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Extending Coarse-Grained MeasuresbyAnna DE SIMONE and Pavel PTÁKPresented by Tomasz �UCZAKSummary. In [4℄ it is proved that a measure on a �nite oarse-grained spae extends,as a signed measure, over the entire power algebra. In [7℄ this result is reproved andfurther improved. Both the artiles [4℄ and [7℄ use the proof tehniques of linear spaes(i.e. they use multipliation by real salars). In this note we show that all the results itedabove an be relatively easily obtained by the Horn�Tarski extension tehnique in a purelyombinatorial manner. We also haraterize the pure measures and settle the dimensionof the normalized-measure spae. We then omment on a onsequene of the results forirulant matries. Finally, we take up the ase of irle oarse-grained spae and alsoestablish a measure-extension result.1. Introdution. The problem pursued in this paper is motivated bythe measurement theory and the theory of quantum logis (see [4℄, [6℄ and[9℄ for more motivation details). The oarse-grained strutures onstitute animportant example of so-alled �onrete quantum logis�. Let us reall thede�nition of the oarse-grained spae and the relevant notions we shall use.Let n ≥ 2 and l ≥ 2 be natural numbers. Let Ω = {0, 1, . . . , nl − 1}.Denote by ∆n,l the smallest system of subsets of Ω that ontains all sets ofthe type
Ih = {h, h + 1, . . . , h + l − 1} (h ∈ Ω)(the sum is understood modulo nl) and that is losed under the formationof omplements in Ω and disjoint unions. The olletion ∆n,l is alled theoarse-grained additive lass generated by the system Ih, and the sets Ih arealled the generating sets of ∆n,l.2000 Mathematis Subjet Classi�ation: 06C15, 28E99, 81P10.Key words and phrases: quantum logis, oarse-grained measures, measure extensions,irulant matries.The authors aknowledge the support of Progetto di Riera di Interesse Nazionale�Analisi Reale e Teoria della Misura� (Italy) and the support of the grant GA�R201/03/0455 of the Czeh Grant Ageny. [1℄



2 A. De Simone and P. Pták
Let m : ∆n,l → R be a mapping suh that
• m(∅) = 0,
• m(A∪B) = m(A) + m(B) for arbitrary disjoint sets A and B in ∆n,l.The mapping m is said to be a oarse-grained signed measure on ∆n,l. If aoarse-grained signed measure attains only non-negative values, it is alled aoarse-grained measure. We shall omit the phrase oarse-grained and simplyspeak of signed measures (resp. measures) on ∆n,l.We want to present another proof tehnique for the extension results formeasures (resp. signed measures) on ∆n,l (see [4℄ and [7℄) and add a few newresults. Our approah uses the lassial Horn�Tarski extension theorem. Thiswe believe simpli�es the arguments in plaes and allows one to have a betterinsight into the question onsidered.2. Measures on a �nite oarse-grained additive lass (exten-sions). We use the notations introdued above.Theorem 2.1. Let n, l ∈ N, n ≥ 2, l ≥ 2 and let ∆n,l be the oarse-grained additive system of subsets of Ω = {0, 1, . . . , nl − 1}.(i) Eah signed measure on ∆n,l an be extended as a signed measureover the Boolean algebra expΩ of all subsets of Ω.(ii) If n ≥ 3 or if n = l = 2, then eah measure on ∆n,l an be extendedas a measure over expΩ. Moreover , if the measure on ∆n,l we startwith is two-valued , the extension over expΩ an also be required tobe two-valued.(iii) Let M(∆n,l) denote the set of all normalized measures on ∆n,l(a measure m is alled normalized if m(Ω) = 1). Then t is anextreme point of M(∆n,l) if and only if it is a two-valued measure.Moreover , dimM(∆n,l) = l(n − 1) + 1.(iv) Suppose that i1, . . . , il−1 ∈ Ω lie in di�erent lasses modulo l. Sup-pose that real numbers r1, . . . , rl−1 are given. Then any measure mon ∆n,l an be uniquely extended over expΩ as a signed measure tsuh that t(ij) = rj (j ≤ l − 1).The proof of Theorem 2.1(i) has been given in [4℄ where also (ii) appeared,though in a rather erroneous form, as observed in [7℄. A omplete proof ofTheorem 2.1(i), (ii) has been published in [7℄. Our proof essentially di�ersfrom the previous ones and is based on the following well known result dueto Horn and Tarski (see [1℄ and [5℄).Proposition 2.2. Let C be a olletion of subsets of a set Ω.(i) A set funtion m : C → R an be extended as a signed measureover the power algebra expΩ if the following impliation holds true
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(by χY we denote the harateristi funtion of the set Y ): If Ai

(i = 1, . . . , p) and Bj (j = 1, . . . , q) are sets of C, then
p∑

i=1

χAi
=

q∑

j=1

χBj
implies p∑

i=1

m(Ai) =

q∑

j=1

m(Bj).(ii) A non-negative set funtion m : C → R an be extended as a measureover the power algebra expΩ if the following impliation holds true:If Ai (i = 1, . . . , p) and Bj (j = 1, . . . , q) are sets of C, then
p∑

i=1

χAi
≤

q∑

j=1

χBj
implies p∑

i=1

m(Ai) ≤

q∑

j=1

m(Bj).Aording to Proposition 2.2, to prove statement (i) in Theorem 2.1 itis su�ient to verify the validity of the impliation in Proposition 2.2(i).This will be done in our next proposition. Prior to that, let us note thatevery measure on ∆n,l is uniquely determined by its values on the generatingsets Ih. Indeed, suppose that two measures m and m′ oinide on all gen-erators Ih. Sine the family F of sets A in ∆n,l for whih m(A) = m′(A)is losed under the formation of disjoint unions and omplements and sine
F ontains all generators Ih, we see that F neessarily oinides with theentire ∆n,l.Proposition 2.3. Let Ih be the generating sets of the additive lass ∆n,lon Ω = {0, 1, . . . , nl − 1}. Let m : ∆n,l → R be a signed measure. If forsome p and q and for some generating sets Ai and Bj we have ∑p

i=1 χAi
=∑q

j=1 χBj
, then ∑p

i=1 m(Ai) =
∑q

j=1 m(Bj).Proof. Assume that A1, . . . , Ap, B1, . . . , Bq are generating sets of ∆n,l.It follows that Ai = Ir and Bj = Is for i ≤ p, j ≤ q and some r and s in
{0, 1, . . . , nl − 1}. Assume that ∑p

i=1 χAi
=

∑q
j=1 χBj

. Sine all Ai and Bjare of the same ardinality (equal to l), we see that p = q. We an assume
Ai 6= Bj for any i, j (if the same set appears in both families {Ai}i≤p and
{Bj}j≤q, we an ross it out). Consider the number of times eah element of
Ω appears in the two families. That is, given ω ∈ Ω, set

N (ω) =

p∑

i=1

χAi
(ω) =

p∑

j=1

χBj
(ω).First observe that the funtion N : Ω → N is onstant. If not, take an ω ∈ Ωsuh that N (ω) < N (ω + 1). Suh an element ertainly exists as we easilysee one we take into aount that the sum in Ω is understood modulo nl.Supposing the last inequality holds true, there is an i0 ∈ {1, . . . , p} suhthat Ai0 = Iω+1 = {ω + 1, . . . , ω + l}. Indeed, if not then any set ontaining

ω + 1 also ontains ω. Then N (ω) ≥ N (ω + 1) ontrary to assumption. The
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same argument applies to the family {Bj}. It means that Ai0 = Bj0 for someindies i0, j0. This is impossible sine we have rossed out all equal elements.Thus, N (ω) is a onstant funtion; denote its value by c.To omplete the proof, take the set A1. For some h ∈ Ω we have A1 =
Ih = {h, h + 1, . . . , h + l − 1}. There exists j ∈ {2, 3, . . . , p} suh that Aj =
Ih+l. If not, any set of the family {Ai}i≤p ontaining h + l also ontains
h+ l−1, whih is impossible. Going on this way, we see that the family {Ai}is a union of partitions of Ω (the number of these partitions is then c). Thesame is true for the family {Bj}. The proof is then omplete sine m wassupposed to be additive on ∆n,l and therefore ∑p

i=1 m(Ai) =
∑p

j=1 m(Bj) =
c · m(Ω).Note that in the previous proof we did not need to know what a generalelement of ∆n,l looks like. In the proof of Theorem 2.1(ii) to follow we doneed it. For that, reall the following result by Ovhinnikov [7℄ (this seemsto be the only point where our proedure overlaps with his).Proposition 2.4. Let ∆n,l be the oarse-grained additive lass on Ω =
{0, 1, . . . , nl − 1} generated by the sets Ih (h ∈ Ω). If n ≥ 3, then an l-element set I = {a0, a1, . . . , al−1} ⊂ Ω belongs to ∆n,l if and only if for eah
t ∈ {0, 1, . . . , l−1} there is exatly one element in I ongruent to t modulo l.The previous proposition gives a omplete desription of the atoms in
∆n,l, and therefore in the ase of n ≥ 3 it gives a omplete desriptionof all elements of ∆n,l: The atoms are exatly the l-element subsets of Ωontaining preisely one element of eah residue lass modulo l. Denoting by
A the family of all atoms in ∆n,l, this implies that (upon denoting by Rithe elements ongruent to i modulo l)

A = {{a0, a1, . . . , al−1} : ai ∈ Ri, i = 0, 1, . . . , l − 1}.(Note that for n = 2 the situation is rather di�erent. In this ase ∆2,l =
{∅, I0, I1, . . . , Inl−1, Ω}.)
Remark. Before taking up the proof of Theorem 2.1(ii), observe thatthe question of extending measures to measures is subtler than in the ase ofsigned measures. The ompliation is that there are non-negative evaluationsof the sets Ih (h = 0, 1, . . . , nl − 1) whih are additive on the sets Ih butwhih do not allow for non-negative extensions over all atoms of ∆n,l (theirumstane overlooked in the erroneous Theorem 3 of [4℄). This peuliaritymay even our for a two-valued evaluation. If e.g. we take n = 3 and l = 3and onsider the funtion t : Ω → R de�ned by setting t(0) = 1, t(1) = −1,

t(2) = 1 and t(i) = 0 for all i, 3 ≤ i ≤ 8, we get a signed measure on
expΩ suh that t(Ih) ∈ {0, 1} (h ∈ {0, 1, . . . , 8}). We easily see that t as anevaluation of Ih annot be additively and non-negatively extended over all
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atoms of ∆3,3. Indeed, the value of the extension would have to be −1 onthe set {1, 5, 6}.We are now able to prove Proposition 2.2(ii) and thus provide the essen-tial part of the proof of Theorem 2.1(ii) (the ase n = l = 2 is evident).Proposition 2.5. Let n ≥ 3. Let Ih (h ∈ Ω) be the generating sets of theoarse-grained additive lass ∆n,l on Ω = {0, 1, . . . , nl−1}. Let m : ∆n,l → Rbe a measure. If ∑p

i=1 χAi
≤

∑q
j=1 χBj

, where Ai and Bj are some generatingsets Ih (h = 1, . . . , nl − 1), then ∑p
i=1 m(Ai) ≤

∑q
j=1 m(Bj).Proof. Sine ard Ai = ard Bj for any i, j, we see that p ≤ q. The aseof p = q is equivalent to ∑p

i=1 χAi
=

∑q
j=1 χBj

and this has been argued inProposition 2.2(i).Assume p < q. Sine eah of the sets Ai, Bj belongs to A and thereforeontains exatly one element of eah residue lass modulo l, it is possible toadd to {Ai}i≤p some atoms Ap+1, . . . , Aq of ∆n,l suh that
q∑

i=1

χAi
=

q∑

j=1

χBj
.Indeed, onsider the olletion E of all �exeeding� elements of the right-hand side of the inequality ∑p

i=1 χAi
<

∑q
j=1 χBj

, i.e. set E = {ω ∈ Ω :∑p
i=1 χAi

(ω) <
∑q

j=1 χBj
(ω)}. The equalities

∑

ω∈Ri

p∑

i=1

χAi
= p,

∑

ω∈Ri

q∑

j=1

χBj
= qtogether with the inequality

p∑

i=1

χAi
<

q∑

j=1

χBjensure that it is possible to hoose l elements in the set E, one for eahresidue lass Ri,
ω0 ∈ R0, ω1 ∈ R1, . . . , ωl−1 ∈ Rl−1,in suh a way that, denoting by Ap+1 the l-element set {ω0, ω1, . . . , ωl−1},we obtain

p+1∑

i=1

χAi
≤

q∑

j=1

χBj
= q.If p + 1 = q we are done. Otherwise, let us again set

E =
{

ω ∈ Ω :

p+1∑

i=1

χAi
(ω) <

q∑

j=1

χBj
(ω)

}
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and repeat the proedure to obtain Ap+2, et. After q − p steps, we haveprodued the sets Ap+1, . . . Aq so that the desired equality

q∑

i=1

χAi
=

q∑

j=1

χBjis valid. The non-negativity of m then yields
p∑

i=1

m(Ai) ≤

q∑

i=1

m(Ai).An appliation of Proposition 2.2(i) gives the existene of a signed measure
m̃, extending m to expΩ. This obviously implies the equality ∑q

i=1 m(Ai) =∑q
j=1 m(Bj) (in fat, for eah set C in ∆n,l we have m(C) =

∑
ω∈C m̃({ω}))and ompletes the proof.

Remark. Note that the example we provided in the Remark above doesnot ful�l the ondition in the statement of the last proposition. For instane,take p = 1, q = 2, A1 = I2, B1 = I1 and B2 = I4.For the proof of the rest of Theorem 2.1(ii), we need the following propo-sition.Proposition 2.6. Assume n ≥ 3 or n = l = 2. Let s be a normal-ized measure on ∆n,l (i.e. a measure with s(Ω) = 1). Then the followingstatements are equivalent :(i) s is two-valued ,(ii) s is onentrated at a point of Ω (it is a Dira measure),(iii) s is an extreme point of the (ompat onvex ) set of all normalizedmeasures on ∆n,l.Proof. (i)⇒(ii). For n= l=2 the situation is obvious. Assume n≥3. Let
s : ∆n,l → {0, 1}. Sine s(Ik) ∈ {0, 1} for any k ∈ Ω and ∑

k∈Ω s(Ik) = l, itfollows that there are ω1, . . . , ωl in Ω suh that s(Iωj
) = 1 for any j = 1, . . . , l.We therefore see that for any ω among the remaining (n − 1)l elements of

Ω the value of s on Iω is zero. We an then write Ω = Ω1 ∪ Ω2, where
card(Ω1) = l and s(Ik) = 1 for k ∈ Ω1, while card(Ω2) = (n − 1)l and
s(Ik) = 0 for k ∈ Ω2. Observe now that if we manage to show that Ω1onsists of onseutive elements, we are done. Indeed, if this is the ase,typially Ω1 = {h + 1, h + 2, . . . , h + l} = Ih+1 for a ertain h in Ω, then themeasure s is onentrated at the element h + l (the atoms Ik with k ∈ Ω1are exatly those whih ontain h + l). Assume that Ω1 does not onsistof onseutive elements. Then we make use of the fat that n > 2 and we�nd h, k ∈ Ω1 with Ih ∩ Ik = ∅. However, this is impossible sine then
s(Ih ∪ Ik) = 2. This proves (i)⇒(ii).(ii)⇒(iii). This impliation is obvious.
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(iii)⇒(i). The proof follows from a well known result in onvex analysis:the restrition map R

exp Ω → R
∆n,l an be viewed as a ontinuous linearoperator and when spei�ed to normalized measure spaes, every extremepoint in the range allows for a preimage extreme point in the domain. Let uspresent a simple diret proof. Let s be a normalized measure on ∆n,l whihis not two-valued. Proposition 2.3 ensures the existene of an extension, s̃,of s over the power algebra expΩ. The state s̃ an be written as a onvexombination of Dira measures δx0
, δx1

, . . . , δxnl−1
on expΩ,

s̃ =
nl−1∑

i=0

αiδxi
with αi ≥ 0 and nl−1∑

i=0

αi = 1.Without any loss of generality we an assume α0 ∈ (0, 1). If we denote by tthe measure on expΩ de�ned by
t =

1

1 − α0

nl−1∑

i=1

αiδxithen s̃ beomes a onvex ombination of two measures δx0
and t,

s̃ = α0δx0
+ (1 − α0)t.Observe that the restritions s0 and t0 (of δx0

and t, respetively) to ∆n,l donot agree. In fat, sine s is not onentrated at x0, the same is true for t,whih is then di�erent from s0.From the previous result it follows that eah two-valued measure on ∆n,lan be extended as a two-valued measure over the entire expΩ. Using this,we want to show that dimM(∆n,l) = l(n−1)+1. Let si be the Dira measureonentrated at {i}. We want to show that the measures s0, s1, . . . , s(n−1)lform an a�ne basis of M(∆n,l). Let us �rst hek that they are linearlyindependent. Assume that ∑(n−1)l
i=0 λisi = 0. Then

(n−1)l∑

i=0

λisi(I(n−1)l+1) = λ0s0(I(n−1)l+1) = λ0and therefore λ0 = 0. Further,
(n−1)l∑

i=0

λisi(I(n−1)l+2) = λ0s0(I(n−1)l+2) + λ1s1(I(n−1)l+2)

= λ1s1(I(n−1)l+2) = λ1and therefore λ1 = 0, et. We indutively obtain λ0 =λ1 = · · ·=λ(n−1)l =0.Seond, we are going to show that any measure s an be expressed asa linear ombination of si (0 ≤ i ≤ (n − 1)l). For that it is su�ient tohek that given arbitrary values (v0, v1, . . . , v(n−1)l), there exist oe�ients
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(λ0, λ1, . . . , λ(n−1)l) suh that the measure s =

∑(n−1)l
i=0 λisi attains the value

vi on the generating set Ii (0 ≤ i ≤ (n − 1)l). Sine the values of s on theremaining sets Ii, i > (n− 1)l, are already determined by the values of s on
Ii (0 ≤ i ≤ (n − 1)l), this will omplete the proof.Fix (v0, v1, . . . , v(n−1)l). Knowing that si(I(n−1)l) = 0 for any i < (n−1)land wanting s(I(n−1)l) = v(n−1)l, we must have

(n−1)l∑

i=0

λisi(I(n−1)l) = λ(n−1)ls(n−1)l(I(n−1)l) = λ(n−1)l.This yields λ(n−1)l = v(n−1)l. For s(I(n−1)l−1) = v(n−1)l−1 we must have
(n−1)l∑

i=0

λisi(I(n−1)l−1) = λ(n−1)l−1s(n−1)l−1(I(n−1)l−1)

+λ(n−1)ls(n−1)l(I(n−1)l−1)

= λ(n−1)l−1 + v(n−1)l−1.This yields λ(n−1)l−1 = v(n−1)l−1 − v(n−1)l. Going on this way, we will de-termine all the oe�ients λi (i ≤ (n − 1)l) and omplete the proof ofTheorem 2.1(iii). Theorem 2.1(iv) easily follows from Theorem 2.1(iii).Let us show by examples that the extension results given by Theorem2.1 are in a sense best possible. Firstly, in Theorem 2.1 we have to assume
n > 2 as the following simple example shows.Example 2.7. Take n = 2 and l = 3. Then ∆2,3 = {∅, I0, I1, . . . , I5, Ω}.It is immediate to hek that the (two-valued) measure on ∆2,3 suh that

s(I0) = s(I2) = s(I4) = 1, s(I1) = s(I3) = s(I5) = 0annot be extended over expΩ as a measure.Seondly, it is worth observing that Theorem 2.1 annot be generalizedto arbitrary additive lasses (see also [8℄). In fat, an extension may not existeven if the original measure is two-valued.Example 2.8. Let Ω = {0, 1, 2, 3, 4, 5} and onsider the additive lass
∆ generated by the sets A = {1, 2, 3}, B = {2, 3, 4}, C = {3, 4, 5}, and
D = {1, 3, 5}. If m is a signed measure on expΩ, then

m(C) + m(A) + m(Bc) + m(Dc) = 2m(Ω).Analogously,
m(Cc) + m(Ac) + m(B) + m(D) = 2m(Ω).The (two-valued) measure t on ∆ de�ned by setting

t(A) = 0, t(B) = 1, t(C) = 0, t(D) = 1
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annot be extended as a signed measure on expΩ. Indeed, if we omputethe sums above, we obtain 0 for the �rst sum and 4 for the seond.3. A link of oarse-grained measures with irulant matries.Let n, l ∈ N and n ≥ 2, l ≥ 2. Denote by Mnl the set of all nl × nlmatries. Let M ∈ Mnl. We say that M is an elementary irulant matrixif M is a irulant matrix (see [2℄) with the �rst row (a1,1, a1,2, . . . , a1,nl)suh that a1,j = 1 for all j ≤ l, a1,k = 0 otherwise. It is easy to see thatif we write out the extension problem as a olletion of equations for thevalues of the potential extension, we obtain a system of linear equationswith an elementary irulant matrix. Our result an then be expressed inthe following form:Theorem 3.1. Let M ∈ Mnl and M be an elementary irulant matrix.Consider the equation M~x = ~b. Let ~b = (b1, . . . , bnl).(i) The system M~x = ~b has a solution if and only if there is a c ∈ Rsuh that for eah h ∈ {1, . . . , l} we have ∑n

i=1 bh+il = c (the sum isunderstood modulo nl).(ii) Suppose that bi ≥ 0 for eah i, 1 ≤ i ≤ nl. Then the system M~x = ~bhas a non-negative solution if and only if the following impliationholds true (with ~ri denoting the i-th row of M):If ∑nl
i=1 ci~ri ≥

∑nl
i=1 di~ri for some non-negative integers ci, di(1 ≤ i ≤ nl), then ∑nl

i=1 cibi ≥
∑nl

i=1 dibi.4. Measures on a irle oarse-grained additive lass (exten-sions). In this setion we shall onsider a ontinuous analogy of �nite oarse-graining. This has already been initiated in [4℄, though the measure extensionof �nitely additive measures has not been pursued: the authors only analyzeda measure extension problem of analyti nature based on σ-additivity. Wewant to show that there is an extension theorem analogous to Theorem 2.1(i)valid in this �ontinuous� ase, and that this result an also be derived fromthe Horn�Tarski theorem.Let C be the unit irle in the plane parametrized by [0, 2π). Fix aninteger n ≥ 2 and denote by ∆n the smallest system of subsets of C thatontains all the (generating) sets of the type [α, α + 2π/n), α ∈ [0, 2π) (thesum is understood modulo 2π) and that is losed under the formation ofomplements in C and disjoint unions. Call ∆n the oarse-grained additivesystem on C. With the intention to obtain an extension result for �nitelyadditive measures de�ned on ∆n, we shall verify the Horn�Tarski ondition(Proposition 2.2(i)) for signed measures (we have not been able to verify theHorn�Tarski ondition for measures, so this rather interesting question is leftopen).
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Proposition 4.1. Let A1, . . . , Ap and B1, . . . , Bq be generating sets ofthe additive lass ∆n and let m : ∆n → R be a signed measure. If for some

p and q we have ∑p
i=1 χAi

=
∑q

j=1 χBj
, then ∑p

i=1 m(Ai) =
∑q

j=1 m(Bj).Proof. By assumption, for some sets of the type Ai = [αi, αi + 2π/n)(1 ≤ i ≤ p) and Bj = [βj, βj + 2π/n) (1 ≤ j ≤ q) we have the equality
p∑

i=1

χAi
=

q∑

j=1

χBj
.

We an assume Ai 6= Bj for eah i, j. This gives
{α1, . . . , αp} ∩ {β1, . . . , βq} = ∅.Consider the number of times an element of C appears in the two families

{Ai}i≤p and {Bj}j≤q. That is, for eah x ∈ C set
N (x) =

p∑

i=1

χAi
(x) =

q∑

j=1

χBj
(x).

We �rst want to show that N : C → N is onstant. Suppose it is not. Thenthe set {x ∈ C : N (x) > limy→x− N (y)} is not empty. The points in this setare neessarily the left end points of Ai and Bj . Then the inlusion
{x ∈ C : N (x) > lim

y→x−
N (y)} ⊆ {α1, . . . , αp} ∩ {β1, . . . , βq} = ∅gives a ontradition.We have shown that the funtion N is onstant; denote its value by c.This means that {Ai}

p
i=1 and {Bj}

p
j=1 are c-fold overings of C (this an beeasily shown by proving that if [α, α+2π/n) = Ai, then [α+2π/n, α+4π/n)must be one of the Aj 's (j 6= i)). We infer that

p∑

i=1

m(Ai) =

q∑

j=1

m(Bj) = c · m(C).

We have proved the following theorem:Theorem 4.2. Let C be the unit irle in the plane and let ∆n be theoarse-grained additive system of subsets of C generated by all half-open in-tervals of the type [α, α + 2π/n), α ∈ [0, 2π). Let m : ∆n → R be a (�nitelyadditive) measure on ∆n. Then m an be extended over the power algebra
expC as a signed measure.Aknowledgements. The authors would like to thank the referee forvaluable suggestions on the presentation of the results of the paper.
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