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We augment the chiral Lagrangian by an isosinglet scalar and compute the one-loop radiative corrections

to the pion mass and decay constant, as well as the scalar mass. The calculations are carried out for different

patterns of chiral symmetry breaking of immediate relevance for phenomenology and lattice investigations.

By construction our results encompass several interesting limits, ranging from the dilaton to the linear

sigma model.
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I. INTRODUCTION

There has been a growing interest in realizing and

studying possible strongly coupled theories featuring an

isosinglet scalar as the first massive state appearing after

the (pseudo) Goldstone bosons. At energy scales much

below the isosinglet mass, chiral perturbation theory holds

true for massless Goldstone bosons, and the scalar field can

safely be integrated out. However, if one is interested in the

dynamics involving energy scales near or around the

isosinglet state, or if its mass is close to the pion mass,

its quantum effects cannot be neglected, and the isosinglet

state must be integrated back in.

For this reason we consider the chiral Lagrangian

augmented by an isosinglet scalar and show how this leads

to new radiative corrections for the pion mass, the pion

decay constant, and the scalar mass. As we will argue, these

corrections depend on the number of Goldstone bosons, but

are otherwise universal in form for all patterns of chiral

symmetry breaking. We focus on two patterns of chiral

symmetry breaking, i.e., SUð2ÞL × SUð2ÞR → SUð2ÞV and

SUð4Þ → Spð4Þ. The first breaking pattern has direct

relevance for the interpretation of the f0ð500Þ in QCD

[1–10] as well as the emergence of a potentially light scalar

state in near conformal theories with two Dirac fermions in

a complex representation of the gauge group, such as the

two-index symmetric representation of SUð3Þ [11–13]. The
second breaking pattern emerges when two Dirac fermions

belong to the fundamental representation of Spð2NÞ which
for N ¼ 1 corresponds to SUð2Þ. This theory became the

ideal template for numerous relevant extensions of the

standard model, ranging from ultraminimal technicolor

[14–16] to composite (Goldstone) Higgs [17,18], as well

as strongly interacting massive particles (SIMPs) for dark

matter [19,20].

Lattice simulations are currently investigating these

models [21–26] and they can therefore directly compare

their results with our findings once the spectrum is known

precisely enough. It is furthermore straightforward to

generalize our results to the SUðNfÞ × SUðNfÞ →
SUðNfÞ chiral symmetry breaking pattern.

To organize perturbation theory we adopt the power

counting scheme OðpÞ ∼OðmπÞ ∼OðmσÞ ≪ Λχ where

Λχ is the scale of chiral symmetry breaking, expected to

be of the order 4πfπ. The chosen counting scheme is tailored

toproperly account for a light scalar state, henceforth limiting

the applicability for heavier scalar states. According to this

scheme the leading order (LO) corresponds toOðp2Þ and the
next-to-leadingorder (NLO) corresponds toOðp4Þ. Previous
investigations have already appeared in the literature, e.g.,

[27]. We will generalize this analysis by extending the set of

operators present at the tree-level Lagrangian and by con-

sidering different patterns of chiral symmetry breaking.

Having introduced a holistic approach for the scalar

field, we then consider different realizations, such as the

dilaton, the Goldstone boson, and linear sigma model.

The paper is structured as follows: In Sec. II we

introduce the Lagrangian and the renormalization pro-

cedure used to subtract divergences. In Sec. III we present

the one-loop corrections to the pion mass, the pion decay

constant, and the scalar mass. We also perform several

consistency checks to ensure that we can reproduce known

results in different limits. In Sec. IV we consider different

realizations of the scalar field and show how this leads to

constraints on the low-energy constants.

II. THE LAGRANGIAN

In this section we introduce the nonlinearly realized

chiral Lagrangian augmented with an isosinglet scalar.

We follow the notation of [28] and let G be the global

flavor symmetry of the vectorlike fermions and H the

stability group after spontaneous symmetry breaking. The

Goldstone boson manifold G=H is then parametrized by

u ¼ exp

�

i
ffiffiffi

2
p

fπ
Xaϕa

�

; ð1Þ
*
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where Xa are the broken generators. In our convention the

generators are normalized as hXaXbi ¼ δab where h·i
denotes trace in flavor space. The quantity u transforms as

u → guh† ¼ hug†; ð2Þ

with g ∈ G being space-time independent and h ∈ H being

space-time dependent in such a way that the above

constraint equation is satisfied. The linear realization

[29,30] of the chiral Lagrangian is parametrized in terms

of the field U ¼ u2 which transforms under the global

symmetryG instead of the stability groupH. The quantities

that transform homogeneously under the stability group H
are

uμ ¼ iðu†ð∂μ − irμÞu − uð∂μ − ilμÞu†Þ; ð3Þ

χ� ¼ u†χu† � uχ†u: ð4Þ

In the first expression rμ and lμ are external currents, which
are needed, e.g., when calculating the corrections to the

pion decay constant. In the second expression χ is a spurion

field that ensures chiral invariance at every step of the

computation. The precise definition of rμ, lμ, and χ as a

function of the external fields are given for each of the

breaking patterns in [28]. In the end, the field χ is replaced

by its expectation value χ ¼ m2
π which explicitly breaks the

chiral symmetry. In the isospin limit, the leading-order pion

mass can be written as m2
π ¼ 2B0mq where B0 is related to

the underlying chiral condensate and mq is the quark mass.

In this notation the LO Lagrangian is given by

L2 ¼
f2π
4
huμuμ þ ~χþi; ð5Þ

where ~χþ ¼ χþ − ðχ þ χ†Þ. In the definition of ~χþ we

subtract a constant term to avoid mixing between the

vacuum and the scalar field later on. The NLO

Lagrangian reads

L4 ¼ L0huμuνuμuνi þ L1huμuμihuνuνi þ L2huμuνihuμuνi
þ L3huμuμuνuνi þ L4huμuμihχþi þ L5huμuμχþi

þ L6hχþi2 þ L7hχ−i2 þ
1

2
L8hχ2þ þ χ2−i: ð6Þ

This parametrization differs from the one of [29,30] and for

this reason the low-energy constants (LECs) cannot be

directly compared. However, they can be related though a

careful mapping between the two parametrizations.

Depending on the specific pattern of chiral symmetry

breaking, some of the operators in the Lagrangian can

become linearly dependent, and this is the case for the two

specific patterns studied here. We choose not to reduce the

number of operators in the Lagrangian because our results

can be applied to a wider class of theories. We finally note

that the L7 term does not contribute at NLO in the isospin

preserving limit. Because the NLO Lagrangian represents

the most general Lagrangian at Oðp4Þ it is possible to

absorb the one-loop divergences by an appropriate renorm-

alization of the LECs. We use the modified minimal-

subtraction scheme (MS) where

Li ¼ Lr
i −

Γi

32π2
R; ð7Þ

with

R ¼ 2

ϵ
þ logð4πÞ − γE þ 1: ð8Þ

Here ϵ ¼ 4 − d and γE ¼ −Γ0ð1Þ is the Euler-Mascheroni

constant. It should be noted that the renormalized coef-

ficients Lr
i will depend on the energy scale μ introduced by

dimensional regularization.

Wewill now introduce the isosinglet scalar σ in the chiral

Lagrangian as a nontrivial background field [17,31]. In

practice this is done by expanding each coefficient in the

Lagrangian in powers of σ=fπ . Because we are interested in
calculating the radiative corrections to the two-point

functions at next-to-leading order, the expansion is only

needed for the leading-order Lagrangian and we can stop

the series expansion at second order.

L2 ¼
f2π
4

�

1þ S1

�

σ

fπ

�

þ S2

�

σ

fπ

�

2
�

huμuμi

þ f2π
4

�

1þ S3

�

σ

fπ

�

þ S4

�

σ

fπ

�

2
�

h~χþi: ð9Þ

The associated Lagrangian for the scalar field can be

written as

Lσ ¼
1

2
∂μσ∂

μσ −
1

2
m2

σσ
2

�

1þ S5

�

σ

fπ

�

þ S6

�

σ

fπ

�

2
�

:

ð10Þ

In the Lagrangian for the scalar field we could perform a

similar expansion in front of the kinetic term. However, in

the present analysis these additional terms would corre-

spond to a shift of S5 and S6 because we only consider on-

shell quantities. In our approach we assume that the scalar

field has vanishing expectation value, hσi ¼ 0, and this

leads to certain constraints on the two parameters S5 and S6
controlling the potential.

S5 ≥ −2
ffiffiffiffiffi

S6
p

; S6 ≥ 0: ð11Þ

We are now ready to move to the renormalization

procedure which follows the standard route of quantum

correcting the theory when enforcing the counting
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OðpÞ ∼OðmπÞ ∼OðmσÞ. To cancel the one-loop diver-

gences we need to introduce a set of counterterms. Aside

from using the NLO low-energy constants Li to cancel

divergences, when introducing the scalar it will be neces-

sary to introduce additional counterterms. In the equation

below, the first two terms correspond to renormalizing fπ
and B0 and they are needed to cancel divergences in the

pion mass and the pion decay constant. The remaining

counterterms are needed to cancel divergent contributions

to the scalar mass.

LCT ¼ K1m
2
σhuμuμi þ K2m

2
σhχþi þ

1

f2π
ðK3ð∂2σÞ2

þ K4m
2
πð∂μσÞ2 þ K5m

4
πσ

2Þ: ð12Þ

For convenience we write the counterterms with appro-

priate factors of either the scalar or pion mass, because it

allows us to keep the convention used in Eq. (7).

Ki ¼ Kr
i −

Γ
K
i

32π2
R: ð13Þ

Setting the finite part Kr
i to zero is allowed because it

corresponds to a redefinition of the remaining coefficients

and bare quantities in the Lagrangian. However, we keep

them as unspecified constants in the calculations because

they are needed when discussing renormalization scale

dependence.

As stated in the Introduction, the structure of the scalar

contributions to the pion mass and decay constant have a

universal structure at next-to-leading order. The origin of

this universality resides in the fact that, at the lowest

relevant order, the interactions of the scalar field involve

either the pion kinetic term or the pion mass term as shown

below.

L2 ¼
1

2

�

1þ S1

�

σ

fπ

�

þ S2

�

σ

fπ

�

2
�

ð∂μϕ · ∂μϕÞ

−
1

2

�

1þ S3

�

σ

fπ

�

þ S4

�

σ

fπ

�

2
�

m2
πðϕ · ϕÞ: ð14Þ

For the pion decay constant one can use the operators

associated to the external left transforming current,
1
which

again is universal at lowest order.

L2 ¼
fπ
ffiffiffi

2
p

�

1þ S1

�

σ

fπ

�

þ S2

�

σ

fπ

�

2
�

ð∂μϕ · lμÞ: ð15Þ

Let us now pause and summarize the three sets of low-

energy constants present in the outlined set-up. The first set

Lr
i parametrizes the pion interactions in the original chiral

Lagrangian, and their values are known in QCD [32]. The

LECs can in general be divided in contributions from

the heavier resonances R that have been integrated out in

the effective theory, plus a remaining piece.

Lr
i ¼ L̂i þ

X

R

LR
i ; ð16Þ

In QCD [29,33,34] it was argued that heavy spin one

resonances saturate the right-hand side of Eq. (16), meaning

that the remainder L̂i is subleading compared to Lr
i , for

certain processes. In these papers the lightest QCD scalar

resonance was assumed to be heavy and therefore integrated

out. In our approach the scalar resonance is assumed to be

light and for this reason it cannot be integrated out. As a

result, the sum in Eq. (16) will no longer include the

isosinglet scalar contribution, and the theorywill furthermore

be affected by the presence loops with a light propagating

scalar. For this reason the Lr
i coefficients will in general be

different. When increasing the mass of the scalar resonance,

the present framework recovers the results of [29,33,34] in

terms ofS1 andS3.Operatorswith higher powers of the scalar
field, explicitly the operators proportional to the couplingsS2
and S4, are subleading in this limit.

The second set Si parametrizes the scalar interactions,

and the last set Kr
i is associated to the counterterms needed

to cancel divergences. From naive dimensional analysis, it

is natural to expect that NLO operators should be sup-

pressed by a loop factor 1=ð4πÞ2 ∼ 10−3 and this allows us

to estimate the size of the low-energy constants.

Lr
i ∼Oð10−3Þ; Si ∼Oð1Þ; Kr

i ∼Oð10−3Þ: ð17Þ

For QCD, this naive estimate for Lr
i is in agreement with

the results from lattice simulations and experiments. For

this reason, we believe that similar estimates should hold

true for Si and Kr
i .

III. NLO CORRECTIONS

A. Pion mass and decay constant

Since the physical pion mass is defined as the pole in the

propagator, we now determine the contributions to the pion

self-energy and solve for the pole-mass via the equation

m̂2
π −m2

π − Σðm̂2
πÞ ¼ 0; ð18Þ

where m̂2
π is the physical pion mass, m2

π is the bare pion

mass in the Lagrangian, and Σðp2Þ is the pion self-energy.

When including the scalar field there are two new dia-

grams, as shown in Fig. 1 (left), contributing to the self-

energy. Similarly there are two new diagrams contributing

to the pion decay constant, as shown in Fig. 1 (right), where

the outgoing legs have been replaced by an external current.

1
In the pseudo-real case, the external field coupling to left-

handed quarks enter in both rμ and lμ at the effective level.
However, since the interactions with the isosinglet scalar factor-
ize, this distinction will not make a difference at NLO.

EXTENDING CHIRAL PERTURBATION THEORY WITH AN … PHYSICAL REVIEW D 95, 036005 (2017)

036005-3



Before we write down the results for m̂2
π and f̂π we

introduce some short-hand notation to make the results

more readable. We write the chiral logs as

Lx ¼
1

16π2
log

�

m2
x

μ2

�

; ð19Þ

with x ¼ fπ; σg denoting one of the two masses. From the

loop diagrams we obtain unitarity corrections written in

terms of the functions Jðm2
1
; m2

2
; p2Þ and Hðm2

1
; m2

2
; p2Þ

defined in Appendix. For the on-shell results we use the

auxiliary functions

Jxyz ¼
1

16π2
½Jðm2

x; m
2
y; m

2
zÞ þ 1�;

Hxyz ¼
1

16π2
½Hðm2

x; m
2
y; m

2
zÞ�; ð20Þ

to shorten the expressions.

In this notation, the pion mass now reads

m̂2
π ¼ m2

π þ
m4

π

f2π
ða1 þ a2Lπ þ a3JπσπÞ

þm4
σ

f2π
ða4Lσ þ a5JπσπÞ

þm2
πm

2
σ

f2π
ða6 þ a7Lπ þ a8Lσ þ a9JπσπÞ; ð21Þ

and the pion decay constant is

f̂π ¼ fπ þ
m2

π

fπ
ðb1 þ b2Lπ þ b3JπσπÞ

þm2
σ

fπ
ðb4 þ b5Lσ þ b6JπσπÞ

þHπσπ

fπ
ðb7m4

π þ b8m
4
σ þ b9m

2
πm

2
σÞ: ð22Þ

From the above it is evident that the presence of the scalar

field dramatically increases the complexity of the resulting

corrections when comparing to the usual ChPT case, where

the only nonzero coefficients are a1;2 and b1;2. The

coefficients ai and bi are combinations of the low-energy

constants Si as shown in Table I. In the definition of a1;2
and b1;2 the coefficients aM;F and bM;F encode the standard

results from ChPT, which depend on the symmetry break-

ing pattern. For the two symmetry breaking patterns

considered here, these coefficients can be found in

Table II together with the values of Γi and Γ
K
i needed to

cancel the divergences. In the general case, they can be

found in [28].

For the pion decay constant the last term is special and it

arises because we need to take the derivative of

Jðm2
1
; m2

2
; p2Þ when calculating the renormalization con-

stant. One should note thatHπσπ has mass dimension minus

two and this is the reason for the additional powers of mass

multiplying this term.

B. Consistency checks

We now consider several limits and checks to verify our

results and to show that we recover known results from

current-algebra. For example, when setting Si ¼ 0 and

Kr
i ¼ 0 we recover the known ChPT results. This follows

from the algebraic structure of m̂2
π and f̂π together with the

values listed in Table I and Table II.

When the bare pion mass vanishes, i.e., m2
π → 0, we also

recover the chiral limit of the theory that requires m̂2
π ¼ 0

together with a finite value for f̂π. The vanishing of the

renormalized pion mass arises from the fact that Jπσπ
satisfies

Jπσπ ¼ Lσ ¼
1

16π2
log

�

m2
σ

μ2

�

; ð23Þ

in the chiral limit, together with the relation a5 ¼ −a4. The
pion decay constant, in the chiral limit, does not vanish

f̂π ¼ fπ þ
m2

σ

fπ

�

b4 þ ðb5 þ b6ÞLσ −
b8

32π2

�

; ð24Þ

where in this limit we used

Hπσπ ¼ −
1

16π2
1

2m2
σ

: ð25Þ

The result in Eq. (24) clearly shows that f̂π and fπ no

longer coincide in the chiral limit, because of the correc-

tions from the scalar field.

As mentioned in Sec. II, the renormalized coefficients Lr
i

and Kr
i depend on the renormalization scale μ and this

FIG. 1. Loop diagrams contributing (at next-to-leading order) to the pion mass (left) and pion decay constant (right). The solid lines

are pions, the dashed lines are scalars, and the wiggly lines are external currents. Here we only show the new diagrams involving the

scalar field, but in both cases there is an additional tadpole diagram and a contact term.
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dependence can be used to perform another consistency

check. The check consists in changing the scale from μ to ~μ

in our results and show that this translates into shifting the

renormalized coefficients in the following way.

Lr
i ðμÞ → Lr

i ð ~μÞ þ
Γi

32π2
log

�

~μ2

μ2

�

; ð26Þ

Kr
i ðμÞ → Kr

i ð~μÞ þ
Γ
K
i

32π2
log

�

~μ2

μ2

�

: ð27Þ

These relations hold in our results and rely on the specific

combinations of Lx and Jxyz because both depend on the

renormalization scale. Given all the above we are confident

that our results are solid.

C. Scalar mass and width

The next-to-leading order corrections to the two-point
function for the scalar field stems from its coupling to the
pions (the first two diagrams in Fig. 2) and its self-
interactions (the last two diagrams in Fig. 2) coming from
the σ4 and σ3 terms in the Lagrangian. Here we again define

the physical scalar mass m̂2
σ as the pole in the propagator.

Using the previously introduced notation, the renormalized
scalar mass reads

m̂2
σ ¼ m2

σ þ
m4

σ

f2π
ðc1Lσ þ c2Jππσ þ c3Jσσσ − 2Kr

3
Þ

þm4
π

f2π
ðc4Lπ þ c5Jππσ − 2Kr

5
Þ

þm2
πm

2
σ

f2π
ðc6Lπ þ c7Jππσ − 2Kr

4
Þ; ð28Þ

TABLE I. List of coefficients used in the definition of the pion mass, the pion decay constant, and the scalar mass.

It should be noted that not all coefficients are independent. The coefficients aM;F and bM;F are the standard results

from chiral perturbation theory and they can be found in Table II. In the definition of ci the constant nπ denotes the
number of pions (the number of broken generators).

ai bi ci

1 bM bF 6S6

2 aM −
1

2
ð2S1S3 − S2

1
Þ aF −

3

8
S2
1

−
1

4
nπS

2
1

3 −ðS1 − S3Þ2 −
1

2
ðS1S3 − S2

1
Þ −9S2

5

4 1

4
S2
1

−2Kr
1 2nπðS1S3 − S2

1
Þ þ nπðS4 − S2Þ

5 −a4 1

8
ð12S2 þ S2

1
Þ −nπðS1 − S3Þ2

6 4ðKr
2
− Kr

1
Þ −

1

4
S2
1

1

2
nπS

2
1

7 −a4 −
1

2
ðS1 − S3Þ2 nπðS21 − S1S3Þ

8 S4 − S2 − S2
1
þ S1S3 −

1

8
S2
1

–

9 S2
1
− S1S3 b3 –

TABLE II. The coefficients Γi and Γ
K
i used in Eq. (7) and Eq. (13) to cancel the one-loop divergences in the pion

mass and decay constant. The two coefficients Γ5 and Γ8 are unconstrained for these two symmetry breaking

patterns, and the values are simply chosen to coincide with [28]. The constants aM;F and bM;F encode the standard

results from chiral perturbation theory and, in the general case, they can also be found in [28].

SUð2Þ × SUð2Þ → SUð2Þ SUð4Þ → Spð4Þ
Γ
K
1 −

1

8
S2
1
þ 3

2
S2 −

1

8
S2
1
þ 3

2
S2

Γ
K
2 2S2 −

1

2
S4 2S2 −

1

2
S4

Γ4 −
1

32
S2
1
þ 1

8
S1S3 −

1

2
Γ5 þ 1

4
−

1

64
S2
1
þ 1

16
S1S3 −

1

4
Γ5 þ 1

8

Γ5
1

4

1

4

Γ6
1

64
S2
1
þ 1

16
S2
3
−

1

2
Γ8 þ 3

32

1

128
S2
1
þ 1

32
S2
3
−

1

4
Γ8 þ 5

128

Γ8 0 0

aM 1

2

3

4

bM 16ð2Lr
6
þ Lr

8
Þ − 8ð2Lr

4
þ Lr

5
Þ 16ð4Lr

6
þ Lr

8
Þ − 8ð4Lr

4
þ Lr

5
Þ

aF −1 −1

bF 8Lr
4
þ 4Lr

5
16Lr

4
þ 4Lr

5
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with the coefficients ci listed in Table I. To renormalize the

scalar mass we choose the values of ΓK
i listed below and

stress that they only depend on the number of pions nπ but
no other specific detail of the given breaking pattern.

Γ
K
3
¼ c1 þ c2 þ c3;

Γ
K
4
¼ c6 þ c7;

Γ
K
5
¼ c4 þ c5: ð29Þ

We notice that the scalar mass m̂2
σ develops a branch-cut at

mσ ¼ 2mπ because the two pions in the second diagram of
Fig. 2 can go on-shell. Above this value, the decay width of
the scalar can be read off from the imaginary part of the
mass.

Γ ¼ −
c2m

4
σ þ c5m

4
π þ c7m

2
σm

2
π

16πmσf
2
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −
4m2

π

m2
σ

s

: ð30Þ

In our approach we have two unknown LECs in the
expression for the decay width. The first coefficient S1
is the coupling between the scalar field and the kinetic term
for the pions, while the second coefficient S3 comes from
the coupling between the scalar field and the pion mass
term operator. For the SUð2ÞL × SUð2ÞR → SUð2ÞV case,
the result for Γ agrees with the expression obtained in [27]
when using the identification S1 ¼ 4c1d and S3 ¼ 0.

IV. THE MANY NATURES OF THE SCALAR

Because the scalar corrections have been introduced in a

generic way, we can consider different origins for the scalar

field, within the limits of the counting scheme. In practice

each given nature corresponds to imposing relations among

the Si couplings parametrizing the scalar interactions.

A. Dilaton

An interesting class of theories is the one in which a light

scalar emerges as pseudodilaton [12,15,35–40] for which

the Lagrangian reads:

L2 ¼
f2π
4

�

huμuμi exp
�

2σ

fπ

�

þ hχþi exp
�

yσ

fπ

��

: ð31Þ

Although we chose to use fπ as the compensating scale for

the pseudodilaton in the exponential, de facto, depending

on the microscopic realization it can differ, and our results

still apply. Expanding the exponential to second order we

find that our Si are now related via

S1 ¼ S2 ¼ 2; S3 ¼ y; S4 ¼
y2

2
: ð32Þ

Here y ¼ 3 − γ� with γ� being the anomalous dimension of

the fermion mass in the underlying gauge theory. It is now

evident that γ� is the only new parameter in the expression

for the pion mass (21) and the pion decay constant (22)

when the scalar field is a pseudodilaton.

m̂2
π ¼ m2

π þ
m4

π

f2π
ðbM þ ðaM − 2ÞLπ − ð2 − yÞ2JπσπÞ

þm4
σ

f2π
ðLσ − JπσπÞ þ

m2
πm

2
σ

f2π

×

�

a6 − Lπ −
1

2
ðyþ 6Þðy − 2ÞLσ þ ð4 − 2yÞJπσπ

�

ð33Þ

f̂π ¼ fπ þ
m2

π

fπ

�

bF þ
�

aF −
3

2

�

Lπ þ ð2 − yÞJπσπ
�

þm2
σ

fπ

�

b4 þ
7

2
Lσ − Jπσπ

�

−
Hπσπ

fπ

�

1

2
ð2 − yÞ2m4

π þ
1

2
m4

σ − ð2 − yÞm2
πm

2
σ

�

:

ð34Þ

Here a6 and b4 contain the unconstrained coefficients Kr
i .

In certain near-conformal theories, perturbation theory

predicts that γ� ≈ 1 is possible [41]. In the limiting case

γ� ¼ 1 (or equivalently y ¼ 2) the expressions for m̂2
π and

f̂π simplifies considerably, because the coefficient in front

of several terms vanishes. We stress that the σ field in this

formulation is the fluctuation around the expectation value.

For a discussion about how the expectation value depends

on the low energy parameters for the dilaton and the pions

we refer to [42].

B. Large-N limit

It is well known that the pion decay constant squared is

proportional to N when the underlying dynamics, yielding

the low energy effective theories, arises from an SUðNÞ

FIG. 2. Loop diagrams contributing (at next-to-leading order) to the scalar mass. The solid lines are pions and the dashed lines are

scalars.
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gauge theory with fermions transforming according to the

fundamental representation of the theory. This means that

in the large-N limit the pion interaction strength vanishes.

This feature is common to any meson that is predominantly

made by a fermion-antifermion pair. Furthermore their

mass is leading in N. Assuming that also the scalar singlet

is a leading N meson one finds

f2π ∼OðNÞ; m2
σ ∼Oð1Þ: ð35Þ

This counting is automatically encoded in our effective

theory since, order-by-order, corrections are suppressed by

factors of fπ . It is possible to generalize the present

formalism to encode different large-N counting schemes

arising when choosing, for example, fermions in different

representations of the underlying gauge group as shown

in [31].

However in the strict large-N limit one has also to take

into account, for fermions in the fundamental representa-

tion, the fact that one more state becomes parametrically

light with N i.e. the pseudoscalar associated to the Uð1Þ
axial anomaly. For a review on how to incorporate this

state, and generalizations to different representations

see [43].

C. Linear sigma model

The Lagrangian presented in Sec. II can be compared to

the linear sigma model by properly matching the low-

energy constants. To this end we consider the linear sigma

model with N pions ϕa and a single scalar field σ. With the

notation Φ ¼ ðσ; ~ϕÞT we can write the Lagrangian of the

linear sigma model manifestly invariant under a global

OðN þ 1Þ symmetry.

L ¼ 1

2
ð∂μΦÞTð∂μΦÞ þ 1

2
μ2ðΦTΦÞ − 1

4
λðΦTΦÞ2; ð36Þ

After the σ field acquires a vacuum expectation value

v2 ¼ μ2=λ the Lagrangian can be written as

L ¼ 1

2
ð∂μσÞ2 þ

1

2
ð∂μ

~ϕÞ2 − μ2σ2 −
1

2
λσ2 ~ϕ

2

− vλðσ~ϕ2 þ σ3Þ − 1

4
λðσ4 þ ~ϕ

4Þ: ð37Þ

We observe that the pions are massless and it is understood

that σ and ~ϕ are the fluctuations around the vacuum. After

spontaneous symmetry breaking, the global symmetry of

the Lagrangian has furthermore been reduced to OðNÞ. We

can exploit the following homomorphisms to rewrite the

linear sigma model in such a way that we have the same

global symmetries as we do in the chiral Lagrangian.

Oð4Þ → Oð3Þ ≅ SUð2ÞR × SUð2ÞL → SUð2ÞV
Oð6Þ → Oð5Þ ≅ SUð4Þ → Spð4Þ:

The linear sigma model can be written in terms of a matrix

Σ such that the above symmetries are manifest in the

Lagrangian.

L ¼ 1

2DR

h∂μΣ
†∂μ

Σi þ 1

2DR

μ2hΣ†
Σi − 1

4D2
R

λhΣ†
Σi2:

ð38Þ

We define the Σ matrix as

Σ ¼ ½ðσ þ vÞ þ iXaϕa�V; ð39Þ

where Xa are the broken generators taken to be DR ×DR

square matrices normalized such that hXaXbi ¼ DRδ
ab.

The matrix V encodes the vacuum alignment. For

SUð2ÞL × SUð2ÞR → SUð2ÞV it is the identity matrix,

while for SUð4Þ→ Spð4Þ case [44], it is given by

V ¼

0

B

B

B

@

0 0 −1 0

0 0 0 −1

þ1 0 0 0

0 þ1 0 0

1

C

C

C

A

: ð40Þ

We are now ready to make the connection to our chiral

Lagrangian by rewriting the Σ matrix as

Σ ¼ ðσ þ vÞUV; ð41Þ

where U ¼ expðiXaϕa=vÞ is a unitary matrix. To leading

order in 1=v this definition coincides with the original

definition in Eq. (39). The Lagrangian in Eq. (38) can now

be written as

L ¼ v2

2DR

�

1þ 2σ

v
þ σ2

v2

�

h∂μU
†∂μUi þ 1

2
ð∂μσÞ2

− λv2σ2
�

1þ σ

v
þ σ2

4v2

�

: ð42Þ

By expanding the kinetic term for the pions we can now

match this Lagrangian to our chiral Lagrangian in Eq. (14)

and the scalar Lagrangian in Eq. (10) via the following

identifications.

fπ ¼ v; S1 ¼ 2; S2 ¼ 1; m2
σ ¼ 2λv2;

S5 ¼ 1; S6 ¼
1

4
: ð43Þ

In Eq. (42) the pions are massless and for this reason we

cannot match the two coefficients S3 and S4. This could
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eventually be done by introducing an explicit breaking term

in Eq. (38).

For completeness we notice that, at the classical level,

one can relate the linear sigma model to the dilaton via the

field redefinition

σ → fπ

�

exp

�

σ

fπ

�

− 1

�

: ð44Þ

D. Goldstone boson

If the scalar field is a Goldstone boson, then the effective

theory is invariant under, at least, a shift symmetry

σ → σ þ a. This implies that only derivative couplings are

allowed in the Lagrangian. In our setup this corresponds to

choosing all Si ¼ 0 in which case we recover standard chiral

perturbation theory results for the quantities computed here.

However, scalar effects will appear at higher orders in the

chiral expansion. One can allow for a controllably small

breaking of the shift symmetry by requiring

Si ≪ Oð1Þ: ð45Þ

This will significantly reduce the effects from the sca-

lar loops.

E. QCD

The present framework is directly applicable to QCD

where different approaches point to the existence of a scalar

state [1–10,45–51] with mass mσ ¼ 457 MeV and width

Γ ¼ 558 MeV, where the values are taken from Ref. [52].

Several earlier and modern interpretations of the under-

lying nature of this state have been put forward in the

literature [1–5,8–10,45–51,53–63]. These investigations

seem to converge toward the presence of a large four-

quark component of this state.

Given an assumed nature of this state one can, using the

present framework, test it against experimental and lattice

results, when available. For example already from the limited

knowledge of the width and mass we can derive the relation

S1 ¼ −0.227S3 þ 2.535; ð46Þ

which is in agreement with the expectation given in Eq. (17).

The contribution from S3 is naturally suppressed by the small

pion mass.

Assuming that the lightest massive scalar behaves as a

pseudodilaton [35,64] we have the further relations

S1 ¼ S2 ¼ 2, S3 ¼ y and S4 ¼ y2=2 that from the previous

constraint permits to determine y ¼ 2.357 and conse-

quently a would be fermion mass anomalous dimension

of γ� ¼ 3 − y ¼ 0.643. One can further test the relation,

and consequently the limit, via its impact on the pion mass

(33) and decay constant (34) at the NLO as well as in

processes such as pion-pion scattering. In the linear sigma

model limit [65,66] we have S1 ¼ 2 and S2 ¼ 1 leading to

the same prediction for S3 but the mass and decay constant

renormalize differently than in the pseudodilatonic limit.
As for the relevant interpretation in terms of a four-quark

state [1–10,45–51] one can envision different underlying
realisations that range from this state emerging prevalently
as bound state of pions to having a more compact wave
function at the quark level. Each of these possibilities will
lead to specific predictions for the LECs that can, in
principle, be obtained within model computations. For
example, the mass of the sigma in a four-quark interpre-
tation increases with the number of colors, see Fig. 5 of [4],
modifying the large N counting in Sec. IV B. It would
therefore be very exciting, in the future, to investigate these
limits within the present framework.

V. CONCLUSION

We added an isosinglet scalar to the chiral Lagrangian
and determined the radiative corrections for the pion mass
and decay constant. We also determined the quantum
corrections for the two-point scalar function and deter-
mined its physical mass and width. The analysis is
performed for two breaking patterns of immediate rel-
evance for phenomenology and lattice simulations. Our
analysis extends previous results and it embraces different
physical realizations for the isosinglet, such as the dilaton,
the (pseudo) Goldstone boson, the σ state in QCD, and the
linear sigma model. The results presented here can also be
used to extrapolate a potentially light isoscalar mass to the
chiral limit in lattice simulations.
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APPENDIX: ONE-LOOP INTEGRALS

In this appendix we list the one-loop integrals needed in

our calculations. For the diagrams considered here we need

a total of eight different integrals.

I1 ¼ iμϵ
Z

d4k

ð2πÞ4
1

k2 −m2
¼ A0ðm2Þ ðA1Þ

I2 ¼ iμϵ
Z

d4k

ð2πÞ4
k2

k2 −m2
¼ m2A0ðm2Þ ðA2Þ

I3 ¼ iμϵ
Z

d4k

ð2πÞ4
1

½k2 −m2
1
�½ðkþ qÞ2 −m2

2
�

¼ B0ðm2
1
; m2

2
; q2Þ ðA3Þ

I4 ¼ iμϵ
Z

d4k

ð2πÞ4
qμk

μ

½k2 −m2
1
�½ðkþ qÞ2 −m2

2
�

¼ B1ðm2
1
; m2

2
; q2Þ ðA4Þ
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I5 ¼ iμϵ
Z

d4k

ð2πÞ4
k2

½k2 −m2
1
�½ðkþ qÞ2 −m2

2
�

¼ A0ðm2
2
Þ þm2

1
B0ðm2

1
; m2

2
; q2Þ ðA5Þ

I6 ¼ iμϵ
Z

d4k

ð2πÞ4
qμqνk

μkν

½k2 −m2
1
�½ðkþ qÞ2 −m2

2
�

¼ q2B2ðm2
1
; m2

2
; q2Þ ðA6Þ

I7 ¼ iμϵ
Z

d4k

ð2πÞ4
qμk

μk2

½k2 −m2
1
�½ðkþ qÞ2 −m2

2
�

¼ ½m2
1
B1ðm2

1
; m2

2
; q2Þ − q2A0ðm2

2
Þ� ðA7Þ

I8 ¼ iμϵ
Z

d4k

ð2πÞ4
k4

½k2 −m2
1
�½ðkþ qÞ2 −m2

2
�

¼ ðm2
1
þm2

2
þ q2ÞA0ðm2

2
Þ þm4

1
B0ðm2

1
; m2

2
; q2Þ: ðA8Þ

The solutions to the integrals are written in terms of the four

functions listed below.

A0ðm2Þ ¼ m2

16π2

�

log

�

m2

μ2

�

− R

�

ðA9Þ

B0ðm2
1
; m2

2
; q2Þ ¼ 1

16π2
½1 − Rþ Jðm2

1
; m2

2
; q2Þ� ðA10Þ

B1ðm2
1
; m2

2
; q2Þ ¼ 1

2
½A0ðm2

1
Þ − A0ðm2

2
Þ

þ ðm2
2
−m2

1
− q2ÞB0ðm2

1
; m2

2
; q2Þ�

ðA11Þ

B2ðm2
1
; m2

2
; q2Þ ¼ 1

2
½A0ðm2

2
Þ þ ðm2

2
−m2

1
− q2

×ÞB1ðm2
1
; m2

2
; q2Þ�: ðA12Þ

The unitarity corrections are parametrized by the

function

Jðm2
1
; m2

2
; q2Þ

¼
Z

1

0

dx log

�

xm2
2
þ ð1 − xÞm2

1
− xð1 − xÞq2 þ iϵ

μ2

�

ðA13Þ

¼ 1

m2
1
−m2

2

�

m2
1
log

�

m2
1

μ2

�

−m2
2
log

�

m2
2

μ2

��

− 1

þ
Z

1

0

dx log

�

xm2
2
þ ð1 − xÞm2

1
− xð1 − xÞq2 þ iϵ

xm2
2
þ ð1 − xÞm2

1

�

:

ðA14Þ

In our results we also need the derivative of this function

with respect to q2.

Hðm2
1
; m2

2
; q2Þ ¼ ∂

∂q2
Jðm2

1
; m2

2
; q2Þ

¼
Z

1

0

dx

�

xðx − 1Þ
xm2

2
þ ð1 − xÞm2

1
þ xðx − 1Þq2

�

:

ðA15Þ
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