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Extending Forest Inventories and Monitoring 
Programmes Using Remote Sensing: A Review

Daniel McInerneya, Juan Suarezb, Maarten Nieuwenhuisc 
Abstract
This paper presents a review of remote sensing technologies that are applied in forestry. It 
presents an overview of the data sources and applications that are used to map, monitor and 
estimate forest parameters. In particular, it deals with methods that use data from space borne 
sensors as well as methods that utilise terrestrial, active remote-sensing methods. The paper 
also comments on techniques that have already been used in Ireland, but also discusses other 
methodologies	 that	 are	 relevant	 to	 the	 Irish	 forest	 sector,	 including	 supporting	 field	 based	
inventories, updating digital map datasets and providing high-resolution forest stand estimates 
at a range of scales. In addition, the paper presents techniques to monitor land-use, land-use 
change	and	forestry	(LULUCF)	and	to	upscale	field	plot	measurements	with	remotely	sensed	
data. 
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Introduction
Field inventory techniques have been employed in forestry to assess and monitor 
forests at a range of scales, from stand management through to regional and national 
inventories. These inventories are based on sampling methods - either random, 
systematic,	 stratified	 or	 cluster	 sampling.	 Using	 the	 data	 collected	 during	 these	
inventories, they provide a direct means of inferring forest parameter estimates of 
forest areas. 
 Due to the extent of forest resources, forest practitioners have long considered 
remotely-sensed imagery as a useful source of data to incorporate into their inventory 
and monitoring practises. Aerial photography has been used since the early 1940s to 
map the extent of forest resources as well as to derive other stand information, such as 
species composition and the extraction of tree height using stereo-photos (Lund et al. 
1997). Its use, now in digital format, continues to be widespread within national and 
stand forest inventories; however, in recent years, in some cases their use has been 
replaced by spaceborne satellite imagery due to its comparatively lower cost per unit 
area (Tomppo et al. 2008a; McRoberts et al. 2002).
	 Since	the	launch	of	the	first	Landsat	sensor	in	1972,	the	multi-spectral	nature	of	the	
resulting images has been integrated into regional and large-scale forest monitoring 
programs (McRoberts and Tomppo 2007). Although the spatial resolution (the 
individual size of each picture element) is coarser than in aerial photography, the 
synoptic view, image information from a wider light spectrum and large extent of 
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multi-spectral satellite images offers substantial advantages for forest inventories. Over 
the past four decades the number of Earth observation satellite sensors has increased 
exponentially, ranging from low resolution to very high spatial resolution imaging 
sensors. More recently, active sensors, such as RADAR and LiDAR instruments have 
gained considerable popularity due to their ability to record data independently of 
light and prevailing weather conditions, whilst producing high resolution information 
pertaining to the structure of the Earth’s surface and, in particular, living vegetation. 
 The aim of this paper is to provide a comprehensive review of remote sensing 
research and operational use cases relevant to forest monitoring and forest inventory 
programmes. It focuses on the use of optical satellite imagery and active remote-
sensing data for forest mapping and outlines the principle advantages and limitations 
of these technologies within forestry applications in Ireland. It concludes with an 
outlook on future developments in earth observation science and an overview of 
opportunities that exist for forest monitoring at a range of spatial scales.

Remote Sensing
Remote	Sensing	can	be	very	loosely	defined	as	a	process	of	collecting	information	
without coming in contact with the object (Lillesand et al. 2008). With respect to 
Earth observation, it can be considered to relate to the acquisition of imagery of the 
Earth’s surface.
 Efforts to acquire aerial imagery began at the start of the 20th Century using 
cameras mounted on aeroplanes, balloons and kites. These technologies were adapted 
and	refined	largely	for	military	reconnaissance	purposes	during	the	First	and	Second	
World	 Wars	 (Campbell	 2002).	 The	 benefit	 of	 this	 technology	 was	 subsequently	
identified	and	used	by	geographers,	geologists	and	land	resource	managers	(Campbell,	
2002). It has long been acknowledged that much information relevant to forestry is 
discernible on a variety of image datasets and, as a result, a myriad of techniques has 
been developed to classify forest land in terms of forest related variables that can 
be seen on the imagery (Horler and Ahern, 1986; Varjo 1996; Wynne et al., 2000; 
McRoberts et al. 2002; Pekkarinen et al. 2009).
	 The	first	step	to	acquire	space	borne	remotely-sensed	data	was	taken	by	the	United	
States National Aeronautics and Space Administration (NASA) on the 23rd of July 
1972 with the successful launch of the Earth Resources Technology Satellite (ERTS-
1), which was later renamed Landsat 1. The Landsat program continued and the 
technology improved as new sensors were launched. This has led to one of the largest 
and most comprehensive archives of remotely sensed imagery of the Earth, spanning 
four decades. This archive was recently made publically available free of charge 
by the United States Geological Survey at http://glovis.usgs.gov. After Landsat, 
numerous countries began to develop and launch their own sensors (e.g. France with 
the	Systēme	Pour	l’Observation	de	la	Terre	(SPOT)	in	1986,	India	Remote	Sensing	
in 1989/1991, European Space Agency ERS sensor in 1991, the Disaster Monitoring 
Constellation [DMC] based in England in 2002, and a range of privately owned 
sensors, for example Ikonos in 1999). As a result, in the 21st century numerous sensors 
are acquiring imagery of the Earth at a range of spatial and spectral resolutions with 
varying swath widths. In addition, the development of sensor technology is advancing 
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and improving at a very fast rate with an associated decrease in the image cost per unit 
area.

Techniques of forest monitoring
Over the last decade there has been an increased need to monitor forests to assess 
national-level compliance with international conventions and to quantify global 
public goods, such as protected forest areas and the contribution of forests to carbon 
sequestration (World Bank 2008). Data emanating from national forest inventory 
and remote sensing are both objective means of addressing these needs. Both can be 
precisely	 overlaid	 between	 different	 time	 periods	within	 specific	 geographic	 areas	
and can be used for retrospective spatial analysis. However, the spatial scales relating 
to the estimation of parameters differ substantially when national forest inventories 
(NFI) data are used in isolation or in conjunction with satellite imagery.  In addition, 
data acquired from satellite sensors tends to be updated at much more regular and 
consistent intervals. 
 Numerous studies have demonstrated that remote sensing can substantially 
improve forest resource assessments with respect to the added value that the data offer 
to estimate and map forest variables at a range of scales. In addition, they provide an 
objective source of data, which can be used for repeated and retrospective analysis 
(Reese et al. 2002; McRoberts 2008; Tomppo et al. 2008a).
 Forest inventories, notably NFIs, extend over large areas and the synoptic view of 
the landscape provided by remote sensing systems is clearly advantageous. In addition, 
the repeated acquisition and the objective nature in which the images are acquired are 
considerable	 benefits,	 thus	 complementing	 sample-based	 forest	 inventories.	 These	
benefits	were	 identified	during	the	early	1980s	and	research	was	 initiated	 to	assess	
the potential of integrating remotely sensed data into forest monitoring programmes 
(Häme et al. 1987; Tomppo 1991). Remotely sensed data have since been used for:
 •			 classification	(identification	of	forest,	land-use	and/or	land-cover	classes);
 •  estimation or prediction of continuous parameters, for example timber 
  volume or basal area per hectare.

Classification Studies
Satellite	 image	 classification	 uses	 spectral	 information	 represented	 by	 the	 satellite	
image spectral bands to classify each individual pixel based on the spectral information 
stored	 in	 the	 image	 pixel.	 This	 type	 of	 classification	 is	 termed	 spectral	 pattern	
recognition.	In	general,	the	classification	process	assigns	each	image	pixel	to	a	one	
landcover (e.g. water, coniferous forest, deciduous forest, corn, wheat, etc.) or landuse 
(forest	agriculture,	urban	fabric	etc.)	class.	The	resulting	classified	image	consists	of	
a mosaic of pixels, each of which belong to a particular theme, and is considered a 
thematic	“map”	of	the	original	image.	Satellite	image	classification	can	be	carried	out	
in two ways: unsupervised, where no training or reference information is provided to 
aid	the	classification	and	generally	used	for	exploratory	image	analysis	or,	supervised	
where	an	expert	provides	‘ancillary	data’	to	guide	the	classification	algorithm.	
 The use of imagery acquired by different sensors has led to a range of applications 
to	 map	 forests	 at	 different	 scales.	 Forest	 classification	 over	 large	 areas	 has	 long	
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been	 researched	 to	 provide	 broad	 classifications	 of	 forest	 types.	 European	 efforts	
have included the use of data from the Advanced Very High Resolution Radiometer 
(AVHRR) sensor system (Häme et al. 2001; Schuck et al. 2003), while more recently 
this	work	was	extended	by	Pekkarinen	et	al.	(2009)	to	improve	the	classification	of	
European forest cover using Landsat ETM+ data and the Corine Land Cover 2000 
(CLC2000) database and a k-means clustering and kNN technique. Similar approaches 
were employed by Hagner and Reese (2007) in Sweden to provide an automatic 
classification	of	forest	types	for	use	in	the	CLC	database	derived	from	Landsat	TM/
ETM+	data,	field	inventory	data	and	a	neural	network.	
 Horler and Ahern (1986) utilised spectral radiation data from Landsat TM image 
scenes as a means of identifying the separability of forest classes in a study area in 
western Ontario, Canada. Two main techniques were used, namely feature selection 
and principal components. Feature selection, is a statistical technique that selects a 
subset of explanatory variables based on their importance to build robust statistical 
models	thereby	improving	classification	performance.	Principal	component	analysis	
(PCA) is another statistical technique that transforms a number of potentially 
correlated explanatory variables into a number of uncorrelated bands. This technique 
is frequently used to reduce or compress the number of explanatory variables into a 
number	of	principal	components,	in	which	the	first	two	components	hold	the	majority	
of the information of the entire set of variables. In the above mentioned study, it was 
found	that	the	best	three	TM	bands	(3,	4	&	5)	were	almost	as	good	as	the	first	three	
principal components.  
 Decision tree methods (i.e. techniques that recursively partition a dataset based on 
binary rules) have been used by researchers to analyse and classify remotely sensed 
data	 as	 an	 alternative	 approach	 to	 traditional	 image	 classification	 approaches	 for	
landcover	mapping	(Hansen	et	al.	1996).	A	non-parametric	supervised	classification	
based on a decision tree model was used by Joy et al. (2003) to classify vegetation 
types	 in	Arizona	 using	 field	 inventory	 data,	 Landsat	 TM	 imagery	 and	 additional	
spatial data. The overall accuracy achieved was 74.5%, with errors caused by the lack 
of clear differentiation between mixed conifer and spruce dominated stands. Brown 
de	Coulston	 et	 al.	 (2003)	 used	 a	 decision	 tree	method	with	field	 observations	 and	
Landsat ETM+ data to map vegetation types in Pennsylvania, USA, and achieved an 
accuracy of 99.5% when only forest and non-forest classes were considered. Landuse 
data at different scales were used in conjunction with Landsat data and a regression 
tree method in the Amazon by Cardille and Clayton (2007) to reinterpret existing 
land-cover	classifications	by	determining	what	categories	are	most	highly	related	to	
the polygon land-use data across the study area. It is important to point out that the 
above-mentioned errors are based on the estimation errors that are calculated at a 
pixel level, i.e. the level of agreement and disagreement between validation pixels 
with	 those	 in	 the	 classification.	These	pixel-based	 errors	 do	not,	 however,	 provide	
a means of calculating the errors associated with the area estimates of the different 
vegetation cover types within the study area, which are frequently sought.

Forest Parameter Estimation Studies
With respect to forest parameter estimation, Franklin (1990) concisely summarised 
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the methodology involved in these approaches as follows:
	 1.		 Establish	a	number	of	field	inventory	sampling	points;
 2.  Collect forest structure information at these points;
 3.  Use remotely-sensed satellite imagery, locate the points on the image;
 4.  Extract the image features relating to each sampling point;
	 5.		 Develop	the	model	relating	the	field	data	to	the	image	features;
 6.  Use the model to predict the forest parameters based on the spectral data;
 7.  Develop and select error estimation methods;
 8. Validate the predictions and estimates at pixel level and for different areal 
  units.

 Once a suitable model is produced using the image features as explanatory variables, 
the model is inverted to predict the forest stand characteristics for unsampled forest 
areas. The range of datasets that have been integrated into these types of inventories 
is diverse, but in general the modelling techniques have relied on regression models, 
such as stepwise regression, regression trees, most similar neighbour and k-Nearest 
neighbour (kNN) estimation. However, other techniques such as neural networks 
(Atkinson and Tatnall 1997) and boosting and bagging (Briem et al. 2002) also exist, 
whose	properties	and	configurations	vary	based	on	the	inventory,	image	and	ancillary	
datasets used.
	 The	integration	of	remotely	sensed	satellite	imagery	with	field	inventory	data	for	
the	estimation	of	forest	stand	parameters	dates	back	to	the	1980s.	Forest	classification	
maps	were	already	used	effectively	for	stratification	purposes	and	to	plan	field	surveys,	
and it soon became clear that spatially explicit estimates of forest parameters would 
be highly useful to support strategic forest management and planning.
 As in all remote sensing applications, the measurement and estimation of forest 
resources relies on the interactions of electro-magnetic radiation with the target object 
and subsequent analysis of the returned signal recorded by the sensor. Statistical 
relationships between the EMR signal and the forest parameters are then analysed. 
One of the earliest applications in this area was developed by Jaakkola (1983), who 
used Landsat TM imagery within a multi-stage timber inventory in a study area 
in Finland. His research consisted of estimating timber volume using regression 
equations that used the image data as independent variables. Timber volumes of 
Scots	 pine	 and	Norway	 spruce	were	 quantified	 by	Ardo	 (1992)	 using	 the	 spectral	
values from Landsat 5 TM imagery for a study area in southern Sweden. Data from 
99 randomly selected forest compartments were used to develop a regression model 
between spectral radiation data and the measured timber volume. The predictions 
were then compared against 99 forest compartments located within the study area of 
1,335	ha	for	which	field	data	were	available	and	it	was	found	that	there	was	a	close	
correlation between the measurements and predictions.
 Häme et al. (1987) used spectral data from three SPOT 1 XS images to estimate 
stand characteristics ranging in size from 0.5 - 5 ha in Finland. The parameters 
estimated using regression models included tree stem volume, mean age and mean 
diameter. It was concluded that better estimates could be achieved using Landsat TM 
imagery as opposed to SPOT-1 due to the higher spectral resolution of the Landsat 
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data, despite the higher spatial resolution of the latter sensor.
 Research in this area continued to be pioneered by Scandinavian researchers, 
who	were	 first	 to	 successfully	 integrate	 such	 a	method	 into	 a	NFI	 (Tomppo	 et	 al.	
2008b). The Reference Point Sample (RSP) technique was proposed by Kilkki and 
Paivinen (2006) as a pixel based approach that assigns known ‘reference’ pixel data 
to	 unknown	 pixels	 through	 a	weighting	 system.	This	was	 subsequently	 refined	 to	
integrate additional sources of data and was implemented by Tomppo (1991) on an 
operational basis within the Finnish National Forest inventory. This technique was and 
remains fully operational within the Finnish NFI and it has become known as ‘Multi-
Source National Forest Inventory’ (MSFI) (Tomppo 1996), as it not only combines 
field	 inventory	data	with	optical	 satellite	 imagery,	 but	 also	uses	digital	 terrain	 and	
ancillary spatial data. MSFI is underpinned by k-Nearest Neighbour (kNN), a non-
parametric	statistical	estimation	technique.	The	process	links	field	inventory	plot	data	
with	spectral	responses	of	a	satellite	image	and	imputes	the	known	variables	of	field	
plots to unsampled forest areas. This basic principle was adapted by other researchers, 
who proposed methods related to kNN, but which differed based on the underlying 
statistical relationships, e.g. most similar neighbour (Moeur and Stage 1995) and 
Gradient Nearest Neighbour (GNN) (Ohmann and Gregoire 2002).
 The following describes the technique in very broad terms, but for further details 
on this technique, the reader should consult the following references (Fix and Hodges, 
1951). However, in very broad terms the technique utilises two sets of observations, 
the	 first,	 the	 reference	 dataset	 contains	 the	 spatial	 location	 of	 the	NFI	 plot,	 forest	
parameter plot estimate and associated spectral information retrieved from the satellite 
image based on its pixel or neighbourhood of pixels. The set of target pixels consists 
of all unsampled forest pixels for which a forest parameter estimate is sought. Each 
target pixel is assigned a weighted average of the plot level forest variables calculated 
from a subset of the reference data set that consists of the nearest pixels, based on the 
similarity of pixels in their spectral information. This basic principle was adapted by 
other researchers, who proposed methods related to kNN, but which differed based on 
the underlying statistical relationships, e.g. most similar neighbour (Moeur and Stage 
1995) and Gradient Nearest Neighbour (GNN; Ohmann and Gregoire 2002).
 Due to its transparency and success, the MSFI approach was adopted and adapted 
to a variety of forest conditions. The Swedish Forest Authorities applied the technique 
within their NFI (Holmgren et al. 2000; Nilsson 2002) using a range of image datasets, 
but primarily using Landsat TM/ETM+, and more recently SPOT 4/5 XS imagery. 
The outputs from the Swedish MSFI have been applied to habitat modelling for 
moose and birds by Reese et al. (2002). The MSFI technique has been widely tested 
throughout the world: in New Zealand to assist in their preharvest inventory, where 
it was applied to a 1,000 ha block of Radiata pine (Tomppo et al. 1999), in Norway 
(Gjertsen et al. 1999; Gjertsen 2007), in Mediterranean forest conditions in Italy to 
estimate basal area using Landsat 7 ETM+ data (Maselli et al. 2005; Baffetta et al. 
2009),	in	central	Europe	where	Koukal	et	al.	(2005)	tested	the	influence	of	radiometric	
calibration on forest estimates in the Austrian NFI, and for mapping temperate forest 
types in Scotland (McInerney and Suarez 2005).
	 A	recent	research	area	has	focused	specifically	on	the	error	estimation	techniques	
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employed in remote sensing. Rather than only considering the calculation of 
errors (RMSE and associated standard errors) at pixel level, the use of measures to 
determine	the	uncertainty	of	predictions	and/or	classifications	over	larger	geographic	
areas, extending outside of the study region, has been investigated. This is considered 
a necessary extension to the validation of remote sensing analysis as pixel based 
estimation techniques provide only necessary measures for individual study areas, 
and cannot often be used to make direct inferences over larger areas. Some examples 
of these types of calculations can be found in McRoberts et al. (2002), Tomppo and 
Halme (2004) and Kim and Tomppo (2006). 
 It is evident from the above review that optical satellite imagery is being widely 
used to assist in the monitoring of forests and in the measurement of forest parameters. 
Similarly, a wide range of traditional as well as new statistical techniques have been 
employed	 in	 the	 analysis	 of	 satellite	 imagery,	 in	 conjunction	 with	 field	 inventory	
data, while a variety of ancillary datasets have also been integrated in the analysis 
procedures to improve the estimation of forest parameters and prediction of forest 
variables	through	pre-	and	post-stratification	approaches.

Remote Sensing studies in Ireland
Over the past two decades a number of forestry remote sensing projects have been 
carried out in Ireland, primarily to assess the spatial distribution and composition of 
forest stands. The Department of Agriculture, Fisheries and Food continues to make 
operational use of Ordnance Survey Ireland (OSi) digital aerial photographs for the 
monitoring of the national forest estate, in particular to update forest vector maps and 
for	pre-stratification	of	national	forest	inventory	plots	(Forest	Service	2007).	
 The largest national remote sensing project that was carried out in Ireland resulted 
in the creation of the Forest Inventory and Planning Systems (FIPS) datasets in 
1998. This project was lead by the Irish Forest Service with support from Coillte 
Teoranta, the European Commission’s Joint Research Centre in Italy and the National 
Remote Sensing Centre in the United Kingdom. Twenty forest development classes 
were mapped across Ireland using medium resolution optical satellite imagery from 
the Landsat TM sensors and digital aerial photographs. The satellite images were 
classified	using	a	two-phase	process	consisting	of	a	neural	network	and	a	maximum	
likelihood	 classification,	 which	 was	 carried	 out	 using	 SILVICS	 (McCormick	 and	
Folving 1998; Gallagher et al. 1999). The FIPS project superseded two pilot projects 
that had established the usefulness of remote sensing and digital spatial data for the 
identification	of	the	spatial	distribution	of	forest	stands	in	Ireland	(MacSiúrtaín	et	al.	
1994).
 Following on from the development of FIPS, the Irish Forest Soils project was 
carried out by researchers at Teagasc to create a series of national, digital thematic 
maps	that	included	a	soil	classification	map,	a	map	of	parent	materials	and	a	landcover	
map	(Bulfin	et	al.	2002;	Loftus	et	al.	2002).	These	maps	were	produced	through	the	
use	of	satellite	image	classification	and	photogrammetric	techniques,	based	on	OSi	
aerial photography, digital terrain data and Landsat 5 TM imagery. 
 Coillte Teoranta conducted a research study that focussed on the estimation of 
forest health in coniferous plantations using colour infra-red photography (Stanley 
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et al. 1996). In particular, the research exploited the use of the infra-red band of the 
aerial photos to assess the extent of discolouration within the foliage of coniferous 
tree species. 
 More recently, a number of research studies have been carried out to evaluate 
the use of remote sensing for forest mapping and monitoring. McInerney and 
Nieuwenhuis	(2009)	estimated	standing	volume	and	basal	area	per	hectare	using	field	
inventory data from the Irish NFI, medium resolution optical satellite imagery from 
the SPOT 4/5 sensors and ancillary spatial data. Pixel based estimates of the two 
above mentioned parameters were calculated for unsampled forest pixels (i.e. pixels 
with no NFI information) using two supervised non-parametric techniques, namely  
kNN estimation and the Random Forest algorithm in regression mode (Breiman 
2001). These techniques can be considered to be “supervised” in so far as a reference 
set of variables is used to impute values across the forest areas of the satellite image, 
based on a weighted average of the reference data. The weighted average is calculated 
based on the spectral similarity of the unsampled forest pixel to observations in the 
reference set. Within the study, it was found that at a pixel level, the relative Root 
Mean Square Errors (RMSEs) were approximately 50 – 59% for volume and basal 
area per hectare in a study area in the mid-west of Ireland. This research demonstrated 
that it is possible to regionalise NFI stand parameters using medium resolution satellite 
imagery. In particular, it demonstrates that it can produce more detailed, spatially 
referenced forest resource information at a regional scale than could be achieved from 
the	sole	use	of	NFI	data.	With	some	refinements,	the	methodology	could	be	used	on	
an	operational	basis	 to	support	field-based	forest	 inventories	 in	Ireland.	In	order	 to	
achieve this, it will be necessary to produce areal based estimation errors over large 
areas, e.g. at provincial and national levels, in addition to the pixel based estimation 
errors presented above.
 As part of the Global Monitoring and Environmental Security (GMES) Service 
Element, a consortium lead by Metria, a Swedish Geomatics company, and supported 
by University College Dublin and the Irish Forest Service, carried out an image 
classification	of	Landsat	TM/ETM+,	SPOT	4/5	and	IRS	images	for	two	study	areas	
in Ireland, namely county Wicklow and parts of Mayo/Roscommon. The focus of the 
study was to produce a high resolution forest mask using a minimum map unit of 1 ha 
for three time dates: 1990, 2000 and 2006 (McInerney et al. 2010b). In particular, the 
project sought to map and quantify forest change, focusing in particular on afforestation 
on peatland areas and changes in forest cover during the 16-year period. Such research 
demonstrates the way in which LULUCF can be measured using archived satellite 
imagery and provide much needed information on the state of Irish forests. 

LiDAR
In recent years, light detection and ranging (LiDAR) data has gained considerable 
interest. This is due to the high quality and resolution of the returned datasets, which 
consist of three-dimensional point data from the top of the vegetative surface (Digital 
Surface Model) and non-vegetated surface (Digital Terrain Model). The datasets 
consist of points that are precisely located using a differential GPS and highly precise 
timing	clock.	Figure	1	provides	a	simplified	overview	of	the	processing	of	airborne	
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LiDAR data to derive forest based metrics. Raw LiDAR data are acquired over an area, 
with	the	raw	data	analysed	within	a	processing	system.	The	dataset	consists	of	a	first	
return, representing the top of the vegetation canopy, and a last return, representing 
the	ground	surface.	In	general,	these	returns	are	filtered	to	remove	any	anomalies	and	
are interpolated to produce a continuous surface of values. These interpolated dataset 
produce the digital terrain model (DTM) and the digital surface model (DSM). The 
subtraction of the DTM from the DSM results in the canopy height model (CHM), 
which can be considered a digital representation of the top of the vegetation canopy or 
of the dominant trees. By using region growing and pattern recognition techniques, it 
is possible to identify individual trees and to delineate tree canopies within the canopy 
height model (Figure 2). 
 Numerous studies have demonstrated the use of airborne LiDAR to estimate forest 
stand metrics, such as stand canopy height (Gobakken and Naesset 2004; Naesset 
1997), individual tree heights (Suarez et al. 2005), above-ground biomass (Patenaude 
et	 al.	 2004)	 and	 species	 classification	 (Moffiet	 et	 al.	 2005).	 Clifford	 et	 al.	 (2010)	
demonstrated the use of LiDAR for a study area in Ireland and determined that the 
LiDAR-derived estimates of tree height compare very favourably with conventional 
field	based	measurements.	A	recent	review	article	by	van	Leeuwen	and	Nieuwenhuis	
(2009) summarises studies on space-borne, airborne and terrestrial LiDAR applications 
in forestry worldwide and the potential of these different LiDAR sensors, on their own 
or in combination with each other, to derive detailed measurements of trees and forest 
stands.   
 It is clear that LiDAR can provide detailed information on the structure of forest 
resources. In particular, tree height, crown dimensions and species can be separated 
using information on branch and leaf structure. However, one of the principal 
limitations to the operational use of LiDAR in forestry is the cost per unit area in 
acquiring data, with the general rule: the more detailed the data (i.e. more points 
per unit area), the more costly it is. However, it has been demonstrated that sub-
sampling the dataset can reduce the acquisition cost and that it is possible to combine 
the sample of high resolution LiDAR data with optical satellite imagery to regionalise 
the information over larger areas using statistical estimation techniques, thus reducing 
the extent of and cost associated with the initial data requirement (Hudak et al. 2002; 
McInerney et al. 2010a). 

Terrestrial LiDAR
In recent years, research has been carried out to produce three dimensional scans of 
forest resources using terrestrial scanners (Nieuwenhuis 2008). Terrestrial scanners 
are mounted on tripods and utilise the same technology as airborne LiDAR scanners. 
They produce a fully three-dimensional dataset and to eliminate the problem 
of occlusion (where one tree blocks the view from the scanner to another tree), 
multiple scans are acquired from different locations within the forest plot, which 
are subsequently ‘stitched’ together. Using semi-automatic methods, it is possible 
to derive detailed individual tree based measurements relating to diameter at breast 
height, stem straightness, taper and branchiness, as well as non-timber information 
such	as	understory	structure,	deadwood	and	terrain	classification	(Bienert	et	al.	2006,	
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van Leeuwen and Nieuwenhuis 2010). This clearly offers many new opportunities in 
the	acquisition	of	forest	field	information.	The	datasets	are	fully	objective	and	provide	
extremely detailed information, which can be used to support forest inventories, as 

Figure 1:  Airborne LiDAR processing workflow.

Figure 2: Individual tree identification from LiDAR derived CHM.
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well as timber allocation and processing procedures (Keane 2007, Murphy et al. 
2010).	However,	there	are	some	specific	disadvantages	in	the	use	of	these	sensors	that	
relate	to	acquisition	time,	limitations	in	the	use	of	these	sensors	in	some	specific	site	
and	forest	conditions	and	the	need	to	further	develop	and	refine	detailed	processing	
algorithms that can be used to pre-process and retrieve tree measurements (Nugent et 
al. 2009). 

Conclusions and implications for operational use in Ireland
There is an implicit need for all forests at global, national and regional levels to be 
managed in a sustainable manner. Forest resources are changing at an increasing rate, 
due	 to	more	 intensive	management	 practices,	 storm	 and	fire	 damage,	 effects	 from	
insects and diseases, and the consequences of climate change. In order to successfully 
monitor these changes over time in an objective, transparent and effective way, 
foresters require access to timely and objective information, which can only be 
obtained through the use of remote sensing. However, it would be incorrect to consider 
optical satellite imagery as a perfect imaging solution for the purposes of forest or 
indeed environmental monitoring. It is a science and technology that is continually 
evolving,	but	it	also	still	has	some	inherent	limitations	that	vary	based	on	its	field	of	
use and geographic application area.
 One of the main limitations in the use of remote sensing data in operational 
contexts	 is	 the	difficulty	of	acquiring	cloud-free	 satellite	 imagery	over	 Ireland	and	
other	northern	countries	with	 temperate	climates.	With	 the	current	configuration	of	
imaging satellites, this can mean that only three or four useable scenes are acquired 
during any one year. 
 The stability and continuity of satellite sensor missions has to be borne in mind 
when data are used within operational contexts. For instance, the failure of the Scan 
Line Corrector on-board the Landsat 7 ETM+ sensor (one of the most widely used 
satellite sensors for environmental and land monitoring) meant that the data acquired 
from this sensor were virtually unusable from 2004 onwards. A related issue was the 
fact that Landsat satellites were no longer being developed by the Government of the 
United States of America and this raised many questions regarding data availability and 
continuity of missions by the remote sensing community that was heavily dependent 
on this satellite. 
 In Ireland, the current generation of optical imaging satellites has limitations in 
clearly distinguishing young forest plantations from other land-cover types (such 
as	scrub	or	rough	agricultural	land).	This	difficulty	is	caused	by	the	mixed	spectral	
resolution returned from the underlying ground vegetation and it is only possible 
to accurately classify the forest stand once it has matured to the point of canopy 
closure. 
 Despite the description of numerous examples of the use of remote sensing in forest 
applications, there still remains a reluctance to use remote sensing in many operational 
environments, despite the widespread use of aerial photographs by foresters. To an 
extent, it is true that remote sensing has remained a research discipline that is focussed 
on	scientific	methods	to	analyse	and	interpret	images.	Nevertheless,	examples	cited	
in this article illustrate the fact that remote sensing is an active component within 
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operational forest monitoring and inventory programmes. In addition, over the last 
five	years,	Earth	observation	data	have	become	almost	ubiquitous	within	every	day	
life through technologies such as Google Earth, Google Maps, Bing Maps and related 
web data services. 
 It continues to be necessary to bridge the gap in knowledge between foresters 
and remote sensing analysts to more successfully integrate remote sensing and forest 
management in Ireland. The recent generation of high spatial resolution satellite 
sensors, such as the Quickbird, Ikonos and GeoEye, offer equivalent, if not better 
image information for the same or lower costs when compared to aerial photographs. 
Moreover, the synoptic view offered by satellite images and the higher frequency 
of image acquisition make spaceborne satellite imagery more useful in operational 
settings. Within the context of forest monitoring and national forest inventory 
programmes, it is widely considered by the Scandinavian countries that remote sensing 
can	substantially	 increase	 the	cost-efficiency	of	an	 inventory.	With	 these	 factors	 in	
mind, it is useful to outline some of the noteworthy new remote sensing technological 
developments of relevance to forestry: 
 1. Global daily coverage from the Moderate Resolution Imaging 
  Spectroradiometer (MODIS) sensor, which acquires data across 36 spectral 
  bands at a resolution of 250, 500 and 1,000 m. As a result, it can provide 
  dynamic larges-scale information on the state of forests;
 2. Hyperspectral imaging sensors, which provides extremely high spectral 
  resolution satellite imagery. For instance, a hyperspectral sensor could 
  acquire 217 spectral bands within the spectral range of one image band 
  from a medium resolution sensor, such as Landsat or SPOT. This increased 
  spectral information can enable the extraction of very subtle differences 
  between species, forest condition and health;
 3. Synthetic Aperture Radar sensors, which are weather and light independent 
  and are being increasingly used within forest resource assessments, particularly 
  for the retrieval of tree height and stand structure. These sensors have being 
  launched on-board ESA’s Envisat sensor, as well as Japan’s ALOS and 
  Radarsat-2;
 4. Combined use of terrestrial and airborne LiDAR, coupled with high spatial 
  resolution satellite imagery, in order to improve the quality of the tree and 
  stand derived information from above and below the canopy, thereby 
  providing the most comprehensive tree-related information; 
 5. New commercial imaging sensors, such as GeoEye-1, WorldView-1 and 
  Quickbird are offering very high resolution satellite imagery (50 – 61 cm 
  spatial resolution), with the ability for the sensors to return to the same 
  location at shorter temporal intervals; 
 6. European Space Agency’s (ESA) Sentinel missions.

 With respect to the last point, the European Space Agency has a short-to-medium 
term	plan	to	launch	five	satellite	sensors,	which	will	be	known	as	Sentinels,	for	the	
specific	operational	needs	of	the	European	Commission	and	European	Space	Agency	
Global Monitoring for Environmental Security (GMES) programme. Sentinel 2 will 
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provide high-resolution multispectral imagery that will be used to monitor vegetation, 
soil and water bodies. The other Sentinel sensors will focus on atmospheric monitoring, 
and land and sea/ocean surface temperature monitoring using RADAR instruments.
 Image quality and processing requirements are linked. As the spatial and spectral 
resolutions increase, the size of the datasets increases at an exponential rate. The 
requirements for more sophisticated computer processing and storage facilities will 
increase likewise. The image processing and analysis techniques are also developing 
in line with the developments of imaging sensors. In particular, the use of techniques 
such as kNN for parameter estimation will provide novel approaches to utilize disparate 
data	sources	in	an	efficient	way	to	improve	the	spatial	estimation	of	parameters.	With	
the correct data sources, these techniques could be further developed to upscale high-
resolution forest monitoring data, acquired from the ICP Level II plots in Ireland, over 
small homogeneous forest areas. 
 Despite the advances in the technology of space and airborne sensors, it is 
necessary	to	bear	in	mind	that	there	always	remains	a	need	for	field	inventories,	to	
train sophisticated statistical modeling tools and validate results derived from remote 
sensing analyses. However, the use of new satellite sensors and image analysis 
techniques, coupled with the needs and expertise of forest managers, can lead to the 
development of new applications to provide more comprehensive information for the 
sustainable management of the Irish forest estate.
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