
Abstract. The authentication logic of Burrows, Abadi and
Needham (BAN) provided an important step towards rigourous
analysis of authentication protocols, and has motivated several
subsequent refinements. We propose extensions to BAN-like log-
ics which facilitate, for the first time, examination of public-key
based authenticated key establishment protocols in which both par-
ties contribute to the derived key (i.e. key agreement protocols).
Attention is focussed on six distinct generic goals for authenticated
key establishment protocols. The extended logic is used to analyze
three Diffie-Hellman based key agreement protocols, facilitating
direct comparison of these protocols with respect to formal goals
reached and formal assumptions required.

1 Intr oduction
Authentication protocols serve a fundamental role in the crypto-
graphic security of many systems, including the control of access
to restricted areas, computer systems, and wireless telecommuni-
cations systems, and authentication in electronic banking transac-
tions. The history of authentication protocols has highlighted the
extreme difficultly of designing efficient authentication protocols
which contain neither redundancies nor security flaws. The litera-
ture contains numerous examples of published protocols whose
supposed correctness, as established by ad-hoc techniques and
informal arguments, proved fleeting as subsequent examination
revealed serious security weaknesses (e.g. see [3]). This has sug-
gested the need for more rigourous methods to examine the cor-
rectness of authentication and associated key exchange protocols.
To this end, Burrows, Abadi and Needham defined a logic of
authentication (BAN) to allow formal modelling and exploration
of beliefs in such protocols [3], [4]. Gaarder and Snekkenes (GS)
extended the logic to allow further reasoning about public-key
based protocols, and to capture the notion of “duration” related to
timestamps; they then carried out a detailed analysis [11] of the
public-key based X.509 two-way authentication protocol [5].
Related cryptographic logics of belief have been proposed to
address recognized deficiencies [9] of BAN, including those of
Gong, Needham and Yahalom (GNY) [10], and Abadi and Tuttle
(AT) [1]. The X.509 analysis notwithstanding, much of the focus
of research in this area has been on protocols involving on-line
trusted servers and keys generated by a single party (symmetri-
cally). Research to date has encompassed public key techniques for

authentication and key transport, but not for key generation. More
specifically, public-key based key establishment protocols in
which both parties contribute to the established key — referred to
askey agreement protocols — have not previously been analyzed
by these methods. We propose extensions of BAN and BAN-like
logics to facilitate more precise identification and examination of
the goals and beliefs arising in authenticated key agreement proto-
cols. We then illustrate the modified logic by examining three quite
distinct such protocols based on Diffie-Hellman key exchange [6],
including one which is identity-based.

The remainder of the paper is organized as follows. Section2 (with
Appendix A) reviews the essential features of the logic, and intro-
duces new extensions including a refinement of the fundamental
BAN construct “shares the good crypto key”, a new primitive
regarding key confirmation, and new postulates which facilitate for
the first time reasoning about jointly established keys. Section3
highlights six fundamental candidate formal goals for authenti-
cated key establishment protocols. Section4 gathers in one place
the various formal assumptions required in our subsequent analy-
ses. Section 5 applies the logic to the Station-to-Station (STS) pro-
tocol [7], Section6 analyzes the Goss protocol [12], and Section7
analyzes the Günther protocol [13]. Section8 uses these results to
compare the assumptions and goals of these protocols, and the
aforementioned X.509 protocol [5]. Section9 provides concluding
remarks.

This work was originally framed entirely on that of BAN and GS.
As this resulted in our work inheriting several of the known defi-
ciencies in BAN [9], we have made selective use of more recent
advancements, primarily from GNY and AT. Familiarity with
GNY and AT is assumed. Where appropriate, we comment how
the new extensions apply to these logics; further such examination
remains to be done.

2 Authentication logic refinements and extensions
The BAN logic, with minor extensions by GS, is reviewed in
Appendix A. In this section we propose new refinements to allow
more precise reasoning for protocols involving jointly established
keys. In what follows, A and B denote principals (or parties); U is
used to denote a principal when we wish to specifically emphasize
that its identity is unknown or uncorroborated. For clarity, we use
the AT nomenclature“said” in place of the more verbose BAN
“once_said”. To denote that A has sent a formula X in the present
epoch (i.e. has recently said X), we use the AT construct “Asays
X” (whereas in BAN, “Α |≡ X” is used to denote both this and the
fact that A believes X). This requires use of AT axiom A20
(fresh(X) ∧ P said X ⊃ P says X) in place of the BAN nonce-
verification rule (R2 in Appendix A).

Extending Cryptographic Logics of Belief to Key Agreement Protocols
(Extended Abstract)

Paul C. van Oorschot

Bell-Northern Research
 P.O. Box 3511, Station C, Ottawa, Canada K2C 1Y7

paulv@bnr.ca

address until July 31 1994:
School of Computer Science, Carleton University, Ottawa, Canada K1S 5B6 (paulv@scs.carleton.ca)

Version dated August 12, 1993. This paper will appear in thePro-
ceedings of the 1st ACM Conference on Communications and Com-
puter Security, November 3-5, 1993, Fairfax, Virginia.

 — n.2 —

We begin with a few new constructs and notation. In order to rea-
son more precisely about cryptographic keys (hereafter called
keys), the conceptshares the good key,1 denoted by the symbol A

↔
K B, requires refinement. This is necessary both to remove ambi-
guity, and to help avoid confusion about the meaning and (mis)use
of the symbol (e.g. see [16]). For example, whether or not B actu-
ally knows K, A|≡ A ↔

K B is used in BAN to mean A believes
that K is a good key for use with party B. Here the key is “good” in
the sense that if and when it eventually becomes known to B, it
will be safe to use for secure communications. For our purposes,
more precision is required. One step in this direction is the AT con-
struct “A has K”, meaning that A actually possesses K.2 It is
important to note that possession is quite distinct from the notion
of holding any beliefs about the quality or properties of K (e.g. K is
a good key, K is shared with B). Without further information (e.g.
whether K is also known by some unidentified or uncorroborated
party B), such a key K which Ahas is called an“unqualified” key
(from A’s point of reference). Supplementing this refinement we
now replace A↔

K B with the following as appropriate:

A ↔
K- B K is A’s unconfirmed secret suitable for B. No one

aside from A and B knows or could deduce K. This
construct emphasizes, however, that while A knows
K, the specific party B may or may not. A may con-
sider K a “qualified” or “secure” key for use with B.

A ↔
K+ B K is A’s confirmed secret suitable for B. A knows K,

and has received evidence (key confirmation) from B
indicating that B actually knows K. No other parties
know or can deduce K.

Note that in these new constructs, A and B are not interchangeable.
We reserve the termauthenticated key establishment for mecha-
nisms providing keys which are both secure and confirmed, in the
above sense. Our motivation is alignment with the termentity
authentication, which is not necessarily provided by mechanisms
establishing (only) unconfirmed secrets. By this terminology, note
that secure key establishment does not require entity authentication
(in Diffie et al. [7], this is discussed in terms ofdirect authentica-
tion andindirect authentication). In what follows, the STS protocol
is seen to provide authenticated key establishment; the Goss and
Günther protocols provide unconfirmed secrets.

We also refine the symbols PK(K, A) and ∏(A) from BAN and
GS. One reason is to distinguish the use of asymmetric key pairs
for signatures, encryption, and key agreement, forcing explicit
acknowledgment when one key pair is used for multiple purposes;
this also precludes the incorrect assumption that signature key
pairs can be used as encryption key pairs in all cryptosystems. A
second reason is to separate the notion ofbinding a public key to a
principal from the notion of thegoodness of that key; we specifi-
cally associate “goodness” with the private key of a key pair. The
symbols we use in place of these are:

PKσ(A, K) K is the public signature verification key associated
with principal A.

PK-1
σ(A) A’s private signature key K-1 is good. Here K-1 corre-

sponds to the public key K inPKσ(A, K). The key is
“good” in that it is known only to A, cannot be
derived by others, and does not result in a “weak”
public key susceptible to specialized attacks.

1GNY uses the more generic semantics “K is asuitable secret for
the two parties”, which we find preferable.

2A similar GNY construct, “Apossesses K”, means that A either
has, or is capable of computing, K.

PKδ(A, K) K is the public key-agreement key associated with
principal A. When the specific value of the key is not
of central focus or is evident by context, we write sim-
ply PKδ(A).

PK-1
δ(A) A’s private key-agreement key K-1 is good. Here K-1

corresponds to the public key K inPKδ(A, K). The
key is “good” in that it is known only to A, cannot be
derived by others, and does not result in a “weak”
public key (e.g. arising from a trivial exponential such
as “1” in a Diffie-Hellman key exchange).

For asymmetric encryption keys, we suggest definingPKψ(A, K)
andPK-1ψ(A) analogously; however, we do not require these sym-
bols in the present work.3 We also introduce a notational conve-
nience, an origin-mapping construct, and a knowledge-
demonstration construct:

⊥Y This denotes thekey value associated with key symbol
Y. This allows one, for example, to use⊥PK-1

δ(A) to
denote the value of the implied private key, in the
absence of an explicit name (e.g. “K”) for the associ-
ated public key.

G(RA) G(RA) = {principals U: UsaidRA}. This denotes the
party U (or set of all parties U) which once conveyed
or sent the nonce RA. It facilitates reasoning about
random numbers serving as challenges in challenge-
response protocols (see Appendix A). This allows
refinement of the time period “current epoch” (see
Appendix A) to the more specific notion of “current
run”, to address “interleaving attacks” as discussed by
Bird et al. [2].

confirm(K) Current knowledge of K has been demonstrated (with-
out compromising K). Note demonstration of knowl-
edge of K differs from both actual and claimed
possession of K. In particular, “A |≡ *confirm(K)” 4

differs subtly but significantly from “A|≡ U has K”;
while the latter belief could arise even if U does not
possess K,5 the former requires “hard evidence”.

The semantics ofconfirm(K) are best understood in light of the fol-
lowing new Confirmation Axioms:6

C1. fresh(X) ∧ φ({X} K) ⊃ confirm(K)

C2. fresh(X) ∧ φ(MACK(X)) ⊃ confirm(K)

C3. fresh(K) ∧ φ(H(K)) ⊃ confirm(K)

These specify that current knowledge of a key K can be demon-
strated by: encrypting a fresh formula X with K; computing a mes-
sage authentication code (MAC) over a fresh message, with key K;

3The subscript characters sigma and psi were chosen as memory-
aids for the wordssignature andciphering; delta was chosen for its
association with a “changing” key, as key-agreement keys are of-
ten short-term (session) keys.

4Here “* ” is the GNY “not-originated-here” symbol, intended to
formalize the implicit BAN assumption that parties can distinguish
messages they generate from those generated by other principals.

5For example, if A granted U jurisdiction on claims of possession,
and U lied; or if beliefs are based on messages sent — called “ea-
ger” beliefs in [14] — but not necessarily received (e.g. using
GNY P1, P2, and GNY rationality rule).

6Here “φ” is the GNY “recognizability” construct, which formaliz-
es the implicit BAN assumption of sufficient a priori knowledge,
or redundancy, in encrypted messages to allow recognition of cor-
rect decryption keys.

 — n.3 —

or hashing a fresh key K using a one-way hash function H. Other
similar axioms could be specified, but these suffice for our present
purposes.

The original BAN postulates are listed in Appendix A. We now
introduce three new postulates, based on the following model for
public key agreement: each of two parties involved in a joint key
agreement has a public and a private key-agreement key, and can
derive the common (jointly established) key from their own private
key and the other party’s public key, using some agreement func-
tion f(private_info, public_info); here each parameter may actually
be composite. One example off is Diffie-Hellman key agreement
[6]. We assumef results in a joint key K which can be deduced
only with knowledge of the appropriate private information, and
that knowledge of K does not compromise the secrecy of the other
party’s private information. (Recall that logics of belief generally
assume soundness of all underlying cryptographic mechanisms.)
The new postulates are:

R30. (Unqualified key-agreement rule):1

where K =f(PK-1
δ(A), PKδ(U))

By R30, A can compute a joint key from a private key-agreement
key of her own and a public key-agreement key of some other
party; this is basically the model for key agreement. A should treat
this joint key as an unqualified key, as the binding between party U
and its public key may be uncorroborated.R30 is a specific
instance of GNY possession rule P2 which defines computability
(A has X ∧ A has Y ⊃ A has F(X,Y)). Using P2 we also require
GNY P1 (Asees X ⊃ A has X).

R31. (Qualified key-agreement rule):

where K =f(PK-1
δ(A), PKδ(B))

In R31, party A has another party’s public key-agreement key,
believes the binding of that key to the claimed identity, and
believes the corresponding private key, in addition to her own, is
good. This allows A to believe that the resulting key-agreement
key is a qualified or secure (but unconfirmed) key.

R32. (Key confirmation rule):

R32 allows A to upgrade her belief in the quality of key K — from
a qualified to a confirmed key — upon observing evidence that a
party other than herself knows the key. Note the definition of
A ↔

K- B guarantees there is at most one other such party, namely
B. In the original BAN syntax, the pre-condition “Asees*con-
firm(K)” might be stated as “fresh(X) ∧ A sees{X} K from U, where
U≠A”. R32 is a message interpretation rule (cf. BAN R1, Appen-
dix A). It has much in common with GNY rule I1 [10], although
the GNY definition of “Bpossesses K” results in I1 not distin-

1To be technically precise, we should use⊥PK-1
δ(A) and⊥PKδ(U)

in place ofPK-1
δ(A) andPKδ(U) in the statement of R30, and as

arguments to the key agreement functionf, but we write simply the
latter for appearance; the meaning should be clear by context. A
similar comment applies to the arguments off in R31.

A hasPK-1
δ(A), A hasPKδ(U)

A has K

A |≡�PK-1
δ(A), A |≡ PKδ(B), A |≡ PK-1

δ(B)

A |≡ A ↔
K- B

A |≡ A ↔
K- B , A sees*confirm(K)

A |≡ A ↔
K+ B

guishing between B knowing/having K and being capable of com-
puting K, nor does it imply B has demonstrated knowledge of K.

3 Generic formal goals
The apparently obvious goal of an authentication protocol is the
provision of some degree of assurance of the identity of another
party. In authenticated key establishment, an intended outcome is
the creation and/or distribution of a (possibly new) secret key.
While these goals may appear obvious, as stated they are quite
imprecise, and subtle differences exist among protocols regarding
the exact properties established. Failure to understand the precise
meaning of specific goals has lead to misunderstandings about the
differences between various protocols. This motivates us to explic-
itly identify six distinct candidate positions which may or may not
be intended as formal goals in a specific authenticated key estab-
lishment protocol. We state these as beliefs of party A, with party
B the other intended party in the protocol.

(G1) Far-end operative: Α |≡ B says Y

(G2) Targeted entity authentication:2A |≡ B says(Y,
R(G(RA), Y))

(G3) Secure key establishment: Α |≡ A ↔
K- B

(G4) Key confirmation: Α |≡ A ↔
K+ B

(G5) Key freshness: A |≡ fresh(K)

(G6) Mutual belief in shared secret: Α |≡ (B |≡ B ↔
K- A)

(G1) states that A believes B recently conveyed a message Y. It
implies that B is currently operational (or “alive”), i.e. has taken
action subsequent to the start of the protocol. Inherent is the fact
that the identity of B has been corroborated, but it is unclear who B
intended to convey the message to. Note “aliveness” also follows
from (G2) and (G4), but not (G3).

(G2) states A believes a message Y was recently conveyed by B in
response to the specific challenge RA (RA here is a “random num-
ber” — see Appendix A). It provides authentication of B to A in
the sense that the response is from a corroborated operational
entity, and is targeted in response to a (preferably fresh) challenge
from A. That B’s formula is specifically in response to A’s chal-
lenge ties B’s reply to the protocol run A is executing. Note while
entity authentication requires parties be operative, key establish-
ment protocols do not, as not all provide entity authentication;
indeed, store-and-forward environments do not support on-line
entity authentication.

(G3) states that A believes that a key K is shared with no party
other than possibly party B. K is suitable for use by A with B if and
when B eventually acquires it. (G3) does not imply that B partici-
pated in any manner in the protocol, nor even possesses K.

(G4) states A believes a key K is shared with party B alone, and
that B has provided evidence of knowledge of the key to A. It
implies both that the quality of the key is good, and confirmation
that the far end has knowledge of K; aliveness and corroboration of
identity of the far end party are inherent.

(G5) states A believes a key K is fresh. It addresses the possibility
that a key might be reused or replayed.

2We hesitate to call this “entity authentication”, due to the absence
of a universal definition; our accompanying formal description
clarifies our intended meaning. This particular expression of entity
authentication is specifically based on challenge-response. For
protocols that are not based on challenge-response (e.g. times-
tamps or sequence numbers), “G(RA)” might be replaced simply
by “A” in this goal, but this changes the implications of the goal
significantly.

 — n.4 —

(G6) states that A believes that party B believes K is an uncon-
firmed secret suitable for use with A. Note B’s beliefs are beyond
the control of A, and the beliefs of B of true importance to A are
those which concern A directly. Thus of greater import to A here
than B’s (presumed) belief that K is secure is A’s confidence that B
has correctly identified her as the party with which B shares the
trusted key. Competence on the part of B is assumed here by A.

Among other goals that might be stated, but upon which we do not
dwell, include:

(G7) Key possession: A has K

(G8) Belief in far-end possession: Α |≡ B has K

Since (G3) is a minimum goal for key establishment, and it inher-
ently implies (G7), we view the latter as somewhat redundant. We
feel that (G8), although of possible theoretical interest, is of ques-
tionable use in practice, with “physical world” evidence as given
by (G4) being preferable. (See §6 of [10], §3.2 of [1], and §3.3 of
[9] for related discussions.)

We note that (G4), i.e.Α |≡ A ↔
K+ B, is independent of B’s beliefs

about K, and is thus distinct from (G6). Previous BAN-like logics
have lacked a suitable construct to express the concept of key con-
firmation. Also, from the definition ofconfirm(K), it should be
clear thatΑ |≡ A ↔

K+ B is not equivalent to the conjunction of
(G3) and (G7),i.e. (Α |≡ A ↔

K- B) ∧ (Α |≡ B has K).

4 Generic formal assumptions
In this section we collect for reference candidate formal assump-
tions which the protocols subsequently analyzed require. In a typi-
cal BAN-type analysis, preliminary formal assumptions that
appear necessary or “obvious” are recorded, and additional
assumptions become apparent as necessary pre-conditions to use
of logic postulates required in formal proofs. (Assumptions which
appear intuitively necessary at the outset, but are not found to be
required anywhere in the formal proofs, should be carefully re-
examined.) Despite the latter, most analyses are presented “top-
down”, with the appearance that all assumptions are knowna pri-
ori.1 The assumptions below are stated as typical candidate
requirements on a party A, with B the other intended participant.2

A believes she has3 a valid copy of the public signature key (KT)
of the trusted authority T. A also believes that the corresponding
private signature key is “good”:

Α |≡ PKσ(T, KT) (A1)

Α |≡ PK-1
σ(T) (A2)

A believes that T has jurisdiction over the binding of a public sig-
nature key (KB) with a specific party (note T is not given jurisdic-
tion over the quality of the corresponding private key). A similar
assumption concerns a pre-certified public key-agreement key
(RB):

Α |≡ T controlsPKσ(B, KB) (A3)

1Mao and Boyd have recently suggested formalizing the “bottom-
up” approach to proofs, to systematicallyderive a minimum set of
necessary pre-conditions, starting from a fixed set of goals [15].

2To follow GNY strictly, we would add further assumptions about
“recognizability” of encrypted and signed values.

3Again, following GNY strictly, we would record additional as-
sumptions regarding the initial possessions of A, and track subse-
quent acquisitions in annotated analysis. For example, (A1)
implies both possession of a key and belief that the binding of it to
T is good. For brevity, we typically treat possessions informally, as
in BAN.

Α |≡ T controlsPKδ(B, RB) (A4)

A believes any private key-agreement key she herself uses is good:

Α |≡ PK-1
δ(A) (A5)

While it is necessary for A to guard her own private signature key
so that the beliefs of others that her private key is “good” are valid,
this is not necessary for A to establish her own beliefs; however
(A5) is. A also believes all principals (e.g. B) have the competence
to acquire “good” private keys for themselves, and to safeguard
such keys; this is consistent with the basic assumption that all prin-
cipals act in their own best interest (including to guard jointly
derived secrets), and does not preclude the existence of attackers:

Α |≡ PK-1
σ(B) (A6)

Α |≡ PK-1
δ(B) (A7)

A grants any principal B jurisdiction over his own public key-
agreement key RB (cf. (A4)):

Α |≡ Β controls PKδ(B, RB) (A8)

Note this does not grant to B jurisdiction over claims regarding the
corresponding private key; corroborating evidence is required to
back such claims. Thus while (A8) allows the possibility that B
may claim another party’s public key as his own (indeed, this is a
practical possibility which the logic cannot simply “rule out”), note
a dishonest such principal is unable to compute the associated
secret key and provide key confirmation.

A believes a random number (RA) she generates herself isfresh,
i.e. was not used in a previous protocol run (note this does not
require that A believe in the freshness of nonces created by other
parties):

Α |≡ fresh(RA) (A9)

A final assumption is related to the (continuing) validity of public
keys. Certificates are typically used to make one party’s public
key(s) available to other parties. Acertificate is a block of infor-
mation containing a party’s credentials (the subject party’s public
key(s), identifying information such as distinguishing name, and
possibly other information) together with the signature of atrusted
(certification) authority T over the credentials. The validity of a
certificated public key is verified by using T’s public signature key
to verify the signature on the certificate. The assumption we state
is as follows:

(A10)

Note this isnot a universal inference rule; it is a novel usage of an
inference ruleas an assumption. The intent is to use this rule in
place of the informal assumption that some procedure is available
to verify that statements of T from the past, which bind a public
key to a distinguishing name, hold true in the current run. The
objective is that this assumption generically handle the large num-
ber of ways in which the validity of a public key may be controlled
in practice (e.g. validity periods in certificates, revocation of certif-
icates, etc.). Many alternatives to (A10) as given above exist. In a
particular application, one might assume that a public key, once
valid, is valid for all time; i.e. assumea priori that Α |≡ T |≡
PKσ(B, KB), as essentially done in the X.509 analysis of Burrows
et al. [3]. A second approach is available if the concrete protocol is
such that the validity period is constrained by a timestamp in the
certificate, as in GS; this then requires further assumptions regard-
ing timestamps and timestamp verification. A third is to assume
that a public key in a certificate is valid as long as the signature key
of T used to sign the certificate remains valid; this requires re-veri-
fication of the certificate signature each time the public key within

A |≡ (T said PK(B, KB))

A |≡ (T |≡ PK(B, KB))

 — n.5 —

it is used, which could be handled formally by the GNY “recogniz-
ability” construct applied to signatures. The generic (A10) above
conveniently handles these and other possibilities simultaneously.

5 Key exchange protocol #1: STS protocol
We first review the authenticated key agreement protocol of Diffie
et al. called the “Station-to-Station” (STS) protocol [7]. A publicly
known appropriate primep and primitive elementα in GF(p) are
fixed for use in Diffie-Hellman key exchange. Parties A and B use
a common signature scheme.sU{•} denotes the signature on the
specified argument using the private signature key of party U.
EK(•) denotes the encryption of the specified argument using algo-
rithm E under key K. Public key certificates are used to make the
public signature keys of A and B available to each other. In a one-
time process prior to the exchange between A and B, each party
must present to T their identity and public key (e.g. IDA, KA), have
T verify their true identity by some (typically non-cryptographic)
means, and then obtain from T their own certificate. The protocol
analyzed is as follows.

1. A generates a random positive integerx, computes RA = αx and
sends RA to a second party.

2. Upon receiving RA, B generates a random positive integery,
computes RB = αy and K = (RA)y.

3. B computes the authentication signature sB{RB, RA} and sends
A the encrypted signature TokenBA = EK(sB{RB, RA}) along
with RB and his certificate CertB. Here “,” denotes concatena-
tion.

4. A receives these quantities, and from RB computes K = (RB)x.

5. A verifies the validity of B’s certificate CertB by verifying the
signature thereon using the public signature key of the
authority. If the certificate is valid, A extracts B’s public signa-
ture key, KB, from CertB.

6. A verifies the authentication signature of B by decrypting
TokenBA, and using KB to check the signature on the decrypted
token is valid for the known, ordered pair RB, RA.

7. A computes sA{RA, RB} and sends to B her certificate CertA
and TokenAB = EK(sA{RA, RB}).

8. Analogously, B checks CertA. If valid, B extracts A’s public
signature key, KA and proceeds.

9. Analogously, B verifies the authentication signature of A by
decrypting TokenAB, and checking the signature on it using KA
and knowledge of the expected pair of data RA, RB.

The protocol is successful from each party’s point of view if signa-
ture verification succeeds on both the received certificate and
authentication signature. In this case, the protocol provides assur-
ance that a shared secret has been jointly established with the party
identified in the received certificate.

TABLE 1 provides a summary of both the messages exchanged,
and the actions taken, by each of the parties in this protocol.

TABLE 1 STS protocol (concrete)

 A B
CertA = (KA, IDA, sT{K A, IDA}) CertB = (KB, IDB, sT{K B, IDB})

generate x, RA = αx → RA generate y, RB = αy; K = (RA)y

K = (RB)x; verify CertB, TokenBA RB, CertB, TokenBA ← TokenBA = EK(sB{RB, RA})

TokenAB = EK(sA{RA, RB}) → CertA, TokenAB verify CertA and TokenAB

5.1 Formal analysis of STS protocol
The protocol is first idealized into a form suitable for logic manip-
ulation. With K = αxy as above, define

RA = αx, RB = αy and (1)

ΜB = (TB, R(G(RA), TB), PKδ(B, RB)) with TB = (RB, RA) (2)

ΜA = (TA, R(G(RB), TA), PKδ(A, RA)) with TA = (RA, RB) (3)

A’s certificate is idealized as {PKσ(A, KA)} sT. Note this idealiza-
tion contains the signature over, but not the actual data values A,
KA. These latter cleartext data values, omitted in the BAN ideali-
zation (“as they do not contribute to the beliefs held, and do not
enter into the analysis”), are nonetheless implicitly assumed avail-
able to the recipient for operational reasons; they would be
included explicitly in a GNY idealization. Either approach suffices
for our purposes, and indeed we use both as convenient. The ideal-
ized STS protocol is:

A → B: RA (M1)

A ← B RB, (B, KB, {PKσ(B, KB)} sT), {{M B} sB} K (M2)

A → B: (A, KA, {PKσ(A, KA)} sT), {{M A} sA} K (M3)

The idealization conveys some beliefs implicit, but not directly
represented, in the actual protocol. For example, the binding of
public key to name —PKδ(B, RB) — in MB of (M2) is not explicit
in the actual protocol, nor is the intended recipient of TB in (M2),
which is the party who challenged with RA, i.e.G(RA). However,
B’s signature on TB in the actual protocol implicitly conveys this
information. Note that only the cryptographically protected mes-
sages, i.e. steps (M2) and (M3), will contribute directly to the logi-
cal beliefs that result.

The formal assumptions from Section4 required of party A in the
STS protocol are listed in TABLE 4 in Section8. Analogous
assumptions are required of B. Regarding the security of underly-
ing algorithms in the STS protocol, use of rule R31 relies on an
assumption regarding the particular functionf used. The assump-
tion here is the standard Diffie-Hellman assumption: given values
RA and RB which are exponentials based on secret keys x and y,
respectively, it is computationally infeasible to compute the corre-
sponding Diffie-Hellman key K without knowledge of either x or
y.

We now focus on the formal goals related to the final position of A.
While the intended goals of the STS protocol were not stated [7] in
the syntax of BAN-like logics, the goals from Section3 it attains
include: (G1), (G2), (G3), (G4), (G5) and (G6). We view the last
three as the major end goals; these encompass the first three. We
now outline proofs that these goals are actually attained.

Lemma 1 The STS protocol establishes that the far-end party is
operative, i.e. achieves goal (G1).

Proof: Upon A’s reception of (M2), R10 provides:

A seesRB (4)

 — n.6 —

Α sees{ PKσ(B, KB)} sT (5)

Α sees {{ ΜB} sB} K (6)

By A’s belief (and possession) of her private key-agreement key
(A5), and (4) along with GNY rule P1 as noted earlier (sees
implieshas), R30 provides

A has K (7)

where K = f(⊥PK-1
δ(A), ⊥PKδ(U)). K is an unqualified key,

potentially shared with an uncorroborated party U. (7) and (13)
with R22 yields

Α sees{ ΜB} sB. (8)

Assumption (A1), (A2) and (5) with R13 yields Α |≡ T said
PKσ(B, KB), which (A10) strengthens to

Α |≡ T |≡ PKσ(B, KB) (9)

Then (9) and (A3) with R3 yields Α |≡ PKσ(B, KB). This, (8)
and (A6), with R13 provides

Α |≡ B said ΜB (10)

By assumption (A9), A|≡ fresh(x). Exponentiation of the primi-
tive elementα by x induces a bijection, suggesting freshness
propagation from x to RA = αx based on R12 (cf. GNY rule F1).
This provides

Α |≡ fresh(RA) (11)

Then R12 further yields Α |≡ fresh(TB), and freshness propaga-
tion again (note from (13) TB and ΜB are cryptographically
sealed) allows

Α |≡ fresh(ΜB) (12)

Now (10) and (12) with AT axiom A20 (cf. BAN R2) yields

Α |≡ B says ΜB (13)

Thus A believes that B recently saidΜB. This is (G1) with
Y=MB as defined in (2).

 ❑

Lemma 2 The STS protocol provides targeted entity authentica-
tion, i.e. achieves goal (G2).

Proof: From (13) of Lemma 1 and R7, A|≡ B says (TB,
R(G(RA), TB)). This is precisely (G2) with Y=TB as given in
(2); here RA = αx. Thus upon successful completion, A believes
that B conveyed TB in the current epoch, as an intended
response to the specific challenge RA.

 ❑
Provided A does not intentionally re-use nonces, and generates a
nonce x (and RA = αx) in the current epoch using an appropriate
random number generator (producing unpredictable numbers from
a sufficiently large space, with vanishing probability of repetition),
the nonce will be a duplicate of a previous nonce with vanishing
probability. Then whereasG is a one-to-many mapping on an unre-
stricted domain, A can conclude that with vanishing probability of
error, G(RA) is the singleton set {A}. In this case Lemma 2 allows
A to conclude she was the intended recipient of B’s token, i.e.Α |≡
B saysR(A, TB). Both Lemma 1 and Lemma 2 rely directly on
(A9).

Lemma 3 The STS protocol provides secure key establishment,
i.e. achieves goal (G3).

Proof: From Lemma 1 and R6 it follows that Α |≡ B saysPKδ(B,
RB). Using this and B’s jurisdiction over his public key (A8),
R3 yields Α |≡ PKδ(B, RB). By A’s belief in private key-agree-
ment keys (A5) and (A7), R31 then yields Α |≡ A ↔

K- B. That

is, A believes K is shared with no party other than possibly B.
Implicitly, A also now possesses this key.

 ❑

Lemma 4 The STS protocol provides key confirmation, i.e.
achieves goal (G4).

Proof: [Outline only] In the BAN logic, the proof is short: from
Lemma 3 and (13), R32 (modified for BAN as discussed in
Section2) yields the result directly. However, this is unsatisfy-
ing due to the recognized limitation of the BAN construct {X}K

from U (see below). Consequently, we provide the following
alternate proof outline using GNY constructs. We require one
additional formal assumption:1 Α |≡ φ(ΜB), from which GNY
recognition rules R2 and R3 provideΑ |≡ φ({{ ΜB} sB} K). From
(12), freshness propagation (GNY F1) allows the conclusion
Α |≡ fresh({ ΜB} sB). Confirmation Axiom C1 (Section2) and
these two beliefs yield: Aseesconfirm(K). As A creates no
message of the specific form {{ΜB} sB} in the protocol,ΜB
would be marked with a “not-originated-here” symbol —*ΜB
— following GNY protocol parsing. The confirmation belief is
then: Asees*confirm(K). This, with Lemma 3 and R32, allows
the conclusionΑ |≡ A ↔

K+ B. That is, upon successful com-
pletion, A believes K is shared with B alone, and that B has pro-
vided to A evidence of his knowledge of this key.

 ❑

Lemma 5 The STS protocol provides key freshness, i.e. achieves
goal (G5), provided B does not choose y ≡ 0 (mod p-1).

Proof: As in (11), A believes thatαx is a nonce and a random ele-
ment of the field. For non-zero y, the entropy of K = (αx)y is
then large (even in the worst case of “smooth” primes p; see
[17]). Therefore freshness propagation (by R12 or GNY F1)
over this exponentiation provides freshness of the key K.

 ❑
Note A’s belief in key freshness is “pure” in the sense that it is
based only on factors within her own control; it requires (A9), but
no trust or honesty in other parties. This differs, for example, from
a belief that a key from a trusted server is fresh simply because the
key is integrated with a nonce.

We finally consider goal (G6). Upon receipt of (M2), what may A
deduce about B’s beliefs? From Lemma 5 it follows that A may
believe B possesses K, and although we do not provide details, one
may deriveΑ |≡ (B |≡ B ↔

K- U). However, as A does not identify
herself until (M3), it is clear B cannot yet know U=A; indeed, B is
anticipating U=G(RA), but cannot verify this before receiving
(M3). However, as noted following Lemma 2, A may deduce
G(RA)=A, and may thus arrive atΑ |≡ (B |≡ B ↔

K- A) as an “eager
belief” (using the terminology of [14]). This belief is “eager” in
that it anticipates B’s receipt of the final message, but the belief is
not reinforced within the protocol as A receives no further mes-
sages. We state this eager belief without further proof.

Lemma 6 The STS protocol provides mutual belief in a shared
keying relationship, i.e. achieves goal (G6); this is
however an “eager” belief on A’s part.

 ❑
Now consider the beliefs of party B after successfully completing
the STS protocol. B is able to arrive at beliefs analogous to those
of party A given above. The proofs are analogous, except that in

1This recognizability assumption is implicit in the BAN proof, and
follows from the action of successful verification of B’s signature
in (13). This is the main reason we find our BAN-logic proof un-
satisfying.

 — n.7 —

B’s case, goal (G6) may be attained without qualification. This
results from B having the advantage of being recipient of the final
message. Note the mere presence of message (M3) implies A has
successfully completed her end of the protocol, and arrived at her
final beliefs. Confirmation of A’s successful completion could be
explicitly modelled in the idealized protocol, e.g. by incorporating
appropriate beliefs into the signed token MA in idealized message
(M3).1 Granting additional assumptions giving A jurisdiction over
her own final beliefs, these beliefs would then be derivable as
mutual beliefs of B. For example, Lemma 3 would lead to B|≡
(Α |≡ A ↔

K- B), i.e. (G6) for B.

6 Key exchange protocol #2: Goss protocol
The key agreement protocol of Goss [12] results in the establish-
ment of a shared secret key; two Diffie-Hellman exponentiations
are used, combining fixed and (per-run) variant parameters, allow-
ing the creation of a unique key for each protocol run while re-
using certified public key-agreement keys. A publicly known
appropriate primep and primitive elementα in GF(p) are fixed.
The parties A and B and the trusted authority T use a common sig-
nature scheme in association with certificates; sU{•} denotes the
signature of party U as before. In a preliminary, one-time process,
A selects a secret random numberx, computesRA = αx, and gives
this to T; T verifies A’s identity and returns a certificate CertA con-
sisting ofRA, a distinguishing identifier IDA for A, and T’s signa-
ture over their concatenation.RA serves as A’s fixed public key-
agreement key, which can now be made available to others by cer-
tificate. Similarly, B obtains a secret numbery, computesRB = αy,
and obtains CertB. The protocol between A and B then consists of
a single message in each direction, as outlined below and summa-
rized in TABLE 2:

1. A generates a random integer x>0, computes RA = αx and
sends RA to B along with certificate CertA.

2. B generates a random integer y>0, computes RB = αy and
sends RB to A along with certificate CertB.

3. A and B establish the authenticity of each other’s certificates
by verifying the signature of T thereon using T’s known public
key, and establish a common key K by respectively computing
K = (RB)x ⊕(RB)x and K = (RA)y ⊕(RA)y.

6.1 Formal analysis of Goss protocol
The protocol must first be idealized. A’s certificate is idealized as
{ PKδ(A, RA)} sT. Note here the public key bound is a key-agree-
ment key rather than a signature key. The idealized Goss protocol
is:

A → B: (A, RA, {PKδ(A, RA)} sT), RA (M4)

A ← B: (B, RB, { PKδ(B, RB)} sT), RB (M5)

The idealization from the concrete protocol to the above form is
straightforward. As in Section5.1, only cryptographically pro-

1This is essentially equivalent to “message extension” in GNY.

TABLE 2 Goss protocol (concrete)

 A B
generatex, RA = αx generatey, RB = αy

CertA = (RA, IDA, sT{ RA, IDA}) CertB = (RB, IDB, sT{ RB, IDB})

generate x, RA = αx → CertA, RA generate y, RB = αy

verify CertB; K = (RB)x⊕ (RB)x CertB, RB ← verify CertA; K = (RA)y⊕ (RA)y

tected information contributes directly to the establishment of logi-
cal beliefs, and thus the cleartexts RA and RB could be omitted
from the idealization.

We now turn to formal assumptions. The assumptions of Section4
required by party A in the Goss protocol are listed in TABLE 4 in
Section8; analogous assumptions are required of B. Regarding the
security of underlying algorithms in the Goss protocol, use of R31
requires the following assumptions about the functionf: given
exponentials RA, RB, RA, andRB, it is computationally infeasible
to compute the key K without knowledge of (x,x) or (y, y); and
knowledge of one of these pairs, together with the first four values,
does not allow one to recover the other pair.

We now consider the protocol goals. Informally, the Goss protocol
is a technique “in which two users establish a common session key
by exchanging information over an insecure communication chan-
nel, and in which each user can authenticate the identity of the
other” [12]. The formal goal which can be proven reachable by
party A2 upon protocol completion is (G3), i.e.Α |≡ A ↔

K- B. Cor-
roboration that B actually knows the key K, i.e. (G4), while not
part of the basic protocol, could be achieved by a subsequent mes-
sage making use of K. We also note key freshness, i.e. (G5), as a
reachable goal.

Lemma 7 The Goss protocol provides secure key establishment,
i.e. achieves goal (G3).

Proof: Upon receiving (M5), Α sees { PKδ(B, RB)} sT. Using (A1),
(A2) and this in R13 provides Α |≡ T said PKδ(B, RB), which
(A10) strengthens to Α |≡ T |≡ PKδ(B, RB). This and (A4) with
R3 yields Α |≡ PKδ(B, RB). From here, using A’s belief in the
goodness of the private key-agreement keys of both A and B —
(A5) and (A7) — in R31 provides Α |≡ A ↔

K- B, i.e. A believes
K is shared with no party other than possibly B. Here the fixed
certified keyRB = αy plays the role of B’s public key-agreement
key in R31, A’s fixed secret keyx plays the role of A’s private
key-agreement key, and the uncertified time-variant keys (x and
RB) are secondary private and public parameters, respectively,
for the key agreement functionf.

 ❑

Lemma 8 The Goss protocol provides key freshness, i.e. achieves
goal (G5), provided B does not choose y ≡ 0 (mod p-1)
or y ≡ 0 (mod p-1).

Proof: Similar to proof of Lemma 5.

 ❑
Note freshness assumption (A9) is used by Lemma 8 but not by
Lemma 7.

7 Key exchange protocol #3: Günther protocol
The authenticated key agreement protocol of Günther [13] is an
identity-based key establishment protocol, employing the idea of
identity-based schemes for signatures/authentication, Diffie-Hell-

2The protocol being essentially identical from either party’s per-
spective, we consider only the goal of the initiator.

 — n.8 —

man key agreement [6], and ElGamal signatures [8]. An appropri-
ate public primep and primitive elementα in GF(p) are fixed. The
trusted authority T chooses an integer v as its secret key, 1 ≤ v ≤ p-
1, and makes (KT =) u =αv public. In a preliminary, one-time pro-
cess, it also assigns to each party a unique identifier D, and for
each D chooses a random integer kD with gcd(kD, p-1) = 1 and
computes rD = αkD; then with h() a suitable hash function, solves
the following equation for sD (re-choosing kD if sD=0):

h(D) ≡ v· rD + kD· sD (mod p-1) (14)

The pair (rD,sD) is an ElGamal signature on identifier D, which T
gives to party D for safekeeping. rD is publicly available; sD is D’s
secret key allowing subsequent secure key establishment as out-
lined below. For use in what follows, note (rD,sD) satisfies the
equation

αh(D) ≡ urD · rD
sD (mod p), and hence (15)

rD
sD ≡ αh(D)· u-rD (mod p) (16)

Note rD
sD can thus be computed entirely from publicly available

information.1 The protocol between A and B, which take the place
of “D” above, consists of steps as follows:

1. A sends to B the pair (A, rA); similarly B sends to A the pair
(B, rB).

2. A generates a random positive integer x, and sends to B the
quantity (rB)x; similarly B generates a random positive integer
y, and sends to A the quantity (rA)y.

3. A computesRB, whereRB = αh(B)· u-rB (= rB
sB from (16)), and

K = (rA
y)sA· RB

x; similarly B computesRA, whereRA = αh(A)·
u-rA (= rA

sA), and K = (rB
x)sB· RA

y.

Both parties then share the key K = (rA
sA)y (rB

sB)x. TABLE 3 sum-
marizes.

Since (A, rA) and (B, rB) are constant across protocol runs (as well
asRA, andRB, for fixed parties A and B), if these are known a pri-
ori then the protocol may be reduced from three to two message
exchanges. In this case, the protocol more closely resembles the
Goss protocol, and can be made more similar if the multiply “ ·” in
the computation of K is replaced by an exclusive or(⊕).

7.1 Formal analysis of Günther protocol
We first idealize the protocol. RA = (rB)x and RB = (rA)y are viewed
as uncertified time variant keys of A and B, respectively. RA =
(rA)sA andRB = (rB)sB are idealized as fixed public key-agreement
keys2 of A and B. These four quantities are then analogous to those
of the same names in the Goss protocol of Section6. A certificate

1The protocol can be made independent of the ElGamal signature
scheme, by using any suitable alternate method to generate a pair
(r, s), where r is a public key, s a secret key, and rs publicly recov-
erable.

2These might alternatively be viewed as fixed “public identity
keys” rather than fixed “public key-agreement keys”.

TABLE 3 Günther pr otocol (concrete)

 A B
T’s signature (rA,sA) on h(A); sA secret → A, rA T’s signature (rB,sB) on h(B); sB secret

generate random x, compute (rB)x B, rB, (rA)y ← generate random y, compute (rA)y

computeRB = αh(B)· u-rB → (rB)x computeRA = αh(A)· u-rA

compute K = (rA
y)sA ·RB

x compute K = (rB
x)sB ·RA

y

housing the keyRA is idealized as {PKδ(A, RA)} sT. The idealiza-
tion is as follows (compare to Goss, from which this idealization
was motivated):

A → B: A, rA (M6)

A ← B: B, rB, RB (M7)

A → B: RA (M8)

A recovers {PKδ(B, RB)} sT; B recovers {PKδ(A, RA)} sT(M9)

RA and RB are not transmitted by A and B, respectively, to the
other, but rather are computed from unprotected data transmitted
during the protocol and publicly available information (see (16)).
As it is assumed only T can produce a pair (rA, sA) satisfying (16)
for A, RA is viewed as a public key pre-certified (by construction)
by T; this pre-certification is idealized as a certificate. B is able to
reconstructRA; its authenticity is implicit in the expected equality
of the resulting keys K computed by A and B. Here the idealization
is no longer restricted to data from message exchanges; idealiza-
tion is extended to apply to the data computed by parties, i.e.
resulting from parties’actions within the protocol.3 The time-
invariant parameters (A, rA) and (B, rB) transmitted in the concrete
protocol are not protected cryptographically, but their integrity is
implicitly verifiable by the identity-based nature of the scheme.
The same is true of the exchanged cleartexts RA and RB — in fact,
the protocol contains no messages which are explicitly crypto-
graphically protected.

We next consider formal assumptions of the Günther protocol.
Those of Section4 required by party A in the protocol are listed in
TABLE 4 in Section8; analogous assumptions are required of B.
Here, since sA is a secret generated by T, (A5) also implies the
assumption that T is trusted to generate and securely transfer this
secret to A without disclosing it to any other party; the same holds
true for (A7). (A10) here applies to the validity of the secret signa-
ture pair (r, s) computed in the past by T, and used in the present as

the certified public key rs. Regarding the security of underlying
algorithms in the Günther protocol, use of R31 in proofs of beliefs
for this protocol requires the following assumptions about the key
agreement functionf: given values RA, RB, RA, andRB, as defined
in Section7.1, it is computationally infeasible to compute the key
K without knowledge of (x, sA) or (y, sB); knowledge of one of
these pairs, together with the first four values, does not allow one
to recover the other pair; and a solution (r, s) to (14) requires
knowledge of v. Some redundancy is typically embedded in D of
(14) to preclude feasibility of attackers finding a solution by trial
and error.

We finally consider the formal goals of the protocol. Günther [13]
informally states that “the two parties construct keys which agree
if they are both legitimate and do both conform to the protocol.
The actual authentication is established when the decryption of the
message sent by the other party is meaningful”. Any demonstration

3While related to the AT/GNY idea of “computable” possessions,
this differs in that data is not only computed, but the result is ide-
alized; the idealization of data in this protocol might be referred to
as implicit signatures or implicit certificates.

 — n.9 —

of knowledge of the key (without compromising it) would serve
equally well. “Actual authentication” is thusnot part of the
Günther key exchange per se. The intended formal goal is the same
as that of Goss, namely secure key establishment (G3):Α |≡
A ↔

K- B. The Günther protocol “has the advantage to generate a
different key at each session” [13]; this is goal (G5). It was noted
that “Proving the security of this scheme seems to be outside the
scope of today’s methods”, and “the security could not be assessed
within the current terminology” (p.32 and 36 resp. in [13]). These
statements remain true, because the conclusions of logic analysis
rely on the robustness of underlying algorithms. Nonetheless,
given this, logic analysis establishes meaningful results about pro-
tocol security. We now outline these.

Lemma 9 The Günther protocol provides secure key establish-
ment, i.e. achieves goal (G3).

Proof: [Outline only] Given the idealized form of the protocol, a
proof analogous to that of Lemma 7 is as follows. After A
receives RB in (M7), as noted above A can compute B’s identity
public keyRB: A has RB. The semantics of the protocol lead A
to conclude that this is B’s public key-agreement key. A also has
enough information to compute a joint key, denoted K, by R30:
A has K (see TABLE 3). To this point, our reasoning has estab-
lished no properties of K; it is unqualified. Liberalizing the
BAN symbolsees to include “computes from available informa-
tion” (i.e. using it interchangeably with the AT/GNY has), we
derive

Α sees { PKδ(B, RB) }sT (17)

Using (A1) for authenticity of T’s public key KT = u =αv, and
(A2) which allows A to trust the public keyRB computed from
B, rB and u, (17) yields, by R13,

Α |≡ T said PKδ(B, RB) (18)

“Verification” of the signature in (17) may include verifying the
current validity of T’s public key u used in computingRB, and
checking for revoked certificates.1 These considerations are
taken into account by (A10) which strengthens (18) to Α |≡ T |≡
PKδ(B, RB). This and (A4) with R3 yieldsΑ |≡ PKδ(B, RB).
Combining this with A’s belief in the quality of the private key-
agreement keys of both A and B — (A5) and (A7) — R31 then
provides: Α |≡ A ↔

K- B. That is, upon protocol completion, A
believes that K is shared with no party other than possibly party
B. Here the fixed (certified) public keyRB = (rB)sB plays the
role of B’s public key-agreement key in R31, A’s fixed secret
key sA plays the role of A’s private key-agreement key, and the
uncertified time-variant keys (x and RB) are secondary parame-
ters for the key agreement functionf.

 ❑

Lemma 10 The Günther protocol provides key freshness, i.e.
achieves goal (G5), provided B does not choose y ≡ 0
(mod p-1).

Proof: Similar to proof of Lemma 5.

 ❑

8 Comparison of formal assumptions and goals
The formal analysis of the three protocols above allows a meaning-
ful comparison to be made of their assumptions (TABLE 4) and

1However, true signature verification, or recognizability of a correct
signature in (17), is not possible in this identity-based scheme. In-
stead, it is implicit: if the signature is invalid, the parties will not
derive the same key K. This subsequent key confirmation is be-
yond the scope of the protocol as specified.

guarantees (TABLE 5) below. These tables highlight the fact that
the Günther and Goss protocols are identical with respect to formal
goals, and very similar with respect to formal assumptions. The
Günther protocol makes use of an identity-based scheme to
authenticate the Diffie-Hellman public key rs, whereas Goss uses
explicit certificates to ensure their authenticity. The Günther proto-
col requires additional trust in the trusted party not to divulge user-
specific secret keys. In Günther, with RB andRB as in Section7,
the key computed by A can be written K = (RB)x.(RB)sA; i.e. B’s
fixed certified key-agreement key powered by A’s uncertified time
variant secret, times B’s uncertified time-varying exponential pow-
ered by A’s fixed certified secret key. Directly analogous in Goss
with RB andRB as in Section6, the key computed by A can be
written K = (RB)x ⊕(RB)x; i.e. B’s fixed certified exponential pow-
ered by A’s time variant uncertified secret, combined with B’s time
variant exponential powered by A’s fixed certified secret. It is also
interesting to note that a neutral-party view of the Günther key is
as K = (RB)x.(RA)y.

The assumptions from Section4 not required in the Goss and
Günther protocols are (A3) and (A6) — since individual parties do
not have their own signature key pairs — and (A8), replaced by
(A4). However, as noted in the table, Goss and Günther require
(A5) and (A7) twice each.

Consider now the goals of the Goss (and Günther) protocols rela-
tive to those of STS. (Comments about Goss apply equally to
Günther). Goss results in the creation of a shared secret key which
can be known to no one else aside from the intended party B, but
does not provide proof of aliveness (G1); there is no freshness evi-
dent from the far-end’s message. Goss does not provide entity
authentication in the sense of (G2); it is not evident that B’s mes-
sage is either targeted to a specific party, or in response to a spe-

1 T=trusted authority; k.a.=key agreement key; sig.=signature
2 required for both A’s fixed keyx and variant secret x
3 required for both A’s fixed secret sA and variant secret x
4 required for both B’s fixed keyy and variant secret y
5 required for both B’s fixed secret sB and variant secret y

TABLE 4 Comparison of formal assumptions

Assumption description1 STS Goss Günther

integrity of T’s public key (A1) (A1) (A1)

quality of T’s private key (A2) (A2) (A2)

control of binding sig. key (A3) — —

quality of own k.a. key (A5) (A5)2 (A5)3

quality of other’s sig. key (A6) — —

quality of other’s k.a. key (A7) (A7)4 (A7)5

control of binding k.a. keys (A8) (A4) (A4)

freshness of own nonce (A9) (A9) (A9)

ability to validate certificates (A10) (A10) (A10)

TABLE 5 Comparison of formal goals

Formal Goal STS Goss Günther

far-end operative (G1) yes — —

entity authentication (G2) yes — —

secure key establishment (G3) yes yes yes

key confirmation (G4) yes — —

key freshness (G5) yes yes yes

mutual belief - shared key (G6) yes — —

 — n.10 —

cific challenge. Finally, the Goss protocol does not set out to
provide key confirmation (G4). While this allows an intruder to
replay old messages and “complete” a fraudulent protocol run,
fooling another principal into believing the run was successful, this
is not a serious threat in practice as it provides no real advantage as
an intruder cannot compute the resulting key, as will be evident
once key usage commences. These missing goals can be easily
provided in the Goss (or Günther) protocol by an additional mes-
sage employing the established key, e.g. via encryption or a MAC.

The above analysis also allows us to compare these protocols with
the X.509 two-way authentication protocol previously analyzed
using BAN [11]. Due to space limitations here, the reader is
referred to [11] for a description of the protocol, the formal
assumptions it requires (α1 throughα7), and the formal goals (Γ1
throughΓ12). The X.509 three-way authentication protocol is more
closely related to the above than the two-way protocol; the major
difference is the use of timestamps (two-way) vs. random numbers
(three-way). Both may be modified to accomplish Diffie-Hellman
key agreement, although this was not their original purpose; in the
three-way protocol, this may be done by replacing the X.509-spec-
ified “non-repeating numbers” rA and rB with Diffie-Hellman
exponentials as in the protocols of the present paper.

Two assumptions in the X.509 logic analysis (α5 andα6) require
that parties believe in the freshness of theiropponent’s timestamps
and are able to check freshness in practice; the latter requires syn-
chronized and secure time clocks. This is more demanding than
(A9) above, which requires belief in the freshness ofself-gener-
ated nonces. The X.509 analysis in [11] reflects an alternative to
(A10) for handling public key distribution and checking the cur-
rent validity of certificates in actual systems. “Duration stamps”
and the ensuing requirement ofα7 (assumption that the trusted
party will not deliver certificates with invalid duration periods)
were introduced to handle certificates having lifetimes spanning
across protocol runs. The protocols analyzed in the current paper
avoid use of timestamps, and thus certificate analysis necessarily
differs. Aside from these differences, and the handling of certifi-
cates in X.509 as discussed above obviating (A4) and (A8), the
X.509 analysis shows formal assumptions analogous to those in
TABLE 4.

Regarding formal goals of the X.509 protocol, (G1) is attained, as
is a goal similar to (G2) regarding entity authentication (namely
Γ5). A goal related to (G3) regarding secure key establishment was
intended (Γ11), but formal analysis revealed a technical problem in
reaching this goal [11] (and thus (G6) also). Key confirmation (G4)
was not intended as an original X.509 goal, nor was key freshness
(G5), although the latter follows from Diffie-Hellman key agree-
ment.

A comparison of the number of message exchanges required in the
various protocols, excluding initial exchanges required for parties
to acquire their own certificate, is given in TABLE 6. As implied
by their names, the X.509 two- and three-way protocols require 2
and 3 messages, respectively; each requires one or more additional
messages if the optional X.509 encryption field is utilized to
exchange encrypted data.

1 Can be reduced to 2 if fixed information is known a priori.

TABLE 6 Comparison of number of messages

STS Goss Günther

3 2 3 1

9 Concluding remarks
Several extensions and refinements applicable to BAN-like logics
have been proposed to facilitate examination of beliefs and goals
in authenticated key agreement protocols. Analysis using the
extended logic has allowed direct comparison of the assumptions
and goals of four authentication protocols. This highlighted the
similarities between the Goss and Günther protocols, and qualita-
tive differences between protocols providing key confirmation
(e.g. STS) and those giving secure key establishment with implicit
authentication (e.g. Goss, Günther).

While the most obvious objective of this method of formal analysis
is to establish whether specified goals are achieved, this is only one
of many benefits. The exercise forces one to identify, and express
in precise detail, these goals; this is important in the absence of a
universal definition of authentication. It also forces one to explic-
itly record the precise assumptions under which a protocol must
operate. Furthermore, the exercise may in some cases result in
more accurate specification of a protocol itself, as it requires
detailed consideration of all protocols steps. For these reasons, and
to allow meaningful comparisons, we feel there should be an onus
on protocol designers to provide the results of such analysis con-
current with the proposal of a new protocol.

While many of these benefits might equally be achieved without
logic techniques, the formality is a useful tool providing a template
to follow, and a vocabulary for precise discussion of assumptions
and goals. However as noted elsewhere, we emphasize these tech-
niques do not (yet) provide an “automated theorem prover”; while
the proofs in the logic themselves follow easily once a protocol is
idealized and the requisite assumptions and goals are specified, the
critical steps of capturing the assumptions and goals, and idealiz-
ing the protocol, do not appear amenable to automation simulta-
neously, and themselves require proof of correctness. Nonetheless,
recent advances by others that allow automation, or partial automa-
tion, of one or more of these stages are encouraging.

Acknowledgments
Conversations with and/or comments from Li Gong, Lynn Mar-
shall, Rainer Rueppel, Paul Syverson, Michael Wiener, and anony-
mous referees are gratefully acknowledged.

References

[1] M. Abadi, M. Tuttle. “A semantics for a logic of authentica-
tion”. Proc. 1991 ACM Symp. on Principles of Distributed
Computing,201-216.

[2] R. Bird, I. Gopal, A. Herzberg, P. Janson, S. Kutten, R.
Molva, M. Yung. “Systematic design of two-party authenti-
cation protocols”.Advances in Cryptology — CRYPTO’91,
Lecture Notes in Computer Science576, J. Feigenbaum (ed.),
Springer-Verlag, 1991, 44-61.

[3] M.Burrows, M.Abadi, R.Needham. “A logic of authentica-
tion”. ACM Trans. Computer Systems8 (Feb. 1990), 18-36.

[4] M. Burrows, M. Abadi, R. Needham. “A logic of authentica-
tion”. Digital Systems Research Centre, SRC Report #39
(1990 Feb. 22).

[5] CCITT Blue Book, Recommendation X.509: The Directory
— Authentication Framework (1988). Also ISO 9598-4.

[6] W. Diffie, M. Hellman. “New directions in cryptography”.
IEEE Transactions on Information Theory, vol. IT-22 (1976),
644-654.

 — n.11 —

[7] W. Diffie, P. Van Oorschot, M. Wiener. “Authentication and
authenticated key exchanges”.Designs, Codes and Cryptog-
raphy2 (Jun. 1992), 107-125.

[8] T. ElGamal. “A public key cryptosystem and a signature
scheme based on discrete logarithms”.IEEE Transactions on
Information Theory, vol. IT-31 (1985), 469-472.

[9] V. Gligor, R. Kailar, S. Stubblebine, L. Gong. “Logics for
cryptographic protocols — virtues and limitations”.Proc.
IEEE 1991 Computer Security Foundations Workshop (Fran-
conia, New Hampshire).

[10] L. Gong, R. Needham, R. Yahalom. “Reasoning about belief
in cryptographic protocols”.Proc. 1990 IEEE Symp. on
Security and Privacy (Oakland, California), 234-248.

[11] K. Gaarder, E. Snekkenes. “Applying a formal analysis tech-
nique to the CCITT X.509 strong two-way authentication
protocol”. J. Cryptology3 (Jan. 1991), 81-98.

[12] K.C. Goss. Cryptographic method and apparatus for public
key exchange with authentication. U.S. Patent 4,956,863
(granted 1990 Sept. 11).

[13] C. Günther. “An identity-based key-exchange protocol”.
Advances in Cryptology — EUROCRYPT’89, Lecture Notes
in Computer Science434, J.-J. Quisquater and J. Vandewalle
(eds.), Springer-Verlag 1990, 29-37.

[14] R. Kailar, V. Gligor. “On belief evolution in authentication
protocols”.Proc. IEEE 1991 Computer Security Foundations
Workshop (Franconia, New Hampshire), 103-116.

[15] W. Mao, C. Boyd. “Towards formal analysis of security pro-
tocols”. Proc. Computer Security Foundations Workshop VI
(Franconia, New Hampshire, June 1993), 147-158, IEEE
Computer Society.

[16] D.M.Nessett. “A critique of the Burrows, Abadi and
Needham logic”.Operating Systems Review 24 (1990), 35-
38.

[17] C.P.Waldvogel and J.L.Massey. “The probability distribution
of the Diffie-Hellman key”. Presented at AUSCRYPT’92
(Dec. 1992).

Appendix A: Authentication logic background

This section reviews the BAN logic [3] including refinements by
GS [11]. Proofs are constructed in the logic by a four-stage pro-
cess. First the protocol is “idealized” — the actual or concrete pro-
tocol is expressed as a sequence of formal steps (A→ B: X) where
A and B are the communicating entities and X is a statement in the
syntax of the logic. Second, the assumptions under which the pro-
tocol operates are identified and formally expressed. Third, the
goals of the protocol are identified and formally expressed. Finally,
a proof is constructed showing that given the basic assumptions,
upon observing the proper protocol messages the parties involved
are able, through the logical postulates (see below), to arrive at a
state where they believe the formal goals. The nature of the logic
analysis depends heavily on the precise details of the formalization
of initial assumptions, the idealization of the protocol, and the for-
malization of goals. Unfortunately, transformation of the protocol
into an idealized form cannot itself be automated, nor proven to be
correct. For these reasons, the idealization is recognized as the
most critical step.

We first review the basic notation — the logic symbols and their
informal semantics. A and B are parties (principals) involved in
the protocol, X is a statement, and K is a cryptographic key.

A once_saidX A once sent the message X. This could have
been in either the current protocol run or a previous
run. In BAN it is understood that a principal only
says things which he believes.

A |≡� X A believes X (or is entitled to believe X). If X is a
data value rather than a statement, “A believes X” is
best interpreted as “A believes X is true” or “A said
X in the current epoch”.

A controlsX A has jurisdiction over X; A can be trusted on
this matter. If you believe that A believes X, and if
you trust A on X, then you can believe X also.

A seesX A observes message X. Asees X if X arrives as a
protocol message.

A ↔
K B A shares the good key K with B. The key is suitable

for use as a cryptographic key in that only A and B
know it, it will not be disclosed to others, and it can
not be deduced by others.

fresh(X) X is recent, and has not been seen prior to its present
use. Time is broken into two periods: the present
(the current epoch, beginning with the start of the
current protocol run) and the past. X is fresh if it is
not the replay of a message from the past. Formulas
generated specifically for the purpose of being fresh
are callednonces.

In the protocols examined in the present paper, so-called “random
numbers” serve as nonces. The critical properties are that they be
unpredictable, and drawn from a sufficiently large space, with van-
ishing probability of repetition. Provided such numbers are not
intentionally re-used, and are generated using an appropriate num-
ber generator, the probability that such a number duplicates a pre-
vious such number is vanishingly close to zero, and for practical
purposes can be assumed equal to zero.

PK(K,A) A has associated with it the good public key K. The
key is good in the sense that K is A’s authentic pub-
lic key, and there exists a unique (public, private)
key pair corresponding to K.

∏(A) A has associated with it some good private key. The
key is good in the sense that it is known by no one
else, nor can it be deduced by anyone else.

R(A, X) A is the intended recipient of X.

The last three constructs are from GS. BAN uses a construct simi-
lar to PK(K,A) with semantics “A has K as a public key”, implic-
itly defining a corresponding private key K-1 never discovered by
anyone aside from A. To embrace the idea of a signed message and
an encrypted message, we use the following notation and seman-
tics (notation for the first differs from BAN):

{X} sA Thesignature of A on X, using A’s private signature
key. Note that X is not in general recoverable from
{X} sA, depending on the type of signature mecha-
nism used and the possible hashing before signing.

{X} K Data resulting fromencipherment of X under sym-
metric key K, with a fixed symmetric encipherment
algorithm assumed. Where relevant (e.g. R1 below),
this is short for {X}K from R, and in BAN it is
assumed a party can distinguish its own enciphered
formulae from those generated by other parties R.

BAN logic establishes beliefs a party is entitled to when all proto-
col steps are successful. In proofs, Bsees{X} sA should be taken to
mean B has received a message containing a data item Y, and has

 — n.12 —

verified the format of Y to be that of a signature on X using a key
corresponding to the public signature key which B associates with
A. It is implicitly assumed that B possesses this public key, and
that there is sufficient information available, or redundancy in X,
to allow signature verification. Such verification itself appears in
BAN only implicitly (e.g. see R13 below). Similarly, A sees {X} K
is taken to mean A has received a message containing a data item
Y, and has verified the format of Y to be that of the encryption of X
under key K; again it is assumed there is sufficient a priori knowl-
edge or redundancy to allow verification that K is the correct key,
and verification itself appears only implicitly (e.g. R1 below). The
GNY “recognizability” construct (see Section2) addresses this
explicitly.

For reference, and to put our work in perspective, we now list a
subset of BAN inference rules previously proposed. The rules are
logical postulates which allow proofs to be constructed. Of those
below, all but R13 (which is from [11]) are from the original BAN
logic; R1 through R13 are numbered as in [11] for cross-reference.
The first rule R1 is read as follows: If A believes that A shares a
good key K with B, and if A sees a message X encrypted under key
K (which she herself did not encrypt), then A believes that B once
said X.

R1. (Message meaning rule for shared keys)

 where U≠�A

R2. (Nonce-verification rule)1

R3. (Jurisdiction rule)

R4. (Belief aggregation)

R5. (Belief projection)

R6. (Mutual belief projection)

R7. (Once-said projection)

1X must be fresh in R2 as in BAN a party is bound to its beliefs
(only) for the duration of a single protocol run.

 A |≡ A ↔
K B, A sees {X} K from U

A |≡ (B once_said X)

A |≡ fresh (X), A |≡ (B once_said X)

A |≡ (B |≡ X)

A |≡� (B controls X), A |≡� (B |≡ X)

A |≡ X

A |≡ X, A |≡ Y

A |≡ (X, Y)

A |≡ (X, Y)

A |≡� X

A |≡ (B |≡ (X, Y))

A |≡ (B |≡ X)

A |≡ (B once_said (X, Y))

A |≡ B once_said X, A |≡ B once_said Y

R10. (Sight projection)

R12. (Freshness propagation rule)2

R13. (Message meaning rule for public signature keys)3

R21. (Message decryption rule for symmetric keys)

R22. (Message decryption rule for unqualified keys)4

R23. (Hash function rule)

where H() is an appropriate hash function.

2R12 implies that if part of a formula is fresh, the entire formula is.
Note a non-fresh formula cannot be made fresh by concatenating
it to a fresh formula; here (X, Y) is a message unit whose integrity
is protected, e.g. cryptographically.

3R13 assumes a message X can be recovered from a signature on it
(i.e. signature with message recovery, no hashing) and requires
possession of the corresponding public key. If the former is not
possible, a pre-condition is Ahas X.

4Modified slightly from BAN, to make use of the GNY/AT “has”
construct (see Section2).

A sees (X, Y)

A sees X, A sees Y

A |≡ fresh (X)

A |≡ fresh (X, Y)

A |≡ PK(B, K), A |≡� ∏(B), A sees {X} sB

A |≡ � (B once_said X)

 A |≡ A ↔
K B, A sees {X} K

A sees X

 Ahas K, A sees {X} K

A sees X

A |≡ (B once_said H(X)), A sees X

A |≡� (B once_said X)

