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ABSTRACT. Extensions of maps are studied in the category of spaces 
with actions of a compact Lie group G. If G acts on a finite dimensional 
compact metric space X with a finite number of conjugacy classes of 
isotropy subgroups,Jf Xis a closed equivariant subspace of X such that 
the action on X - X is free and if/: X -• Y is an equivariant map to a 
compact metric space Y with a (/-action, then an equivariant neigh
borhood extension of/exists provided that Fis an ANR; if Fis an AR, 
then ƒ can be equivariantly extended over X. 

1. Introduction. In previous papers [2] and [3], an extension theorem 
for equivariant maps in the category of spaces with periodic homeo-
morphisms was proved. That theorem was then applied to a characteriza
tion of equivariant absolute neighborhood retracts and absolute retracts 
in this category. The purpose of this note is to announce results which 
extend some of the results of [2] and [3] from the category of Zp-actions 
to the category of compact Lie group actions. Detailed proofs will appear 
in a forthcoming paper. 

The following theorem is the main result of this paper. 

(1.1) THEOREM. Let G be a compact Lie group acting on a finite dimen
sional compact metric space X with a finite number of conjugacy classes 
of isotropy subgroups ; and let X be a closed equivariant subspace of X 
containing all the fixed points of the elements of G different from the identity. 
Let G act on a compact metric space Y and let f:X -> Y be an equivariant 
map. Then: 

(i) If Y is an ANR, there exists an equivariant extension g:U -+ Y of 
f over an equivariant neighborhood UofXinX; 

(ii) If Y is an AR, there exists an equivariant extension g:X -» Y off 
over X. 

As it was pointed out in [2] and [3], the problem of equivariant ex
tension maps is not trivial even for Z2-actions, that is, for spaces with 
involutions, if they are not fixed point free. The significance of this result 
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lies, of course, in the fact that Y is not assumed to be an "equivariant" 
ANR or AR. This theorem leads, however, to a characterization of equi
variant retracts; it will be the subject of a forthcoming paper [4]. 

The proof of Theorem (1.1) is based on the following idea. An action 
of a topological group G on a space X may be regarded as a "principal 
fibration with singularities", the singularities being due to the existence 
of fixed points. An equivariant map ƒ determines a cross-section in the 
"associated singular fibration"; and the problem of extending ƒ over 
the free part of the action amounts to that of extending the cross-section 
from the singular part to the regular part of the associated fibration. 
A useful tool in the construction of the extension is a linearization of 
a compact Lie group action due to G. D. Mostow; i.e., an equivariant 
embedding of the space in a Euclidean space with an orthogonal G-
action. 

2. Group actions and singular fibrations. If p:E -+B is a map and 
£, B are complementary parts of B then the restrictions p:E -* B, and 
p:E ~> 5, where E = p~1 B and Ë = p~ * B, will be called complementary 
parts of p ; we shall also say that p is the part of p over 5, and the partition 
of p into p and p will be denoted by p = (p\p). The part p is said to be open 
(resp. closed) if B is open (resp. closed). 

If p = (p\p) is a partition of p : E -> B such that p is a locally trivial 
(numerable) fibration then p will be said to be a singular fibration with 
a regular part p and a singular part p. 

Let TopG be the category of left actions of a group G on topological 
spaces. Its objects are maps a : G x X -> X satisfying the usual conditions ; 
its subobjects are also called equivariant subspaces ; and the morphisms 
in TopG are also called equivariant maps. If X and X are complementary 
equivariant subspaces of X with an action a : G x X -> X, then, just as 
above, we speak of complementary actions â:G x X->Xandà:G x X^>% 
defined by a on I and X and we write a = (â|a). If a is free, then a is 
called a regular part of a ; and a is then the corresponding singular part. 
The corresponding identification maps to the orbit spaces will be denoted 
by p = pa :X -> X/a, p = p*:X -+ X/ôL and p = p*:X - X/a. Provided 
that G is a compact Lie group and X is completely regular, p is then a 
principal G-fibration. For this reason, p = (p\p) is called a singular prin
cipal G-fibration with a regular part p and a singular part p. 

Ifa:G x X - > X i s a G-action and ƒ : B -> X/a is a map, then ƒ induces 
in a natural way a G-action /? = /*a:G x Z ^ Z9 where Z is the space 
of the fibration ƒ *(pa) induced by ƒ from pa. 

Let a:G x X -• X and j8:G x Y-> 7be actions of G on spaces X and 
Y. Then by the G-action on X x 7 associated to a and /? we mean the 
composition 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



700 J. W. JAWOROWSKI [July 

G x X x Y (d iagonal)xl*xy >G x G x X xY 

^ G x X x G x Y-^-+X x Y 

If y : G x X x Y -> X x Y is the action associated to a and ƒ? then the 
first projection X x Y -+ X is an equivariant map y -» a and thus in
duces a map 

q = qy\(X x Y)/y-+X/(x. 

The map q will be called the singular fibration associated to the singular 
principal fibration p* and to the action /?. To a regular part â of a there 
corresponds a regular part q of q ; it is then just the fibration with fibre 
Y associated to the principal fibration /?*, the regular part of p. 

3. Equivariant maps and cross-sections. It was first pointed out by 
A. Heller [1] that an equivariant m a p / :X --• Y determines a cross-section 
(pf:X/(x -> (X x Y)/cp of qy; specifically, cpf is the quotient map induced 
by the equivariant map ( l v / ) : I - > I x Y. We shall call <pf the cross-
section associated to ƒ Conversely, Heller proved that if the principal 
fibration pa is regular, then every cross-section q> of the fibration qy 

associated to pa and /? determines an equivariant m a p / :X -+ Y such that 
q>f = cp. The following theorem is a relativization of Heller's result to the 
case of singular actions : 

(3.1) THEOREM. Let oc and /? be actions of a topological group G on spaces 
X and Y as in (1.1) and let p = p*:X -• X/a be the corresponding singular 
principal fibration. Let q = qy :(X x Y)/y -> X/a be the singular fibration 
associated to p and ƒ?. Suppose that the singular part ot:GxX-^Xofais 
such that X is closed in X. Let p : X -» X/oL be the singular part of p and let 

y.G x X x Y-+X x Y, y\G x X x Y-> X x Y 

be the actions associated to a, /? and a, ƒ?, respectively. Letf'.X -> Y be an 
equivariant map and (pf:X/<x -• (X x Y)/y be the cross-section associated 
tof Then f has an equivariant extension g:X -> Y over X if and only if 
the cross-section <pf has an extension to a cross-section of the fibration q. 

4. Extending cross-sections in singular fibrations. In view of (3.1), 
Theorem (1.1) reduces to the following theorem: 

(4.1) THEOREM. Let OL be an action of a compact Lie group G on a finite 
dimensional compact metric space with a finite number ofconjugacy classes 
ofisotropy subgroups. Let p = p":X -• X/a be the corresponding singular 
fibration and p : X -• X/a be a closed singular part of p. Let pbe a G-action 
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on a compact metric space Y and let q and q be the singular fibrations 
associated to p, /? and p, fi respectively. 

(i) If Y is an ANR, then any cross-section of q can be extended to a 
cross-section of q over a neighborhood ofXj6L\ 

(ii) If Y is an AR, then any cross-section of q can be extended to a cross-
section of q. 

OUTLINE OF THE PROOF. Applying Mostow's linearization theorem [5] 
we can assume that X is equivariantly embedded in a Euclidean space 
Rn with an orthogonal G-action. 

LetJR" be the maximal part of Rn on which the action is free. Let 
E = RnvX,E = E — X,E — X. We replace the action a by this orthog
onal action on E and continue denoting it by a with the partition 
a = (â|a) into the regular and singular parts, E and £, respectively. We 
also keep the notation p = (p\p) for the corresponding orbit maps. 
The regular part E is an open equivariant subset of Rn and the base space 
E/â is an open manifold. Let B = £/a, B = JB/â, and B = E/ot. We would 
like to replace B by an infinite simplicial complex and for this purpose 
we prove the following lemma (compare Lemma 4.8 of [2]): 

(4.2) LEMMA. There exist: 
(1) a space Z containing B as a closed subset ; 
(2) a finite dimensional locally finite triangulation K ofZ — B; 
(3) maps of pairs 

K:(B, B) - (Z, |X|) A:(Z, |X|) - (B, B) 

each being the identity on B ; 
(4) A homotopy X OK ~ ^(B,B)fix^nS every point on B. 

Now for the proof of (4.1) it suffices to construct a cross-section of the 
induced singular fibration À*q whose regular part is over the infinite 
polyhedron \K\. This can be done by a stepwise extension on the skeletons 
of K. It is interesting, however, that the finite dimensionality of K plays 
an essential role in the proof, since a special care is needed for simplices 
approaching the singular part of B. 
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