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Abstract

The goal of this paper is to extend classical logic with

a generalized notion of inductive de�nition support-

ing positive and negative induction, to investigate the

properties of this logic, its relationships to other logics

in the area of non-monotonic reasoning, logic program-

ming and deductive databases, and to show its applica-

tion for knowledge representation by giving a typology

of de�nitional knowledge.

Introduction

Since the early days of Computer Science, when John

McCarty started to investigate the role of logic for com-

puting and arti�cial intelligence, the key attraction of

logic was the promise of a natural representation of

knowledge. By the end of the seventies, it had be-

come clear that representing common sense knowledge

in classical logic, despite its clear and well-understood

intuitive reading, was a complex task. Two major prob-

lems were seen as the causes: �rst, very often common

sense knowledge turns out to be partial and incomplete.

Second, in many applications an unrealistic amount of

axioms seemed necessary to represent the human knowl-

edge; the prototypical example in this respect is the

frame problem (McCarthy & Hayes 1969). To solve

these problems, non-monotonic logics such as circum-

scription and default logic, incorporate strong logical

closure principles that allow to reason about partial and

incomplete knowledge, and allow a compact represen-

tation of human knowledge.

This paper de�nes and investigates a conservative

extension of classical logic with a less general non-

monotonic closure principle: the principle of de�ni-

tion and inductive de�nition. In the context of non-

monotonic reasoning, de�nitions have received little at-

tention so far. This is remarkable for several reasons.

The study of de�nitions in knowledge representation

has a long tradition which extends to the origins of

Western philosophy. The problem of de�ning a natural

kind as studied by the ancient Greek philosophers is in

many ways an instance avant la lettre of the general

problem of common sense knowledge representation.

Also in the context of modern AI, the study of the

role of de�nitions in common sense knowledge repre-

sentation has a long tradition. As an outcome of a

series of investigations into the semantics of seman-

tic networks

1

, Brachman and Levesque (Brachman &

Levesque 1982) observed that an important component

of expert knowledge is knowledge of the de�ning prop-

erties of concepts, and that it is crucial to distinguish

between de�ning properties of concepts and assertional

knowledge on concepts. Description logics are based on

this idea, and consist of a Tbox to represent de�nitional

knowledge and an Abox to represent assertional knowl-

edge.

Another area related to nonmonotonic reasoning in

which de�nitions have been prominent is in the con-

text of logic programming and abductive (or open)

logic programming. One of the original ideas on the

declarative semantics of logic programs with negation

as failure was to interpret a logic program as a de�ni-

tion of its predicates. This view is underlying Clark's

completion semantics (Clark 1978). In (Denecker 1995;

Denecker & De Schreye 1995; Van Belleghem, Denecker,

& De Schreye 1997), this view was extended to abduc-

tive logic programs and open logic programs and the

relation with description logics was shown.

In the context of non-monotonic reasoning, Reiter

(Reiter 1996) and Amati et al (Amati, Carlucci Aiello,

& Pirri 1997) observed that an important method for

analysis and computation in common sense knowledge

representation is to compile non-monotonic theories

into �rst order de�nitions (i.e. Clark completions).

They argue that the advantages of this compilation

are that it clari�es the meaning of the original theory

and that it yields theories that are better suited for

computational purposes. Recently (Denecker, Thesei-

der Dupr�e, & Van Belleghem 1998) and (Ternovskaia

1998) showed a strong correspondence between induc-

tion and causality and investigated the use of inductive

de�nitions to represent temporal and causal knowledge.

The above suggests that the study of induction and

inductive de�nitions could provide a valuable contribu-

tion to the area of common sense knowledge representa-

tion, nonmonotonic reasoning and logic programming.

The study of induction could be de�ned as the study

1

See (Reichgelt 1991) for a discussion of this topic.



of construction techniques in mathematics. In general,

an inductive de�nition de�nes a relation (or a collection

of relations) through a constructive process of iterating

a recursive recipe that de�nes new instances of the rela-

tion in terms of the presence or absence of other tuples

of the same relation or other relations. The recipe natu-

rally de�nes an operator: this operator maps a relation

(or set of relations) to the relation (or set of) that can

be obtained by applying the recipe.

Standard work was done by Moschovakis

(Moschovakis 1974) and Aczel (Aczel 1977). These

treatments study the theoretical expressivity of positive

or monotone induction. One spin-o� of this �eld is

�xpoint logic (Gurevich & Shelah 1986), a subarea of

databases (Abiteboul, Hull, & Vianu 1995). As shown

in (Denecker 1998), the abstract positive inductive

de�nition logic de�ned in (Aczel 1977) is formally

isomorphic with the formalism of propositional Horn

programs under least model semantics. In the case of

Horn programs, the associated operator corresponds to

the immediate consequence operator.

In mathematical applications, also non-monotone

forms of induction can be distinguished:

� strati�ed induction and a generalisation, induction in

well-founded sets. In strati�ed induction the domain

of the de�ned concept(s) can be strati�ed (possibly

in trans�nite number of levels) such that higher level

instances of the concept are de�ned positively or neg-

atively in terms of lower level instances of the pred-

icate. Two well-known examples are the following

de�nition of even numbers:

even ::

�

even(0)  

even(s(x))  :even(x)

�

and the de�nition of the ordinal powers of a monotone

operator as used in the Tarski-Kleene least �xpoint

theory.

� induction in the context of well-founded sets. Here

a concept at a higher level of the set is de�ned in

terms of the concept at lower levels in a monotone

or nonmonotone way. An example of de�nition with

positive and negative induction in the context of well-

founded sets is given in (Denecker 1998): the de�ni-

tion of depth or rank of an element in a well-founded

set: it is the least ordinal strictly larger than the

depths of strictly less elements. Also the de�nition of

ordinal powers can be seen as an application of this

principle.

Inationary �xpoint logic is a well-known extension

of �xpoint logic for nonmonotone operators. However,

as argued in (Denecker 1998), this extension does not

match the intuition of non-monotone induction. For

example, the semantics of the nonmonotone de�nition

of even in inationary semantics would be the set of all

natural numbers. In general, the inationary �xpoint

is not even a �xpoint of the original operator, and if it

is, it is not necessarily a minimal �xpoint.

Formalizations of de�nitions with positive and nega-

tive induction were investigated in the area of Iterated

Inductive De�nitions (Feferman 1970; Buchholz, Fefer-

man, & Sieg 1981). As argued in (Denecker 1998), the

intuition of such formalisms is simple and natural and

corresponds with the many notions of strati�cation in

logic programming. Yet, it is also shown that encoding

even simple inductive de�nitions is extremely tedious;

knowledge representation in such systems is practically

impossible.

(Denecker 1998) presents a knowledge theoretic study

of a generalized principle of inductive de�nition in the

abstract setting of an (in�nitary) propositional logic.

This de�nition logic extends Aczel's in�nitary proposi-

tional logic for positive induction(Aczel 1977)

2

. When

extending the notion of inductive de�nition to unre-

stricted forms of induction, a challenging problem arises

of de�ning a uniform semantical principle that assigns

the right semantics to all kinds of inductive de�nitions.

The main contribution of (Denecker 1998) was to show

that the principle of well-founded model in logic pro-

gramming (Van Gelder, Ross, & Schlipf 1991) is the

suitable mathematical principle of generalized induc-

tive de�nition. The well-founded model is obtained as

the least �xpoint of the 3-valued stable operator (Przy-

musinski 1990b). The latter operator is a general and

robust implementation of the principle of positive in-

duction; negative induction is dealt with by iterating

this positive induction operator in a least �xpoint com-

putation. As a consequence, this semantics generalizes

all well-known ways of de�ning concepts. It coincides

with least �xpoint and least model semantics in the

context of positive induction; it coincides with itera-

tion of the positive induction in the context of iterated

(or strati�ed) systems of inductive de�nitions; it coin-

cides with Clark completion semantics in case of non-

inductive de�nitions and inductive de�nitions on a well-

founded set; beyond these classes, it gives the intended

meaning to mixtures of positive and negative induction

in semi-well-founded sets

3

.

The present paper is concerned with the role of in-

duction in common sense knowledge representation and

the de�nition of a knowledge representation logic based

on inductive de�nitions. To this end, the abstract logic

of (Denecker 1998) is lifted to a predicate logic suit-

able for representing this generalized notion of induc-

tive de�nitions in the context of uncertainty and incom-

plete knowledge. I investigate formal properties and

methodological guidelines of this logic, important from

the point of view of knowledge representation. A num-

ber of important applications of this logic are sketched.

The relationship with many other logics are discussed,

2

Both logics are abstract in the sense that in�nitary the-

ories and rules are considered.

3

A semi-order � is a reexive, transitive relation and

de�nes an equivalence relation x � y i� x � y^y � x). The

set of equivalence classes is a poset. A semi-order is well-

founded if the poset of equivalence classes is well-founded.



in particular logic programming and some of its exten-

sions.

By lack of space, proofs of all theorems are omitted.

An abstract logic of inductive de�nitions

In (Denecker 1998), I proposed an extension of Aczel's

logic for general monotone and non-monotone induc-

tive de�nitions. The result is isomorphic with the for-

malism of in�nitary propositional logic programs (with

negation) under well-founded semantics. An abstract

inductive de�nition (ID) D in this logic de�nes a set

Defined(D) of symbols, called the set of de�ned sym-

bols, by a set of rules of the form

p B

where p is a de�ned atom and B a set of positive or neg-

ative literals. The other atoms are called open atoms;

their set is denoted Open(D).

In (Denecker 1998) it was argued that Przymusinski's

3-valued extension (Przymusinski 1990a; Przymusinski

1990b) of Gelfond and Lifschitz' stable model opera-

tor (Gelfond & Lifschitz 1988) is a general and robust

implementation of the principle of positive induction,

and that its least �xpoint, the well-founded model (Van

Gelder, Ross, & Schlipf 1991) naturally extends the

ideas of Iterated Inductive De�nitions and gives the

right semantics to generalized inductive de�nitions.

In general, given an ID D and an interpretation I of

the open symbols of D, there is a unique well-founded

model extending I. This model will be denoted I

D

.

An interpretation is a model of D i� M = M

o

D

where

M

o

is the restriction of M to the open symbols. In

general, a model of an inductive de�nition is a partial

(3-valued) interpretation. However, for broad classes of

de�nitions, the well-founded model is known to be total

(2-valued). These are the cases that are of interest in

this paper.

ID-logic: classical logic with de�nitions

This section de�nes a conservative extension of classical

logic with de�nitions. An ID-logic theory T (based on

some logical alphabet �) consists of a set of classical

logic sentences and a set of de�nitions. A de�nition D

is a pair of a set Defined(D) of predicates and a set

Rules(D) of rules of the form:

p(t) F

where p 2 Defined(D) and F an arbitrary �rst or-

der formula based on �. Predicates of Defined(D) are

called the de�ned predicates of D; other predicates are

called open predicates of D. A de�nition de�nes the de-

�ned predicates in terms of the open predicates. More

precisely, given some state of the open predicates, the

rule set of the de�nition gives an exhaustive enumer-

ation of the cases in which the de�ned predicates are

true; any de�ned atom not covered by a rule is de�ned

as false.

A de�nition will be formally represented as in the

example:

even; odd ::

(

even(0)  

even(S(x))  odd(x)

odd(S(x)) even(x)

)

This is one de�nition de�ning two predicates simulta-

neously.

In ID-logic, de�nitions are considered as sentences.

An ID-logic theory based on � consists of sentences

and may contain di�erent de�nitions, even for the same

predicates. An �-interpretation is a model of an ID-

logic theory i� it is a model of all its sentences. So, it

su�ces to de�ne what is a model of a de�nition.

The semantics for propositional de�nitions of section

3 can be lifted easily to the predicate case by use of the

grounding technique: the technique of reducing a predi-

cate de�nition to an in�nitary propositional de�nition

4

.

In the context of ID-logic, this grounding of a de�nition

is constructed using the domain and functions of some

(general non-Herbrand) interpretation I.

To de�ne the grounding the following terminology is

needed. Given an alphabet � and a �-interpretation I,

de�ne the alphabet �

I

by adding the domain elements

of I as constants to �

5

. I is naturally extended to �

I

by de�ning I(x) = x for each domain element x of I.

The evaluation of a ground term t of �

I

(which may

contain domain elements of I) is de�ned inductively as

usual, and is denoted jtj

I

. Likewise, truth value of a

sentence of �

I

is de�ned by the usual truth recursion.

Given some partial (3-valued) interpretation I and

a de�nition D, I

o

denotes the restriction of I to the

constant, functor and open predicate symbols ofD. At

I

denotes the set of all atoms p(d) where p is a de�ned

predicate of D and d is a tuple of domain elements of

I. A ground instance of a rule p(t[x])  F [x] with x

the tuple of all its free variables, is a rule p(t[d]) F [d]

obtained by substituting domain elements d for x.

The intuition to get the grounding is as follows. We

must replace a rule-instance p(t[d])  F [d] by some

logically equivalent set of propositional rules A  B

where B is a set of literals. We will select A = p(jt[d]j

I

)

and B any set of literals of At

I

such that if all elements

of B were true, then F [d] would be true. Or, the bodies

of the grounding correspond to the partial models of the

rule body F [d].

De�ne a consistent set S of literals of At

I

as a set

of positive or negative literals based on At

I

that does

not contain a pair of complementary literals p(d);:p(d).

4

In (Gelder 1993), an alternative way of de�ning the well-

founded semantics of predicate rules is proposed; it is based

on a di�erent treatment of positive and negative occurrences

of predicates in the body of rules. I believe both techniques

are equivalent but haven't proven this.

5

Note that �

I

may be in�nite, even non-countable. This

is mathematically and philosophically non-problematic be-

cause �

I

is purely used as a semantic device, namely to

de�ne the grounding.



Note that there is a one-to-one correspondence between

partial interpretations extending I

o

and consistent sets

of At

I

-literals. Each partial interpretation J extending

I

o

de�nes a unique consistent set S

J

of all literals l of

At

I

that are true in J . Vice versa, each consistent set

S de�nes a unique partial interpretation J

S

extending

I

o

such that J

S

(l) = t i� l 2 S. Moreover, J

S

J

= J .

De�nition 1 Given an interpretation I, the grounding

of a de�nition D w.r.t. I, denoted I-grounding(D), is

the propositional de�nition de�ning all atoms of At

I

and consisting of all rules

p(jt[d]j

I

) S

J

such that p(t[d])  F [d] is a ground instance of a rule

of D and J is a partial model of F [d] extending I

o

.

De�nition 2 A 3-valued interpretation I is a justi�ed

interpretation of D i� S

I

is the 3-valued (well-founded)

model of the grounding of D w.r.t. I. I is a justi�ed

interpretation of a theory T i� it is a justi�ed interpre-

tation of all its de�nitions and a (3-valued) model of

the classical logic sentences of T .

An interpretation I is a model of a de�nition D, resp.

theory T , i� it is a total (i.e. 2-valued) justi�ed inter-

pretation of D, resp. T .

The above model theory is based on total, general

non-Herbrand models. As a consequence, ID-logic is

an extension of classical logic. The restriction to to-

tal models is not only necessary to get a extension of

classical logic, but also because of methodological con-

straints on the use of de�nitions, as explained in the

next section.

Example 1 The �rst example shows that di�erent def-

initions are independent and interact in a monotonic

way. Consider the theory consisting of three de�nitions.

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

father ::

�

father(x; y)  parent(x; y)^

male(x)

�

mother ::

�

mother(x; y) parent(x; y)^

female(x)

�

parent ::

�

parent(x; y) father(x; y)

parent(x; y) mother(x; y)

�

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

Note that in the �rst de�nition, father depends on

parent, while in the third, parent depends on father.

However, the semantics of a set of de�nitions is mono-

tonically composed of the semantics of its de�nitions.

Since none of these de�nitions is recursive, each is

equivalent with its completed de�nition. Consequently,

this triple of de�nitions is equivalent with the FOL the-

ory:

(

father(x; y) $ parent(x; y) ^male(x)

mother(x; y) $ parent(x; y) ^ female(x)

parent(x; y)$ father(x; y) _mother(x; y)

)

One can observe that if male(x) $ :female(x) holds,

then the de�nition of parent is redundant.

Compare this theory with the simultaneous de�nition

obtained by merging the three de�nitions in one:

8

>

>

>

<

>

>

>

:

father;mother; parent ::

8

>

<

>

:

father(x; y) parent(x; y) ^male(x)

mother(x; y) parent(x; y) ^ female(x)

parent(x; y) father(x; y)

parent(x; y) mother(x; y)

9

>

=

>

;

9

>

>

>

=

>

>

>

;

This new de�nition is positive recursive. This has the

unintended e�ect that in each model, father, mother

and parent are interpreted as the empty relationships.

Example 2 A theory may contain more than one def-

inition for the same concept. E.g.

8

<

:

even :: f
even(0)  :odd(x)

g

even ::

�

even(0)

even(s(s(x)))  even(x)

�

9

=

;

The �rst de�nition de�nes even as the complement of

odd. In itself, it does not de�ne even nor odd. The

second de�nition de�nes even by the usual positive re-

cursion. The combination of both de�nitions de�nes

both even and odd.

De�nition 3 A de�nition is recursive i� a de�ned

predicate appears in the body of a rule. A de�nition is

positive recursive i� all occurrences of the de�ned pred-

icates in the body of the rules are positive (i.e. occur

in the scope of an even number of negations). A simul-

taneous de�nition de�nes more than one predicate. A

strati�ed de�nition is one in which the de�ned predi-

cates can be semi-ordered such that each de�ned pred-

icate occurring positively, resp. negatively, in the body

of a rule is less, resp. strictly less, than the predicate

in the head.

A de�nition hierarchy is a set D of de�nitions such

that each predicate is de�ned in at most one de�nition

of D and D can be ordered such that each open predi-

cate appearing in a de�nition is not de�ned in a later

de�nition.

Below, I de�ne the concept of a well-founded de�ni-

tion. This concept generalizes the principle of de�nition

in a well-founded set.

De�nition 4 A de�nition D is well-founded in some

collection I of total interpretations of the open predi-

cates of D i� for each I 2 I, there exists a well-founded

order on the atoms of At

I

such that for each ground in-

stance p(t[d]) F [d], the body F [d] has the same truth

value in all partial interpretations that extend I and are

identical on all atoms less than p(jt[d]j

I

).

The following theorem states an interesting property

of well-founded de�nitions.

Theorem 1 If D is well-founded in I, then each jus-

ti�ed interpretation M of D extending an element I

of I is total (and hence a model) and coincides with

the least model of the 3-valued completion of D (Fitting

1985) extending I. M is the unique model of the Clark

completion (Clark 1978) of D extending I.



Example 3 Consider the de�nition of even numbers:

even ::

�

even(0)  

even(S(x))  :even(x)

�

In the context of the natural numbers, this de�nition

is well-founded and the justi�ed interpretation is to-

tal. However, in any interpretation where the successor

function contains cycles, the justi�ed interpretation is

partial.

Properties of de�nitions

Consistency of de�nitions

The aim of an inductive de�nition is to de�ne its de�ned

predicates. Therefore, a natural quality requirement

is that those justi�ed interpretations that are total in

the open predicates, should de�ne truth of all de�ned

predicates, i.e. they should be total in all predicates.

As shown by Example 3 the property of having total

justi�ed interpretations is context dependent.

De�nition 5 A de�nition D is well-de�ning in a col-

lection I of total interpretations of its open predicates

i� each justi�ed interpretation of D extending an ele-

ment of I is total. Otherwise, D is called an unfounded

de�nition in I.

Part of the knowledge representation methodology

for representing de�nitions is to show that each def-

inition in the theory is well-de�ning in the collection

of relevant interpretations of its open predicates. For

this purpose, practical mathematical techniques must

be developed.

Theorem 2 Assume that a theory T can be split up

in a sequence of theories T

1

; ::; T

n

such that for each i,

the predicates with a de�nition in T

i

do not appear in

T

1

; ::; T

i�1

and for each model I of T

1

[ :: [ T

i�1

, the

de�nitions in T

i

are well-de�ning in I.

Then each justi�ed interpretation of T , total for the

subset of predicates without de�nition in T , is total.

The proof of this theorem is omitted.

Some syntactic properties that guarantee that a def-

inition is well-de�ning in every context are well-known

from the logic programming literature:

� non-recursive de�nitions

� positive recursive de�nitions

� strati�ed de�nitions

Other properties guarantee well-de�ning de�nitions

in some speci�c context. Inductive de�nitions corre-

sponding to acyclic (Apt & Bezem 1990) or locally

strati�ed logic programs (Przymusinski 1988) are well-

de�ning in the context of Herbrand interpretations. It

follows from theorem 1 that a well-founded de�nition

in context I is also well-de�ning in I.

A syntactical criterion that guarantees well-

foundedness and hence well-de�ning-ness is the

following. De�ne a relativized de�nition w.r.t. some

strict order < as a de�nition of a predicate p(x; y) that

consists of rules:

p(x; t) F [x]

such that each p-atom in F is of the form p(z; t

0

) and

appears in the scope of a subformula of F [x] of the form

8z:z < x! G or 9z:z < x ^G.

When < represents a well-founded order, relativized

de�nitions are well-founded and hence well-de�ning, by

theorem 1. The following theorem was proven.

Theorem 3 A relativized de�nition (w.r.t. to <) is

well-founded in each interpretation that interprets < as

a strict well-founded order.

Equivalence of de�nitions

In a logic for knowledge representation, there should be

a well-understood notion of equivalence. The following

example shows that one cannot simply replace bodies of

cases by equivalent bodies (w.r.t. 2-valued semantics).

Example 4 The de�nitions p :: f
p t

g and p ::

f
p p _ :p

g have di�erent justi�ed interpretations,

respectively the interpretations (represented as literal

sets) fpg and fg. Note that their bodies are equiva-

lent w.r.t. 2-valued semantics but not w.r.t. 3-valued

semantics.

Some important cases of equivalence preserving rules

are sketched below:

� A case p(t[x]) F can be replaced by p(y) 9x:y =

t[x] ^ F .

� In a de�nition, two cases p(t)  F

1

and p(t)  F

2

can be replaced by one case p(t) F

1

_F

2

. Together

with the �rst rule, it follows that replacing a set of

rules by its Clark completion is equivalence preserv-

ing.

� The substitution of a sub-formula F [x] in the body of

a case of a formula by a formula G[x] is equivalence

preserving if F [x] and G[x] are equivalent in 3-valued

logic, i.e. if 8x:F [x]$ G[x] is a tautology in 3-valued

logic

6

.

� De�ne the composition of two de�nitions Pred

1

::

f
C

1

g and Pred

2

:: f
C

2

g as the de�nition Pred

1

[

Pred

2

:: f
C

1

[ C

2

g. In general, substituting a

pair of de�nitions by their composition is not equiv-

alence preserving. (Verbaeten, Denecker, & De Schr-

eye 2000) presents an extensive study of when merg-

ing de�nitions is equivalence preserving in the context

of open logic programming, a sub-formalism of the

logic de�ned here. One important example is that a

de�nition hierarchy (De�nition 3) is equivalent with

its composition. Note that the composition of a def-

inition hierarchy of positive recursive de�nitions is a

strati�ed de�nition.

6

Here the strong Kleene truth table for$ must be used.



Monotonicity, non-monotonicity and

modularity

Non-monotonicity is a necessary property of elabora-

tion tolerant logic descriptions (McCarthy 1998). Non-

monotonicity is a natural consequence of any sort of

closure principle. However, also a degree of monotonic-

ity is important in knowledge representation. Indeed, a

highly desirable feature of a knowledge representation

logic is that independent properties of the problem do-

main can be represented in a modular way, and that

adding the modules together in one theory preserves

the semantics of each module. Modular composition is

guaranteed if the models of the composition of the mod-

ules are models of the independent modules. However,

this property guarantees also that the extension of one

module with another is a monotonic operation.

Both properties are present in the logic de�ned here:

� Extending a de�nition with one or more new cases is

in general a non-monotonic operation.

� Adding new de�nitions or new axioms to a theory is

a monotonic operation. This follows trivially from

the de�nition of model.

Applications of de�nitions

Below some applications of ID-logic are given.

Terminological knowledge.

According to (Brachman & Levesque 1982), de�ni-

tions of terminology constitutes an important part

of expert knowledge. Terminological knowledge is

about the de�ning properties of a concept, i.e. the

necessary and su�cient conditions to belong to the

concept. To see the crucial di�erence between ter-

minological and assertional knowledge, consider the

atomic statement c(O) that some object O belongs

to a concept c. When c(O) represents an assertional

statement, it asserts that O belongs to c and, hence,

satis�es the de�ning property of c. On the other

hand, if the atom is added as a new case to the de�ni-

tion of c, then the de�ning property of c is modi�ed

such that O belongs to c by de�nition and not by

virtue of its properties.

Temporal Reasoning.

In (Ternovskaia 1998), it was shown that Reiter's sit-

uation calculus (Reiter 1991) has an equivalent for-

malization by a set of positive recursive de�nitions

of the uent predicates and of the e�ects of actions.

Using general inductive de�nitions (with positive and

negative induction), the formalization can be further

simpli�ed in ID-logic. Below, I sketch how to do this.

The de�nition de�nes all uent symbols and all causal

predicates by simultaneous induction on the poset of

situations. I introduce for each uent f three new

predicates: initially

f

to represent the initial state of

f , and cause

f

and cause

:f

, representing initiating

and terminating causes for f . For each uent symbol

f , the de�nition contains three cases

7

:

f(x; S

0

) initially

f

(x)

f(x; do(a; s)) cause

f

(a; s; x)

f(x; do(a; s)) f(x; s) ^ :cause

:f

(a; s; x)

Note that in contrast to Reiter's situation calculus,

this rule set does not contain a rule of the form:

:f(x; do(a; s)) cause

:f

(a; s; x)

However, it is easy to show that the completion of

the above 3 rules entails the formula:

:f(do(a; s)) :cause

f

(a; s; x) ^ cause

:f

(a; s; x)

which reduces to the causal rule for :f if the natural

requirement is added that an action cannot cause f

and :f in the same situation. This requirement is

formalised by the clause:

 cause

:f

(a; s; x); cause

f

(a; s; x)

This illustrates a general methodological principle of

using inductive de�nitions. In an inductive de�ni-

tion, one de�nes a concept by enumerating the pos-

itive cases; given such an enumeration, the closure

mechanism of the semantics yields the negative cases.

In addition, per initiating e�ect of some action rep-

resented by an action term A[y], there is a case:

cause

f

(A[y]; s; x) 	[y; s; x]

such that the only term in 	 of the situation sort is

s and it appears purely in uent symbols. Likewise,

for each terminating e�ect there is a case:

cause

:f

(A[y]; s; x) 	[y; s; x]

Theorem 4 A de�nition consisting of the above

rules is well-founded in the collection of all interpre-

tations that satisfy the Unique Names Axioms (UNA)

axioms (Reiter 1980) and the second order induction

axiom for the situation sort

8

.

It follows from theorem 1 that the semantics of this

inductive de�nition coincides with its Clark comple-

tion. Note that the completion of this de�nition is

very similar to Reiter's state successor axioms

9

.

7

We assume a many-sorted version of ID-logic, with sit-

uation, action and user de�ned sorts.

8

The order of the atoms, needed to establish the well-

foundedness of the de�nition is the order generated by

the atoms f(::; do(a; s)) > cause

f

(a; s; ::); cause

:f

(a; s; ::) >

g(::; s), with f , g arbitrary uents.

9

The main di�erence is that it lacks the action precondi-

tion predicate poss(a; s). Action preconditions can be added

to the inductive de�nition, by extending the de�nition with

cases de�ning poss, by adding the atom poss(a; s) as a con-

junct to the second and third case de�ning f and adding a

fourth rule

f(x; do(a;s)) f

o

(x; do(a;s)) ^ :poss(a;s)

where f

o

is a new open predicate.



The inductive de�nition representation of situation

calculus in ID-logic represents initiating and termi-

nating e�ects in a case-by-case way. This results in

a modular, elaboration tolerant representation of the

domain in the sense that one can easily add new cases

or drop or re�ne existing ones. This de�nition can be

further extended with de�nitions for de�ned uents,

e.g. the de�nition of the transitive closure of physical

connections in a computer network, in the context in

which these physical connections may change:

connected(c1; c2; s) physical connection(c1; c2; s)

connected(c1; c2; s) connected(c1; c3; s)^

connected(c3; c2; s)

Also, similarly as in (Ternovskaia 1998), rami�cation

rules can be added to this theory.

Inductive de�nitions as an approach to Causal-

ity.

In (Denecker, Theseider Dupr�e, & Van Belleghem

1998) we argued that inductive de�nitions are a suit-

able formalization of causality. Causality information

is an example of constructive information. E�ects

and forces propagate in a dynamic system through a

constructive process in the following sense:

� there are no deus ex machina e�ects. Each e�ect

has a cause; it is caused by a nonempty combina-

tion of actions and other e�ects.

� The causation order among e�ects is a well-

ordering. I.e. there is no pair of e�ects each of

which have caused the other; stronger, there is no

in�nite descending chain of e�ects each of which

has been caused by the previous one in the chain.

The construction process of an inductive de�nition

formally mimics this physical process of the propa-

gation of the causes and e�ects. Based on this idea,

(Denecker, Theseider Dupr�e, & Van Belleghem 1998)

proposes a general solution to model rami�cations.

One point of (Denecker, Theseider Dupr�e, & Van Bel-

leghem 1998) was that e�ects may easily depend on

both presence and absence of other e�ects. For exam-

ple, in the case that one latch of a suitcase is open, the

e�ect of opening the second latch produces a derived

e�ect of opening the suitcase, but only if the �rst

latch is not closed simultaneously. As a consequence,

if uents mutually can inuence each other, descrip-

tions of rami�cations may easily contain positive and

negative loops. As shown in (Denecker, Theseider

Dupr�e, & Van Belleghem 1998), the well-founded se-

mantics deals well with these loops.

Induction axioms; Domain Closure Axiom

(DCA).

As a conservative extension of classical logic, ID-logic

assumes uncertainty on the domain of discourse (due

to the non-Herbrand interpretations). The Domain

Closure Axiom (DCA) expresses that the domain of

discourse contains only named objects. In (McCarthy

1980), McCarthy showed how the DCA can be rep-

resented by a combination of circumscription on a

set of rules and a FOL assertion. The mapping to

ID-logic is straightforward. The set of rules is an in-

ductive de�nition of a new predicate U ; it consists of

one case per constant C and per functor f :

U ::

(

U (C) 

::

U (f(x)) U (x

1

); ::; U (x

n

)

)

This de�nes U as the set of all named objects. The

FOL axiom expresses that all objects in the domain

are named

10

:

8x:U (x)

The DCA is a generalized induction axiom. In the

case of the language of the natural numbers (0 and

S=1), the above formalization of the DCA is equiva-

lent with Peano's second order induction axiom. The

induction axiom for situations as needed in Reiter's

situation calculus can be expressed in a similar way.

The semantics of many logics, e.g. logic programming

and deductive databases, is based on Herbrand inter-

pretations. This introduces the implicit ontological

constraint that all terms in the domain of discourse

are named. This constraint is absent in classical logic

and in ID-logic but can be explicitly formalized by

the pair of the DCA and the Unique Names Axioms

(UNA) (Reiter 1980) or the Clark Equality Theory

(CET) (Clark 1978). It is easy to show that each

model of DCA+UNA is isomorphic with a Herbrand

interpretation.

Tables.

The simplest way of de�ning a concept is by ex-

haustive enumeration of its elements. A table, as

in the context of databases, can naturally be viewed

as a de�nition by exhaustive enumeration. Tables

are commonly used to de�ne concepts, not only in

databases but also in common sense knowledge rep-

resentation, e.g. to de�ne some scenario.

Relationships to other logics.

ID-logic shows tight relationships with a class of di�er-

ent logics in di�erent areas of AI, computer science and

mathematical logic. Earlier in this paper, strong rela-

tions to circumscription and Clark completion came to

light. Despite di�erences in the syntactic sugar, there

are strong relationships between description logics and

ID-logic. ID-logic �ts into the schema of description

logics, with a Tbox consisting of the de�nitions and an

Abox consisting of classical logic axioms. The corre-

spondence between description logics and a sub-logic of

ID-logic were formally investigated in (Van Belleghem,

Denecker, & De Schreye 1997).

10

Note here the distinction between de�ning knowledge

and assertional knowledge. If one would add the FOL as-

sertion as a case to the inductive de�nition, then U would

be de�ned to be the complete domain of discourse.



Also �xpoint logic can be embedded in ID-logic, mod-

ulo syntactic sugar. The di�erence in syntactic sugar

is that in ID-logic, the de�ned concepts are named by

global predicate symbols, whereas in �xpoint logic, the

de�ned concepts are represented by an operator form

11

.

Inationary �xpoint logic is an extension of �xpoint

logic for �xpoint forms with negation in it. However,

as mentioned in the introduction, this logic doesn't give

the intended semantics to inductive de�nitions with

negation. For example, the concept of even numbers

is represented in ID-logic by:

even :: f
even(x)  x = 0 _ 9y:x = S(y) ^ :even(y)

g

The corresponding inationary �xpoint form

�

x

	

(x = 0 _ 9y:x = S(y) ^ :	(y))

denotes the set of all natural numbers.

Logic Programming can be embedded in ID-logic in a

straightforward way. Some of its extensions can be em-

bedded as well. Abductive logic programming (Kakas,

Kowalski, & Toni 1993) (or open logic programming, as

it is called in (Denecker 1995)) can be embedded also

in ID-logic. An abductive logic framework is a triple

< A;P; T > of a set A of abducible predicates, a set

P of rules de�ning non-abducible predicates and a set

T of FOL axioms, called constraints. Its embedding in

ID-logic is trivial: it is the theory T [fD

p

g where D

P

is

a de�nition with Rules(D) = P and with Defined(D)

the set of non-abducible predicates. In this embedding,

the semantics of an abductive logic program is given by

general non-Herbrand well-founded models.

The formalism of deductive databases (Abiteboul,

Hull, & Vianu 1995) descends from logic programming.

A deductive database consists of a triple (EDB,IDB,IC)

where EDB (extensional database) consists of tables for

extensional predicates, IDB (intensional database) con-

sists of a logic program de�ning intensional predicates

in terms of intensional and extensional predicates, and

IC (integrity constraints) is a set of FOL axioms. The

embedding of a deductive database in ID-logic consists

of a set of de�nitions (by exhaustive enumeration) for

the extensional predicates, a simultaneous de�nition for

the intensional predicates, the set IC as FOL axioms

and �nally, the DCA+UNA.

ID-logic compared to NMR

As argued, de�nitional knowledge is an important com-

ponent of human expert knowledge. Such knowledge

11

E.g. the transitive closure of a predicate p is represented

by the form:

�

(x;y)

	

(p(x; y) _ (9z:	(x;z) ^	(z;y)))

It corresponds to the ID-logic de�nition of a binary predicate

tr de�ned by:

tr ::

�

tr(x; y) p(x; y) _ tr(x; z) ^ tr(z; y)

	

consists of de�nitions of terminology but is not re-

stricted to that: e.g. induction axioms, knowledge of

physical causation, etc.. ID-logic is speci�cally designed

for representing such knowledge.

With respect to other applications such as the rep-

resentation of defaults, the scope and applicability of

inductive de�nitions is more restricted than other non-

monotonic principles such as circumscription and de-

fault logic. The use of de�nitions for such forms of com-

mon sense knowledge requires a more rigorous method-

ology of a priori analysis and restructuring of the knowl-

edge on the problem domain.

As mentioned earlier, Reiter (Reiter 1996) and Amati

et al (Amati, Carlucci Aiello, & Pirri 1997) observe that

compilation of non-monotonic theories into �rst order

de�nitions (in Beth's style) can produce theories that

clarify the meaning of the original theories and are com-

putationally more attractive. Using the more general

notion of inductive de�nitions in ID-logic, this compi-

lation of non-monotonic theories to de�nitions becomes

easier and can be performed for larger classes of NMR

theories. Moreover, due to the non-monotonicity of the

logic, the compiled representation will often maintain

most of the elaboration tolerance of the original NMR

representation.

With respect to computational e�ciency, reasoning

on ID-logic is undecidable in general, like in the case of

other predicate non-monotonic logics. However, there is

plenty of evidence that in many cases, de�nitions can be

reasoned on more e�ciently that other non-monotonic

formalisms or even classical logic (e.g. constructing a

well-founded model of a propositional de�nition is poly-

nomial, while constructing a model of a propositional

theory is NP-complete). A common aspect of virtually

all logics related to ID-logic, is the strong focus on e�-

cient implementation. Techniques from these areas can

be used to implement e�cient solvers.
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