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Abstract

In this paper we extend the work of Lisonek and Singh on construction X for quantum error-
correcting codes to finite fields of order p2 where p is prime. The results obtained are applied to the
dual of Hermitian cyclic codes to generate new quantum error-correcting codes.
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1 Introduction

Quantum error correcting codes have been introduced as an alternative to classical codes for use in quan-
tum communication channels. Since the landmark papers of Shor [6] and Steane [7], this field of research
has grown rapidly. Recently, Lisonek and Singh [5] gave a variant of Construction X that produces
binary stabilizer quantum codes from arbitrary linear codes. In their construction, the requirement on
the duality of the linear codes was relaxed. In this paper, we extend their work on construction X to
obtain quantum error-correcting codes over finite fields of order p2 where p is a prime number. We apply
our results to the dual of Hermitian repeated root cyclic codes to generate new quantum error-correcting
codes.

The remainder of the paper is organized as follows. In Section 2, we present our main result on
the extension of the quantum construction X. Section 3 characterizes the generator polynomial of the
Hermitian dual of a repeated root cyclic code. We also give the structure of cyclic codes of length 3ps

over Fp2 as well as the structure of the dual codes. Our interest in this class of codes comes from the
importance of relaxing the condition (n, p) = 1, which allows us to consider codes other than the simple
root codes.

2 Extending Construction X for Fp
Let Fp denote the finite field with p elements and F∗p = Fp\{0}. For x ∈ Fp2 we denote the conjugate of
x by x = xp. Let 〈x, y〉 =

∑n
i=1 xiyi be the Hermitian inner product. Then the norm of x is defined as

||x|| = 〈x, x〉 =
∑n

i=1 x
p+1, and the trace of x as Tr(x) = x+ x. Both the trace and norm are mappings

from Fp2 to Fp.
Usually a dual contained condition is required to construct CSS quantum code as given by the

following result.

Proposition 1. ([4]) If there exists an Fp2-linear [n, k, d]p2 code B such that B⊥h ⊂ B, then there exists
an [[n, 2k − n, d]]p quantum code.



In the remainder of this section, we give some important lemmas which will be useful in the proof of
our main result.

Lemma 2. Let S be a subspace of Fn
p2 such that there exist x, y with 〈x, y〉 6= 0. Then for all k ∈ Fp,

there exists z ∈ S with ||z|| = k.

Lemma 3. Let D be a subspace of Fn
p2 and assume that M is a basis for D ∩D⊥h . Then there exists

an orthonormal set B such that M ∪B is a basis for D.

Theorem 4. For an [n, k]p2 linear code C, let e = n− k− dim(C ∩C⊥h). Then there exists a quantum
code with parameters [[n+ e, 2k − n, d]]p with d ≥ min(wt(C),wt(C + C⊥h) + 1).

Proof. We start with the observation that the equation x2 + 1 = 0 always has a solution in Fp2 . This
can be proven using the fact that F∗p2 = Fp2 \{0} is a cyclic group. Let β be a generator of F∗p2 . Then

βk = −1 for some k, and since (−1)2 = 1, β2k = 1 and (p2 − 1)|2k, so that k is even. Thus, β
k
2 is the

required solution.
As defined previously

e = dim(C⊥h)− dim(C∩C⊥h) = dim(C + C⊥h)− dim(C).

Let s = dim(C ∩ C⊥h), and G be the matrix

G =

 Ms×n 0s×e
A(n−e−2s)×n 0(n−e−2s)×e

Be×n βk/2Ie×e

 , (1)

where the size of the matrix is indicated by the subscripts, and 0 and I denote the zero matrix and
identity matrix, respectively.

For a matrix P , let r(P ) denote the set of rows of P . The matrix G is constructed such that r(M) is a
basis for C ∩C⊥h , r(M)∪r(A) is a basis for C, r(M)∪r(B) is a basis for C, and r(B) is an orthonormal
set. The existence of such a matrix B follows from Lemma 3. Note that r(M) ∪ r(A) ∪ r(B) is a basis
for C + C⊥h .

Let E be the linear code for which G is a generator matrix. Further, let S denote the union of the
first s rows of G and the last e rows of G, i.e., S is the set of rows of the matrix

S =

(
Ms×n 0s×e
Be×n βk/2Ie×e

)
. (2)

We observe that each row of S is orthogonal to each row of G because any row from the first s rows
of S represents a vector in C ∩ C⊥h , and hence is orthogonal with all codewords in C + C⊥h , the code
represented by G.

Consider a row from the last e rows in S. This row is orthogonal to the first n − e − s rows of G
because they represent the code C while the matrix B represents codewords from C⊥h . These rows of the
matrix are orthogonal to each other because the rows of B are orthogonal and βk/2I will contribute 0.
Any row z is self-orthogonal since from the construction ||z|| = 1 and the identity matrix will contribute
−1, giving an inner product of 0. This completes the proof of the observation. Thus, each vector from
S belongs to E⊥h , and the vectors in S are linearly independent because

dim(E⊥h) = n+ e− (n− s) = e+ s = |S|.

Hence S is a basis for E⊥h . Since S is a subset of G by construction, it follows that E⊥h ⊆ E.
Let x be a non-zero vector in E and due to the vertical block structure of G, we can write x = (x1|x2)

where x1 ∈ Fn
p2 and x2 ∈ Fe

p2 . Thus x is a linear combination of rows of G. If none of the last e rows

of G are contained in this linear combination with a non-zero coefficient, then x1 ∈ C\{0}, and so
wt(x) = wt(x1) ≥ wt(C). If some of the last e rows of G are in this linear combination with a non-
zero coefficient, then x1 ∈ C + C⊥h and wt(x) = wt(x1) + wt(x2) ≥ wt(C + C⊥h) + 1. Thus E is an
[n + e, k + e, d]p2 code with d ≥ min(wt(C),wt(C + C⊥h) + 1) and E⊥h ⊆ E. The code E is such that
E⊥ ⊂ E, and thus the result follows from Proposition 1.

Many constructions of quantum codes use self-orthogonal codes [1, 2], which corresponds to the case
when e = 0. The results in the next section are required to construct the quantum codes in subsequent
sections. Note that many of the results in the next section can easily be generalized to constacyclic
codes.



3 The Hermitian Dual of Repeated Roots Cyclic Codes

Let p be a prime number and C a cyclic code of length n over the finite field Fp2 . Then C is given by the

principal ideal g(x) in
Fp2 [x]

〈xn − 1〉
, and so g(x) is called the generator polynomial for C. When the length

n divides p, C is called a repeated root cyclic code.
In this section, we obtain the generator polynomial of the Hermitian dual of a repeated root cyclic

code. We also give the structure of the cyclic codes of length 3ps over Fp2 as well as the structure of
the dual code. Our interest in this class of codes comes from the importance of relaxing the condition
(n, p) = 1, which allows us to consider codes other than simple root codes.

Let f(x) = a0 + a1x + . . . + arx
r be a polynomial in Fq2 [x], and f(x) = a0 + a1x + . . . + arx

r.
The polynomial inverse of f is denoted by f?(x) = xrf(x−1) = ar + ar−1x + . . . + a0x

r, so then
f⊥(x) = ar + ar−1x+ . . .+ a0x

r.
The following properties can easily be verified.

Lemma 5. Let f(x) and g(x) be polynomials over Fpm . Then

1. conjugation is additive: f(x) + g(x) = f(x) + g(x);

2. conjugation is multiplicative: f(x)g(x) = f(x) g(x);

3. polynomial inversion is additive if the polynomials have the same degree:
(f(x) + g(x))

?
= f(x)

?
+ g(x)

?
;

4. polynomial inversion is multiplicative: (f(x)g(x))
?

= f(x)
?
g(x)

?
;

5. inversion and conjugation commute with each other: (f(x)?) = (f(x))?; and

6. both operations are self-inverses: (f(x)?)? = f(x) and f(x) = f(x).

Lemma 6. Let a(x) = a0 + a1x + . . . + an−1x
n−1 and b(x) = b0 + b1x + . . . + bn−1x

n−1 be polyno-

mials in
Fp2 [x]

〈xn − 1〉
. Then a(x)b(x) = 0 in

Fp2 [x]

〈xn − 1〉
if and only if (a0, a1, . . . , an−1) is orthogonal to

(bn−1, bn−2, . . . , b0) and all its cyclic shifts. That is 〈a, b?〉 = 0 ⇐⇒ a(x)b(x)⊥ = 0.

We now use Lemma 6 to derive an expression for the Hermitian dual of a cyclic code. Let S ⊆ R and
let the annihilator be ann(S) = {g ∈ R|fg = 0, ∀f ∈ S}. Then ann(S) is also an ideal of the ring and
hence is generated by a polynomial.

Lemma 7. If g(x) generates the code C, then C⊥h = ann(g(x)
?
).

Lemma 8. Assume that C = 〈g(x)〉 is a cyclic code of length n over Fp2 with generator polynomial g(x).

Define h(x) = xn−1
g(x) . Then we have that C⊥h = 〈h⊥(x)〉.

Proof. From Lemma 7 it is known that C⊥h = ann(g(x)⊥). Thus, we must show that ann(g⊥(x)) =
〈h⊥(x)〉. One way containment is easy since 〈h⊥(x)〉 ⊆ ann(g⊥(x)), which is true because h⊥(x)g⊥(x) =
(h(x)g(x))⊥ = (xn − 1)⊥ = 0 by Lemma 5. For containment the other way, we observe that since

ann(g⊥(x)) is an ideal of the polynomial ring
Fp2 [x]

〈xn − 1〉
, it is generated by a polynomial, say b⊥(x). Then

b⊥(x)g⊥(x) = xn− 1 = λ(xn− 1)⊥ (because b(x) is the smallest polynomial, so it is an equality). Hence
b(x)g(x) = xn − 1, so it must be that b(x) = h(x) since both are unitary polynomials. This completes
the proof.

Theorem 9. Let p > 3 be a prime. Then

1. there exists ω ∈ Fp2 such that ω3 = 1 and the factorization of x3p
s − 1 into irreducible factors over

Fp2 [x] is

x3p
s

− 1 = (x− 1)p
s

(x− ω)p
s

(x− ω2)p
s

;

2. the cyclic codes of length 3ps are always of the form

〈(x− 1)i(x− ω)j(x− ω2)k〉,

where 0 ≤ i, j, k ≤ ps, and the code has p2(3p
s−i−j−k) codewords; and



3. the Hermitian dual of the codes have the form

C⊥h =

{
〈(x− 1)p

s−i(x− ω)p
s−j(x− ω2)p

s−k〉 if p ≡ 1 mod 3,

〈(x− 1)p
s−i(x− ω2)p

s−j(x− ω)p
s−k〉 if p ≡ 2 mod 3.

(3)

Proof.

1. Since p is a prime number, p 6= 0 mod 3, and p2 − 1 = (p+ 1)(p− 1), so either p+ 1 = 0 mod 3
or p− 1 = 0 mod 3. Therefore an element of order 3 exists in Fp2 . Let this element be ω, so then
(x− 1)(x− ω)(x− ω2) = x3 − 1. In a field of characteristic p, it is known that xn − 1 = (xm − 1)p

if n = mp. Therefore we have that x3p
s − 1 = (x3 − 1)p

s

= ((x− 1)(x− ω)(x− ω2))p
s

.

2. From the previous part we know that the irreducible factors are (x− 1), (x−ω) and (x−ω2), each
of multiplicity ps. As the generator polynomial divides x3p

s − 1, the statement follows.

3. We know from Lemma 8 that
C⊥h = 〈h⊥(x)〉,

and hence

C⊥h = 〈 (x− 1)p
s

(x− ω)p
s

(x− ω2)p
s

(x− 1)i(x− ω)j(x− ω2)k
〉?

= 〈(x− 1)ps−i(x− ω)ps−j(x− ω2)ps−k〉?

= 〈[(x− 1)ps−i]?[(x− ω)ps−j ]?[(x− ω2)ps−k]?〉

= 〈[−(x− 1)ps−i][−ω(x− ω−1)ps−j ]?[−ω2(x− ω−2)ps−k]?〉
Further (x− 1)? = −x+ 1 = −(x− 1), (x− ω)? = −ωx+ 1 = −ω(x− ω2)

= 〈[(x− 1)ps−i][(x− ω2)ps−j ][(x− ω)ps−k]〉
= 〈[(x− 1)p

s−i][(x− ω2)p
s−j ][(x− ω)p

s−k]〉
= 〈[(x− 1)p

s−i][(x− ω2p)p
s−j ][(x− ωp)p

s−k]〉

=

{
〈(x− 1)p

s−i(x− ω2)p
s−j(x− ω)p

s−k〉 if p ≡ 1 mod 3,

〈(x− 1)p
s−i(x− ω)p

s−j(x− ω2)p
s−k〉 if p ≡ 2 mod 3,

(4)

then ωp = ω if p ≡ 1 mod 3, and ωp = ω2 if p ≡ 2 mod 3, (5)

which completes the proof.

4 Extension to Simple Root Cyclic Codes

This section considers cyclic codes of length n over Fp2 such that (p, n) = 1. In this case, a cyclic code can
be represented by its defining set Z. If m has order p2 modulo n, then Fp2m is the splitting field of xn−1
containing a primitive nth root of unity. Consider a primitive root β. Then {k|g(βk) = 0, 0 ≤ k < n} is
a defining set of C. Note that this set depends on the choice of β. We can make a canonical choice for β

by fixing a primitive element α of Fp2m and letting β = α
p2m−1

n . Let α be defined by the PrimitiveElement
function in Magma. This will be used in the code constructions in the next section.

For n and m as defined above and a ∈ {0, . . . , n − 1}, the set {aqj mod n|0 ≤ j < m} is called a
cyclotomic coset modulo n. It is well known that a defining set of a cyclic code of length n is the union
of cyclotomic cosets modulo n. Let Zn denote the set of integers modulo n. Clearly defining sets can be
considered as subsets of Zn. For S ⊂ Zn, denote S = Zn\{S} and −p2S = {−p2s mod n|s ∈ S}.

We now prove the following lemma.

Lemma 10. If C is a linear cyclic code with defining set Z, then dim(C⊥h)−dim(C∩C⊥h) = |Z∩−pZ|.

Proof. Let C be a linear cyclic code of length n, and
∏

k∈Z(x− βk) be the generator polynomial for C.

Then from Lemma 8 the generator polynomial for C⊥h is
∏

k∈−pZ(x−βk), and the generator polynomial

for C ∩ C⊥h is
∏

k∈Z∩−pZ(x− βk), which gives that

dim(C⊥h)− dim(C ∩ C⊥h) = n− | − pZ| − (n− |Z ∪ −pZ|) = |Z ∪ −pZ| − | − pZ| = |Z ∩ −pZ|.



Theorem 11. Assume n is divisible by p2 − 1 and let C be an [n, k]p2 cyclic code with defining set
Z such that (Z ∩ −pZ) ⊆ T = { nk

p2−1 |k ∈ {1, . . . , p
2 − 1}}. If e = |Z ∩ −pZ|, then there exists an

[[n + e, 2k − n + e, d]]p quantum code with d ≥ min{wt(C),wt(Cu) + 1,wt(C + C⊥h) + 2} where the
minimum is taken over the cyclic codes Cu with defining set Z\{u} for each u ∈ Z ∩ −pZ.

Proof. The proof requires a modification to the proof of Theorem 4, in particular the set of orthonormal
vectors used is changed. First we observe that each of the elements in T is a cyclotomic coset and
contains only one element. Let q = p2 − 1, n = (p2 − 1)l = ql, and ω be a (p2 − 1)-th root of unity.
Consider the polynomials

bt(x) =
xn − 1

x− ωt
=

l−1∑
i=0

(xqi+q−1 + ωtxqi+q−2 + . . .+ ω(q−1)txqi).

For convenience, we let {bi|i ∈ 0, 1, . . . , l} also denote the corresponding codewords. This is an orthonor-
mal set because

〈bu, bv〉 = q

l−1∑
i=0

(ωi(u+vp)) = q
∑

i = 0l−1(ωi(u−v)) =

{
0 u 6= v

ql u = v
.

To mitigate the ql factor, we can multiply each element by a constant. Thus, to add the rows for B to
the matrix, we add U = {bt| tnq ∈ Z ∩ −pZ}.

To prove the claim about the distance, we have 3 cases: no row from B is a linear combination,
exactly one row from U is a linear combination with a non-zero coefficient, and at least two rows are a
combination. The proof of the first and the last cases is the same as in the proof of Theorem 4. For the
second case, let bt be the row with non-zero coefficient. Then the code generated would be span(C, bt),
which is precisely the cyclic code with defining set Z\{ tn

q−1}. This completes the proof.
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