, the tActionPerformer type has an index. The nodes that are supposed to execute
the targetOperation are defined by the actionPerformer extension element of the WSN Task.
There can be more than one actionPerformer defined in a WSN Task. In case of local action,
only the actionPerformer with the lowest index will be used. On the other hand, in case
of a command action, all defined actionPerformers will be used. The index attribute of
the each actionPerformer will be used to determine the order of execution. Orchestrating
nodes initiate the first command message to the actionPerformer with the lowest index and it
will be propagated to the last actionPerformer which is responsible for the execution of the
targetOperation.

4.1.5 isEventDriven

? !
This is an element of Boolean value and used to mark a WSN Task event-
driven. The default value is false, which means the task is a periodic task. To
represent behavioral difference between these tasks at a visual level, we use
a clock icon for event-driven tasks. This icon would remind modelers that this

task would take time. Whenever, isEventDriven is true, the corresponding task is supposed to
block until the expected event happens. Whenever the corresponding event is triggered, the
control is released and outgoing sequence flows are activated. The XSD representation of the
isEventDriven property can be found in Listing 4.6.

4.2 WSN Pool

WSN Pools are used to define processes which are executed in WSNs. A class diagram of WSN
Pool is shown in Figure 4.3. The WSN Pool extends the standard BPMN. To provide a visual
differentiation between a standard BPMN pool and a WSN pool, we provide a WSN icon on the
top left corner of the pools. In WSN Pools, the use of BPMN constructs is limited as detailed
by Stefano et al. [TSD+12]. By use of these WSN pools we provide a clear separation between
WSN processes and standard business processes. We can create blueprint of a WSN business

45

4 Solution Proposals

BPMN4WSN:WSNPool

BPMN 2.0:Pool BPMN 2.0:Group

BPMN4WSN:PerformanceAnnotation
performanceGoalRef:QName

Figure 4.3: WSN Pool and Performance Annotations class diagram.

Listing 4.7 WSNPool XSD definition
<xsd:element name="WSNPool" type="tWSNPool"></xsd:element>
<xsd:simpleType name="tWSNPool">

<xsd:restriction base="xsd:boolean"></xsd:restriction>
</xsd:simpleType>

process in WSN pool and multiple instances of it can be executed concurrently. Moreover
by restricting use of the unnecessary constructs in WSN pools, we will have a sensible WSN
model, i.e., unnecessary BPMN constructs would not exist in WSN pool. By using WSN Pools,
we satisfy requirement “Support for Multiple Instances of the Same Process (R4)”. The XSD
representation of a WSN Pool can be found in Listing 4.7.

4.3 Performance Annotations

BPMN allows to associate activities with common properties to a group. We inherit from this
grouping construct and add a performanceGoalRef, which references a concrete performance
goal. A class diagram of Performance Annotations is shown in Figure 4.3. Performance goals
define the performance priority of an application. Performance annotations group BPMN
constructs and these constructs will be later transformed into executable code for execution.
The performance annotations change the performance of the BPMN constructs that it contains
during their execution. In case of fire detection scenario, the tasks executed after a fire has
been detected would sacrifice energy resources and try to deliver messages reliably. Actual
performance goal definitions are just referenced and definitions are implementation specific.
By referencing the actual performance goal, we are separating our models from the actual
non-functional property definitions and we are providing the possibility of our non-functional
model and process model to evolve independently. WSN Task parameters are used to define
task specific properties; whereas, performance annotations define performance goals of the
whole WSN. By using performance annotations, we fulfill the requirement “Prioritization of
Performance Goals (R6)” completely (It has been partially satisfied by parameters defined

46

4.3 Performance Annotations

Listing 4.8 Performance Annotation XSD definition
<xsd:element name="performanceRef" type="tPerformanceRef"></xsd:element>
<xsd:complexType name="tPerformanceRef">

<xsd:sequence>
<xsd:element name="name" type="xsd:string" maxOccurs="1" minOccurs="1"></xsd:element>

</xsd:sequence>
<xsd:attribute name="location" type="xsd:QName"></xsd:attribute>

</xsd:complexType>

Solution Name Requirement
WSNTask/tWSNPerformer,
tActionPerformer

Support for Indirect and Dynamic Addressing of Nodes (R1)

WSNTask/tWSNOperation Support and Restrict User to WSN Operation Categories (R2)
WSNTask/actionType Support and Restrict User to WSN Operation Categories (R2)
WSNTask/isCommandAction Support and Restrict User to WSN Operation Categories (R2)
WSNTask/actionPerfomer,
outputTarget

Support and Restrict User to WSN Operation Categories (R2)

WSN Pool Limit Available Operations for WSNs (R3)
Support for Multiple Instances of the Same
Process (R4)

WSNTask/
orchestrationPerformer

Distribution of Execution Logic into WSN (R5)

Performance Annotations Prioritization of Performance Goals (R6)
WSNTask/
tWSNOperation/parameters

Prioritization of Performance Goals (R6)

WSNTask/isEventDriven Support for Event-driven Actions in Modeling (R7)
All Models should be stable on minor WSN changes (R8)

Table 4.1: Solution Requirement Mapping

in tWSNOperation). The XSD representation of a Performance Annotation can be found in
Listing 4.8.

The mappings between solution proposals and requirements are shown in Table 4.1. In
Figure 4.4, the same business process model as in Figure 6.1 has been drawn with the proposed
extensions. XML excerpts of the extended BPMN of the diagram shown in Figure 4.4 is
shown in Listing 4.10. This model and BPMN have been created using an extended version of
“Signavio Core Components”1.

1http://code.google.com/p/signavio-core-components/

47

http://code.google.com/p/signavio-core-components/

4 Solution Proposals

Calculate CO2

? !

while(currentTime<reservationEndTime)

while(currentTime<reservationStartTime)

Master Data

roomNumber
reservationEndTime
reservationStartTime
co2Threshold

avarageCO2actionPerformer
staticTarget="role==CO2Sensors"
dynamicTarget="roomNumber==nodeRoomNumber"

Decrease
Ventilation

? !

Increase
Ventilation

? !

outputTarget
staticTarget="role==roomController"
dynamicTarget="roomNumber==nodeRoomNumber"

actionType:sense
isCommandAction:true
targetOperation:senseCO2
returnOperation:takeAvarage

actionPerformer
staticTarget="role==ventilationActuators"
dynamicTarget="roomNumber==nodeRoomNumber"

actionType:actuate
isCommandAction:true
targetOperation:decreaseVentilation

actionType:actuate
isCommandAction:true
targetOperation:increaseVentilation

else

a
v
a
ra

g
e
C

O
2

<
co

2
T
h
re

sh
o
ld

Figure 4.4: A ventilation business process with the extended BPMN.

Listing 4.9 XML excerpts of the extended BPMN model from the Figure 4.4
...
<import importType="http://www.w3.org/2001/XMLSchema" location=""

namespace="http://www.project-makesense.eu/bpmn4wsn"/>
<extension definition="bpmn4wsn:WSNTask" mustUnderstand="true"/>
...
<process id="sid-20a02571-7300-4298-9c1b-a36cb0856b0d" isClosed="false"

isExecutable="false" processType="None">
<extensionElements>

<bpmn4wsn:WSNPool bpmn4wsn:wsnPool="true"/>
</extensionElements>
...
<serviceTask completionQuantity="1" id="sid-34182559-A393-41B7-A981-B558987B15CB"

implementation="webService" isForCompensation="false" name="Calculate CO2"
startQuantity="1">

<extensionElements>
...

</extensionElements>
...

</serviceTask>
...

4.4 Summary

In this chapter we proposed some extensions to BPMN to meet the requirements which have
been derived from the relevant BPMN and WSN properties (see Section 3.1 and Section 3.2).
These extensions are:

• WSN Task: A WSN Task is based on the “Service Task” of standard BPMN. The
visual view of a WSN Task is similar to a BPMN task with additional icons on top right
corner (see Figure 4.2). A WSN Task corresponds to a task which is executed in a WSN.
There are additional properties of WSN Task to its base type and they are:

– tWSNOperation: This type is used to define a WSN operation type. A namespace
for the operation defined via implementationRef. In this namespace an operation

48

4.4 Summary

Listing 4.10 <extensionElements> of the "Calculate CO2" WSN Task from the extended
BPMN model in Figure 4.4

<extensionElements>
<bpmn4wsn:WSNTask>

<bpmn4wsn:actionType bpmn4wsn:type="sense"/>
<bpmn4wsn:isCommandAction>true</bpmn4wsn:isCommandAction>
<bpmn4wsn:targetOperation>
<bpmn4wsn:implementationRef>

{http://www.project-makesense.eu/application_domain_model}LocalAction
</bpmn4wsn:implementationRef>
<bpmn4wsn:operationName>CO2SensingLocalAction</bpmn4wsn:operationName>

</bpmn4wsn:targetOperation>
<bpmn4wsn:isEventDriven>false</bpmn4wsn:isEventDriven>
<bpmn4wsn:actionPerformer bpmn4wsn:index="0"

id="sid-f27bd7c1-ee02-4677-8a04-d59ab4d7a942">
<bpmn4wsn:staticTarget id="sid-4bbd804d-db10-4222-9e1a-8e02e67a6b0d">

<formalExpression id="sid-30661a3f-d916-408d-b724-5fabee922094">
node.type==co2Sensor

</formalExpression>
</bpmn4wsn:staticTarget>
<bpmn4wsn:dynamicTarget id="sid-3189609f-29aa-4e4d-b546-bf35ba26cf32">

<formalExpression id="sid-fdbaf212-bcbf-40f4-8362-50163079b8b0">
node.currentRoom==MasterData.roomNumber

</formalExpression>
</bpmn4wsn:dynamicTarget>

</bpmn4wsn:actionPerformer>
<bpmn4wsn:outputTarget id="sid-360064c8-3594-4814-8239-3e3d20ad216d">
<bpmn4wsn:staticTarget id="sid-4cc7dbca-7f62-41db-8aa7-93ac6db48741">

<formalExpression id="sid-a44cb4e0-4dc0-4bff-89eb-33118bfdfd8d">
node.type==roomController

</formalExpression>
</bpmn4wsn:staticTarget>
<bpmn4wsn:dynamicTarget id="sid-1272ed08-9718-46b3-bf58-1ccf6b02f2b9">

<formalExpression id="sid-88d41cfe-d3c5-468e-9a53-80c518da1904">
node.currentRoom==MasterData.roomNumber

</formalExpression>
</bpmn4wsn:dynamicTarget>

</bpmn4wsn:outputTarget>
<bpmn4wsn:returnOperation>
<bpmn4wsn:implementationRef>

{http://www.project-makesense.eu/application_domain_model}ConcreteAbstraction
</bpmn4wsn:implementationRef>
<bpmn4wsn:operationName>MedianOperator</bpmn4wsn:operationName>

</bpmn4wsn:returnOperation>
</bpmn4wsn:WSNTask>

49

4 Solution Proposals

defined with its name. There are parameters for each tWSNOperation and these
parameters are of type of tParameters. There are two instances of tWSNOperation,
a targetOperation and a returnOperation. A targetOperation is the operation
executed by the nodes represented by actionPerformer and the latter executed by
the group of nodes represented by outputTarget.

– actionType: With this property, we can define a WSN operation as sense, actuate,
or intermediary operation.

– isCommandAction: With this extension property, we define a task as a command
action or as a local action. In case a command action is selected an additional arrow
is shown, on the WSN Task.

– tWSNPerformer: The activity performers in WSNs are defined through tWS-
NPerformer. There are two expressions defined in the type tWSNPerformer, i.e.,
staticTarget and dynamicTarget. The staticTarget is evaluated before deployment
time whereas the dynamicTarget is evaluated during run-time of the WSN process.
The instances that based on tWSNPerformer are:

∗ outputTarget: The outputTarget represents the group of nodes to which the
output data of the targetOperation is sent. An additional return arrow is visible
in case the outputTarget is defined.

∗ orchestrationPerformer: The orchestrationPerformer represents the nodes
which orchestrate the WSN process. After it has been defined the following
execution flow is orchestrated by the nodes referenced by this orchestrationPer-
former. There can exist parallel flows therefor parallel orchestrationPerformers
can exist.

∗ actionPerformer: This is an instance of tActionPerformer. tActionPerformer
is a sub-class of tWSNPerformer. Additionally, there is an index variable to
represent the ordering of the execution in case multiple command needs to be
delegated multiple times.

– isEventDriven: This is a variable of Boolean type. True means that this task
represents an event-driven task otherwise it represents a periodic task. An additional
clock icon is shown on the WSN Task in case it has been set to true.

• WSN Pool: WSN processes are created in these pools. By this way we can create WSN
processes similar to standard BPMN and we can semantically restrict some constructs
in WSN pools. There exists an additional icon on the left top corner of the pool. This
construct is inherited from standard BPMN pools.

• Performance Annotations: This extension inherits from the group construct of
standard BPMN and adds an additional performanceGoalRef property which is used to
reference a performance definition. During the execution, the grouped constructs by a
“Performance Annotation” are supposed to execute in the performance mode referenced
by the performanceGoalRef.

50

5 Related Work

There are domain specific extensions proposed to BPMN and might be used to model business
processes which include WSNs [GZBD11, LKS11, ZSL11, BFV11a]. Although the intended
purpose of those extensions are mostly not related with WSNs and do not satisfy our require-
ments, some might cover some of the requirements as the extensions proposed by Brambill et
al. [BFV11a] does.

BPM 4 People1 is an EU project which aims to include social platforms in business processes.
To achieve these goals and model their changes in BPM, they made several extensions in
BPMN on top of pools, tasks, gateways and events. With these extensions they provide:

• Actor categorization.

• Visibility of the process status.

• Level of social participation.

The aim of this project is to provide social integration to

• Increase transparency and participation to the decision procedures.

• Exploit weak ties between people and implicit enterprise know-how.

• Involve activities communities in activity execution.

[BFV11c, BFV11a, BFVR12, BFV11b]

The details about BPMN 2.0 extensions provided by BPM 4 People can be found under
[BFV11a]. Some related extensions are:

• Community Pools

• Hierarchical Definition of User Roles.

• Publish Task

1http://www.bpm4people.org/cms/content/en/home

51

http://www.bpm4people.org/cms/content/en/home

5 Related Work

The extensions on pools are categorization of pools to reflect the corresponding actor categoriza-
tion, i.e., defines the type of pool and its associated roles. What the performer categorization
generally brings is extending the current performers of tasks in BPMN and add dynamic
performers to it, i.e., the roles can be assigned after deployment time. This approach is more
like a publish/subscribe way of doing things in case of performers, some certain tasks are
defined without the knowledge of performers. The performers from external actor pools can
participate in business processes by some invitations.

A hierarchical assignment of user roles via lanes have been made possible. A sub-role is
assigned to a lane and can perform tasks from super-role and from it’s assigned role.

There is an extension based on “Send Task” of standard BPMN which is called Publish, which
is used to send messages from a regular pool to social pool. This task has similar operations
which can be observed in WSNs, i.e., Broadcast, Multicast, and, Uni-cast. The main difference
among these tasks are as their names suggest inviting all users, a group of users or just one
user.

With standard BPMN 2.0, BPMN models have their corresponding execution semantics. There
are some BPMN vendors who created their execution engines, e.g., Activiti, jBPM, Bonitasoft,
etc. Such BPMN vendors provide certain extensions points that they think these extensions
will be needed in most of the business cases [Act, jBP12]. There are also some extensions
included on some BPMN engines, .e.g, Activiti and jBPM. The list of available BPMN elements
including their extensions can be found under [Act, jBP12].

Activiti is an open-source BPM platform which provides a tool set to design and execute
business processes and its business engine is based on BPMN. jBPM is a similar tool-set which
is offered by jBoss community. They are both run in any java environments and they both
provide business experts some extensions that they see it increases usability of BPMN.

In Activiti, there are some assignments to performers of UserTask, which are "candidateUsers"
and "candidateGroups". These extensions define potential owners to a task. In jBPM, there
are no significant extensions. There is a general additional task name attribute in task and
there are "onEntryscript" and "onExitscript" (Which are by assumption the scripts to be run
at the beginning and at the end of task).

Standard BPMN can be used with minimal extensions to model WSNs. The extensions possible
mentioned are [CK11]:

• A task annotation to differentiate asynchronous WSN tasks.

• For simulation environments some network configuration parameters can be included.

Both of these extensions do not effect the execution semantics of BPMN language and used as
meta-data for simulation environments.

Creation of WSN applications are challenging because during development, low-level program-
ming is needed. Application should be scalable and resources are constrained. Web-services is
the standard for business process interactions [Obj11] and WSNs do not provide any kind of
web-services interfaces and to achieve such a functionality a middle-ware is needed [AIM10].
In case of integration of these WSN application to an enterprise context requires significant

52

5.1 Summary

amount of effort and low-level programming; however, what domain experts are interested in are
operations offered by WSNs on certain objects not the low level details [TSD+12]. To overcome
these programming difficulties, different model-driven code generation techniques with different
modeling languages were proposed in the works of [GEPF11, CB11, ADBS09, TSD+12]. Akbal
et al.. [ADBS09] use UML to create a model-driven development approach. UML is used
to model the architecture of software systems, not business systems [JAC03]. Glombitza
el al. [GEPF11] use BPEL to create a model-driven approach to create code from business
processes. Only the work of [CB11] and [TSD+12] use the BPMN to model and generate code
from these models. The former one uses standard BPMN to create WSN models and the
latter one proposes an extension to standard BPMN. This research is conducted under the
makeSense project as the work of [TSD+12] and solution proposals are built on top of the
previous work of [TSD+12].

5.1 Summary

In this chapter, we briefly explained BPM4People extension of standard BPMN which might
be a relevant extension to model WSN integrated business processes. The BPM4People is an
EU project and it proposes some extensions to standard BPMN to provide social integration.
For instance, there are some minor extensions from BPMN execution engines which do not
meet our requirements. These extensions are defined to support standard IT systems in a
better way.

The low-level modeling during creation of WSN applications is the main obstacle for domain
experts. There are multiple model-driven approaches with different modeling and execution lan-
guages. There is another approach which uses standard BPMN without any extensions [CK11].
Caracas et al. proposes that standard BPMN can be used to model WSN integrated business
processes without any extensions.

53

6 Evaluation

In this chapter, we discuss benefits of using our extensions and draw-backs of other possible
approaches with respect to requirements that we have previously defined (see Chapter 3). The
requirements can be satisfied (2), partially satisfied (1) or not satisfied (0). We will evaluate
our approach against standard BPMN and BPM4People extensions. BPM4People subsections
will appear where they have some related additional extensions otherwise it will be similar to
standard BPMN. After a comparison of different approaches with respect to our requirements,
we will provide an overall picture of our the results achieved.

6.1 Support for Indirect and Dynamic Addressing of Nodes (R1)

6.1.1 Standard BPMN

With standard BPMN, we can address single WSN nodes, group of WSN nodes or all nodes
in WSN. This can be done by using standard BPMN pools where the names of the pools
represent corresponding nodes. If more than one node is present, one should use a multiple

W
S

N
 G

a
te

w
a
y

while(currentTime<reservationStartTime)

Request CO2
Values

Master Data

roomNumber
reservationEndTime
reservationStartTime
co2Threshold

while(currentTime<reservationEndTime)

Evaluate CO2
Values

Request
Ventilation

avarageCO2

C
O

2
 S

e
n
so

rs

Sense CO2 Report CO2
Values

CO2 Values V
e
n
ti

la
ti

o
n
 A

ct
u
a
to

rs Increase
Ventilation

Decrease
Ventilation

avarageCO2
co2Threshold

a
v
a
ra

g
e
C

O
2

<
co

2
T
h
re

sh
o
ld

Figure 6.1: A ventilation business process with standard BPMN.

55

6 Evaluation

instance pool. The data contained in the message construct of BPMN may be used to select
the target group of nodes. However, this does not provide an explicit dynamic way of selecting
WSN nodes which would be responsible for the execution of the corresponding tasks. Pool
names can be used to address nodes statically as these names can be considered as attributes.
However, this approach would have its draw-backs in case multiple attributes define a group of
nodes. The requirement is partially satisfied (1) because one cannot define explicit dynamically
evaluated addresses.

6.1.2 BPM4PEOPLE

The hierarchical definition of user roles might be used to address some nodes indirectly, e.g.,
first sensors in a lane as a super-role, then temperature sensors in another lane as a sub-role
and then sensors in “room 1” in another lane as another sub-role, etc. This approach would
partially satisfy (1) the requirement because dynamic addressing is not supported.

6.1.3 BPMN4WSN

With the BPMN4WSN extensions, users can define expressions which can address nodes
directly, indirectly, statically and dynamically using WSN specific performer elements. This
requirement is satisfied (2) by our extensions because dynamic and indirect addressing are
provided by our extensions.

6.2 Support and Restrict User to WSN Operation Categories (R2)

6.2.1 Standard BPMN

Standard BPMN does not provide constructs for sense, actuate and intermediary operations
because it is tailored to the execution on general multipurpose IT systems. Moreover, there
is no means of distinguishing local and command actions. Although the initial operation
and operations on the output data are combined, standard BPMN would represent it as two
distinct tasks and this way of representing would break the combined nature of these operations.
Moreover, the created output data would be available for other activities during the life of
parent process with respect to the BPMN standard, which would require communication
overhead, a waste of resources in such a resource constrained environment. The requirement is
not satisfied (0) by the standard BPMN.

6.2.2 BPM4PEOPLE

The mostly related available operations in BPM4People extensions are the publish tasks. This
task stands for sending information from a standard BPMN pool to a social pool. This can be
done in three ways uni-cast, multicast and broadcast. These different type of operations do

56

6.3 Limit Available Operations for WSNs (R3)

not fit the operations that we have mentioned in our requirement thus it does not satisfy (0)
the requirement as well.

6.2.3 BPMN4WSN

On the other hand, by using the extension we proposed, one can save resources and moreover
can increase the understandability of BPMN models because the different actions have different
visual mappings which increase the clarity of models. By providing these extensions, we satisfy
the requirement (2).

6.3 Limit Available Operations for WSNs (R3)

6.3.1 Standard BPMN

In standard BPMN, there can be no restriction on BPMN constructs because there is no
explicit separation between standard BPMN pools and WSN pools. This means too much
flexibility for modelers and can result in erroneous models. A domain expert can put a “Manual
Task” into a WSN business process although it is actually not possible. Thus standard BPMN
does not satisfy this requirement (0).

6.3.2 BPM4PEOPLE

There are social pool extensions and one of them could be used instead of a WSN Pool
extension to restrict the constructs however this would result in a semantic change of the
social pool extension construct because it defines a social pool not a WSN Pool. Moreover,
this solution would be only practical in case of non-existence of real social pools. This would
partially satisfy our requirement (1).

6.3.3 BPMN4WSN

However, by separating WSN business processes, we provide a means to limit available
constructs in those pools. We restrict the construct suggested by Stefano et al. [TSD+12]
semantically and this can be easily implemented to modelers for necessary correctness. By
providing this extension, we meet this requirement (2).

57

6 Evaluation

6.4 Support for Multiple Instances of the Same Process (R4)

6.4.1 Standard BPMN

Pools are used to encapsulate processes in case of the existence of multiple participants in
standard BPMN. However to model the processes executed on WSNs, pools are used to
address nodes with common properties. The tasks defined in these pools are executed on the
nodes addressed by the surrounding pool. The actual process executed on a WSN would be a
combination of the pools which address WSN entities. This way of modeling would introduce
another level of abstraction and would cause a semantic change. This semantic change can
cause confusions and diminish common understanding of BPMN models. This requirement is
partially satisfied (0) by standard BPMN.

6.4.2 BPM4PEOPLE

There are social pool extensions and one of them can be used instead of a WSN Pool extension
however this would result in a semantic change of the social pool extension construct because
it defines a social pool not a WSN Pool. This solution would not be practical in case of the
existence of the real social pools because it would not be possible to distinguish which one is a
real social pool and which is a WSN pool. This would partially satisfy our requirement (1).

6.4.3 BPMN4WSN

In case of extensions, we preserve standard BPMN semantics with the WSN Pool. By this
extensions element, we satisfy (2) the requirement.

6.5 Distribution of Execution Logic into WSN (R5)

6.5.1 Standard BPMN

There is no explicit decision mechanism in standard BPMN to assign the center of orchestration,
as in a WSN, a set of equally powerful nodes collaborate. In case of standard BPMN, modelers
and developers do not have the ability of distributing the execution logic into the WSN which
would limit the executability of WSN models. The orchestration would be done implicitly
therefore the requirement is not satisfied (0).

6.5.2 BPMN4WSN

In the proposed extensions, this is done by the orchestrationPerformer element of WSN Tasks
thus this requirement has been satisfied.

58

6.6 Prioritization of Performance Goals (R6)

6.6 Prioritization of Performance Goals (R6)

6.6.1 Standard BPMN

Standard BPMN does not provide a construct to prioritize performance goals. Caracas et
al. [CB11] proposed using BPMN the message categories element to define communication
protocols between WSN processes. Assuming, different protocols run with different performance
goals, each performance goal will only affect the behavior of the communicating parties, not
the behavior of the whole WSN application. The requirement has been partially satisfied (1)
because such explicit constructs in BPMN does not exist.

6.6.2 BPMN4WSN

In our approach, we give some static parameters to each task, to configure its behavior during
compile time. Moreover, we can add some performance goals for the whole WSN during
execution of the preselected execution blocks. By introducing this element, we satisfy (2) the
requirement.

6.7 Support for Event-driven Actions in Modeling (R7)

6.7.1 Standard BPMN

Standard BPMN does not provide a differentiation between event-driven and periodic tasks.
Modeling WSNs with standard BPMN would create models that are less clear and less
understandable than models with explicit event-driven task markings. The solution proposed
by Caracas et al. [CB11], to distinguish between the synchronous and asynchronous tasks, is
to add a textual annotation at the outgoing sequence flows which are taken at the successful
completion of the task. This can improve visual separation, however, business experts and
developers may want to annotate other outgoing sequence flows for documentation purposes,
which might lead to confusion. Additionally, these annotations would belong to the outgoing
sequence flow elements, not to the task itself. The requirement is partially satisfied (1) by
standard BPMN.

6.7.2 BPMN4WSN

The WSN tasks provide explicit event-driven markings, of which business experts and developers
would have a common understanding. By introducing these event-driven markings, we satisfy (1)
the requirement.

59

6 Evaluation

6.8 Models should be stable on minor WSN changes (R8)

To evaluate the modifiability of a process model created with BPMN4WSN, we will consider
the related WSN properties that we presented in Chapter 3 and observe the effects of modifying
them. These are the additional modifiable properties on top of standard business processes.
We can categorize modifications in two different levels of modeling: At the level of executive
modeling (E), i.e., changing properties of existing visual constructs or at the level of analytical
modeling (A), i.e., adding and removing visual constructs to reflect the changes. The latter one
is a more substantial change than the former one. Another option is: not having any changes
in case of some WSN property changes (N). In the following paragraphs, we will evaluate the
relevant properties of the WSNs to evaluate the changes on BPMN models.

6.8.1 Dynamic Addition and Removal of Wireless Sensor Nodes (WP1)

Standard BPMN:

These changes in a WSN may cause changes at the level of analytical modeling (A) in case of
standard BPMN. If conversation diagrams are used to model the topology of the underlying
WSN as proposed by Caracas et al. [CB11], changes in the topology would directly affect these
models as well. Moreover, the addition and removal of targets might result in addition and
removal of new and existing pools. An example of this can be observed in Figure 6.2. We
changed the location of aggregation operation from “WSN Gateway” to “Room Controller”.
To apply this change to the existing BPMN model, we need to add a new pool because we
created a new WSN node group. After creating this pool, we need to carry the necessary tasks.
As you can in Figure 6.2, we also needed to add additional data input/output associations.
This would be the case whenever the tasks, which we have carried from “WSN Gateway” to
“Room Controller” pool, use some input data from the previous task.

BPMN4WSN:

On the other hand in the extensions we proposed, in case developers have used indirect
addressing, changes would not affect at all otherwise users would need change properties at
the executable modeling (E).

6.8.2 Categories of WSN Operations (WP2)

Standard BPMN:

Categories of WSN operations are not supported in the standard BPMN, so there won’t be
any effects (N) of changing WSN related operation categories, e.g., changing a task from a
sense task to an actuate task.

60

6.8 Models should be stable on minor WSN changes (R8)

W
S
N

 G
a
te

w
a
y

while(currentTime<reservationStartTime)

Request CO2
Values

Master Data

roomNumber
reservationEndTime
reservationStartTime
co2Threshold

while(currentTime<reservationEndTime)

C
O

2
 S

e
n
so

rs

Sense CO2 Report CO2
Values

CO2 Valuesco2Threshold V
e
n
ti

la
ti

o
n
 A

ct
u
a
to

rs Increase
Ventilation

Decrease
Ventilation

avarageCO2
co2Threshold

R
o
o
m

 C
o
n
tr

o
lle

r

Evaluate CO2
Values

Request
Ventilation

avarageCO2

co2Threshold

a
v
a
ra

g
e
C

O
2

<
co

2
T
h
re

sh
o
ld

Figure 6.2: The aggregation is now done at the “Room Controller” pool.

BPMN4WSN:

In case of BPMN4WSN extensions, the changes are at level of executable modeling (E) because
only properties of the existing constructs need to be changed.

6.8.3 Limited Operations Available in WSNs (WP3)

Standard BPMN:

Because there is no explicit way of defining orchestrating nodes in WSN, this property is
irrelevant for the standard BPMN. This would mean no change (N).

BPMN4WSN:

In case of extensions proposed, the changes are at the level of executable modeling (E) because
only properties of the existing constructs need to be changed.

6.8.4 Limited Resources and Error-prone Nature of WSN Nodes (WP6)

Standard BPMN:

Standard BPMN does not support performance goals. The communication protocol can be
set between different pools and changing this would be at the level executable modeling (E)
because only properties of the existing constructs need to be changed.

61

6 Evaluation

Property Standard
BPMN BPM4PEOPLE BPMN4WSN

Dynamic Addition and Removal of Wireless
Sensor Nodes (WP1) A A E

Categories of WSN Operations (WP2) N N E

Limited Operations Available in WSNs
(WP3) N N E

Limited Resources and Error-prone Nature
of WSN Nodes (WP6) E E E

Event-driven Nature of WSNs (WP7) E E E

Table 6.1: Evaluation of the requirement “Models should be stable on minor WSN changes
(R8)”.

BPMN4WSN:

On the other hand, when we use BPMN4WSN extensions, we can either change the referenced
definitions of performance annotations or the parameters that have been defined in WSN tasks.
Thus, in the worst case, it would be at the level of executable modeling (E) because only
properties of the existing constructs need to be changed.

6.8.5 Event-driven Nature of WSNs (WP7)

Standard BPMN:

If the standard BPMN was used, the successful completion outgoing sequence flow would be
changed. This would result in a change which is at the level of executable modeling (E).

BPMN4WSN:

In case of proposed extensions, the isEventDriven of the corresponding WSN task would be
changed. This would result in a change which is at executable modeling (E) because only
properties of the existing constructs need to be changed.

6.8.6 Conclusions

A summary of the results for the evaluation of the properties can be found in Table 6.1. In
our extensions, we introduce new properties which can be reflected at our business process
models therefore the changes on these properties would have effects on the business process
models. This result is an expected result and another way is not possible. By introducing

62

6.9 Interpretation of the Comparison

Requirement Standard
BPMN BPM4PEOPLE BPMN4WSN

Support for Indirect and Dynamic Addressing of
Nodes (R1) 1 1 2

Support and Restrict User to WSN Operation Cate-
gories (R2) 0 0 2

Limit Available Operations for WSNs (R3) 0 1 2

Support for Multiple Instances of the Same Process
(R4) 1 1 2

Distribution of Execution Logic into WSN (R5) 0 0 2

Prioritization of Performance Goals (R6) 1 1 2

Support for Event-driven Actions in Modeling (R7) 1 1 2

Models should be stable on minor WSN changes (R8) 1 1 1

Sum 5 6 15

Table 6.2: Evaluation of different approaches with requirements.

our extensions, we carry modifiability of a property from the level of analytical modeling to
the level of executable modeling which means that one of our solution proposals break the
connection between a visual construct (Pool) and carry it to a property of a visual construct (see
tWSNPerformer). By doing so we decrease the degree of modifications in case of changes in the
property “Support for Indirect and Dynamic Addressing of Nodes (R1)”. The two properties
which changed from no modifications needed to modifications at a executable modeling are
expected changes because we start representing those two properties in our process models.
However still this means a decrease in modifiability. In conclusion, we say that we partially
satisfy this requirement as standard BPMN does because there is no way to measure the
change that we provided with our extensions.

6.9 Interpretation of the Comparison

The overall list of the requirements and their satisfactions with respect to different approaches
can be observed in Table 6.2. Standard BPMN does not satisfy any requirements completely
however it satisfies 5 requirements partially. BPM4PEOPLE is similar to standard BPMN
except at the requirements “Support for Multiple Instances of the Same Process (R4)” and
“Limit Available Operations for WSNs (R3)” which it partially satisfies by use of social pool
extensions. By having social pools, BPM4PEOPLE social pools provide a better suitability

63

6 Evaluation

than standard BPMN because one can capture a whole process in one pool. However it fails
whenever there are real social pools and moreover we redefine the definition of social pools in
case we use them to represent WSNs which is not a good approach. With the changes that
we introduce, we concluded that standard BPMN and BPMN4WSN satisfy the requirement
“Models should be stable on minor WSN changes (R8)” partially. This means we did not
bring any significant change in the modifiability of standard BPMN by introducing a set of
new properties which cover WSN properties comprehensively. Other than R8, we have all
requirements satisfied by BPMN4WSN extensions.

6.10 Classification of BPMN4WSN Extensions

In the work of Kopp et al. [KGK+11], a classification for BPEL extensions have been done. This
classification can be similarly applied to BPMN4WSN extensions. In the following paragraphs,
we will classify BPMN4WSN extensions with respect criterion defined in [KGK+11].

Standard BPMN defines the method how the extensions should be defined and we followed
this methodology during definition of BPMN4WSN extensions. We preserve the existing look
and feel of standard BPMN and its existing semantics. Thus BPMN4WSN extensions are
conformant with standard BPMN.

By introducing new modeling constructs, we extend the modeling (M) of BPMN. BPMN4WSN
extensions propose a new type of pool which is converted to binaries and deployed on the
WSN nodes. WSNs are the execution engines because the execute WSN processes on WSNs.
However in case of collaborations, the other process participants need to communicate with
these WSNs and this is not done via Web-services. Therefore there is a need of update on the
navigator for communicating with WSN process participants. Apart from this a new navigator
is created from scratch for each WSN because for each WSN process new binaries are created.
In summary navigator needs to be updated and this means: BPMN4WSN is a run-time (R)
extension.

The purpose of BPMN4WSN extensions are functionality (C1.3), maintainability (C1.4),
robustness (C1.7) and performance (C1.5). With BPMN4WSN extensions, we add new
functionality to our models, i.e., new models can model business processes that include WSNs
comprehensively. During our BPMN4WSN extensions, we aimed to keep all properties at the
level of executable modeling thus we reduce the modifications on visual level. Less modifications
on a visual level would result easier maintainability. Robustness and performance purposes
have been provided by Performance Annotations and parameters defined in tWSNOperation.

As subject criteria, control flow (C2.1), service binding (C2.6) and service invocations (C2.7)
have been affected. Control flow has been affected by event-driven and periodic (see Subsec-
tion 4.1.5) task definitions. Service binding and invocations have been affected because WSN
processes are not executed in a service-oriented fashion.

IT infrastructure (C3.1) and Organization (C3.3) dimensions have been affected because we
defined a new operation (see Subsection 4.1.1) type and a new performer (see Subsection 4.1.4)
type with our extensions.

64

6.10 Classification of BPMN4WSN Extensions

BPMN4WSN extensions are used during Modeling (C4.1), IT refinement (C4.2), Deploy-
ment (C4.4) and Execution (C4.5) phases of the BPM life-cycle. New visual constructs are
used to model WSNs. Execution details are added to WSNs and with the help of these variables
deployable binaries are created. During execution these some extension attributes are used.

In summary, BPMN4WSN extensions conform with standard BPMN. They extend modeling
and run-time mechanism of standard BPMN. They have been created with the purposes of
functionality, maintainability, robustness and performance. BPMN4WSN affects control flow,
service binding and invocation. IT infrastructure and Organization have been affected by
BPMN4WSN extensions. BPMN4WSN extensions are used during Modeling, IT refinement,
Deployment and Execution phases of the BPM life-cycle.

65

6 Evaluation

6.11 Summary

In this chapter, we compared our extensions with other possible approaches. These approaches
are “Standard BPMN” and “BPM4People” extensions.

• Standard BPMN: Standard BPMN fails to satisfy most of the requirements. It
partially satisfies the R1, R4, R6, R7 and R8. It does not satisfy the requirements R2,
R3 and R5.

• BPM4People: R1 can be partially satisfied differently by hierarchical role assignments.
Moreover, these extensions partially satisfy R3 and R4 because it provides a special
type of pool in addition to the standard BPMN pool. The satisfaction of the other
requirements are similar to standard BPMN because these extensions do not provide
any suitable construct for satisfying the others.

• BPMN4WSN: Our extensions fully satisfy almost all the requirements. Only R8 is
partially satisfied as standard BPMN does. The partial satisfaction of R8 is an expected
thing because we add new properties and such affects on the modifiability of models is
an expected.

In the work of Kopp et al. [KGK+11], a classification for BPEL extensions have been done. This
classification can be similarly applied to BPMN4WSN extensions: BPMN4WSN extensions
conform with standard BPMN. They extend modeling (M) and run-time (R) mechanism of
standard BPMN. They have been created with the purposes of functionality (C1.3), main-
tainability (C1.4), robustness (C1.7) and performance (C1.5). BPMN4WSN affects control
flow (C2.1), service binding (C2.6) and invocation (C2.7). IT infrastructure (C3.1) and Orga-
nization (C3.3) have been affected by BPMN4WSN extensions. BPMN4WSN extensions are
used during Modeling (C4.1), IT refinement (C4.2), Deployment (C4.4) and Execution (C4.5)
phases of the BPM life-cycle.

66

7 Architecture and Implementation

In this chapter, we will give information about the prototypical implementation of the ex-
tensions that we proposed. These extensions are implemented on an existing browser-based
BPMN modeling tool which is called “Signavio Core Components” (SCC). SCC is based on
Oryx [DOW08] editor, which is detailed in the work of Zouaoui [Zou12]. In the following sec-
tions, first, we will describe the architecture of “Signavio Core Components” (SCC) and how we
placed our extensions and in the following section, we will give details of our implementation.

Server

Tomcat

signaviocore.war

Model Repository

Platform

Explorer

Editor

CorePluginsStencilsets

Platform Extensions

makesense-extensions bpmn20xmlbasic …

Figure 7.1: Deployment diagram of “Signavio Core Components”.

67

7 Architecture and Implementation

7.1 Architecture

From an architectural perspective, the architecture of SCC is similar to the Oryx which can
be found in the work of Zouaoui [Zou12]. A deployment model of the SCC can be found in
Figure 7.1. The model repository contains BPMN files of the models and corresponding model
meta-data. The location of the repository defined in the build file used during the run time.
The build is done using ant1. The war file contains different components of the application.
The SCC back-end is developed in Java and the user interface is developed in JavaScript and
is accessible with modern browsers. The application depends on JavaScript and in case of a no
JavaScript support, application cannot be run on a browser. For the communication between
server and browser Servlets and Ajax calls have been used.

7.1.1 Signavio Core Components

In the following sub-sections, we will describe each node contained in Figure 7.1.

Explorer

Explorer is a package with JavaScript files and icons. It shows the available modeling tools and
navigation in the repository. Users can delete and create new files using the explorer. Nested
folders are possible and only valid modeling files will be shown. The design of the explorer.js
is made in an object-oriented way. It uses the stensilsets to get the available modeling tools
and presents the user available options. There were no updates on the editor during our
implementation. Only the name of the model is updated indirectly through stencilset because
we updated the type of new models as “BPMN model with BPMN4Extensions”. Stencilsets are
the model meta-data in JSON format. They contain nodes, edges and rules for containment,
connection, morphing, etc.

Editor

Editor composed of core JavaScript files and plug-in files. Users can customize the editor
through the plug-in files. The addition of new buttons are also done through the plug-ins, one
needs to offer a new plug-in to facade with necessary onClick function, a text, an icon which
will be used to create the button in the toolbar. The buttons can be grouped in the toolbar.
Additional plug-in JavaScript files are added to plugins.xml. By doing so they are included
during the creation of editor HTML of application and added to deployable war file.

The editor is based on latest public licensed version (v2.0.2) of ExtJS framework and Prototype
framework.

1http://ant.apache.org/

68

http://ant.apache.org/

7.1 Architecture

Editor was developed using Gang of Four (GoF) patterns in an object-oriented way. Some
examples of the used GoF patterns are: composite, command and observer patterns. The
necessary changes can be done through adding new plug-ins. At first editor HTML is requested
from the back-end and it returns an HTML page with links to JavaScript files. After JavaScript
files are loaded, the application starts by requesting plugins.xml, and continues with requesting
model file. From the model file it checks for the stencilset which is used to create the model.
Thereafter editor requests the corresponding stencilset file of the model. The stencilset file
can contain nodes, edges and rules. Edges are the connecting objects of the nodes. The rules
define which nodes can contain which nodes and which nodes can be connected with which
edges and with which nodes. From the stencilset the palette is created. From this palette,
users can add the nodes and edges, which have been defined in the stencilsets of the editor,
aligned with the rules defined in the stencilset. Every node and edge can have properties,
these properties are edited through properties panel. All of these information is saved in the
repository when the user clicks save button. Editor has most of the definitions in English and
German and by adding necessary fields, new languages can be defined similarly.

Platform

This module is responsible for handling browser requests. Editor and explorer requests are
handled by this module. Platform contains the core back-end packages of the SCC. The
repository management is done by this component. The packages in this module is developed
by Signavio2 and as extensions some packages from Oryx were taken.

Platform Extensions

This module includes the packages used to provide additional functionality which is not
provided by SCC core libraries, i.e., “Platform” module. Some libraries for conversion from
model files to BPMN files exist.

7.1.2 Extension Mechanism of SCC

One can define a new modeling elements or can extend an existing one. To create a new set of
modeling elements with a completely new visual elements, one needs to create a new stencilset
and define stencils, icons, views, properties, etc. of the created stencilsets. After creating this,
stencilsets.json needs to be updated and the new stencilset should be referenced here. Explorer
would check stencilsets.json file and show the available options to the user. When user creates
a new model with the newly defined stencilset, stencils from the stencilset are loaded to the
editor.

2www.signavio.com/

69

www.signavio.com/

7 Architecture and Implementation

Another option is to extend existing set of modeling elements. This can achieved by defining
an extension stencilset and adding this extension to extensions.json. These extensions will be
added after the main stencilset has been loaded.

These two methods are limited by the existing types defined in SCC. The main types can be
listed as:

• String

• Text

• Choice

• Complex

Additional program logic can be defined in platform-extensions and afterwards these files can
be put into application as a library. This can be similarly achieved for the editor part by
defining new files in plugins folder of the editor and then linking them via plugins.xml.

7.1.3 Application Flow

An activity diagram of the modeling can be observed in Figure 7.2. There are two system
actors who accomplish these activities. Some activities on the browser are triggered by the
user. The flow activities start whenever user opens the application web-site, e,g., default on
the local machine localhost:8080/signavio/p/explorer. “/p” is the pattern for using the
Servlets instead of resources residing on the server. Browser sends a request for the explorer
and it is handled by the explorer handler. Afterwards the user can create a new model or open
or delete an existing model. If user opens or creates a new model, first the editor HTML is
returned from the server. This HTML page includes core and plugin JavaScript files of the
editor. The application resided on the browser first requests the model file, hereafter based on
the model file, the corresponding stencilset is requested. The requested stencilset is used to
create the palette. Afterwards extensions.json is requested to check if there are some stencilsets
associated with the stencilset of the model. The stencilsets are identified by a URI. All the
extensions associated with the current stencilset is requested and added to palette. Modeler
can edit the model and save it to make the changes permanent.

7.1.4 Updated SCC with the Extensions

Our extensions had two parts as SCC, i.e., a user interface part typed in JavaScript and a
back-end part typed in Java. The JavaScript files of our extensions resided in the plugins part
of the editor. The Java files were contained in the “platform-extensions” component and it is
converted to a .jar lib. We extended standard BPMN by introducing some new properties to
the existing visual constructs and introducing some new visual constructs. We added these
new properties and visual constructs to an extensions stencilset.

An updated activity diagram is shown in Figure 7.3. This is how BPMN modeling is done in
makeSene project. At first some well-defined configuration files are uploaded to the system and

70

localhost:8080/signavio/p/explorer

7.1 Architecture

Request Explorer

Return Explorer

Fetch Requested Model
From Repository

Return Model

Create Empty
Model

Create New
Model

Open Existing
Model

[new model] [old model]

Request Existing
Model

Request Old
Model

Return Editor
[Old Model] [Existing Model]

Save Model

[change]

[close]

[save]

Save Files
in Repository

Apply Changes

BrowserServer

Create Model
Meta-data

Create BPMN
Data

[close]

Delete Model

[delete]

Delete Model
from Repository

Request
Stencilset

Return Stencilset

Return Extensions

Request
Extensions

Request
Extension

[yes]

[no]

has extensions?

Return Extension

Figure 7.2: Activity diagram of modeling with “Signavio Core Components”.

71

7 Architecture and Implementation

SCC application is started by selecting one of the configuration files. These configuration files
provide information related to the WSN, e.g., operations provided by the WSN, the message
types that are used to communicate with outside world, etc. User selects a setting that s/he
wants to design for and during BPMN modeling the information in the configuration files are
made available to the related BPMN constructs. By providing these configuration files, users
will create realistic models and the models will be easier to create because these configurations
represent the capabilities of the underlying WSN.

7.2 Implementation

During implementation, we firstly created our XSD files for the extensions and then converted
them to Java classes using JAXB reference implementation found in http://jaxb.java.net/.
We used Eclipse Juno EE3 version and for JavaScript debugging we used Firefox Firebug
plugin4. The JAXB classes are used for marshalling and unmarshalling from Java objects
to BPMN XML file. To provide the information available in configurations, we created our
extension stencilset dynamically. The dynamic creation is achieved by JSP and tag libraries
implementation provided by Apache. In the WSN extensions of the SCC, there were 4.468
lines of code including automatically generated JAXB classes. Additionally, there were 2
JavaScript plug-ins which were in total 530 lines of code. We have conducted the code analysis
using Sonar5. Moreover, there were changes and additions in application logic of the existing
component. In the following subsections, we will describe each solution proposal one by one.

7.2.1 WSN Task

As described a WSN operation defined with an operationRef, an operation name and parameters.
In the SCC editor, we have 4 properties to define a target operation and return operation.
The TargetOperationRef and TargetOperationName are used to define targetOperation of
the WSNTask. Similarly, ReturnOperationRef and ReturnOperationName are the used to
define returnOperation of the WSNTask. The operation names and namespace are fetched
from configuration files automatically and offered to the user for selection.

actionType

This is a choice item and each choice has a visual mapping. The choices are sense, actuate
and intermediary operation as detailed in Section 4.1.2. Whenever user changes action type
from one to another, the icon on the Task changes accordingly. In stencilsets of the modeling
constructs, one can define visual references to the properties. We used this referencing method
of the SCC and implemented our type of actions similarly.

3http://www.eclipse.org/juno/
4https://addons.mozilla.org/en-US/firefox/addon/firebug/
5http://www.sonarsource.org/

72

http://jaxb.java.net/
http://www.eclipse.org/juno/
https://addons.mozilla.org/en-US/firefox/addon/firebug/
http://www.sonarsource.org/

7.2 Implementation

Request Configuration
Management

Return Explorer

Fetch Requested Model
From Repository

Return Model

Create Empty
Model

Create New
Model

Open Existing
Model

[new model] [old model]

Request Existing
Model

Request Old
Model

Return Editor
[Old Model] [Existing Model]

Save Model

[change]

[close]

[save]

Save Files
in Repository

Apply Changes

BrowserServer

Create Model
Meta-data

Create BPMN
Data

[close]

Delete Model

[delete]

Delete Model
from Repository

Request
Stencilset

Return Stencilset

Return Extensions

Request
Extensions

Request
Extension

[yes]

[no]

has extensions?

Return Extension

Upload
Configuration

Select
Configuration

Save
Configuration

[new config]

[config]

Load
Configuration

Figure 7.3: Activity diagram of modeling WSN processes in makeSense.

73

7 Architecture and Implementation

isCommandAction

This is a Boolean box and and if it is true a new arrow is visible on the WSN Task. Arrows on
the nodes were not well supported and additional updates on the JavaScript code was needed,
i.e., markers on the SVG objects.

tWSNPerformer

To define tWSNPerformer type and its instances properly, we defined a new type in SCC editor
because the existing types did not suffice our needs. To define this, we implemented a new editor
similar to “Complex Type” editor but it was more of an ad-hoc type of solution. Whenever
user wants to add a new WSN Performer, s/he clicks on the WSN Performers property button
and it triggers a new window. In this window, user can add zero-to many actionPerformers,
zero or one orhestrationPerformer and outputTarget. Each defined WSN Performer can have
its static target and dynamic target. These targets are type of tResourceAssignmentExpression
and necessary fields have been inherited to define them. These fields can be summarized as
expression language, evaluates to type, and expression. In case an outputTarget has been
defined, a return arrow visible on the WSN Task.

isEventDriven

This is a property of type of Boolean which had been already defined in SCC previously. This
property has a visual mapping and in case it is true, i.e., it is ticked, a clock is visible on the
WSNTask.

7.2.2 WSN Pool

We have created a new pool as WSN Pool in the palette. This different pool has an antenna on
the left top corner. To define this pool, we have added it to the extension stencilset. However
just adding the pool was not enough because the automatic addition of a lane to the pool was
hard coded and updates on that was needed to have a similar pool behaviour.

7.2.3 Performance Annotations

The grouping in SCC was buggy, the necessary rules were needed to be updated to define a
proper extension of grouping. WSNPools and Performance Annotations were grouped in the
palette under WSN Extensions group.

All the extensions are inherited from already existing constructs of BPMN unlike the work of
Zouaoui et al. [Zou12]. The containment, connection and morphing rules of these constructs are
the same as parent constructs in the stencilset definitions. A WSNPool has the same rules as
a standard BPMN pool, a WSNTask has the same rules as a standard BPMN task and finally

74

7.2 Implementation

a Performance Annotation has the same rules as a group construct of the standard BPMN.
Therefore, we reused the rules and roles defined in the stencilset of the parent constructs in
our extension stencilset.

75

7 Architecture and Implementation

7.3 Summary

This chapter provides information about a modeling tool on which we implemented
BPMN4WSN extensions. Our extensions were implemented on “Signavio Core Compo-
nents” (SCC). This is web-based editor and contained in a Servlet container such as Apache
Tomcat6 or JBoss7. It provides a web interface which has been developed in JavaScript and
the back-end has been developed in Java. The server browser communication are done with
Servlets and with Ajax calls on the browser. There exists stencilsets which define models in
editors.

Editor has an extension mechanism through stencilsets. An extension stencilset can be created
to extend an existing one. Our extensions were defined as an extension stencilset to existing
BPMN stencilset. However the standard types defined in SCC were not enough and we needed
to define our new type. For changes in the application logic of the editor, editor has been
developed with a plug-in mechanism. To add the new type tWSNPerformer, we added new 2
new plug-ins, one for the new type and one for editor for the new type.

6http://tomcat.apache.org/
7http://www.jboss.org/

76

http://tomcat.apache.org/
http://www.jboss.org/

8 Summary and Outlook

In this chapter, we will give a general summary or the thesis work and provide information
about the place of our approach in model-driven chain.

8.1 Summary

This master thesis focused on modeling WSNs with BPMN and proposes some extensions so
that the extended BPMN supports business processes, which include WSNs, comprehensively.
BPMN modeling is a step in a model-driven methodology. This methodology includes the
creation of binaries from BPMN models which are deployed on WSN nodes later on for
execution of BPMN process. This model-driven way of creating binaries from business process
models is the current state of art. However our meta-model extensions also support the
standard web-services for modeling. A summary of the master thesis is shown in Figure 8.1.

During our literature review, we researched the WSN properties and BPMN properties (see
chapter2). First we checked general WSN properties and later on evaluated their relevance in
our BPMN modeling concept. The BPMN properties that we found were used while creating
the extensions or creating the requirements. The look and feel and existing semantics of the
BPMN have been preserved.

After determining the properties, we evaluated them for their relevance with BPMN modeling
requirements (see Section 3.1 and Section 3.2). The relevant properties were used to create
requirements (see Section 3.3). These requirements were used to create our solution proposals
and to compare it with other approaches.

Based on our requirements, we created our BPMN4WSN extensions (see Chapter 4). Based
on the related work (see Chapter 5), we selected other approaches which can be used to model
WSNs.

We compared our approach with other proposed approaches and detailed which requirements
are met by which approaches (see chapter 6). With BPMN4WSN extensions, we almost
completely satisfy every requirement whereas standard BPMN and BPM4People extensions
fail to fulfill most of the requirements.

77

8
Sum

m
ary

and
O
utlook

Literature
Review

Analyze BPMN
Properties

Analyze WSN
Properties

Derive
Requirements

Create Solution
Proposals

Evaluate
Solution

Proposals

Other Approaches:

- Standard BPMN

- BPM4People

- ...

BPMN Properties:

- Dimensions of a Business Process Activity (BP1)

- BPMN Different Levels of Modeling (BP2)

- Cognitive Effectiveness of BPMN (BP3)

- Extensbility Mechanism of BPMN (BP4)

- Modifiability of Process Models (BP5)

WSN Properties:

- Dynamic Addition and Removal of Wireless Sensor Nodes (WP1)

- Categories of WSN Operations (WP2)

- Limited Operation Available in WSNs (WP3)

- Parallel Execution of the Same Process Logic in one Application (WP4)

- Distributed Nature of WSN Applications (WP5)

- Limited Resources and Error-prone Nature of WSN Nodes (WP6)

- Event-driven Nature of WSNs (WP7)

- Different Type of Nodes (WP8)

- Dense Deployment of Nodes (WP9)

- Different Interaction Patterns in WSNs (WP10)

Related WSN Properties:

- Dynamic Addition and Removal of Wireless Sensor Nodes (WP1)

- Categories of WSN Operations (WP2)

- Limited Operation Available in WSNs (WP3)

- Parallel Execution of the Same Process Logic in one Application (WP4)

- Distributed Nature of WSN Applications (WP5)

- Limited Resources and Error-prone Nature of WSN Nodes (WP6)

- Event-driven Nature of WSNs (WP7)

Related BPMN Properties:

- Dimensions of a Business Process Activity
(BP1)

- Cognitive Effectiveness of BPMN (BP3)

- Modifiability of Process Models (BP5)

Requirements:

- Support for Indirect and Dynamic Addressing of Nodes (R1)

- Support and Restrict User to WSN Operation Categories (R2)

- Limit Available Operations for WSNs (R3)

- Support for Multiple Instances of the Same Process (R4)

- Distribution of Execution Logic into WSN (R5)

- Prioritization of Performance Goals (R6)

- Support for Event-driven Actions in Modeling (R7)

- Models should be stable on minor WSN changes (R8)

Solution Proposals:

- WSNTask/tWSNPerformer

- WSNTask/t/tActionPerformer

- WSNTask/tWSNOperation

- WSNTask/actionType

- WSNTask/isCommandAction

- WSNTask/actionPerfomer

- WSNTask/outputTarget

- WSN Pool

- WSNTask/orchestrationPerformer

- Performance Annotations

- WSNTask/tWSNOperation/parameters

- WSNTask/isEventDriven

Other Approaches:

- Standard BPMN

- BPM4People

- ...

Figure 8.1: Thesis methodology model with results.

78

8.2 Outlook

8.2 Outlook

This thesis work has concentrated on the BPMN modeling side of the model-driven chain as
shown in Figure 8.2. These models have the capability to reference the WSN related data.
As a further step, current model compiler needs to be updated and support for the extended
BPMN needs to be added.

Later on a comparison of the different approaches can be done. The effort from creating models
to generating binaries can be analyzed and the run-time statistics of different approaches can
be analyzed.

During execution of collaborations, communicating with external processes would be needed.
These external participants would be possibly executing their business processes on business
process execution engines. These business execution engines need to support communication

This thesis work covers
this part of the model-driven
code generation

BPMN Model

WSN Related
Data

Code Generator

deployed-on

used-by

used-by

creates

WSN Nodes

references

Deployable
Binaries

Figure 8.2: The place of this thesis work in the model-driven chain.

79

8 Summary and Outlook

with WSNs. Therefore collaborations including WSNs need to be further analyzed and
implemented.

80

Bibliography

[Act] Activiti 5.9 User Guide. URL http://activiti.org/userguide/index.html#
bpmnCustomExtensions. (Cited on pages 23 and 52)

[ADBS09] B. Akbal-Delibas, P. Boonma, J. Suzuki. Extensible and Precise Modeling for
Wireless Sensor Networks. In UNISCON, pp. 551–562. 2009. (Cited on pages 14,
15 and 53)

[AIM10] L. Atzori, A. Iera, G. Morabito. The Internet of Things: A survey. Computer
Networks, 54(15):2787 – 2805, 2010. doi:10.1016/j.comnet.2010.05.010. (Cited on
pages 11 and 52)

[AK04] I. Akyildiz, I. Kasimoglu. Wireless sensor and actor networks: research challenges.
Ad Hoc Networks, 2(4):351–367, 2004. doi:10.1016/j.adhoc.2004.04.003. (Cited on
pages 20, 21 and 44)

[ASSC02a] I. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci. A survey on sensor
networks. Communications Magazine, IEEE, 40(8):102 – 114, 2002. doi:10.1109/
MCOM.2002.1024422. (Cited on pages 11 and 13)

[ASSC02b] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci. Wireless sensor
networks: a survey. Computer Networks, 38:393–422, 2002. (Cited on pages 11,
12, 19, 20, 21 and 22)

[BCDV09] C. Buratti, A. Conti, D. Dardari, R. Verdone. An Overview on Wireless Sensor
Networks Technology and Evolution. Sensors, 9(9):6869–6896, 2009. doi:10.3390/
s90906869. (Cited on page 14)

[BFV11a] M. Brambilla, P. Fraternali, C. Vaca. BPMN and Design Patterns for Engineering
Social BPM Solutions. In F. Daniel, K. Barkaoui, S. Dustdar, editors, Business
Process Management Workshops (1), volume 99 of Lecture Notes in Business
Information Processing, pp. 219–230. Springer, 2011. (Cited on page 51)

[BFV11b] M. Brambilla, P. Fraternali, C. Vaca. A model-driven approach to social BPM
applications. Social BPM, pp. 95–112, 2011. (Cited on page 51)

[BFV11c] M. Brambilla, P. Fraternali, C. Vaca. A Notation for Supporting Social Business
Process Modeling. In BPMN, pp. 88–102. 2011. (Cited on page 51)

[BFVR12] M. Brambilla, P. Fraternali, C. K. Vaca Ruiz. Combining social web and BPM
for improving enterprise performances: the BPM4People approach to social BPM.
In Proceedings of the 21st international conference companion on World Wide

81

http://activiti.org/userguide/index.html#bpmnCustomExtensions
http://activiti.org/userguide/index.html#bpmnCustomExtensions

Bibliography

Web, WWW ’12 Companion, pp. 223–226. ACM, New York, NY, USA, 2012.
doi:10.1145/2187980.2188014. (Cited on page 51)

[CB11] A. Caracas, A. Bernauer. Compiling business process models for sensor networks.
In Distributed Computing in Sensor Systems and Workshops (DCOSS), 2011
International Conference on, pp. 1 –8. 2011. doi:10.1109/DCOSS.2011.5982159.
(Cited on pages 11, 21, 53, 59 and 60)

[CK11] A. Caracas, T. Kramp. On the Expressiveness of BPMN for Modeling Wireless
Sensor Networks Applications. In BPMN, pp. 16–30. 2011. (Cited on pages 52
and 53)

[DOW08] G. Decker, H. Overdick, M. Weske. Oryx – An Open Modeling Platform for the
BPM Community. In Business Process Management, 6th International Con-
ference, BPM 2008, Milan, Italy, September 2-4, 2008. Proceedings, volume
5240 of Lecture Notes in Computer Science, pp. 382–385. Springer, 2008. doi:
10.1007/978-3-540-85758-7_29. (Cited on page 67)

[EBSK10] E. M. K. K. Er. Barjinder Singh Kaler. Challenges in Wireless Sensor Networks.
In ISCET. 2010. (Cited on page 14)

[EPKG12] E. B. R. Edwin Prem Kumar Gilbert, Baskaran Kaliaperumal. Research Issues
in Wireless Sensor Network Applications: A Survey. International Journal of
Information and Electronics Engineering, 2:702–706, 2012. (Cited on page 12)

[Fri11] P. Friess. Internet of Things - Global Technological and Societal Trends From
Smart Environments and Spaces to Green ICT. River Publishers, 2011. (Cited on
page 11)

[GEPF11] N. Glombitza, S. Ebers, D. Pfisterer, S. Fischer. Using BPEL to Realize Business
Processes for an Internet of Things. In H. Frey, X. Li, S. Ruehrup, editors, Ad-hoc,
Mobile, and Wireless Networks, volume 6811 of Lecture Notes in Computer Science,
pp. 294–307. Springer Berlin Heidelberg, 2011. (Cited on page 53)

[GGG05] R. Gummadi, O. Gnawali, R. Govindan. Macro-programming Wireless Sensor
Networks Using Kairos, 2005. (Cited on page 14)

[GHA11] N. Genon, P. Heymans, D. Amyot. Analysing the Cognitive Effectiveness of the
BPMN 2.0 Visual Notation. In Software Language Engineering. 2011. (Cited on
pages 23 and 33)

[GZBD11] F. Gao, M. Zaremba, S. Bhiri, W. Derguerch. Extending BPMN 2.0 with Sensor
and Smart Device Business Functions. In Enabling Technologies: Infrastructure for
Collaborative Enterprises (WETICE), 2011 20th IEEE International Workshops
on, pp. 297 –302. 2011. doi:10.1109/WETICE.2011.50. (Cited on pages 12 and 51)

[JAC03] Z. JACKOWSKI. Business Modeling with UML: A Business Process Centred
Architecture, 2003. (Cited on page 53)

[jBP12] jBPM User Guide, 2012. URL http://docs.jboss.org/jbpm/v5.3/userguide/
ch.core-bpmn.html#d0e2587. (Cited on pages 23 and 52)

82

http://docs.jboss.org/jbpm/v5.3/userguide/ch.core-bpmn.html#d0e2587
http://docs.jboss.org/jbpm/v5.3/userguide/ch.core-bpmn.html#d0e2587

Bibliography

[KAA97] J. D. Kiper, B. Auernheimer, C. K. Ames. Visual Depiction of Decision Statements:
What is Best forProgrammers and Non-Programmers? Empirical Softw. Engg.,
2(4):361–379, 1997. doi:10.1023/A:1009797801907. (Cited on page 14)

[KGK+11] O. Kopp, K. Görlach, D. Karastoyanova, F. Leymann, M. Reiter, D. Schumm,
M. Sonntag, S. Strauch, T. Unger, M. Wieland, R. Khalaf. A Classification of
BPEL Extensions. Journal of Systems Integration, 2(4):2–28, 2011. (Cited on
pages 64 and 66)

[LE06] Y. Levy, T. Ellis. A systems approach to conduct an effective literature review in
support of information systems research. Informing Science International Journal
of an Emerging Transdiscipline, 9:181–212, 2006. (Cited on page 15)

[Ley10] F. Leymann. BPEL vs. BPMN 2.0: Should You Care? In 2nd International
Workshop on BPMN, Lecture Notes in Business Information Processing. Springer,
2010. (Cited on page 22)

[LKS11] A. Lodhi, V. Köppen, G. Saake. An Extension of BPMNMeta-model for Evaluation
of Business Processes. J. Riga Technical University, 43:27–34, 2011. (Cited on
page 51)

[LR00] F. Leymann, D. Roller. Production workflow: concepts and techniques. Prentice
Hall PTR, Upper Saddle River, NJ, USA, 2000. (Cited on page 22)

[Moo09] D. Moody. The “Physics” of “Notations”: Toward a Scientific Basis for Con-
structing Visual Notations in Software Engineering. Software Engineering, IEEE
Transactions on, 35(6):756 –779, 2009. doi:10.1109/TSE.2009.67. (Cited on
pages 23 and 30)

[MP11] L. Mottola, G. P. Picco. Programming wireless sensor networks: Fundamental
concepts and state of the art. ACM Comput. Surv., 43(3):19:1–19:51, 2011. doi:
10.1145/1922649.1922656. (Cited on pages 11, 14, 19, 20, 21 and 22)

[Obj11] Object Management Group. Business Process Model and Notation Version (BPMN)
Version 2.0 Specification. Technical report, Object Management Group (OMG),
2011. (Cited on pages 8, 9, 23, 24, 25 and 52)

[Org07] OASIS. Web Services Business Process Execution Language Version 2.0 – OASIS
Standard, 2007. (Cited on page 14)

[PHM+08] V. Pentikäinen, T. Heikkilä, K. Määttä, P. Tukeva, M. Korkalainen, P. Saavalainen,
P. Kilpeläinen. Industrial and non-consumer applications of wireless sensor net-
works. pp. 69830K–69830K–13, 2008. doi:10.1117/12.786886. (Cited on page 12)

[RDD+11] T. Rodrigues, P. Dantas, F. C. Delicato, P. F. Pires, L. Pirmez, T. Batista,
C. Miceli, A. Zomaya. Model-Driven Development of Wireless Sensor Network
Applications. Embedded and Ubiquitous Computing, IEEE/IFIP International
Conference on, 0:11–18, 2011. doi:http://doi.ieeecomputersociety.org/10.1109/
EUC.2011.50. (Cited on page 15)

83

Bibliography

[Rec10] J. C. Recker. Opportunities and constraints : the current struggle with BPMN.
Business Process Management Journal, 16(1):181–201, 2010. (Cited on page 22)

[SAP09] BPM Technology Taxonomy: A Guided Tour to the Application of BPM. Technical
Report 1, SAP, Accenture, 2009. This paper provides a survey of the practices
and technology related to business process management (BPM). Basic concepts
are explained, the transformational effect on the enterprise is examined, and the
value that BPM can create is analyzed. The paper then presents a survey of the
vast array of technology that is related to BPM and sorts out how and when such
technology is used. (Cited on page 22)

[SCV11] L. J. R. Stroppi, O. Chiotti, P. D. Villarreal. Extending BPMN 2.0: Method and
Tool Support. In BPMN, pp. 59–73. 2011. (Cited on pages 8, 25 and 26)

[Sil11] B. Silver. Bpmn Method and Style, 2nd Edition, with Bpmn Implementer’s Guide:
A Structured Approach for Business Process Modeling and Implementation Using
Bpmn 2.0. Cody-Cassidy Press, 2011. (Cited on page 23)

[SKI08] S. Stein, S. Kühne, K. Ivanov. Business to IT Transformations Revisited. In
MDE4BPM 2008, volume 17 of Lecture Notes in Business Information Processing,
pp. 178–187. Springer, 2008. doi:10.1007/978-3-642-00328-8_18. (Cited on page 14)

[SMZ07] K. Sohraby, D. Minoli, T. Znati. Wireless Sensor Networks: Technology, Protocols,
and Applications. Wiley-Interscience, 2007. (Cited on pages 11, 19 and 21)

[TSD+12] S. Tranquillini, P. Spieß, F. Daniel, S. Karnouskos, F. Casati, N. Oertel, L. Mottola,
F. J. Oppermann, G. P. Picco, K. Römer, T. Voigt. Process-based design and
integration of wireless sensor network applications. In Proceedings of the 10th
international conference on Business Process Management, BPM’12, pp. 134–149.
Springer, Berlin, Heidelberg, 2012. doi:10.1007/978-3-642-32885-5_10. (Cited on
pages 11, 12, 13, 18, 20, 39, 45, 53 and 57)

[Wes07] M. Weske. Business Process Management: Concepts, Languages, Architectures.
Springer New York, Inc., Secaucus, NJ, USA, 2007. (Cited on page 29)

[Zou12] M. Zouaoui. Ein Modellierungswerkzeug für Produktionsprozesse auf Basis einer
BPMN-Erweiterung. Diplomarbeit, Universität Stuttgart, Fakultät Informatik,
Elektrotechnik und Informationstechnik, Germany, 2012. (Cited on pages 67, 68
and 74)

[ZSL11] S. Zor, D. Schumm, F. Leymann. A Proposal of BPMN Extensions for the
Manufacturing Domain. In Proceedings of the 44th CIRP International Conference
on Manufacturing Systems. 2011. (Cited on page 51)

All links were last followed on February 14, 2013.

84

Declaration

I declare herewith that I am the author of this
thesis. I did not use any other sources than
those named and all those passages quoted from
other works either literally or in the general
sense are marked as such. Neither the complete
thesis nor essential parts of it have been used up
to now in any other examination procedure. I
have not published this thesis up to now either
in part or as a whole. The electronically
submitted version is identical to all the other
versions which have been submitted.

(C. Timurhan Sungur)

	1 Introduction
	1.1 Motivation
	1.1.1 Reasons for Choosing BPMN
	1.1.2 Model-driven Development of WSNs

	1.2 Methodology

	2 Background on WSNs and BPMN
	2.1 WSN Properties
	2.1.1 Dynamic Addition and Removal of Wireless Sensor Nodes (WP1)
	2.1.2 Categories of WSN Operations (WP2)
	2.1.3 Limited Operations Available in WSNs (WP3)
	2.1.4 Parallel Execution of the Same Process Logic in one Application (WP4)
	2.1.5 Distributed Nature of WSN Applications (WP5)
	2.1.6 Limited Resources and Error-prone Nature of WSN Nodes (WP6)
	2.1.7 Event-driven Nature of WSNs (WP7)
	2.1.8 Different Type of Nodes (WP8)
	2.1.9 Dense Deployment of Nodes (WP9)
	2.1.10 Different Interaction Patterns in WSNs (WP10)

	2.2 BPMN Properties
	2.2.1 Dimensions of a Business Process Activity (BP1)
	2.2.2 Different Levels of Modeling (BP2)
	2.2.3 Cognitive Effectiveness of BPMN (BP3)
	2.2.4 Extensbility Mechanism of BPMN (BP4)
	2.2.5 Modifiability of Process Models (BP5)

	2.3 Summary

	3 Requirements for WSN-specific BPMN
	3.1 Evaluation of WSN Properties
	3.1.1 Dynamic Addition and Removal of Wireless Sensor Nodes (WP1)
	3.1.2 Categories of WSN Operations (WP2)
	3.1.3 Limited Operations Available in WSNs (WP3)
	3.1.4 Parallel Execution of the Same Process Logic in one Application (WP4)
	3.1.5 Distributed Nature of WSN Applications (WP5)
	3.1.6 Limited Resources and Error-prone Nature of WSN Nodes (WP6)
	3.1.7 Event-driven Nature of WSNs (WP7)
	3.1.8 Different Type of Nodes (WP8)
	3.1.9 Dense Deployment of Nodes (WP9)
	3.1.10 Different Interaction Patterns in WSNs (WP10)

	3.2 Evaluation of BPMN Properties
	3.2.1 Dimensions of a Business Process Activity (BP1)
	3.2.2 Different Levels of Modeling (BP2)
	3.2.3 Cognitive Effectiveness of BPMN (BP3)
	3.2.4 Extensbility Mechanism of BPMN (BP4)
	3.2.5 Modifiability of Process Models (BP5)

	3.3 Requirements
	3.3.1 Support for Indirect and Dynamic Addressing of Nodes (R1)
	3.3.2 Support and Restrict User to WSN Operation Categories (R2)
	3.3.3 Limit Available Operations for WSNs (R3)
	3.3.4 Support for Multiple Instances of the Same Process (R4)
	3.3.5 Distribution of Execution Logic into WSN (R5)
	3.3.6 Prioritization of Performance Goals (R6)
	3.3.7 Support for Event-driven Actions in Modeling (R7)
	3.3.8 Models should be stable on minor WSN changes (R8)

	3.4 Summary

	4 Solution Proposals
	4.1 WSN Task
	4.1.1 tWSNOperation
	4.1.2 actionType
	4.1.3 isCommandAction
	4.1.4 tWSNPerformer
	4.1.5 isEventDriven

	4.2 WSN Pool
	4.3 Performance Annotations
	4.4 Summary

	5 Related Work
	5.1 Summary

	6 Evaluation
	6.1 Support for Indirect and Dynamic Addressing of Nodes (R1)
	6.1.1 Standard BPMN
	6.1.2 BPM4PEOPLE
	6.1.3 BPMN4WSN

	6.2 Support and Restrict User to WSN Operation Categories (R2)
	6.2.1 Standard BPMN
	6.2.2 BPM4PEOPLE
	6.2.3 BPMN4WSN

	6.3 Limit Available Operations for WSNs (R3)
	6.3.1 Standard BPMN
	6.3.2 BPM4PEOPLE
	6.3.3 BPMN4WSN

	6.4 Support for Multiple Instances of the Same Process (R4)
	6.4.1 Standard BPMN
	6.4.2 BPM4PEOPLE
	6.4.3 BPMN4WSN

	6.5 Distribution of Execution Logic into WSN (R5)
	6.5.1 Standard BPMN
	6.5.2 BPMN4WSN

	6.6 Prioritization of Performance Goals (R6)
	6.6.1 Standard BPMN
	6.6.2 BPMN4WSN

	6.7 Support for Event-driven Actions in Modeling (R7)
	6.7.1 Standard BPMN
	6.7.2 BPMN4WSN

	6.8 Models should be stable on minor WSN changes (R8)
	6.8.1 Dynamic Addition and Removal of Wireless Sensor Nodes (WP1)
	6.8.2 Categories of WSN Operations (WP2)
	6.8.3 Limited Operations Available in WSNs (WP3)
	6.8.4 Limited Resources and Error-prone Nature of WSN Nodes (WP6)
	6.8.5 Event-driven Nature of WSNs (WP7)
	6.8.6 Conclusions

	6.9 Interpretation of the Comparison
	6.10 Classification of BPMN4WSN Extensions
	6.11 Summary

	7 Architecture and Implementation
	7.1 Architecture
	7.1.1 Signavio Core Components
	7.1.2 Extension Mechanism of SCC
	7.1.3 Application Flow
	7.1.4 Updated SCC with the Extensions

	7.2 Implementation
	7.2.1 WSN Task
	7.2.2 WSN Pool
	7.2.3 Performance Annotations

	7.3 Summary

	8 Summary and Outlook
	8.1 Summary
	8.2 Outlook

	Bibliography

