
The original publication is available at http://doi.org/10.1109/ICECCS.2017.29

In ICECCS: Proceedings of 22nd International Conference on Engineering of Complex Computer Systems c© IEEE 2017.

Extending ERS for Modelling Dynamic Workflows

in Event-B

Dana Dghaym, Michael Butler and Asieh Salehi Fathabadi

Electronics and Computer Science

University of Southampton, UK

Email: {dd4g12, mjb, asf08r}@ecs.soton.ac.uk

Abstract—Event-B is a state-based formal method for mod-
elling and verifying the consistency of discrete systems. Event
refinement structures (ERS) augment Event-B with hierarchical
diagrams, providing explicit support for workflows and refine-
ment relationships. Despite the variety of ERS combinators, ERS
still lacks the flexibility to model dynamic workflows that support
dynamic changes in the degree of concurrency. Specifically in
the cases where the degree of parallelism is data dependent
and data values can change during execution. In this paper,
we propose two types of extensions in ERS to support dynamic
modelling using Event-B. The first extension is supporting data-
dependent workflows where data changes are possible. The
second extension improves ERS by providing exception handling
support. Semantics are given to an ERS diagram by generating
an Event-B model from it. We demonstrate the Event-B encodings
of the proposed ERS extensions by modelling a concurrent
emergency dispatch case study.

Keywords—Event-B; ERS; Refinement; Dynamic Workflows;
Emergency Dispatch

I. INTRODUCTION

An Event-B model consists of a collection of guarded

atomic actions (i.e. events). In Event-B, event execution is

interleaved and there is no support for explicit workflows. ERS

(Event Refinement Structures) [1] provides additional structure

for Event-B refinements and explicitly describes the ordering

of events. The coordination of events is done implicitly in

Event-B using guards, which are event enabling conditions.

ERS provides various combinators that support sequencing,

iteration, choice, synchronisation and several forms of non-

deterministic interleaving.

ERS was originally introduced in [1], [2]. However, the

original approach was restricted in modelling dynamic changes

in workflows. In this paper, we extend ERS with new combi-

nators to support modelling dynamic changes in the degree

of concurrency, in addition to supporting interruptions and

exception handling mechanisms. Using the new combinators,

we demonstrate some dynamic modelling patterns that were

not possible in the original ERS approach.

Our focus is to show how the new ERS combinators can

facilitate modelling in Event-B and give ERS the flexibility to

adapt to changes especially in the case of complex concurrent

systems. We demonstrate our modelling approach by applying

it to an emergency dispatch system, showing how the ERS

extensions are encoded in Event-B.

When modelling, we first use the ERS diagrams as

blueprints to define a refinement strategy. Once refinement

is decided, we start the Event-B modelling using the ERS

tool1 [3] alongside the Event-B editor within the Rodin tool

platform [4]. We adopt the separation of workflows from

data handling. We model workflows using ERS and leave

the data handling and the state-based variables to be done

textually using Event-B. However, separation does not mean

the independence of the control variables and the state-based

data variables; this is because the ERS semantics is defined by

transforming the diagrams into Event-B. Moreover, defining

explicit control variables in Event-B, makes it possible to

explicitly relate the textually added state-based variables to

the control variables using invariants. The model is verified

using the Rodin platform and validated using the ProB [5]

model checker.

The rest of the paper is organised as follows: Sect. II gives

background information about Event-B and the ERS approach.

Sect. III presents ERS extensions to support dynamic work-

flows and exception handling. In Sect. IV, we present the

emergency dispatch case study, showing how to apply the new

ERS extensions and their Event-B encodings, then we do the

model analysis and discussion in Sect V. Finally in Sect. VI,

we present our conclusions, related work and future directions.

II. BACKGROUND

A. Event-B

Event-B is a formal method for modelling and verifying

discrete systems [6]. Its language, based on the set theory and

first order logic, is mainly influenced by the B-Method [7] and

Action Systems [8].

1) Structure: An Event-B model is divided into two parts,

the Context and the Machine. The context is the static part of

the model, where the set types and the constants are defined.

The machine, is the dynamic part of the model, where the

variables, invariants and the events are defined. A machine can

access contexts to define its variables, using invariants which

describe properties that events are expected to maintain. An

event in Event-B can update variables atomically using actions,

provided all its guards are satisfied. In general an event e in

Event-B with variables v has the following format, where p

1An interim update site containing only the first set of extensions, is
available on http://users.ecs.soton.ac.uk/dd4g12/ERSUpdateSite/

1

http://doi.org/10.1109/ICECCS.2017.29


are the event parameters, G(p, v) are the event guards and

v := A(p, v) are the event actions.

e =̂ any p where G(p, v) then v := A(p, v)

2) Refinement: Refinement is a key concept in Event-B

that aims at simplifying the complexity of modelling and

verification. Using Event-B refinement, a model is built grad-

ually starting with an abstract model. Then details and/or new

functionalities of the model are added at further refinement

levels. Each event of a refined model either refines some event

of the abstract model or is a new event with no corresponding

abstract event. New events are required to refine skip, an

implicit event that has no effect at the abstract level.

In Event-B, proof obligations are used to prove invariant

preservation and refinement correctness. Proof obligations are

automatically generated, and can be proved both automatically

and interactively using the Event-B tool, Rodin [4].

B. Event Refinement Structures (ERS)

In Event-B, it is common to specify behaviour abstractly as

an atomic event and to decompose that behaviour into multiple

atomic events via refinement, which are a combination of

new events and refining events. Syntactically these events are

separated without any explicit links between them. The ERS

approach provides a graphical extension of Event-B to repre-

sent event decomposition explicitly. In addition to specifying

the events that decompose an abstract event, an ERS diagram

specifies the control flow amongst the decomposed events.

ERS supports a range of workflow combinators including

sequencing, looping and several forms of non-deterministic

interleaving. ERS was first introduced by Butler [2] and later

enhanced in [9] by defining different refinement patterns and

formal translation rules to Event-B.

ERS has a tree structure inspired by Jackson Structure

Diagrams (JSD) [10]. JSD provides a graphical representation

of structured sequential programs with sequential behaviour

indicated by left-to-right placement of nodes and additional

annotations to represent choice and iteration.

Fig. 1 presents a simple ERS example specifying that event

A is decomposed to two atomic events (B and C). Similar to

JSD diagrams, the leaf nodes in ERS are ordered sequentially

from left to right, so Fig. 1 specifies that B should be executed

before C. The dashed line indicates that B is a new event (i.e.,

refines skip) while C refines A. In ERS exactly one of the

children should be connected to its parent with a solid line,

while the others should be connected using dashed lines. In

ERS this is referred to as the “single solid line rule”.

Fig. 1. A Simple ERS Diagram in the Multiple Instances Case

The addition of the instance parameter p, in Fig. 1 is op-

tional and its presence indicates multiple instance modelling.

Multiple instances can be used to model concurrency, where

leaf events of different instances may interleave.

1) ERS Semantics: Semantics is given to an ERS diagram

by transforming it into an Event-B model. Fig. 2 presents the

Event-B representation of the ERS diagram in Fig. 1. The

Event-B model in Fig. 2 is generated automatically using

the ERS tool [3]. The transformation from ERS to Event-B

results in variables, typing invariants, sequencing invariants,

and gluing invariants to relate the abstract variables to the

refining variables. The ERS transformation also results in

events for each leaf, with guards describing the enabling

conditions, and actions disabling the event after its execution

as appropriate. Fig 1 represents two levels of abstraction:

a machine containing event A and a refinement where A is

decomposed to events B and C.

(a) Abstract Level (M0) (b) Refinement Level (M1)

Fig. 2. Event-B Specifications of Fig. 1

The Event-B model in Fig. 2(a) represents the ERS diagram

before decomposing event A, while the refined Event-B model

in Fig. 2(b) represents the decomposed ERS diagram, where

the leaf nodes of the ERS diagram (B and C) are mapped

to events in Event-B. Each leaf in the parametrised flow

has the event parameter p, and in the Event-B model, the

control variables for the leaf events, oB and oC, indicate

the occurrence of the event for each instance: oB and oC

are subsets of SET P , the instance set of parameter p, and

p ∈ oB indicates that event oB has occurred for instance p.

Regarding the ordering of events, the guard p ∈ oB in event

C of Fig. 2(b) ensures that B has occurred for the parameter

value p, while events for different values of p may interleave.

Adding the parameter value to the control variable of the

event indicates that the event has executed for that instance

value, preventing the event from executing again for the same

instance as indicated by p /∈ oB and p /∈ oC in both events.

The ordering of events is not only ensured by guards, but

also using invariants which are proved to be maintained after

execution of each event. In the case of the B event, no ordering

constraints are required so a typing invariant is generated. The



solid line is interpreted in Event-B by the gluing invariant,

inv C glu, which relates oC to oA, and the addition of the

refines keyword to event C indicating that C refines A. In

Event-B the relation between B and A is not explicit, while

the ERS diagram explicitly shows that the atomicity of A is

decomposed into two sub-events, B followed by C. In the case

of single instance modelling, where no parameter is added, the

occurrence of events is indicated using boolean flags rather

than instance sets.

2) ERS Combinators: ERS has four groups of combinators:

1) Sequencing: represented by the left-to-right arrangement

of events.

2) Logical combinators: and, or (multiple choice), xor

(exclusive choice).

3) Loop indicating zero or more executions and represented

by the star symbol.

4) Replicators: all, some, one (generalisations of and, or,

xor respectively) are quantified combinators.

The different combinators of ERS affect the ordering con-

straints of the events. For example, consider the single instance

flow: (E1 and E2) followed by E3. The sequencing guard of

E3 is oE1∧oE2, while in the case of E1 or E2 followed by E3,

the sequencing guard of E3 is oE1 ∨ oE2. Using xor results

in the same sequencing guard as or, with the difference that

E1 and E2 are mutually exclusive, so a guard is added to E1

that E2 has not occurred, and vice versa. In case of a multiple

instance flows, sequencing is represented using the intersection

and union of sets. The previously described constraints are also

represented with invariants.

III. EXTENDING ERS

A. Dynamic Extension

The ERS replicators (all, some, one) introduce a new param-

eter, adding a new dimension to their events. The behaviour of

the replicator events is replicated for different instance values

of the parameter set. All the values of the ERS replicator sets

must be predetermined before executing their events, which

means that ERS lacks the flexibility to model dynamic changes

in workflows. For this we introduce the par replicator which

accepts parameter sets that are not predetermined and can

change during the execution of its events.

(a) all Replicator (b) par Replicator

Fig. 3. ERS Replicators

Fig. 3, illustrates how the ERS replicators introduce a new

dimension p to their single instance event (B). In Fig. 3(a),

the set P cannot change once B starts executing, and applying

all will ensure that C can only be enabled after B executes for

all instance values (p) in the replicator set P . In Fig. 3(b), it

is possible for new values to be added to the replicator set

P during the execution of B. Applying par(p : P ) does not

affect C, but allows zero or more executions of B for different

instance values, which is terminated by C. Fig 4 shows the

Event-B semantics of applying par in Fig. 3(b). Regarding

the Event-B semantics of Fig. 3(a), all adds only grd exp to

B, however the sequencing guard of C is oB = P .

Fig. 4. par Replicator Semantics (Fig. 3(b))

Extending ERS with par makes it possible for ERS to

model and verify workflows that are dynamic in the degree of

concurrency. We can now define a generic structure using ERS

combinators (Fig 5) to model the parallel Producer-Consumer

pattern. Fig 5 illustrates this pattern where it is possible for

one event to produce instances (Produce(p)) for a set (a),

while other instances of a are being consumed (Consume(p)).
Both events, End Produce and End Consume, set the stopping

criteria for producing and consuming instance values of a.

Fig. 5. Parallel Producer-Consumer Pattern

The and combinator illustrates the possible concurrency

between producing and consuming elements. In both the

Produce and Consume events, the number of needed elements

cannot be predetermined and depends on the stopping criteria

defined by the guards of EndProduce and EndConsume. This

makes par a good candidate to represent this behaviour, which

cannot be represented by the original ERS replicators (all,

some, one).

We have also included some natural extensions to the orig-

inal ERS [9] related to the parameter set and loop behaviour.

The original ERS parameter sets only allowed constant sets,

which we generalise to allow any variable expression. We also

generalise the loop to allow more than one child flow, chosen

non-deterministically at each iteration.



B. Exception Handling Extension

In ERS, it is possible to model different cases using the

xor combinator. However, this could lead to complicating the

model with various xor branches representing the different

alternatives. In order to avoid having complex diagrams and

models, we extend ERS with two new combinators (Fig 6)

dealing with exceptions, thus separating the normal expected

case from the exceptional cases.

(a) interrupt Combinator (b) retry Combinator

Fig. 6. ERS Exception Handling Combinators

The new ERS exception handling combinators (interrupt,

retry) consist of two sub-flows, normal (B) and interrupting

(I), where the interrupting sub-flow (I) can stop the execution

of the normal flow (B) before its completion. In Fig 6, I
can execute and interrupt B at any point between B1 and

Bn. In addition to the interrupting feature, retry (Fig 6(b))

allows retrying the normal flow after interruption, by resetting

its control variables (oB1 .. oBn), hence the additional star

symbol of the loop. Another difference is in the enabling of

the follow-on flow/event (C). In the interrupt case, C can be

enabled after the completion of either B or I. In the retry case,

C can only be enabled after the completion of B, where we

usually add interrupt at a higher level to avoid retrying forever.

The Event-B implication of applying the exception handling

combinators to the events at the second refinement level of

Fig 6 is illustrated in Fig. 7, where retry adds an additional

hidden event (reset I) to reset the interrupting flow.

(a) interrupt Combinator Semantics (Fig. 6(a))

(b) retry Combinator Semantics (Fig. 6(b))

Fig. 7. ERS Exception Handling Semantics

The new ERS exception handling combinators are the

only other ERS combinators besides sequencing where their

child events are not commutative, because the effect of the

normal child events and the interrupting child events are not

symmetric. In Fig. 6, the last child of the normal flows are

solid children and these are the only cases where the solid

event must be the last event(s) of a sequential decomposition.

The reason for that is related to Event-B refinement. At the

abstract level, I is disabled once B completes; if the event

refining B was B i (i < n) rather than B n, then events

B i+ 1 to B n could not be interrupted by I since I would

have to be disabled by B i.

IV. EMEREGENCY DISPATCH CASE STUDY

In this section, we model an emergency dispatch system

to illustrate our extensions and show how they can support

dynamic behaviour in Event-B. We also demonstrate the

Event-B semantics of the ERS extensions.

A. Requirements Overview

The emergency dispatch system is responsible for handling

all the incident information, finding the nearest available

resources and monitoring their status, and closing incident

calls. The system requirements can be summarised as follows:

1) Incident Information: For each incident, the control

operator gets information about its type, location and priority.

While gathering information, there is a possibility of being a

duplicate, which sometimes can be discovered late.

2) Incident Management: From the incident details, an

action plan must be determined. The action plan includes

the required resources. Initially from the type and location,

an action plan can be selected from a set of predetermined

plans. Additional resources can be requested and when a stop

message is sent, sufficient resources are present and there

is no need to send further resources. Proposing resources to

incidents should include the quickest available resources.

3) Resource Management: It is possible to reallocate a

resource from a lower priority to a higher priority incident.

Before a resource attends the incident, the system can try

to find quicker resources that become available, but it is up

to the operator to reallocate the quicker resource. Resource

replacement is required in case a resource breaks down or it

is reallocated to another incident.

4) Incident Closure: An incident must not be closed if it

has any assigned resources. A non-duplicate incident must not

be closed if any of the required action plan items are not

completed, nor if a stop message is not received.

B. Refinement Strategy

The model consists of an abstract and nine refinement levels

as follows:

• M0: Models the creation of an incident and the possibility

of duplication.

• M1: Refines the non-duplicate case, introducing the in-

formation gathering, setting the action plan and managing

the incident.

• M2: Models the ability of action plan update by request-

ing new resources.

• M3: Introduces further incident details such as incident

location and type.



• M4: Introduces incident priority and its relation to the

incident type.

• M5: Refines incident management according to the action

plan.

• M6: Handles the possible loss of an allocated resource.

• M7: Details incident handling and the possibility of a

resource loss.

• M8: Introduces physical resources and handling resource

allocation for duplicate incidents.

• M9: Adds further details about the location and duration

of a resource.

We adopted this refinement sequence because it is important

to show from the beginning that there are cases when an

incident deviates from its normal path and does not require

the same management process. The non-duplicate incident

case is the normal path of an incident and the focus of our

model, that is why we introduce the main concepts in the

non-duplicate incident case as early as possible, while the

model is simple and can be easily verified and validated.

Next we introduce the action plan because of its vital role in

the incident management course of action. Later we introduce

design details that determine the required action plan (location,

type, priority). Now, it is possible to relate the action plan

to the incident management. Having enough details, we can

introduce the possible deviation in handling an incident (loss

of resource). We then add more details related to the incident

handling and the different related cases of resource loss. In

all the previous levels we only dealt with logical resources

defined by the action plan, now we introduce the actual

physical resources and the exception handling actions which

are related to the physical resources. More design details

related to physical resources are later added.

The refinement stratgey is also influenced by the ERS

restriction that a combinator can only be applied to simple

events and no combinator can be the direct parent of another

combinator. Such restriction promotes for smaller changes at

each refinement level.

In the following sections, we show some of the important

features in modelling the emergency dispatch system demon-

strating the application of the new ERS combinators and their

corresponding Event-B specifications.

C. Using Interrupt for Duplicate Incidents

In the emergency dispatch model we apply multiple in-

stances modelling to enable possibly simultaneous dispatch

to different incidents. Multiple instance modelling is indicated

by the addition of the parameter i, representing incidents, to

the root2 of the diagram, Fig. 8.

At the abstract level, Fig. 8, we distinguish between two

cases of incidents, duplicate and non-duplicate incidents. We

apply the interrupt combinator to the events NotDuplicate

and IsDuplicate. At this stage the application of interrupt is

similar to xor, the difference between the two combinators

only appears when the normal child (NotDuplicate) is refined.

2The root of the tree represents the process name and not an event.

Fig. 8. Distinction Between Duplicate and Non-Duplicate Incidents

The refinement of the non-duplicate case, Fig. 8, shows that

an incident requires an initial action plan to be determined

(SetInitialAP) by the gathered information (GatherInfo). The

action plan is then followed through during incident man-

agement (ManageIncident). While managing the incident, the

action plan itself may be updated as shown by applying the

and. After that the incident can be closed (CloseIncident).

All these events are applied as long as the incident is not

interrupted by the IsDuplicate event. However, if we use xor

instead of interrupt, once GatherInfo executes IsDuplicate

cannot interrupt the normal flow.

(a) CloseIncident Event (b) IsDuplicate Event

Fig. 9. Event-B Specification of some Events of the Refinement Level (M1)

In Fig. 9, we show the Event-B specification of CloseInci-

dent and IsDuplicate of the first refinement level of the model.

All the guards and the actions of these events are the result

of the ERS diagram in Fig. 8. The guard i /∈ IsDuplicate
(Fig. 9(a)) is the result of interrupt, and will be also inher-

ited by the events (GatherInfo, SetInitialAP, ManageIncident,

UpdateAP). Guard i /∈ CloseIncident (Fig. 9(b)) is also the

result of interrupt to disable IsDuplicate after the completion

of the normal flow. The interrupt combinator behaviour is

ensured by the invariant: CloseIncident∩ IsDuplicate = φ.

D. Parallel Producer-Consumer Pattern for Incident Manage-

ment

The initial action plan is followed through during the

incident management of non-duplicate incidents. However, in

some cases the initial action plan can be updated during the in-

cident management to request additional resources. In Fig. 10,

we show how we apply the parallel producer-consumer pattern

to manage the incident according to a possibly changing

action. The UpdateAp flow represents the producer part, while

ManageIncident flow represents the consumer part.



Fig. 10. Parallel Producer-Consumer Pattern for Managing Incidents

The new dimension (lr) introduced by par, represents the

logical resources. The logical resources are introduced by

the carrier set (LR) in the extended context. In our model

we distinguish between logical resources (LR) and physical

resources (PR). Logical resources are the resources required

by the action plan (ap) to handle the incident, e.g., an incident

may have several different logical resources with the property

class 3 fire engine. Physical resources, will be introduced in

later refinement, are the actual resources to be assigned to the

incident, e.g., a specific fire engine. A physical resource, unlike

a logical resource, can be only allocated to one incident.

The action plan is represented by the data variable ap, which

is added manually to the model in textual form and it is defined

by the following invariants:

inv ap type: ap ∈ INCIDENT ↔ LR

inv ap seq: dom(ap) = SetInitialAP

The first invariant (inv ap type) defines the type of the data

variable ap, which is a relation between incidents and logical

resources (LR). The variable ap is a relation because an

incident can be associated with different logical resources and

a logical resource can be associated with different incidents.

In the second invariant, we are relating the data variable ap to

the control variable SetInitialAP, this is to ensure that setting

the action plan (ap) cannot start before the SetInitialAP event,

and when this event occurs then the incident must have an

action plan (ap). inv ap seq shows how we can combine data

variables (ap) with control variables (SetInitialAP) to enforce

the requirements using invariants.

The action plan for the incident will first be defined by

the event SetInitialAP. The action plan can then be updated

by adding additional logical resources to the action plan

in the event RequestAdditionalRes, while the SendStopMsg

event indicates that the incident manager is satisfied with the

resources available at the incident site and no more resources

are required to attend. At the same time, the event ResHan-

dleIncident will use the logical resources in the action plan

(ap) to handle the incident, while IncidentManaged indicates

the completion of the incident handling by completing all the

tasks, represented by logical resources, in the action plan (ap).

Regarding the producer part of Fig. 10, part of its Event-B

specification is shown in Fig. 11. After setting the initial action

plan, it is possible to update the action plan (ap), by requesting

additional resources. This is done textually by updating ap in

act1 of RequestAdditionalRes. The last guard (i 7→ lr /∈ ap) of

RequestAdditionalRes is also added textually to ensure adding

a new fresh resource to incident (i). The rest are all generated

by the ERS diagram.

Fig. 11. Event-B Representation of the Incident Management Producer Part

The par replicator generates two guards in RequestAddi-

tionalRes. The first guard (lr ∈ LR) is part of our extension,

but associated with any replicator including (all, some, one).

This extension is natural to ERS to define the replicator using

any expression, unlike the original ERS definition, which only

allows constant sets, hence there was no need for such guard.

For example, in the consumer event (ResHandleIncident) the

replicator set is ap[{i}], i.e., the relational image of ap with

respect to {i}). The second guard i /∈ SendStopMsg will

disable requesting additional resources, once a stop message

is sent to indicate that there are sufficient resources to deal with

the incident. It is not always necessary to request additional

resources and change the action plan, this is represented

by the possible zero execution case of the par replicator.

Consequently the sequencing guard of the par follow-on event

(SendStopMsg) and its associated invariant, will not depend

on the par event. Therefore, in Fig. 11, the sequencing guard,

i ∈ SetInitialAp, of SendStopMsg is the same as that of

RequestAdditionalRes.

When a stop message is sent, this does not only mean no

additional resources are needed but also that the incident has

sufficient resources in attendance and no more resources are

required even if they are part of the action plan. This behaviour

is modelled by introducing the data variable notRequired ap

defined as notRequired ap ⊆ ap. This data variable will be

updated with the logical resources of the action plan (ap) that

are not needed any more to manage the incident, as shown

by the manually added action (act1) of SendStopMsg, which

could be also empty. The logical resources that can be added

to notRequired ap, which are defined by grd1 as any set of

logical resources in the action plan of the incident, will be

defined more precisely in later refinement as the action plan

logical resources that are not in attendance.

Note that both events have inherited the interrupt guard

(i /∈ IsDuplicate) of their parent event. In fact every event,

having NotDuplicate as an ancestor will inherit this guard.

Regarding the consumer part all its guards and actions are



automatically generated using the ERS Tool [3], in a similar

way to the producer part.

We have used a combination of data variables and ERS

structures to model the intended behaviour. The parallel

Producer-Consumer pattern, showed how the action plan can

be changed, while the incident is still being managed.

E. Using Retry for Handling Physical Resources

In the previous section, we only dealt with the logical

resources of the action plan. In this section we introduce

physical resources which are the resources that are actually

allocated to an incident and can attend its location. Handling

a resource (consumer part) will be refined as shown in

Fig. 12, presenting the different stages of incident handling

with physical resources. In Fig. 12, we first refine ResHan-

Fig. 12. Introducing Possible Resource Loss and Detailed Incident Handling

dleIncident by applying the retry combinator for an individual

logical resource lr of incident i which allows interrupting the

HandleIncident flow and resetting its control variables in an

attempt to retry the HandleIncident flow. The incident handling

interruption occurs in case a physical resource is removed from

the incident due to reallocation to a higher priority incident

or due to a breakdown. In this case we need to replace the

physical resource with another one to fulfil the tasks of the

required logical resource in the action plan. In the second

refinement we decompose the atomicity of HandleIncident

showing the different stages of a logical resource incident.

Once a physical resource is allocated, it is possible for two

changes to occur to the resource any number of times prior

to attendance or receiving a stop message: either the physical

resource is replaced by a quicker one that becomes available

or the physical resource location is updated. Finally after

a resource attends or receives a stop message, it will be

deallocated from the incident in DeallocateRes event. This

flow can only complete in case no interruption occurs.

As we cannot directly apply a combinator to another in

ERS, we introduce retry first and then decompose the incident

handling. This approach makes the modelling process easier by

making smaller changes at each level. For example, applying

more than one combinator to several events at the same time

can result in more complex sequencing invariants that are

harder to read and prove, whereas dividing these changes in

separate stages and making use of the ERS refinement gluing

invariants will result in simpler sequencing invariants.

The physical resources are introduced using the data vari-

ables alloc and alloc LR. The following invariants, define

alloc and alloc LR and their relationship.

inv1: alloc ∈ PR 7→ INCIDENTS

inv2: ran(alloc) ⊆ SetInitialAP

inv3: alloc LR ∈ PR 7→ LR

inv4: ∀pr, lr.pr ∈ dom(alloc LR) ∧ alloc LR(pr) = lr ⇒

ptype(pr) = ltype(lr)

inv5: dom(alloc) = dom(alloc LR)

The variable alloc maps physical resources to their incident

(inv1). The variable alloc is defined as a partial function

so that each physical resource can be assigned to at most

one incident. The incident must have an action plan which

is why we introduce inv2 to ensure that incidents are in

SetInitialAP. Invariant inv3 defines alloc LR, which assigns a

logical resource to a physical resource. This variable will help

us in keeping track of which logical resource in the action

plan, the physical resource is assigned to. Finally, ptype and

ltype are constants defined in the context to describe the type

of the physical and logical resources respectively. The last two

invariants ensure that the type of a physical resource must be

the same as the type of the logical resource assigned to it, and

the equality of the domains ensures that all physical resources

allocated to an incident are associated with a logical resource.

After introducing the physical resources, the Event-B spec-

ification of AllocateRes and RemoveBrokenRes is shown in

Fig. 13. In Fig. 13(a), the event AllocateRes will allocate

physical resources to the incident according to the logical

resources required by the action plan (ap). In Fig. 13, anything

related to the physical resource pr is modelled textually. The

retry guard demonstrates the possible interruption by either

RemoveBrokenRes or RemoveAlloc, this guard will be added

to every leaf event of HandleIncident.

Fig. 13(b) shows one of the retry interrupting events in the

case that a physical resource (pr) breaks down. Similar to

interrupt, the retry guard will disable the interrupting events

after incident handling completion. In addition to that, retry

will reset the control variables of the normal flow (act retry1

.. act retry4) to enable retrying the normal flow. An additional

resetting event that is not part of the model will also be

generated to reset the interrupting events control variables after

the interrupting flow completes execution.

In Fig. 13(b), The textually added actions will deallocate

the broken resource from the incident. Therefore, we have

modelled the interruption and the handling in the same event.

The other interrupting event RemoveRes in Fig. 12, is similar

to RemoveBrokenRes, the only difference is that the physical

resource will be already deallocated from the incident due to

reallocation to a higher priority incident.

In Fig. 13, both events have the interrupting guard i /∈
IsDuplicate because the duplicate interrupt is introduced at

a higher level. Therefore, IsDuplicate can interrupt the lower

level interrupts (RemoveAlloc, RemoveBrokenRes).



(a) AllocateRes Event

(b) RemoveBrokenRes Event

Fig. 13. Event-B Specification of some Events of the retry combinator

Another feature related to par refinement can be observed

here. When the par event is decomposed, the par disabling

guard will be added to the first event of the flow, but here since

retry has two non-commutative flows, the par guard is added

to the first event of the normal (AllocateRes) and Interrupting

flow (RemoveBrokenRes, RemoveAlloc), the same applies for

interrupt. In addition to that, when a par event is decomposed,

an additional invariant will be generated, with a corresponding

guard added to the par follow-on event. In the last refinement

level of Fig. 13, the par refinement invariant will be:

inv par: ∀i · i ∈ IncidentManaged ⇒

AllocateRes[{i}] = ResCompTask[{i}]

This invariant ensures that the par flow must complete for an

instance if it already started. When decomposing the par event

into some sequence of sub-events, we consider the activity

of the par event is represented by the execution of all the

sub-events and not only the refining event. Additionally, the

par refinement invariant has an important role in verifying the

model. For instance in Fig. 12, the solid event, ResCompTask,

is the refining event of ResHandleIncident, hence its guards

must be stronger than that of its corresponding abstract event

according to the GRD Proof obligation. However, grd par

of ResHandleIncident is only added to the first event of the

par flow (AllocateRes). Having this refinement invariant will

ensure satisfying the GRD proof obligation and avoid the

unnecessary repetition of guards.

This par refinement invariant also helps in maintaining the

incident closure requirement, that any allocated resources must

eventually be deallocated before closing an incident call, this

is because the retry sequencing invariant of ResCompTask:

ResCompTask ⊆ DeallocateRes.

F. Handling Interrupting Duplicate Incidents Using All

Closing the incident requires that no resources are still

assigned to the incident and if the incident is not duplicate, all

the required action plan tasks are completed. The following

invariants are added manually to ensure that the incident

closure requirements are maintained by all the events.

inv6: ∀i.i ∈ (CloseIncident ∪ CloseDuplicate) ⇒

i /∈ ran(alloc)

inv7: ∀i.i ∈ CloseIncident ⇒

ap[{i}] \ notRequired ap[{i}] ⊆ DeallocateRes[{i}]

In Fig. 13, AllocateRes will add new values to alloc and

alloc LR, whereas DeallocateRes will remove physical re-

sources from them, the same way RemoveBrokenRes does.

Therefore, DeallocateRes will ensure that an incident cannot

be closed if it still has allocated physical resources. This

is enforced by inv6 which states that an incident whether

duplicate or not can be only closed if it has no physical

resources allocated to it. As a result a guard will be added to

the incident closure events checking for this property. Invariant

inv7 ensures that all required resources have completed their

tasks and have been deallocated before the incident can be

closed. This is done by checking that all logical resources in

the action plan of the incident i, that are not marked as not

required as a result of a send stop message, are part of the

relational image of DeallocateRes with respect to incident i.

Regarding inv6, DeallocateRes will ensure that physical

resources are deallocated from non-duplicate incidents, but

what about duplicate incidents that are discovered late as

duplicate, i.e., after resource allocation is done? We handle this

issue by refining the IsDuplicate event as shown in Fig. 14.

Fig. 14. Handling Allocated Resources of a Duplicate Incident



Using all in HandleDupAlloc ensures that inv6 is satisfied

by removing all the physical allocations before closing the

duplicate incident in the textually added actions act1 and act2.

This is an example of how we compensated the allocated

resources in the case of duplicate exception. In Fig. 14, it was

possible to use all and benefit from its sequencing constraint

(inv dup seq) that affect CloseDuplicate because the control

variable AllocateRes, which is the parameter set of all, cannot

be changed once IsDuplicate executes.

inv dup seq: ∀i.i ∈ CloseDuplicate ⇒

HandleDupAlloc[{i}] = AllocateRes[{i}]

Invariant inv dup seq, resulting from the all replicator, ensures

that all allocated resources are handled before closing a

duplicate incident. This handling mechanism can be gener-

alised for any multi-instances cases, where we can use all

in conjunction with interrupt to model the exception and the

handling mechanism.

V. MODEL ANALYSIS AND DISCUSSION

A. ERS Extensions

ERS hierarchical development and its explicit support for

event ordering manage modelling complexity in Event-B.

However, the existing ERS combinators are dependent on

static data and cannot adapt to data changes during the model

execution. In [11], we tried to model the emergency dispatch

system using ERS without extensions and UML activity di-

agrams, however we ended up simplifying the requirements

and omitting the design details related to adapting to dynamic

behaviour such as:

• Ability to change the action plan and respond to those

changes after the action plan starts execution.

• Ability to model one workflow instance impacting an-

other workflow instance, e.g., re-allocation of resources

from a low priority incident to a high priority incident.

• Ability to interrupt the execution of the workflow due to

an exception, and how to handle such exceptions.

It is possible to model the last two requirements with activ-

ity diagrams using interruptible regions. However, modelling

the first one is not possible because activity diagrams do

not support multi-instance executions without predetermined

knowledge [12]. Using ERS without the extensions, it is

possible to represent interruption, e.g., duplicate incident in-

terruption, using xor. The disadvantage will be having several

xor branches to represent the different points the interruption

can take place. For example considering Fig. 8 without the

further refinements and event decomposition, we will need six

xor branches. Such a large number of xor branches will not

only make the ERS diagram less readable, but will also result

in a complex Event-B model.

The ERS loop, similar to retry, allows repeating behaviour

by resetting the control variables. However, the loop allows

the normal behaviour to complete more than once, while retry

allows the completion of the normal behaviour only once and

the interrupting event can occur more than once until the

normal child completes successfully. The loop also does not

support the interruption feature, hence it will be difficult to

achieve a behaviour similar to retry using the loop, even if

combined with other combinators.

Comparing par with the other ERS replicators, it is still

difficult to achieve the same behaviour even if their replicator

sets were allowed to change during execution. Par offers

the additional feature of checking a certain milestone is

reached, represented by the follow-on event, before stopping

the behaviour replication.

B. Model Statistics

For the nine refinement levels of the emergency dispatch

system, we have 452 out of 479 proof obligations (94.4%)

automatically discharged using the Rodin provers. The rest

were proved interactively in Rodin. As discussed earlier

ERS can contribute to generating variables, invariants, events,

guards, actions. In Table I, we present the percentages of

ERS generated guards and actions compared to those added

textually using Event-B.

TABLE I
STATISTICS OF ERS GENERATED AND TEXTUALLY ADDED EVENT-B

GUARDS AND ACTIONS

ERS Event-B % grds ERS Event-B % acts

M0 7 0 100 3 0 100

M1 19 0 100 7 0 100

M2 23 5 82 8 3 73

M3 29 9 76 10 6 62.5

M4 35 14 71 11 8 58

M5 41 14 74.5 12 8 60

M6 51 14 78.5 16 8 67

M7 82 24 77 27 8 77

M8 88 36 71 30 18 62.5

M9 0 10 0 0 3 0

Total 88 46 66 30 21 59

In all the machines (M0-M8), we use ERS refinement,

except in the last refinement level, we only extend the model

with some design details using textually added data variables.

The first two machines are exclusively generated by the ERS

diagrams with no textually added Event-B details. Using the

ERS refinement approach, the events are only refined and not

extended, that is why we have an increasing number of guards

and actions from M0 to M8. Almost two thirds of the total

guards and more than half the total actions are generated by

the ERS diagram. The percentage of generated guards is higher

than that of actions because the ERS actions are only used to

record the occurrence of the event or to reset it (e.g., retry)

while the data manipulation is done textually using Event-B.

The ERS guards not only contribute to the ordering of the

events but also the refinement correctness and in several cases

we related the ERS control variables to the data variables using

invariants, which saved us from having additional guards to

model the system behaviour. This shows how ERS can reduce

the modelling effort especially if used properly before starting

the actual Event-B modelling to make design decisions.



VI. CONCLUSIONS AND RELATED WORK

In this paper we have presented an extension to ERS that

support dynamic behaviours, such as the parallel producer-

consumer pattern, in addition to supporting interruptions and

presenting different exception handling techniques (retry, in-

terrupt + all), making ERS more adaptable to changes. We

have also shown how to translate the ERS extensions to Event-

B by applying them to the emergency dispatch system. ERS

support for the Event-B stepwise refinement and its combina-

tors facilitate the Event-B modelling and help make refinement

decisions before starting the formal modelling using Event-

B, that is why it is important to make ERS more dynamic,

widening the scope of ERS application.

Various approaches integrate state-based and process-based

formalisms in an attempt to explicitly model workflows. For

instance, [13] integrates Event-B with CSP, while [14], [15]

extends Event-B with special expressions similar to process

algebra, called flows. A new language (Circus) combining

Z and CSP is defined in [16]. Combination of classical B

and CSP is also defined in [17], [18]. ERS gets its seman-

tics by transforming it to Event-B and can contribute to

the underlying Event-B model, hence its meaning is given

entirely using Event-B. Such strong integration gives the ERS

control variables access to the state-based variables, making

it possible to relate them using invariants. This is in contrast

with the above mentioned approaches where they essentially

combine different formalisms. Furthermore, the process alge-

bra based constructors do not support interruptions such as

the new ERS interrupt and retry. Similar to ERS, iUML-

B statemachines [19], [20], explicitly model control flow in

Event-B and contribute to the underlying Event-B model.

However, iUML-B statemachines is state-oriented explicitly

modelling the transitions from one state to the other, in contrast

to the process-oriented ERS. All the previously mentioned

approaches do not provide explicit visualisations of the event

refinement relationships the way ERS does.

Comparing the new ERS combinators to popular workflow

modelling approaches such as UML [21] activity diagrams and

BPMN [22], both do not support the addition of new instances

once a task has commenced execution. This is Dynamic

replication without a priori knowledge, which is one of the

patterns of the workflow patterns initiative [12], Unlike BPMN

and activity diagrams, this pattern is supported by the ERS

par replicator and the parallel producer-consumer pattern. On

the other hand, both support structured and arbitrary cycles,

whereas ERS only supports structured iteration and replication.

Regarding exception handling, [23] and [24] formally define

BPEL compensation mechanisms using Event-B, with [23]

focusing on the role of Event-B invariants during refinement.

Our approach only provides the interrupting mechanism which

the user can refine and define their own handling and compen-

sating activities, with retry having an additional feature that

supports compensation by facilitating redoing the activity.

ERS can result in many refinement levels, hence the need

to tackle modularity by model decomposition. In the future,

we would like to integrate model decomposition with ERS and

show how ERS can benefit the model decomposition strategies.

ACKNOWLEDGMENT

This work is partly supported by the PRiME project (See

www.prime-project.org for more information).

REFERENCES

[1] A. Fathabadi, M. Butler, and A. Rezazadeh, “A Systematic Approach
to Atomicity Decomposition in Event-B,” vol. 7504, pp. 78–93, 2012.

[2] M. Butler, “Decomposition Structures for Event-B,” in IFM. Springer,
2009, vol. LNCS 5423, pp. 20–38.

[3] D. Dghaym, M. Trindade, M. Butler, and A. Fathabadi, “A Graphical
Tool for Event Refinement Structures in Event-B,” in International

Conference on Abstract State Machines, Alloy, B, TLA, VDM, and Z.
Springer, 2016, pp. 269–274.

[4] J. Abrial, M. Butler, S. Hallerstede, T. Hoang, F. Mehta, and L. Voisin,
“Rodin: an open toolset for modelling and reasoning in Event-B,”
International Journal on Software Tools for Technology Transfer, vol. 12,
pp. 447–466, 2010.

[5] M. Leuschel and M. Butler, “ProB: A model checker for B,” in FME

2003: Formal Methods, ser. LNCS 2805, K. Araki, S. Gnesi, and
D. Mandrioli, Eds. Springer-Verlag, 2003, pp. 855–874.

[6] J. Abrial, Modeling in Event-B: System and Software Engineering.
Cambridge University Press, 2010.

[7] ——, The B-Book: Assigning Programs to Meanings. Cambridge
University Press, 1996.

[8] R.-J. Back, “Refinement calculus, part II: Parallel and reactive pro-
grams,” in Stepwise Refinement of Distributed Systems Models, For-

malisms, Correctness. Springer, 1990, pp. 67–93.
[9] A. S. Fathabadi, M. Butler, and A. Rezazadeh, “Language and tool

support for event refinement structures in Event-B,” Formal Aspects of

Computing, vol. 27, no. 3, pp. 499–523, May 2015. [Online]. Available:
http://eprints.soton.ac.uk/366750/

[10] M. A. Jackson, System Development. Englewood Cliffs, N.J. : Prentice-
Hall, 1983.

[11] D. Dghaym, M. Butler, and A. Fathabadi, “Evaluation of graphical
control flow management approaches for Event-B modelling,” Electronic

Communications of the EASST, 2013.
[12] N. Russell, A. H. Ter Hofstede, and N. Mulyar, “Workflow controlflow

patterns: A revised view,” 2006.
[13] S. Schneider, H. Treharne, and H. Wehrheim, “A CSP approach to

control in Event-B,” in International Conference on Integrated Formal

Methods. Springer, 2010, pp. 260–274.
[14] A. Iliasov, “On Event-B and control flow,” 2009.
[15] ——, “Tutorial on the Flow plugin for Event-B,” 2010, In: Workshop

on B Dissemination [WOBD] Satellite event of SBMF, Natal, Brazil.
[16] J. Woodcock and A. Cavalcanti, “The semantics of circus,” in Interna-

tional Conference of B and Z Users. Springer, 2002, pp. 184–203.
[17] M. Butler and M. Leuschel, “Combining CSP and B for Specification

and Property Verification,” January 2005, event Dates: 18-22 July 2005.
[Online]. Available: https://eprints.soton.ac.uk/260388/

[18] S. Schneider and H. Treharne, “CSP theorems for communicating B
machines,” Formal Aspects of Computing, 2005.

[19] C. Snook, “iUML-B Statemachines: New Features and Usage Exam-
ples,” in Proceedings of the 5th Rodin User and Developer Workshop,

2014, M. Butler and S. Hallerstede, Eds. University of Southampton.
[20] C. Snook and M. Butler, “UML-B and Event-B: an integration of

languages and tools,” in The IASTED International Conference on

Software Engineering - SE2008, 2008.
[21] J. Rumbaugh, I. Jacobson, and G. Booch, The Unified Modelling

Language Reference Manual. Addison-Wesley, 1998.
[22] M. Chinosi and A. Trombetta, “BPMN: An introduction to the standard.”

COMPUTER STANDARDS & INTERFACES, vol. 34, no. 1, pp. 124 –
134, 2012.

[23] G. Babin, Y. At-Ameur, and M. Pantel, “Web Service Compensation
at Runtime: Formal Modeling and Verification Using the Event-B
Refinement and Proof Based Formal Method,” IEEE Transactions on

Services Computing, vol. 10, no. 1, pp. 107–120, Jan 2017.
[24] I. Ait-Sadoune and Y. Ait-Ameur, Formal Modelling and Verification

of Transactional Web Service Composition: A Refinement and Proof

Approach with Event-B. Springer, 2015, pp. 1–27.

http://eprints.soton.ac.uk/366750/
https://eprints.soton.ac.uk/260388/

	Introduction
	Background
	Event-B
	Structure
	Refinement

	Event Refinement Structures (ERS)
	ERS Semantics
	ERS Combinators


	Extending ERS
	Dynamic Extension
	Exception Handling Extension

	Emeregency Dispatch Case Study
	Requirements Overview
	Incident Information
	Incident Management
	Resource Management
	Incident Closure

	Refinement Strategy
	Using Interrupt for Duplicate Incidents
	Parallel Producer-Consumer Pattern for Incident Management
	Using Retry for Handling Physical Resources
	Handling Interrupting Duplicate Incidents Using All

	Model Analysis and Discussion
	ERS Extensions
	Model Statistics

	Conclusions and Related Work
	References

