EXTENDING EQUIVARIANT MAPS FOR COMPACT LIE **GROUP** ACTIONS¹

BY JAN W. JAWOROWSKI

Communicated by Morton L. Curtis, December 21, 1972

ABSTRACT. Extensions of maps are studied in the category of spaces with actions of a compact Lie group G. If G acts on a finite dimensional compact metric space X with a finite number of conjugacy classes of isotropy subgroups, if \tilde{X} is a closed equivariant subspace of X such that the action on $X - \tilde{X}$ is free and if $f: \tilde{X} \to Y$ is an equivariant map to a compact metric space Y with a G-action, then an equivariant neighborhood extension of f exists provided that Y is an ANR; if Y is an AR, then f can be equivariantly extended over X.

1. Introduction. In previous papers [2] and [3], an extension theorem for equivariant maps in the category of spaces with periodic homeomorphisms was proved. That theorem was then applied to a characterization of equivariant absolute neighborhood retracts and absolute retracts in this category. The purpose of this note is to announce results which extend some of the results of [2] and [3] from the category of Z_p -actions to the category of compact Lie group actions. Detailed proofs will appear in a forthcoming paper.

The following theorem is the main result of this paper.

(1.1) THEOREM. Let G be a compact Lie group acting on a finite dimensional compact metric space X with a finite number of conjugacy classes of isotropy subgroups; and let \tilde{X} be a closed equivariant subspace of X containing all the fixed points of the elements of G different from the identity. Let G act on a compact metric space Y and let $f: \tilde{X} \to Y$ be an equivariant map. Then:

(i) If Y is an ANR, there exists an equivariant extension $g: U \rightarrow Y$ of f over an equivariant neighborhood U of \tilde{X} in X;

(ii) If Y is an AR, there exists an equivariant extension $g: X \to Y$ of f over X.

As it was pointed out in [2] and [3], the problem of equivariant extension maps is not trivial even for Z_2 -actions, that is, for spaces with involutions, if they are not fixed point free. The significance of this result

AMS (MOS) subject classifications (1970). Primary 54C15, 54C20, 54C55, 55F55, 57E15; Secondary 54H15.

Key words and phrases. Group action, compact Lie group, equivariant map, equivariant extension, singular fibration, singular principal fibration, cross-section, absolute neighborhood retract.

¹ This work was done while the author held a visiting professorship at the University of Heidelberg in the summer term of 1972.

Copyright © American Mathematical Society 1973

lies, of course, in the fact that Y is not assumed to be an "equivariant" ANR or AR. This theorem leads, however, to a characterization of equivariant retracts; it will be the subject of a forthcoming paper [4].

The proof of Theorem (1.1) is based on the following idea. An action of a topological group G on a space X may be regarded as a "principal fibration with singularities", the singularities being due to the existence of fixed points. An equivariant map f determines a cross-section in the "associated singular fibration"; and the problem of extending f over the free part of the action amounts to that of extending the cross-section from the singular part to the regular part of the associated fibration. A useful tool in the construction of the extension is a linearization of a compact Lie group action due to G. D. Mostow; i.e., an equivariant embedding of the space in a Euclidean space with an orthogonal Gaction.

2. Group actions and singular fibrations. If $p: E \to B$ is a map and \overline{B} , \overline{B} are complementary parts of B then the restrictions $\overline{p}: \overline{E} \to \overline{B}$, and $\widetilde{p}: \widetilde{E} \to \widetilde{B}$, where $\overline{E} = p^{-1} \overline{B}$ and $\widetilde{E} = p^{-1} \widetilde{B}$, will be called complementary parts of p; we shall also say that \overline{p} is the part of p over \overline{B} , and the partition of p into \overline{p} and \widetilde{p} will be denoted by $p = (\overline{p}|\widetilde{p})$. The part \overline{p} is said to be open (resp. closed) if \overline{B} is open (resp. closed).

If $p = (\bar{p}|\tilde{p})$ is a partition of $p: E \to B$ such that \bar{p} is a locally trivial (numerable) fibration then p will be said to be a singular fibration with a regular part \bar{p} and a singular part \tilde{p} .

Let Top^G be the category of left actions of a group G on topological spaces. Its objects are maps $\alpha: G \times X \to X$ satisfying the usual conditions; its subobjects are also called equivariant subspaces; and the morphisms in Top^G are also called equivariant maps. If \overline{X} and \widetilde{X} are complementary equivariant subspaces of X with an action $\alpha: G \times X \to X$, then, just as above, we speak of complementary actions $\overline{\alpha}: G \times \overline{X} \to \overline{X}$ and $\widehat{\alpha}: G \times \widetilde{X} \to \widetilde{X}$ defined by α on \overline{X} and \widetilde{X} and we write $\alpha = (\overline{\alpha}|\alpha)$. If $\overline{\alpha}$ is free, then $\overline{\alpha}$ is called a regular part of α ; and $\overline{\alpha}$ is then the corresponding singular part. The corresponding identification maps to the orbit spaces will be denoted by $p = p^{\alpha}: X \to X/\alpha$, $\overline{p} = p^{\overline{\alpha}}: \overline{X} \to \overline{X}/\overline{\alpha}$ and $\widetilde{p} = p^{\overline{\alpha}}: \widetilde{X} \to \widetilde{X}/\overline{\alpha}$. Provided that G is a compact Lie group and X is completely regular, \overline{p} is then a principal G-fibration. For this reason, $p = (\overline{p}|\widetilde{p})$ is called a singular part \widetilde{p} .

If $\alpha: G \times X \to X$ is a G-action and $f: B \to X/\alpha$ is a map, then f induces in a natural way a G-action $\beta = f^*\alpha: G \times Z \to Z$, where Z is the space of the fibration $f^*(p^{\alpha})$ induced by f from p^{α} .

Let $\alpha: G \times X \to X$ and $\beta: G \times Y \to Y$ be actions of G on spaces X and Y. Then by the G-action on $X \times Y$ associated to α and β we mean the composition

J. W. JAWOROWSKI

 $G \times X \times Y \xrightarrow{(\text{diagonal}) \times 1_{X \times Y}} G \times G \times X \times Y$

 $\cong G \times X \times G \times Y \xrightarrow{\alpha \times \beta} X \times Y.$

If $\gamma: G \times X \times Y \to X \times Y$ is the action associated to α and β then the first projection $X \times Y \to X$ is an equivariant map $\gamma \to \alpha$ and thus induces a map

$$q = q^{\gamma} : (X \times Y)/\gamma \to X/\alpha.$$

The map q will be called the singular fibration associated to the singular principal fibration p^{α} and to the action β . To a regular part $\bar{\alpha}$ of α there corresponds a regular part \bar{q} of q; it is then just the fibration with fibre Y associated to the principal fibration $p^{\bar{\alpha}}$, the regular part of p.

3. Equivariant maps and cross-sections. It was first pointed out by A. Heller [1] that an equivariant map $f: X \to Y$ determines a cross-section $\varphi^f: X/\alpha \to (X \times Y)/\varphi$ of q^γ ; specifically, φ^f is the quotient map induced by the equivariant map $(1, f): X \to X \times Y$. We shall call φ^f the crosssection associated to f. Conversely, Heller proved that if the principal fibration p^{α} is regular, then every cross-section φ of the fibration q^{γ} associated to p^{α} and β determines an equivariant map $f: X \to Y$ such that $\varphi^f = \varphi$. The following theorem is a relativization of Heller's result to the case of singular actions:

(3.1) THEOREM. Let α and β be actions of a topological group G on spaces X and Y as in (1.1) and let $p = p^{\alpha} : X \to X/\alpha$ be the corresponding singular principal fibration. Let $q = q^{\gamma} : (X \times Y)/\gamma \to X/\alpha$ be the singular fibration associated to p and β . Suppose that the singular part $\tilde{\alpha} : G \times \tilde{X} \to \tilde{X}$ of α is such that \tilde{X} is closed in X. Let $\tilde{p} : \tilde{X} \to \tilde{X}/\tilde{\alpha}$ be the singular part of p and let

$$\gamma: G \times X \times Y \to X \times Y, \qquad \tilde{\gamma}: G \times \tilde{X} \times Y \to \tilde{X} \times Y$$

be the actions associated to α , β and $\tilde{\alpha}$, β , respectively. Let $f: \tilde{X} \to Y$ be an equivariant map and $\varphi^{f}: \tilde{X}/\tilde{\alpha} \to (\tilde{X} \times Y)/\tilde{\gamma}$ be the cross-section associated to f. Then f has an equivariant extension $g: X \to Y$ over X if and only if the cross-section φ^{f} has an extension to a cross-section of the fibration q.

4. Extending cross-sections in singular fibrations. In view of (3.1), Theorem (1.1) reduces to the following theorem:

(4.1) THEOREM. Let α be an action of a compact Lie group G on a finite dimensional compact metric space with a finite number of conjugacy classes of isotropy subgroups. Let $p = p^{\alpha} : X \to X/\alpha$ be the corresponding singular fibration and $\tilde{p} : \tilde{X} \to \tilde{X}/\tilde{\alpha}$ be a closed singular part of p. Let β be a G-action on a compact metric space Y and let q and \tilde{q} be the singular fibrations associated to p, β and \tilde{p} , β respectively.

(i) If Y is an ANR, then any cross-section of \tilde{q} can be extended to a cross-section of q over a neighborhood of $\tilde{X}/\tilde{\alpha}$:

(ii) If Y is an AR, then any cross-section of \tilde{q} can be extended to a crosssection of q.

OUTLINE OF THE PROOF. Applying Mostow's linearization theorem [5] we can assume that X is equivariantly embedded in a Euclidean space R^n with an orthogonal G-action.

Let $\overline{R^n}$ be the maximal part of R^n on which the action is free. Let $E = \overline{R^n} \cup X, \overline{E} = E - \widetilde{X}, \overline{\widetilde{E}} = \widetilde{X}$. We replace the action α by this orthogonal action on E and continue denoting it by α with the partition $\alpha = (\bar{\alpha}|\tilde{\alpha})$ into the regular and singular parts, \bar{E} and \tilde{E} , respectively. We also keep the notation $p = (\bar{p}|\tilde{p})$ for the corresponding orbit maps. The regular part \overline{E} is an open equivariant subset of R^n and the base space $\overline{E}/\overline{\alpha}$ is an open manifold. Let $B = E/\alpha$, $\overline{B} = \overline{E}/\overline{\alpha}$, and $\widetilde{B} = \widetilde{E}/\overline{\alpha}$. We would like to replace \overline{B} by an infinite simplicial complex and for this purpose we prove the following lemma (compare Lemma 4.8 of [2]):

(4.2) LEMMA. There exist:

(1) a space Z containing \tilde{B} as a closed subset;

(2) a finite dimensional locally finite triangulation K of $Z - \tilde{B}$;

(3) maps of pairs

$$\kappa: (B, \overline{B}) \to (Z, |K|) \qquad \lambda: (Z, |K|) \to (B, \overline{B})$$

each being the identity on \tilde{B} :

(4) A homotopy $\lambda \circ \kappa \simeq 1_{(B,\overline{B})}$ fixing every point on \widetilde{B} .

Now for the proof of (4.1) it suffices to construct a cross-section of the induced singular fibration $\lambda^* q$ whose regular part is over the infinite polyhedron |K|. This can be done by a stepwise extension on the skeletons of K. It is interesting, however, that the finite dimensionality of K plays an essential role in the proof, since a special care is needed for simplices approaching the singular part of \tilde{B} .

BIBLIOGRAPHY

1. A. Heller, On equivariant maps of spaces with operators, Ann. of Math. (2) 55 (1952), 223-231. MR 14, 1110. 2. J. W. Jaworowski, Equivariant extensions of maps, Pacific J. Math. (to appear).

3. _____, Extensions of maps in spaces with periodic homeomorphisms, Bull. Amer. Math. Soc. 78 (1972), 527-531.

 Equivariant retracts for compact Lie group actions, (to appear).
G. D. Mostow, Equivariant embeddings in Euclidean space, Ann. of Math. (2) 65 (1957), 432-446. MR 19, 291.

DEPARTMENT OF MATHEMATICS, MICHIGAN STATE UNIVERSITY, EAST LANSING, MICHIGAN 48823

Current address: Department of Mathematics, Indiana University, Bloomington, Indiana 47401