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Abstract

We propose a generalization of Brauer’s Height Zero Conjecture
that considers positive heights. We give strong evidence supporting
one half of the generalization and obtain some partial results regarding
the other half.

1 Introduction

One of the main problems in the representation theory of finite groups is
Brauer’s Height Zero Conjecture, appearing as Problem 23 in [4]. Much
work has been done in the last half century regarding this conjecture but
it still remains open. It asserts that the irreducible characters in a block
B of a finite group G all have height zero if and only if the defect group
D is abelian. A common feature of the height zero conjecture with many
of the main problems in representation theory (such as the Alperin-McKay
Conjecture or Broué’s Abelian Defect Group Conjecture, which gives a much
stronger description of the blocks with abelian defect group than Brauer’s
Conjecture) is that it does not say a great deal about characters of positive
height or blocks with nonabelian defect group. Our hope is that this paper
will help to increase our understanding of blocks with nonabelian defect
groups.

Let p be a prime number and B a p-block of a finite group G, with defect
group D of order pd. Recall that the defect of an irreducible character χ
in B is the integer d(χ) such that pd(χ)χ(1)p = |G|p and the height of χ
is d − d(χ), a non-negative integer. Write Irr(B) for the set of irreducible
characters in B, and Irra(B) for the set of those with defect a. Note that
a p-group has only one p-block, so the height of an irreducible character is
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in this case simply the exponent of p in its degree. Brauer’s Height Zero
Conjecture, therefore, predicts that Irr(B) = Irrd(B) if and only if D is
abelian. Hence we expect a block to possess irreducible characters of positive
height if and only if a defect group does. In this article, we compare the
smallest non-zero height mh(B) in Irr(B) with the corresponding number
mh(D) in Irr(D). If P is a p-group, write m(P ) for the minimal degree of
a non-linear character of P , so m(P ) = pmh(P ). We set mh(B) = ∞ (and
similarly mh(P ) = m(P ) =∞) if there is no irreducible character of positive
height, and use the convention that n <∞ for all n ∈ Z.

For the sake of discussion, we state the following generalization of Brauer’s
Height Zero Conjecture. (As discussed later, conjecturing inequality in one
direction is uncontroversial whilst we regard inequality in the other as a
question.)

Conjecture A. Let B be a p-block of a finite group G with defect group D.
Then mh(B) = mh(D).

Our first main result shows that one inequality holds for p-solvable
groups.

Theorem B. Let B be a block of a p-solvable group with defect group D.
Then mh(D) ≤ mh(B).

The investigations in this paper were originally motivated by Conjecture
1.1 of [6]. This conjecture asserts that for a block B of any finite group G
with defect group D of order pd, and for each (non-negative) integer n, we
should have ∑

0≤h≤n
kd−h(B) ≤

∑
0≤h≤n

p2hkd−h(D),

where ka(B) = | Irra(B)|. By [18], if G is p-solvable, Op′(G) = 1 and
P = NG(P ) for P ∈ Sylp(G), then kd(B0(G)) = kd(P ), where |P | = pd and
B0(G) is the principal block of G. Hence this particular case of Theorem B
is a, perhaps, surprising consequence of Conjecture 1.1 of [6].

Another outstanding conjecture regarding defects of irreducible charac-
ters in blocks is Dade’s Conjecture, which we state later (in the form given
by Robinson). We prove the following.

Theorem C. Let B be a p-block of a finite group G with defect group D.
If Dade’s Projective Conjecture holds for every group involved in G, then
mh(D) ≤ mh(B) .

This provides a second proof that mh(D) ≤ mh(B) when B is a block
of a p-solvable group, since Dade’s Conjecture holds for such blocks by [23].
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In view of this result, the inequality mh(D) ≤ mh(B) should be expected
to be true for any block of any finite group. We prove several results regard-
ing the converse inequality but, unfortunately, we have far less evidence to
believe that this inequality also holds. The reason for this is that we have
been unable to prove it for p-solvable groups which, if true, might be very
difficult (it is worth remarking that the proof by D. Gluck and T. Wolf [9] of
one half of Brauer’s Conjecture for p-solvable groups was already exception-
ally hard.) However, it is not difficult to deduce from known results that
Conjecture A holds for the most representative nonsolvable groups.

Theorem D. Let B be a p-block of a general linear group, a symmetric
group (for some p ≥ 5) or a sporadic group. Then Conjecture A holds for
G.

In order to prove some of the partial results that we obtain for p-solvable
groups we need the following theorem of independent interest.

Theorem E. Let G be a finite solvable group, and P ∈ Sylp(G), where p
is odd. If the set of degrees of the irreducible characters of P is a subset of
{1, pa, . . . , p2a} containing pa for some a ≥ 2, then the p-length of G is 1.

All blocks are with respect to a complete local discrete valuation ring
O with residue field O/J(O) of characteristic p and field of fractions K of
characteristic zero. We assume that K is ‘large enough,’ which here means
that it contains a primitive |G|3th root of unity. Write cd(B) for the set of
degrees of the irreducible characters in B.

The layout of the paper is as follows. In Section 2 we prove Theorem
B. We give the conjectures of Dade and Robinson in Section 3, and show
Theorem C. In Section 4 we prove Theorem D and in Section 5 we prove
Theorem E. Finally, in Section 6 we obtain some partial results for p-solvable
groups examining when the equality mh(B) = mh(D) occurs.

2 p-solvable groups

We first collect together some useful results.

Proposition 2.1 ([17]). Suppose that a p-group P acts on a p-solvable group
M and that Q is a P -invariant Sylow p-subgroup of M . Write |Q| = pa. If P
fixes every element of Irra(NM (Q)), then P fixes every element of Irra(M).

Proof. This is [17, Lemma 2.1].

The next lemma is immediate.
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Lemma 2.2. Let Q be a maximal subgroup of a p-group P . If Q is not
abelian, then

mh(P ) ≤ mh(Q) + 1.

We also need the following deep result.

Lemma 2.3 ([17]). Let G be a p-solvable group and χ ∈ Irr(G). Write
G = G/Op′(G). Assume that U is a subgroup of G with a primitive character
γ ∈ Irr(U) such that γG = χ. Let Q ∈ Sylp(U). If χOp′ (G) is homogeneous,
then

CG(Q) = Z(Q).

Proof. This follows from Corollary B of [17].

Lemma 2.4. Let N C G and let B be a p-block of G covering a block b of
N , where B has defect group D such that G = ND. Then B is the unique
block of G covering b and b is the unique block of N covered by B. Further,
D ∩N is a defect group for b.

Proof. That B is the unique block of G covering b is [8, V.3.5]. By [1, 15.1],
a defect group for B stabilizes b, hence b is G-stable and b is the unique
block covered by B. That D ∩ N is a defect group for b then also follows
from [1, 15.1].

Now, we prove Theorem B, which we restate.

Theorem 2.5. Let G be a p-solvable group and B a p-block of G with defect
group D. If χ ∈ Irr(B) has positive height h, then

h ≥ mh(D).

Remark. We note that the proof of this result uses [17, Lemma 2.1], which
relies on the fact that the McKay Conjecture holds for p-solvable groups (for
which see [19]). We will see later that our result is also a consequence of the
fact that Dade’s Projective Conjecture holds for p-solvable groups. However,
given the relative simplicity of the proof of the McKay Conjecture for p-
solvable groups, compared to the (very difficult) proof of Dade’s conjecture
in this case, we regard the proof below to be a great simplification.

Proof. Let B be a block of G which is a counterexample with [G : Z(G)]
minimized, and choose χ ∈ Irr(B) of minimal positive height h in B. In
particular, h < mh(D).

Let b be a block of Op′(G) covered by B, and write T for the stabilizer
of b under the action of G. By [8, X.1.2] there is a block B̃ of a group G̃
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with central subgroup Z̃ of order prime to p such that G̃/Z̃ ∼= T/N , and
B̃ has defect group D̃ isomorphic to D. Further B̃ possesses an irreducible
character of height h. Note that G̃ is p-solvable. Note also that Z(G) ≤ T .

If Op′(G) 6≤ Z(G), then [G̃ : Z(G̃)] < [G : Z(G)], in which case by
minimality mh(D) = mh(D̃) ≤ h, a contradiction. Hence Op′(G) ≤ Z(G).
Consequently, since G is p-solvable, CG(Op(G)) = Z(Q)Op′(G), so the p-
blocks of G all have maximal defect and each is the unique block covering a
given block of Op′(G). In particular D ∈ Sylp(G). Note that χ(1)p = ph.

Now every block of Op
′
(G) covered by B has defect group D, and so χ

covers an irreducible character of height h in a block of Op
′
(G) with defect

group D. Hence by minimality Op
′
(G) = G.

The result is trivial if p ∈ cd(D), so D does not have any irreducible
character of degree p. In particular, D does not have any abelian subgroup
of index p.

Since Op
′
(G) = G and G is p-solvable, each maximal normal subgroup

has index p, and so each irreducible character of a maximal normal subgroup
either extends to G or induces to an irreducible character.

We claim that χ restricts irreducibly to every maximal normal subgroup
of G. Suppose not. Then there exists M E G of index p and ψ ∈ Irr(M) such
that ψG = χ. Notice that G = MD. Now by Lemma 2.4 ψ lies in the unique
block of M covered by B, and this has defect group Q = D∩M ∈ Sylp(M).
Since [D : Q] = p, by the previous paragraph Q is not abelian. If p | ψ(1),
then by minimality and Lemma 2.2, we have

χ(1)p = pψ(1)p ≥ pmh(Q)+1 ≥ pmh(D),

a contradiction, so we may assume that ψ has p′-degree.

Suppose that NM (Q) does not possess an irreducible character of p′-
degree which induces irreducibly to NG(Q). Then, since [NG(Q) : NM (Q)] =
p and NG(Q) = DNM (Q), every irreducible character of NM (Q) of p′-degree
is fixed by D. But then by Proposition 2.1 every irreducible character of
M of degree prime to p is fixed by D, contradicting the existence of ψ.
We conclude that there exists β ∈ Irr(NM (Q)) of p′-degree which induces
irreducibly to NG(Q). Notice that D is also a Sylow p-subgroup of NG(Q)
and that βNG(Q)(1)p = p = χ(1)p. We want to show that p ∈ cd(D). Since
ψ has p′-degree, the character χ is induced from some primitive character
of some subgroup U such that some conjugate of Q is a Sylow p-subgroup
of U . Write Z = Op′(G). By Lemma 2.3 CG/Z(QZ/Z) = Z(Q)Z/Z. Since
QZ/Z ≤ Op(NG(Q)/Z), this implies that Op′(NG(Q)/Z) = 1, i.e., that
Op′(NG(Q)) = Z. Hence every p-block of NG(Q) has defect group D, and
βNG(Q) has positive height. By minimality, we have G = NG(Q). Also, since
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G is a counterexample, D is not normal in G. This implies that Q = Op(G)
and F (G) = Z(G)Op(G). Hence G/Q acts faithfully on Q/Φ(Q). Since
|G/Q|p = p, we deduce that p ∈ cd(D/Φ(Q)) ⊆ cd(D). This contradiction
implies our claim.

Now let K = Op(G). Since G/K is a p-group, the previous claim implies
that χ is not induced from any proper subgroup of G that contains K. Now
we want to prove that χK ∈ Irr(K). In order to see this, let α ∈ Irr(K) lying
under χ and let A1/K = Z(G/K). If α does not extend to A1, we choose a
subgroup K < B1 < A1 normal in G and maximal such that α extends to
α1 ∈ Irr(B1). We may take an extension α1 lying under χ (because B1/K
is central in G/K). We have that α1 is not G-invariant (otherwise α would
extend to A1). Now Clifford theory implies that χ is induced from some
proper subgroup of G that contains K. This is a contradiction. Hence, we
may assume that α extends to A1. Furthermore, we can take an extension
of α to A1 lying under χ. Now, let A2/A1 be a maximal normal abelian
subgroup of G/A1. Arguing in the same way, we can find an extension of
α to A2 lying under χ. Repeating this procedure yields that χK = α, as
desired.

Now put N = Op
′
(K). Since G is a counterexample, it cannot be a

p-group, so N < K. Let R/N be a Sylow p-subgroup of G/N . Observe that
G = KR and K ∩ R = N . Let θ ∈ Irr(N) lying under χ. Since K/N is a
p′-group,

χ(1)p = χN (1)p = θ(1)p,

Assume that θ does not extend to Rg/N for any g ∈ G. Then for any g ∈ G
the p-part of the degree of any irreducible character of R lying over θg is at
least pθ(1)p. However, χR is a sum of irreducible characters that lie over
some conjugate of θ, i.e., it is a sum of irreducible characters whose degree
has p-part at least pθ(1)p = pχ(1)p. We conclude that χ(1)p ≥ pχ(1)p. This
contradiction implies that θ extends to some conjugate of R. Without loss
of generality, we may assume that θ extends to an irreducible character τ
of R. We have Op′(R) ≤ Op′(N) ≤ Z ≤ Z(G). Hence every block of R has
maximal defect, in particular τ lies in a block with defect group D. By the
minimality of G, χ(1)p = θ(1)p ≥ pmh(D). This is the final contradiction.

3 Consequences of conjectures of Dade and Robin-
son

In this section we show that the conclusion of Theorem 2.5 (for arbitrary
groups) is a consequence of Dade’s Projective Conjecture, under the assump-
tion that the conjecture holds in all sections of G.
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Dade’s Projective Conjecture is equivalent to the following conjecture of
Robinson (see [22] and [7]), which, for ease of notation, we state in a slightly
weakened form. We first give the relevant notation.

A p-subgroup Q of G is radical if Q = Op(NG(Q)). A chain

Q0 < · · · < Qn

of p-subgroups of G is a radical p-chain if for each i we have

Qi = Op(NG(Q0) ∩ · · · ∩NG(Qi)).

Write |σ| = n, and Gσ = NG(Q0) ∩ · · · ∩NG(Qn). Also write Vσ = Q0 and
V σ = Qn. Let R(G) be the set of radical p-chains of G, and let R(G)/G
be a set of representatives of the G-conjugacy classes of elements of R(G).
Notice that V σ ≤ NG(σ) whenever σ ∈ R(G).

If Q is a normal p-subgroup of a subgroup H of G, B is a block of G and
a is an integer, write wa(H,B,Q) for the number of irreducible characters
χ in blocks of H with Brauer correspondent B such that d(χ) = a and χ is
Q-projective, i.e., χ(1)p = [H : Q]pµ(1) whenever µ ∈ Irr(Q) is covered by
χ. We also write ka(G,B) for the number of irreducible characters in B of
defect a.

Conjecture 3.1 (Robinson). Let B be a p-block of G and a an integer.
Then

ka(G,B) =
∑

σ∈R(G)/G

(−1)|σ|wa(Gσ, B, Vσ).

It is important to consider this conjecture rather than Dade’s Projective
Conjecture, since it allows the possibility that Op(G) 6≤ Z(G).

Note that if σ ∈ R(G) and wa(Gσ, B, Vσ) 6= 0, then we have |Vσ| ≥ pa

and we may take Vσ ≤ D, where D is a fixed defect group for B.

Lemma 3.2. Let B be a p-block of a finite group G with defect group D
such that D/Op(G) is cyclic. Then Conjecture 3.1 holds for B.

Proof. Note that the proof does not rely on the classification of finite sim-
ple groups, instead following from the theory of blocks with cyclic defect
groups. By the proof of [7, 1.8] it suffices to prove the conjecture in the case
Op(G) ≤ Z(G). In this case Conjecture 3.1 is implied by Conjecture 5.1
of [2]. Conjecture 5.1 of [2] holds in our case by [2, 5.2].

The following is an easy application of Frobenius reciprocity:
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Lemma 3.3. Let P be a finite p-group and Q ≤ P . Let µ ∈ Irr(Q). Then
there is θ ∈ Irr(P ) such that µ(1)|θ(1) and θ(1)|[P : Q]µ(1).

The following includes Theorem C.

Theorem 3.4. Let B be a block of a finite group G with defect group D, and
suppose that Conjecture 3.1 holds for every factor group of every subgroup
of G. Then mh(B) ≥ mh(D).

Proof. If mh(B) =∞ (i.e., B has no irreducible character of positive height),
then we are done.

Let a be the smallest positive integer such that there is a block B
satisfying the hypotheses regarding Conjecture 3.1 with mh(B) = a but
mh(B) < mh(D) for D a defect group of B. Write |D| = pd.

We first claim that there exists a radical p-subgroup Q of order pd−a

contained in D such that wd−a(NG(Q), B,Q) 6= 0.

Since Conjecture 3.1 holds for B, we have

0 6= kd−a(G,B) =
∑

σ∈R(G)/G,|Vσ |≥pd−a,V σ≤D

(−1)|σ|wd−a(NG(σ), B, Vσ)

Suppose there is σ ∈ R(G)/G with pd−a < |V σ| and V σ ≤ D, and
that wd−a(NG(σ), B, Vσ) 6= 0. So there is χ ∈ Irrd−a(NG(σ), B) which is
Vσ-projective, and so V σ-projective (noting that since σ is radical, we have
V σ C NG(σ)). Write |V σ| = pb. Let µ ∈ Irr(V σ) be covered by χ. Then
χ(1)p = [NG(σ) : V σ]pµ(1). But |NG(σ)|p = pd−aχ(1)p, so |V σ| = pd−aµ(1).
Hence µ(1) = pb−(d−a) 6= 1, and by Lemma 3.3 there is a non-linear θ ∈
Irr(D) such that θ(1)|pa, a contradiction. Hence the only chains contributing
are those with |Vσ| = |V σ| = pd−a, and the claim follows.

ChooseQ a radical p-subgroup of order pd−a contained inD with wd−a(NG(Q), B,Q) 6=
0, and write H = NG(Q). Then there is χ ∈ Irrd−a(H,B) which is Q-
projective. Let b be the block of H containing χ, so that bG = B. We claim
next that b has a defect group G-conjugate to D.

If b has defect group Q, then bG = B also has defect group Q by Brauer’s
first main theorem. So Q = D, a contradiction. Without loss of generality,
we may choose D and a defect group P of b such that P ≤ D (this is a
property of the Brauer correspondence). Suppose that P 6= D, and write
|P | = pe. Then χ has height e − (d − a) = a − (d − e) < a in b. Note that
e > d − a since Q is not a defect group for b, i.e., χ has positive height.
Since Conjecture 3.1 holds for all blocks of factor groups of subgroups of H,
by minimality mh(P ) ≤ mh(b), i.e., there is τ ∈ Irr(P ) with 1 < τ(1) ≤
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pa−(d−e) (note for reference later that we only mention Conjecture 3.1 at
this point since it is necessary for the inductive hypotheses, and that we
omit explicit mention of this in later applications of minimality). Hence by
Lemma 3.3 there is non-linear θ ∈ Irr(D) such that θ(1)|pa−(d−e)pd−e = pa,
a contradiction. Hence b may be taken to have defect group D as claimed.

Now note that since χ is Q-projective and pd−aχ(1)p = |H|p, we have
that χ covers a linear character of Q, and so Q′ ≤ ker(χ). Let b be the block
of H = H/Q′ containing χ regarded as a character of H.

By [8, V.4] each block of H is contained in a unique block of H in the
sense that the inflations of its irreducible characters all lie in the same block,
and a defect group of any block of H is contained in P for P a defect group
of the block of H containing it.

We claim that b has defect group D/Q′. Suppose first that b has defect
group Q/Q′. Since blocks of H with defect group Q must possess an irre-
ducible character of height zero, they must possess an irreducible character
with Q′ in the kernel. Hence each such block contains a block of H/Q′ with
defect group Q/Q′ in the above sense. By [21, Corollary 7] the number of
blocks of H with defect group Q is equal to the number of blocks of H/Q′

with defect group Q/Q′, and so the inflation of every irreducible character
in a block of H/Q′ with defect group Q/Q′ lies in a block with defect group
Q. But then χ lies in a block of H with defect group Q, a contradiction.
Hence there is P ≤ D with Q < P such that b has defect group P/Q′.

Suppose that P 6= D. Write |P | = pc. Then χ has height a− (d− c) > 0
in b, so by minimality, there is a non-linear µ ∈ Irr(P ) with µ(1)|pa−(d−c).
Hence by Lemma 3.3 there is non-linear θ ∈ Irr(P ) with θ(1)|pa−(d−c)pd−c =
pa, a contradiction. Hence b may be taken to have defect group D/Q′ as
claimed.

Note that χ ∈ Irrd′−a(H/Q
′, b), where pd

′
= [D : Q′]. Since [D : Q] = pa,

it follows that irreducible characters of D/Q′ have degree dividing pa. But
there is no non-linear irreducible character of D with degree pa or less, so
every irreducible character of D/Q′ is linear, i.e., D/Q′ is abelian.

Since Conjecture 3.1 holds for b, we have

k(H/Q′, b) = k(NH(D)/Q′, b) = kd′(NH(D)/Q′, b) = kd′(H/Q
′, b)

by [22, 5.1]. We conclude that kd′−a(H/Q
′, b) = 0, a contradiction since

χ ∈ Irrd′−a(H/Q
′, b).

A careful analysis of the above proof gives the following strengthening
of Theorem 3.4 when considering characters of height one:
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Theorem 3.5. Let B be a block of a finite group G with defect group D of
order pd, and suppose that Conjecture 3.1 holds for B. If kd−1(G,B) 6= 0,
then kd−1(D) 6= 0.

Proof. In the proof of Theorem 3.4, we see that Conjecture 3.1 is applied
directly only to B and to the block b of NG(Q)/Q′. The result then follows
by the proof of Theorem 3.4 and the observation that Lemma 3.2 applies to
b.

The following is another consequence of Conjecture 3.1 (see [22]):

Conjecture 3.6 (Robinson). Let B be a p-block of G with defect group D
and let χ ∈ Irr(B). Then there is a radical p-subgroup Q with CD(Q) ≤ Q ≤
D and θ ∈ Irr(Q) such that |Q|/θ(1) = pd(χ).

If Conjecture 3.6 holds for B and pmh(B) < min{[D : Q] : Q ≤ D,Q ∈
R0(G)}, then by Lemma 3.3 mh(B) ≥ mh(D). Further, if Conjecture
3.1 holds for B and pmh(B) < min{[D : Q] : Q ≤ D,Q ∈ R0(G)}, then
mh(B) = mh(D). We remind the reader that every radical p-subgroup is an
intersection of (possibly more than two) distinct defect groups.

Hence, by [2], it follows that if a block B has trivial intersection defect
group D, then mh(B) = mh(D).

4 Nonsolvable groups

In this section we prove Theorem D. We start with the general linear group.

Theorem 4.1. Let G = GL(n, q) for some n and some prime power q = pe.
Let B be a p-block of G with defect group D. Then mh(B) = mh(D).

Proof. By [5], B is either a block of full defect or a block of defect zero. In
the latter case, the result is obvious, so we consider the former case. We
may assume that n > 2 (if n = 2, then mh(B) = mh(D) =∞). By [11] and
[10], mh(D) = e. By [16] and [20], we also have that mh(B) = e. The result
follows.

Theorem 4.2. Let G = Sn for some n and let B be a p-block of G with
defect group D, where p ≥ 5. Then mh(B) = mh(D) = 1 or mh(B) =
mh(D) =∞. If p < 5, then mh(D) = 1 or ∞.

Proof. Let w be the weight ofB, and let w = a0+a1p+· · ·+arpr be the p-adic
decomposition of w. Then D ∼= (D1)

a1×· · ·×(Dt)
at , where Di is isomorphic
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to a Sylow p-subgroup of Spi , so Di is of the form ((· · · ((Cp oCp) oCp) o . . . oCp.
If r = 0, then D is abelian. If r ≥ 1, then by considering the appropriate
inflations, cd(Cp o Cp) ⊆ cd(D). But p ∈ cd(Cp o Cp), so mh(D) = 1.

By [16, 4.1] the set of heights of irreducible characters in B contains
the set {0, 1, 2, . . . , (w − a0 − a1 − · · · − ar)/(p − 1)} whenever p ≥ 5. If
r = 0, then all irreducible characters have height zero. If r ≥ 1, then
w − a0 − a1 − · · · − ar ≥ p− 1, so mh(B) = 1.

As in [16], we expect this to hold for p < 5 also, but the calculations are
too lengthy to include here.

We conclude with the sporadic groups

Theorem 4.3. Let B be a block of a sporadic simple group. with defect group
D. Then mh(B) = mh(D). Further, if D is nonabelian then mh(B) = 1
unless B is the principal 3-block of Co3, in which case mh(B) = 2.

Proof. Using the GAP computer algebra package.

We think that the case of the principal 3-block of the third Conway group
is particularly meaningful. We expect that it should be possible to prove
Conjecture A for a much wider class of simple, almost simple, or quasisimple
groups. It would be very interesting to settle the case of p-solvable groups
(one way or the other), but as yet we have been unable to do this. We
present the results that we have obtained in this direction in the remainder
of this paper.

5 Character degrees of Sylow p-subgroups and p-
length

We digress from the main topic in this paper to prove Theorem E. We need
the following lemma.

Lemma 5.1 (Isaacs [12]). Let G be a finite solvable group and Op(G) = 1,
P ∈ Sylp(G). Let V be a faithful completely irreducible G-module. If P > 1
is abelian, then there is a P -orbit on V of length p.

Proof. Suppose that no orbit of size p exists and that |G||V | is minimal with
this property. By Hall-Higman, G has p-length one so we may assume that
G = PK, where K = Op′(G). For the reader’s convenience, we split the
proof in a series of steps.
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Step 1. If M < K admits P , then P centralizes M .

Write U = Op(MP ). It suffices to show that U = P . Let V0 = CV (U),
so that MP acts on V0 and U is in the kernel of this action. We claim
that U is the full kernel. Otherwise, since the kernel is normal in MP , it
is not a p-group and M0 = CM (V0) > 1. Note that M0 CMP since V0 is
MP -invariant. Now let V1 = CV (M0) ⊇ V0.

By Fitting’s lemma, V = V1×V2, where V2 = [V,M0], and we have V2 > 1
since M0 > 1, and so M0 acts nontrivially on V . Also, V2 is MP -invariant,
and thus U has nontrivial fixed points in V2 and V2 ∩ V0 > 1. This is a
contradiction, however, since V2 ∩ V1 = 1 and V1 ⊇ V0. This contradiction
shows that U is the full kernel of the action of MP on V0. Thus MP/U acts
faithfully on V0 and we have Op(MP/U) = 1. But |MP/U | < |G| and P/U
does not have an orbit of size p on V0. Thus P/U is trivial and P = U , as
wanted.

Step 2. K is a q-group for some prime q, K/K ′ is elementary and P acts
irreducibly on this group.

This argument is fairly standard. Since P does not centralize K, we can
choose a prime q dividing [K : CK(P )]. and a P invariant Sylow q-subgroup
Q of K. Since P acts nontrivially on Q, we see from Step 1 that Q = K,
and thus K is a q-group, as wanted.

If [K,P ] < K, then by Step 1, we have [K,P, P ] = 1 and thus [K,P ] =
1, which is not the case since P acts nontrivially on K. Thus [K,P ] =
K and it follows by Fitting’s lemma applied to the action of P on K/K ′

that CK/K′(P ) = 1. But then by Step 1 again, no proper subgroup of
the nontrivial abelian q-group K/K ′ admits P and it follows that K/K ′ is
elementary and that the action of P on this group is irreducible.

Step 3. Final contradiction.

Since P acts faithfully and irreducibly on K/K ′ and P is abelian, we see
that P is cyclic and we let a be a generator. Since P acts nontrivially on V ,
it follows by the Jordan form that we can find linearly independent vectors
v0, v1, . . . , vr in V , with r > 1 and such that (vi)

a = vivi+1 for 1 ≤ r ≤ r−1
and (vr)

a = vr. It is easy now to see that vr−1 lies in an orbit of size p under
P = 〈a〉. This is the desired contradiction.

We remark that Isaacs actually proves a stronger result in [12], but we
just need this case. If G is a p-solvable group, then write lp(G) for the
p-length of G. Now, we are ready to prove Theorem E, which we restate.

Theorem 5.2. Let G be a finite solvable group, and P ∈ Sylp(G), where p
is odd. If cd(P ) is a subset of {1, pa, . . . , p2a} containing pa for some a ≥ 2,
then lp(G) = 1.
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Proof. Let G be a counterexample with |G| minimized. Then G = Op
′
(G).

There is M C G, where lp(G/M) = 2 and Op′(G/M) = 1. Since solvable
groups with abelian Sylow p-subgroups have p-length one, P/(P ∩ M) is
nonabelian. Since {1} 6= cd(P/(P ∩M)) ⊆ cd(P ), it follows by minimality
that M = 1. Hence Op′(G) = 1 and lp(G) = 2.

Write N = Op(G) and K = Op,p′(G), and note that Op,p′,p(G) = G.

Now Φ(G) ≤ F (G) = N . Since F (G)/Φ(G) = F (G/Φ(G)), it follows
that Φ(G) 6= F (G). Hence lp(G/Φ(G)) = 2, since otherwise Op(G/Φ(G))
would be a Sylow p-subgroup of G/Φ(G), and Op(G) ∈ Sylp(G). Hence
P/Φ(G) is nonabelian, and so by minimality we have Φ(G) = 1, and N is
elementary abelian.

A theorem of Gaschütz (see [15, 1.12]) says that F (G)/Φ(G) = N
is a completely reducible and faithful G/F (G) = G/N -module, and that
G/Φ(G) = G splits over F (G)/Φ(G) = N . So G = N o H for some H.
Let Q ∈ Sylp(H) such that P = N o Q. Note that Irr(N) is a completely
reducible and faithful H-module. If Q is abelian, then by Lemma 5.1 there
is some θ ∈ Irr(N) such that [Q : CQ(θ)] = p. Since G splits over N and
θ is linear, θ extends to a linear character of IP (θ), and so P possesses an
irreducible character of degree p, a contraction. So Q is nonabelian. Since
cd(Q) ⊆ cd(P ), it follows that Q possesses an irreducible character of degree
at least pa, and so |Q| ≥ p2a+1.

A theorem of Espuelas (see [15, 7.3]) says that, since Op(H) = 1 and
Irr(N) is a finite and faithful H-module, Q has a regular orbit on Irr(N).
Hence P has an irreducible character of degree at least |Q| ≥ p2a+1, a
contradiction, and we are done.

Note that that have only used the oddness hypothesis on p to apply
Espuelas’ theorem. We conjecture that the oddness hypothesis can be re-
moved.

This result is reminiscent of the Hall-Higman theorem. The celebrated
Hall-Higman theorem gives information on the p-length of a finite p-solvable
group in terms of certain invariants (the derived length, the nilpotence class,
etc.) of the Sylow p-subgroup. We think that it would be interesting to study
how the set of character degrees of a Sylow p-subgroup affects the p-length
of a p-solvable group.

For the purpose of discussion, we say that a set S of powers of p con-
taining 1 bounds the p-length if whenever S is the set of character degrees
of a Sylow p-subgroup of a p-solvable group G, the p-length of G is ≤ 1.
In view of the formal similarity between Theorem A in [13] and Theorem
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E it seems natural to ask whether, as was done in [13], a set S bounds the
p-length if and only if p 6∈ S. But we would not be surprised if one could use
the p-groups in the proof of Theorem 8.4 of [14] to build a counterexample.

Question 5.3. Which are the sets of powers of p that bound the p-length?

6 The converse inequality for p-solvable groups

We return to our main problem. We have already seen at the end of Section
3 that if a block B has trivial intersection defect group D, then mh(B) =
mh(D) and that the same result holds for certain nonsolvable groups in
Section 4 . In this section, we present several other particular cases where
equality holds.

If QCH and µ ∈ Irr(Q), then write mh(H|µ) for the minimal non-zero
height amongst irreducible characters lying over µ. Define m(P |µ) similarly
for QC P a p-group.

Theorem 6.1. Let G = E nX, where E ∈ Sylp(G) acts on an elementary
abelian p-group V . Let P = EV . If for each Q ∈ Sylp(GV )− {P} we have
[P : P ∩ Q] > m(E), then mh(B) = mh(P ) whenever B is a block of GV
with defect group P .

Proof. Write m(E) = pe. By Theorem 2.5 m(E) ≥ pmh(B) ≥ m(P ). Let
µ ∈ Irr(V ), and choose χ ∈ Irr(B,µ) with χ(1)p minimised.

Suppose first that [G : IG(µ)]p > pe. Then χ(1)p > pe, and characters in
Irr(B,µ) do not contribute to mh(B). Also [P : IP (µ)] > pe, so characters
in Irr(P, µ) do not contribute to m(P ).

Suppose that [G : IG(µ)]p = 1. Let Q ∈ Sylp(GV ) with IP (µ) ≤ Q ≤
IGV (µ). Then IP (µ) ∈ P ∩ Q, so either [P : IP (µ)] > pe, in which case
irreducible characters covering µ do not contribute to m(P ), or IP (µ) = P ,
in which case m(P |µ) = pe. So, replacing µ by a G-conjugate if necessary,
pmh(B) ≤ m(E) = m(P |µ).

Now suppose that [G : IG(µ)]p = pt where 0 < t < e. Then χ(1)p = pt.
Note that if Q ∈ Sylp(GV ), then |IQ(µ)| ≤ pt. By replacing µ by a G-
conjugate if necessary, we may assume |IP (µ)| = pt, and m(P |µ) = pt. So

mh(B) ≤ mh(B|µ) = mh(P |µ) ≤ mh(P ) ≤ mh(B),

and we are done.
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We list some cases where the hypotheses of Theorem 6.1 are satisfied.

Lemma 6.2. Let G = E n X, where E is a non-abelian p-group acting
faithfully and irreducibly on an elementary abelian q-group X. Then for
each Q ∈ Sylp(GV )− {P} we have [P : P ∩Q] > m(E).

Proof. Write m(E) = pe. Let x ∈ X, and write H = Ex ∩ E. Suppose
that 1 < [E : H] ≤ pe. Then H C Ex, E (consider the permutation char-
acter for the action of E on the E-conjugates of H, which must have only
trivial constituents), so H C 〈Ex, E〉. Now Oq(〈Ex, E〉) = X ∩ 〈Ex, E〉,
so Oq(〈Ex, E〉) = X by irreducibility. Hence 〈Ex, E〉 = G, and H C G.
But H ∩ X = 1, so [X,H] = 1, so H = 1 since E acts faithfully on X, a
contradiction.

Lemma 6.3. Let p = 2, and let G = EX, where E is a generalized quater-
nion group acting on a group X of odd order with CE(X) = 1. Then for
each Q ∈ Syl2(GV )− {P} we have [P : P ∩Q] > m(E).

Proof. Write m(E) = pe. Let x ∈ X, and suppose that 1 < [E : Ex∩E] ≤ pe.
Then Ex ∩ E C E,Ex, and so Z(E) ≤ E ∩ Ex. Hence H = Z(Ex) =
Z(E)x = Hx. But CG(HX) = 1, so NHX(H) = H, and x 6∈ NG(H), a
contradiction.

We move on to some results of a different type, showing that equality
occurs when we impose some restrictions on the set of character degrees of
the defect group.

Theorem 6.4. Let B be a p-block of a finite solvable group G with defect
group D, where p is odd. If cd(D) is a subset of {1, pa, . . . , p2a} containing
pa for some a ≥ 2, then mh(B) = mh(D) = a.

Proof. Let B be a counterexample with [G : Z(G)] minimized. By reduc-
tions as in the proof of Theorem 2.5, we have Op′(G) ≤ Z(G). Hence
CG(Op(G)) ≤ Op(G)Z(G), and D ∈ Sylp(G). Since a > 1, by Theorem 5.2
lp(G) = 1, so D = Op(G) and B is not a counterexample after all.

Proposition 6.5. Let B be a p-block of solvable group with defect group D
such that cd(D) = {1, p}, where p is odd. Then mh(B) = mh(D) = 1.

Proof. Let B be a counterexample with [G : Z(G)] minimized. Then, as in
the proof of Theorem 2.5, we have Op′(G) ≤ Z(G). Hence CG(Op(G)) ≤
Op(G)Z(G), and D ∈ Sylp(G). Since | cd(D)| = 2, the derived length of D is
at most two, and so lp(G) ≤ 2. Then lp(G) = 2, since otherwise D = Op(G).

15



Write N = Op(G) and K = Op,p′(G). As in the proof of Theorem 5.2,
we have Φ(G) < F (G) = N and lp(G/Φ(G)) = 2. Note that D/Φ(G) is
nonabelian, so cd(D/Φ(G)) = {1, p}.

By [8] there is a block B of G/Φ(G) with defect group D/Φ(G) such
that cd(B) ⊆ cd(B). Hence by minimality Φ(G) = 1, and in particular N
is elementary abelian.

By [15, 1.12] N is a faithful G/N -module, and so by [15, 7.3] it follows
that D/N has a regular orbit on Irr(N). So D/N , and so D, possesses an
irreducible character of degree at least |D/N |. Hence |D/N | = p. By [9], B
possesses an irreducible character of positive height. Since K has a normal
abelian Sylow p-subgroup and [G : K] = p, this irreducible character must
have height one, and we are done.
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