
Extending Grammatical Evolution

with Attribute Grammars:

An Application to Knapsack

Problems

by

Robert Cleary

B.Sc.

Supervisor: Dr. Michael O’Neill

External Examiner: Dr. Robert McKay

A thesis for the Masters Degree by Research

Submitted to the University of Limerick

June 2005

ii

Declaration

I hereby declare that the work presented in this thesis is original except where

an acknowledgment is made or a reference is given to other work and I have

read the University hand book of academic administration and I accept its

procedure.

Student: Robert Cleary

Signed:

Date: July 7, 2005

Supervisor: Dr. Michael O’Neill

Signed:

Date: July 7, 2005

i

Abstract

Research extending the capabilities of the well-known evolutionary-algorithm

(EA) of Grammatical Evolution (GE) is presented. GE essentially describes a

software component for (potentially) any search algorithm (more prominently

an EA) - whereby it serves to facilitate the generation of viable solutions to

the problem at hand. In this way, GE can be thought of as a generally-

applicable, robust and pluggable component to any search-algorithm. Fa-

cilitating this plug-ability - is the ability to hand-describe the structure of

solutions to a particular problem; this, under the guise of the concise and

effective notation of a grammar definition. This grammar may be thought

of, as the rules for the generation of solutions to a problem.

Recent research has shown, that for static-problems - (problems who’s

optimum-solution resides within a finitely-describable set, for the set of all-

possible solutions), the ability to focus the search (for the optimum) on

the more promising regions of this set, has provided the best-performing

approaches to-date. As such, it is suggested that search be biased toward

more promising areas of the set of all possible solutions.

In it’s use of a grammar, GE provides such a bias (as a language-bias),

yet remains unable, to effectively bias the search for problems of constrained-

optimisation. As such, and as detailed in this thesis - the mechanism of an

attribute grammar is proposed to maintain GE as a pluggable component

ii

for problems of this type also; thus extending it’s robustness and general-

applicability.

A family of academically recognised (hard) knapsack problems, are utilised

as a testing-ground for the extended-system and the results presented are

encouraging. As a side-effect of this study (and possibly more importantly)

we observe some interesting behavioral findings about the GE system itself.

The standard GE one-point crossover operator, emerges as exhibiting a mid-

evolutionary change-of-role from a constructive to destructive operator; GE’s

ripple-crossover is found to be heavily dependent on the presence of a GE-tail

(of residual-introns) in order to function effectively; and the propogation of

individuals - characterised by large-proportions of such residual-introns - is

found to be an evolutionary self-adaptive response to the destructive change-

of-role found in the one-point crossover: all of these findings are found with

respect to the problems examined.

iii

Acknowledgments

If learning nothing else from working by research, it is easy to see that it’s

all about attributing credit to the work of others, which has inspired your

own: credit where credit-is-due (so to speak). As such and without delay, it

wouldn’t be right to continue, without paying homage to some music which

helped-me-out when times were not so good: that is, the soulful - music of

Bob Marley; voice of Johnny Cash; and lyrics of Jewel (to name but a few),

“get-up, stand-up, don’t give-up the fight”.

Now then, to a more conventional focus! To my supervisor, Dr. Mike

O’Neill: a gentleman and a scholar; who never failed to send me out of his

office, in a more positive mood than when I went in; thanks for persevering

with me Mike. Miguel Nicolau (who suggested I try an experiment where

crossover is restricted); without which, (I can only presume) would have me

currently scratching my head over the empty-templates entitled, Chapter 5,

6, 7, and 8. Dr. Atif Azad was ever-helpful, on several occasions - doubling-

up as a LATEX companion; thanks Atif. Hammad Majeed (soon to be Dr.,

I have no doubt), who helped me to see why conditions are allowed in an

attribute-grammar. Dr. Tony Brabazon, for his opinion on where to weight

the emphasis of the thesis. The others from the general area of CSG028, you

should know who you are - thanks.

iv

For the times when my arms felt very-short - and my pockets deep (to

the inverse-proportion): Mrs. Margaret O’Carroll (Carlesberg don’t do land-

ladies . . .); Mr. and Mrs. Gilbert - who had blind-faith in my ability to build

their stone-wall (I’ll be back soon now, to finish it, I promise); similarly, Jan-

ice O’Connell who had blind-faith in my ability to teach Java. Thanks here

also, to the brothers (and sister), uncle and parents. All of the above, I must

thank especially - for providing life-funds when time ran as scarce as money.

The CSIS department, for funding my trip to EuroGP - also!

To the people who saw my moments of most-oddness (at closest-range)

and put-up with me nonetheless; Brendan, John, Colm and Mary - particular

acknowledgment to the latter two, for an un-yielding affinity to cups-of-tea

(and talk of fishes, cattle and the like) in the wee hours of the morning of

1A’s kitchen - thanks lads and bird!

To my brother Steve: who’s stubborn display of abuse to the human-

body (in physical exercise), both amazes me and shows a strength which

inspires me. To his combined efforts with the big bro’ Jim to get me into

running, without which, I would never have completed the marathon; thanks

lads. Dave and Kev . . . for Coosan-runs, wine - food, porter; UML and

Java. Anne, just for being the-sister. The rest of yee know who yee are (ya!,

nephews, nieces, in-laws and Spanish-contingent alike).

The friends!: Gill, Ray, Harr’s, Finty, Sutts, Sly and Rayo (standing to

mind)- thanks lads.

Finally, to my parents - for your continuing patience as I succeed again-

and-again (mystifyingly - no doubt), to grow-older - without growing-up: as

a good-friend of mine recently said - “it’s not the destination, but the journey

there” that counts. Bear with us!.

v

Contents

Declaration i

Abstract ii

Acknowledgments iv

List of Figures xiii

List of Tables xiv

1 Grammars For Constrained-Optimisation 1

1.1 Introduction . 1

1.2 Constrained-Optimisation:

A Gentle Introduction . 3

1.3 Evolutionary Algorithms (EAs) 4

1.3.1 Separating Search and Solution Space 8

1.4 Grammars and Grammar-Based EAs 11

1.4.1 Grammars and BNF 11

1.4.2 Grammar-Based EAs 14

1.5 Grammatical Evolution (GE) 20

1.5.1 GE Mapping Example 20

1.6 Thesis Outline . 25

vi

1.7 Contributions of Thesis . 27

2 Knapsack Problems 29

2.1 Introduction . 29

2.2 The Problems . 31

2.3 Fundamental Properties . 33

2.4 The 01 Multi-Constrained Knapsack

Problem (01MKP) . 34

2.4.1 MKP as Standard Form LP 36

2.5 Relaxations . 38

2.6 A Note on Problem-Instances 41

2.7 Conclusion . 43

3 Review of EA approaches to Knapsacks 45

3.1 Introduction . 45

3.2 Existing Ambiguities . 47

3.3 Direct versus Indirect Encoding 48

3.3.1 Permutation-Based EAs 49

3.4 Choice of Representation . 50

3.4.1 Variable versus Fixed-Length 52

3.4.2 Representation, and Evolutionary Operators 53

3.5 Choice of Approach To Feasibility 54

3.5.1 Infeasible Solutions . 55

3.5.2 Heuristic Bias: Maintaining Feasibility 59

3.5.3 Feasible-Only Solutions 61

3.6 Indirect Decoders . 65

3.6.1 Ordinal-Representation Based Decoder 65

3.6.2 Problem-Space Search (Weight Coding) 67

vii

3.7 Discussion of Approaches to Feasibility 69

3.8 Summary and Conclusion . 71

4 GE, Attribute Grammars and Knapsack Problems 74

4.1 Introduction . 74

4.2 Language, Limitations and Attribute

Grammars . 76

4.2.1 CFG Limitations for Knapsacks 80

4.2.2 Attribute Grammar Fundamentals 83

4.2.3 An Attribute Grammar for 01 Compliance 85

4.2.4 An Attribute Grammar for Constraints

Checking . 88

4.2.5 GE Mapping Example 91

4.3 Experimental Design and Initial Results 93

4.3.1 Experimental Systems and Problem Instances 95

4.3.2 Initial Experiments . 98

4.4 Conclusion . 103

5 Analysis of Introns 104

5.1 Introduction . 104

5.2 Initial Results of Bloat . 107

5.3 Analysing the Genome Make-Up 111

5.3.1 Proportion of Introns 111

5.3.2 A Focus on Interspersed-Introns 118

5.4 Intron Removal Strategies . 123

5.4.1 Pruning . 123

5.4.2 Splicing . 126

5.4.3 Splicing & Pruning . 129

viii

5.5 Conclusion . 131

6 A Closer Look at Evolution 134

6.1 Introduction . 134

6.2 Crossover & Approach to Analysis 136

6.2.1 Crossover: A GE-Specific Study 139

6.3 Analysis by a Model of Crossover 143

6.4 The Tail of Ripple-Crossover 153

6.4.1 Experiments with a Restrictive Crossover 155

6.4.2 Splicing & Restrictive Crossover 157

6.4.3 Analysis of Restrictive Crossover 160

6.5 Summary and Conclusion . 166

7 Phenotypic-Duplicate Elimination 168

7.1 Introduction . 168

7.2 Investigating Phenotypic-Duplicate Elimination 169

7.2.1 Diversity and Redundant-Encoding 171

7.2.2 Phenotypic-Duplicate Elimination 172

7.2.3 Results for Phenotypic-Duplicate Elimination 173

7.3 Conclusion . 176

8 Conclusions and Future Work 179

8.1 Summary and Conclusion . 179

Appendix A 183

Bibliography 184

ix

List of Figures

1.1 Highlighting the difference between constrained and uncon-

strained optimisation. 5

1.2 Simple GP syntax tree showing GP-functions and GP-terminals. 8

1.3 An example of the GE lookup table implemented as a hash-map. 22

1.4 An example, illustrating the GE mapping process. 24

4.1 A Sample CFG derivation and the relevant terminology. 77

4.2 Diagram showing inability of a CFG to drive a context-sensitive

derivation. 82

4.3 Diagram showing the fundamental workings of node attribute-

evaluation in an attribute grammar derivation. 84

4.4 Diagram illustrating example derivation with an attribute gram-

mar. 90

4.5 Diagram showing GE mapping process with a full attribute

grammar (AG(Full) system) for an example 01MKP solution. . 92

5.1 Diagram showing the genetic make-up of the genome and ter-

minology adopted. 105

5.2 Plot for the three systems’ average genotype-lengths: knap

problems. 108

x

5.3 Plot for the three systems’ average genotype-lengths: Sento &

Weing problems. 109

5.4 Plot for the three systems - proportion of genome comprising

GE-tail: knap problems. 113

5.5 Plot for the three systems - proportion of genome comprising

GE-tail: Sento & Weing problems. 114

5.6 Plot for the three systems - proportion of genome comprising

IIs: knap problems. 115

5.7 Plot for the three systems - proportion of genome comprising

IIs: Sento & Weing problems. 116

5.8 Plot for observed stagnation of tail-growth: three systems over

mean-best fitness. 117

5.9 Plot for the three systems - average number of II-regions: knap

problems. 119

5.10 Plot for the three systems - average number of II-regions:

Sento & Weing problems. 120

5.11 Plot for the three systems - average length of II-regions: knap

problems. 121

5.12 Plot for the three systems - average length of II-regions: Sento

& Weing problems. 122

5.13 Diagram illustrating the operation of the pruning operator. . . 124

5.14 Diagram illustrating the operation of the splicing operator. . . 126

5.15 Diagram illustrating the effect on the genome of the splice+prune

strategy. 129

5.16 Diagram illustrating the difference between evolving struc-

tures for pruning strategy, against splice+prune. 130

xi

6.1 Diagram illustrating context-sensitive interpretation of GE codons,

intrinsic-polymorphism and ripple-crossover. 140

6.2 Crossover models and associated mean-best fitness plots, for

the AG(Full), and splicing systems: systems with a GE-tail

present. 144

6.3 Crossover models and associated mean-best fitness plots, for

the pruning, and splice+prune systems: systems without a

GE-tail present. 145

6.4 Diagram defining tail-crossover and effective-region crossover

offspring. 147

6.5 Plotting the number of under-specified individuals for intron-

removal strategies: knap problems. 152

6.6 Plotting the number of under-specified individuals for intron-

removal strategies: Sento & Weing problems. 154

6.7 Diagram illustrating the restriction enforced by the restrictive

crossover operator. 155

6.8 Diagram illustrating the effect to the evolving genome, of the

splice+restrictive crossover combination. 157

6.9 Crossover models and associated mean-best fitness plots, for

the restricted crossover and splice+restrictive crossover sys-

tems: systems without tail-crossovers. 163

6.10 Plotting the number of under-specified individuals - comparing

pruning and restrictive crossover: knap problems. 164

6.11 Plotting the number of under-specified individuals - comparing

pruning and restrictive crossover: Sento & Weing problems. . 165

7.1 Crossover models and associated mean-best fitness plots, for

systems with phenotypic-duplicate elimination. 177

xii

List of Tables

1.1 An example GE lookup table for the Sante-Fe Trail grammar. 22

4.1 Table for three-system comparison; percentage of runs achiev-

ing an optimum-solution for knap problems. 101

4.2 Table for three-system comparison; percentage of runs achiev-

ing an optimum-solution for Sento & Weing problems. 101

4.3 Table for three-system comparison; mean-best fitness results

for knap problems. 101

4.4 Table for three-system comparison; mean-best fitness results

for Sento & Weing problems. 102

4.5 Table for three-system comparison; mean-average fitness re-

sults for knap problems. 102

4.6 Table for three-system comparison; mean-average fitness re-

sults for Sento & Weing problems. 102

5.1 Table comparing problem success-rate of the pruning strategy

over the AG(Full) control. 125

5.2 Table comparing problem success-rate of the splicing strategy

over the AG(Full) control. 127

5.3 Table comparing problem success-rate of the splicing strategy

over the pruning strategy. 128

xiii

5.4 Table comparing problem success-rate of the splice+prune strat-

egy over the AG(Full) control, and all other systems examined. 131

6.1 Table describing the fitness-innovation metric’s calculation for

the crossover model plots. 148

6.2 Table comparing problem success-rate of the restrictive crossover

over the pruning strategy: the effect of the presence of the GE-

tail. 156

6.3 Table comparing problem success-rate of the restrictive crossover

over the AG(Full) control: examining performance. 156

6.4 Table comparing problem success-rate of the restrictive crossover

over the splicing stragegy: examining performance. 156

6.5 Table comparing problem success-rate of the splice+RXOver

setup over the RXOver setup alone: the effect of removing IIs

from RXOver. 158

6.6 Table comparing problem success-rate of the splice+RXOver

setup over the RXOver setup alone: the effect of tail-crossovers

in splicing. 159

6.7 Table comparing problem success-rate of the all intron-removal

strategies; highlighting the incumbent strategy for each prob-

lem instance. 159

7.1 Table comparing problem success-rate of the best systems

with and without phenotypic-duplicate elimination; compar-

ing against the works of two alternate approaches from the

literature. 174

xiv

“It is our doubts that unite us; it is only our certainties that keep

us apart”

Sir Peter Ustinov

xv

Chapter 1

Grammars For

Constrained-Optimisation

1.1 Introduction

A grammar (it will be seen), can be used as a very powerful expressive

force; defining a language, over which an evolutionary-algorithm (or EA),

can explore. Combined, they present what is referred to as a grammar-based

EA, and in this way Grammatical Evolution (GE) provides a grammar-based

exploration of all the possible solutions to a problem; the goal being, to result

in an optimal (or near optimal) solution being proposed as a solution to

that problem. GE harnesses what is referred to as a context-free grammar

(CFG) which allows the definition of a broad range of languages; tailorable to

almost any problem-domain. As such, the task of the EA can be reduced to

a directed-search through the finite space of legal sentences of the language

defined. Directing this search - is an (artificial) abstraction of the underlying

processes which are believed to be the driving-force of biological-evolution:

the evolutionary operators of the EA.

1

The work of this thesis then, documents the application of GE to knapsack

problems: a category of NP-hard constrained-optimisation problems1. These

knapsack-problems can be used as a generalization for many real-world indus-

trial problems of great difficulty - whereby, an improvement in the best known

optimum (or current way of solving the problem) can afford huge financial

gains and time savings, for companies working in these industries. Knapsack

problems and their solutions allow theoretical application to the practical

fields of airline scheduling and container-packing, as well as the lumber and

shipping industry (to name but a few); such theoretical works providing the

basis for a real-world practical application. In this thesis then, we propose

the use of knapsack problems as a sample test-bed, for research into the more

general application of GE to problems of constrained-optimisation. We are

thus interested, not only in problem-specific results - but the general applica-

bility of GE to problems of constrained optimisation; in this role, a secondary

(and possibly more significant) interest lies in observing the behavior of GE

under this type of problem.

Solutions to problems of constrained-optimisation are said to be describ-

able by context-sensitive languages - and therein an attribute grammar is

proposed as a method to describe such languages. We propose that at-

tribute grammars provide a gateway for the application of GE to problems

of constrained-optimisation (it will be seen, that standard GE with a CFG,

was insufficient in this role). The attribute grammar, provides a powerful

method to extend the capabilities of standard GE; allowing it to describe

solutions to problems which are context-sensitive in nature.

1NP-hard describes the complexity of a decision problem, implying that it is intrin-

sically harder than those that can be solved by a non-deterministic Turing machine in

polynomial time.

2

It is observed, that GE - when adapted with an attribute grammar - is

applicable to knapsack problems. The results of experiments are promising,

and we observe some interesting behavioral findings about the general al-

gorithm itself. In observing it’s behavior we highlight areas of interest to

research; asking questions of the approach to learning provided by the EA,

and hope to provide an impetus for curiosity in the line of future work.

There follows a very-brief introduction into the concept behind constrained-

optimisation - with a short review of grammars and grammar-based EAs; a

particular focus is maintained, on those contributing to the inception of GE.

GE itself is described, the contributions of this thesis noted, and the thesis-

outline documents the work of each individual chapter forthcoming.

1.2 Constrained-Optimisation:

A Gentle Introduction

Chinneck states that “Practical optimisation is the art and science of al-

locating scarce resources to the best possible effect” [Chinneck, 2000]. In

essence (from the perspective of the problems researched in this thesis)with

a knapsack-problem - or any of the more common constrained-optimisation

problems - we are dealing with a static problem. Some real-world problem

exists where a set-of-items have a desirable property, and we wish to find out

- the arrangement of these items - that would produce the most beneficial

outcome to their user. A mathematical-model can be used to reduce the solu-

tion (of this problem) to an algebraic-equation where an optimal set-of-values

for each variable (item) will provide us with the best possible arrangement.

That is, every possible arrangement of variable co-efficients, maps to one

particular point on a graph of the function for the algebraic-equation. Fig-

3

ure 1.1 attempts to better explain this. An example optimisation-problem

is plotted as a graph; where points on the line of each plot relate to a par-

ticular set-of-values for the variables of the problem; therein mapping to an

objective-function value (i.e. f(x)).

In Figure 1.1, the graph on the right shows how - in constrained-optimisat-

ion, some other functions (as opposed to the objective-function) define con-

straints on the problem; as cutting-planes over the now defined search-space2.

The figure describes constraints which are linear in nature, and the surface

below their intersection with the absolute search-space, defines the feasi-

ble (legal) region of search. The problem can be reduced to a search (over

this static-space) - defining arrangements-of-values for the co-efficients of

the objective function; the search becomes a search for the optimal peak

of the graph. As each arrangement-of-items provides a fitness measure (or

objective-function value) for that given solution, the set of all arrangements

maps-out what is described as a fitness-landscape (See Section 1.3).

1.3 Evolutionary Algorithms (EAs)

The field of evolutionary computation is based on Charles Darwin’s notion

of biological evolution; suggesting, that it is natural-selection which drives

the evolution of a species [Darwin, 1859]. Also heavily incorporated into

artificial-evolution, is the principle of “survival of the fittest” first introduced

by Herbert Spencer [Spencer, 1864]. Given a population of individuals where

each individual represents a possible solution to a particular problem (e.g. an

optimal arrangement of items), each individual is evaluated; and a reflection

2We refer the reader to Chinneck’s text for a more in-depth discussion of practical-

optimisation [Chinneck, 2000]. As such, here - it is just important to understand that

constraints define cutting-planes over the absolute search-space.

4

f(x)

x

UnConstrained−Optimum

f(x)

x

Constrained−Optimum

Figure 1.1: Highlighting the difference between constrained and unconstrained optimi-

sation. Constraints in the former define cutting-planes over the unconstrained problems

search-space. The shaded-area defines the feasible region of search.

on it’s ability to tackle the problem is determined. This performance mea-

sure, is referred to as fitness. As such, the evaluated fitness of each (possible)

solution - when graphed, maps out what the previous section referred to as

the fitness-landscape, or search-space explorable by the EA. The operation

of an EA, can thus be thought of as a search through a fitness-landscape.

Individuals, or chromosomes (the two terms are used interchangeably)

that exhibit superior performance, are assigned a better fitness value. These

individuals are seen to better adapt to their environment (solving the prob-

lem) and thus, are provided with a better chance to reproduce with other

individuals; it follows, that these individuals are more likely to pass their

genetic-material to the next generation. In artificial-evolution, the process

of selecting individuals to reproduce, is an abstraction of natural-selection.

The idea being, that over time, reproduction and natural-selection allow evo-

5

lution from a gene pool of progressively fitter individuals (individuals which

exhibit a strong ability to adapt to their environment).

Prior to an artificial evolutionary run, a population must be initialised;

typically by a random process, but in some cases it is desirable to seed the

population with fit solutions from a previous run; or attempt to impose a

diverse arrangement of structure on the first generation (See Chapter 7). This

is commonly the case in Genetic Programming (GP), where variable-length

tree structures represent individuals.

Initialise Population

WHILE termination criteria not satisfied

DO

EVALUATE fitness of each individual

SELECT parents

Apply GENETIC_OPERATIONS

CREATE_NEW_POPULATION

END-DO

REPORT best-of-run Individual

As depicted in the above outline - each cycle of an evolutionary algorithm,

otherwise referred to as a generation, is typically comprised of the phases:

selection; genetic manipulation; testing (or evaluation), and replacement.

During selection, individuals (based on their fitness values), are selected to

take part in an artificial abstraction of sexual reproduction; this abstraction

of natural sexual reproduction typically effects some genetic manipulation to

these parents, and generates corresponding offspring. Offspring are subjected

to fitness evaluation in the testing phase; this will determine the fitness of

each child solution. The replacement strategy determines how the children,

6

parents and other members of the current population are used to create

the next generation. It can be seen that new generations are continuously

created until some termination criteria have been satisfied: generally, either

an adequate solution has been found; or a predefined maximum number of

generations have occurred.

Traditionally there were four main approaches to an artificial evolutionary

algorithm; genetic-algorithms (GAs), genetic-programming (GP), evolutiona-

ry-programming (EP) and evolution-strategies (ES). Although traditionally

deciphered by the representation used - GAs using fixed-length binary strings;

ES using real-valued vectors; EP using finite state machines; and with GP,

Lisp S-expressions; it has been pointed-out that the boundaries of distinction

between each approach are becoming increasingly blurred [De Jong, 1999]

[O’Neill and Ryan, 2003a].

As the main focus of this thesis is grammar-based GP, we concentrate our

introduction on GP (Genetic Programming) and its variants. The essence of

GP is to evolve more complex structures than GAs: the role of parameter-

optimisation predominating as the main use for traditional GAs. GP aimed

at representing computer programs (or critical parts of computer programs)

and as depicted in Figure 1.2, the standard GP is comprised of a population

of Lisp S-expressions represented in the form of syntax trees. Inner nodes

comprise a function-set, with subtrees evaluating to operands for these func-

tions. The syntax tree representation facilitates the genetic manipulation of

the evolving programs by using a crossover operator which swaps the subtrees

of parents. Genetic mutations take the form of the random re-generation of a

subtree. In order to evolve a computer program by means of GP, primitives

or terminal-symbols of the system are defined.

7

Owing to a possible confusion with other computer science terminologies,

Whigham [Whigham, 1996] has proposed the terms GP-functions and GP-

terminals to clarify the two main components of a GP approach. For a

*

a +

a b

GP−Functions

GP−Terminals

Figure 1.2: Simple GP syntax tree showing GP-functions and GP-terminals.

thorough description of GP one should refer to Koza’s three books, Genetic

Programming 1, 2 and 3 [Koza, 1992, Koza, 1994, Koza et al., 1999], the first

GP text book by Banzhaf et al. [Banzhaf et al., 1998], and the Advances in

GP series [Kinnear, 1994, Angeline and Kinnear, 1996, Spector et al., 1999].

1.3.1 Separating Search and Solution Space

In GP, reproduction is abstracted through the crossover operator, where sub-

trees from two parents are exchanged. The points of exchange are typically

chosen randomly. To enable an unrestricted exchange, all the GP-functions

and GP-terminals should produce - as output - an acceptable input to ev-

ery GP-function, in the function-set. As GP uses syntax-trees to represent

it’s chromosomes, inner-nodes represent functions; these functions evaluate

to some expression (based on their child-node parameters). It must be en-

sured that the data-type of this resulting expression, is such that it can be

received as a parameter to all other functions. That is, expressed functions

must be closed under all operations defined. This has been termed the prin-

8

ciple of closure [Koza, 1992]. This imposes a restriction on the way in which

genetic-manipulation can take-place, questionably also restricting the space

of possible phenotypic structures explorable.

Montana [Montana, 1994] addressed this problem by the use of a re-

stricted crossover operator. When a subtree is selected for exchange, it can

only be swapped into the other parent at a node of the same data-type. Sub-

trees producing an integer, for example, can only be swapped with those that

produce an output with the same data-type. It will be seen, that grammars

(and the use of grammar-based EAs) can be used to provide a method of

subtree-crossover (See Section 1.4); which both overcomes the problem of

closure and allows for an arbitrary representation (as opposed to the tradi-

tional GP tree-structure)

Contradicting the traditional approach, Banzhaf [Banzhaf, 1994] argued

against - what he proposed - was a deviation from a natural model of evo-

lution. He argued that, nature normally distinguishes between the genetic

representation (the genotype), and the observed traits (the phenotype) of an

individual. A complex mapping process exists, producing an organism from

a set of genetic instructions encoded on DNA. It was pointed out, that by

ignoring this distinction - common GP approaches did not follow a natural

metaphor. Banzhaf suggested a genotype-phenotype mapping (GPM) which

separates the search and solution spaces of the EA. With this GPM, the ge-

netic search continues in the search space, and the GPM translates genotypes

into legal phenotypic elements (points in the solution-space). Thereafter, the

resultant solutions, can be evaluated for fitness in the problem environment3.

3It is worth noting that a major impetus for the use of this approach, is the ability

to maintain standard genetic operators over linear genomes, whereby the GPM ensures

their translation to syntactically valid solutions; the significance of this will be realised in

Section 3.3

9

In support of this argument, he highlighted Kimura’s neutral theory of

molecular evolution [Kimura, 1983] as a basis for his approach. This theory

states, that in nature - molecular evolution is essentially driven by mutations

of neutral effect: neutral-mutations. This means that different genotypes

can precisely code for the same phenotype; (according to Kimura, this phe-

nomenon, is a reason for high genetic-diversity in natural population). With

the GPM a many-to-one genotype-phenotype mapping exists; this allows for

neutral-mutations to occur - despite change at the genotype level, the resul-

tant mutated genotype still maps to the same phenotype.

In an EA context, it has been argued that neutral-mutations may provide

a genetic-drift towards some desirable phenotypic effect - this effect possibly

moving the EA from a local-optimum to a more global peak on the fitness-

landscape [Banzhaf, 1994, O’Neill and Ryan, 2003a, O’Neill and Ryan, 2001].

Without such neutral-mutations and the consequent genetic-drift; (and in

many respects, due to pressures of fitness-based selection) a deceptive prob-

lem could prevent such global heights from being reachable.

In a later work, Keller and Banzhaf [Keller and Banzhaf, 1996] noted that

with common GP, the genetic-diversity becomes hindered. They state that -

in searching only the solution space - GP approaches face a hard constraint;

issues such as the requirement of the closure principle and the use of restricted

crossover as in [Montana, 1994] can cause large regions of the search space,

to become inaccessible. In Chapter 7, we observe similar findings for the

importance of diversity, and our conclusions (See Chapter 8) concur with

these observations as to the dangers of constrained-search.

As such, the argument for a separate search and solution space is strong,

and the topic of much debate. With such an approach, issues relating to

a particular genotype representation (e.g. such as that of closure) can be

10

alleviated, by the GPM explicitly enforcing a syntactical structure on the

generation of solutions. Also, in allowing the possibility of neutral mutations

to occur, the GPM approach is desirable; providing a possible mechanism

to overcome deceptive problems with genetic-drift. Grammatical Evolution

(GE), as it’s core principle, utilises such an approach and provides a unique

mapping process with a degenerate genetic-code [O’Neill, 2001], allowing the

possibility of neutral mutations and the postulated advantages thereof (See

Section 6.2.1).

1.4 Grammars and Grammar-Based EAs

It has been seen that EAs (through an abstraction of natural-evolution)

attempt a constructive search through the space of all possible solutions to a

problem (the fitness-landscape). Grammars, particularly in a generative role,

have seen popular use in the field of evolutionary methods. In this section, it

will be seen that grammars provide a very workable method of defining the set

of all possible solutions to a problem. Aside from this, a grammar can ensure

that this space of solutions, are correctly structured (syntactically-correct)

- as according to the problem at hand. As such, a grammar-based EA can

be constrained to operate on this syntactically-correct, subset of the space

of all sentences (the legal subset). The next sections provide a discussion

of grammars, their relative terminology, and their influence in the subset of

EAs referred to as grammar-based EAs.

1.4.1 Grammars and BNF

A grammar, describes a written-method which can formally specify all the

legal sentences of a given language (i.e. the set of sentences expressible by

11

that language). As it happens, this language may in fact be the subset of

a larger more-complex language. For example, we may have a grammar

describing the language of noun-phrases - which, in itself is a subset of some

larger more-complex language describing an entire natural language.

Grammars describing programming languages, derive their definition from

the formal grammars proposed by Noam Chomsky for natural languages

[Chomsky, 1956, Chomsky, 1959]. A grammar G can be described by the

4-tuple < Vt, Vn, P, S > where:

• Vt is a finite alphabet of tokens known as terminal-symbols or the ter-

minal vocabulary.

• Vn is a set of non-terminal symbols or syntactic categories; each defin-

ing the make-up of a phrase and together contributing to the phrase-

structure of the language described by the grammar: the non-terminal

vocabulary. (These terms will be further elaborated in the text which

follows).

• P , a finite set of rules, or production-rules which describe how each non-

terminal is defined in terms of the terminal and non-terminal-symbols of

the grammar (i.e. production-rules determine the structure of a phrase).

• S, a distinguished non-terminal: the start symbol, from which all sen-

tences of the grammar G are derived.

Grammars are most commonly expressed in a notation known as Backus-

Naur form (BNF), named after the researchers who first used it in the

description of the Algol60 programming language [Naur, 1963]. BNF is a

metalanguage (i.e. a language used to describe a language), and essentially

consists of the symbol ‘::=’, meaning “is composed of”; and ’|’ to denote

12

choice. An example production-rule is thus of the form:

< a − phrase > ::= aba < b − phrase > | aba

where the non-terminals take the form <phrase-category> (enclosed in angle

brackets), and aba is an example of a terminal-symbol of this language’s al-

phabet4. Note, that in this instance, aba is a group of characters or a token

(alone, it is an atomic symbol), having meaning according to a particular

language specification. Collectively, the characters of the token make-up

a single terminal-symbol. A sentence, then, describes a string containing

terminal-symbols only - each, derived from a sequential application of the

grammars production-rules. The above production-rule states, that an <a-

phrase> is composed of the terminal-symbol aba, followed by the grammar’s

definition of a <b-phrase>. Alternatively, an <a-phrase> is composed solely

of the terminal-symbol aba. Such a production (whereby a terminal-symbol

can be derived from it’s application), will subsequently be referred to as a

terminal-producing production.

In all, there were four distinct classes of grammar according to what has

become known as Chomsky’s hierarchy of grammars: where he classifies them

type 0 through type 3.

• Type 0: The unrestricted grammars, require only that at least one non-

terminal occur on the left-hand-side of a rule, for example,

a < thing > b ::= b < thing2 >.

• Type 1: Context-Sensitive grammars: adding the restriction that the

right side contains no fewer symbols than the left side, for example,

< thing > b ::= b < thing >.

4A phrase-category then, provides rules to define how a particular phrase can be struc-

tured.

13

• Type 2: The context-free grammars prescribe that the left side be a

single non-terminal producing rules of the form < A > ::= a.

• Type 3: Regular grammars, being the most restrictive, allow only a

terminal, or a terminal followed by one non-terminal, on the right side:

that is, rules of the form < A > ::= a, or < A > ::= a < A > .

Owing to their lack of restriction, the context-sensitive and unrestricted

grammars have seen very little practical use. On the other hand, however,

the family of context-free grammars (CFG) provide a structure which allows

programs like compilers to be able to parse valid strings of their language

(i.e. parsing, meaning to determine syntactical correctness). In the context of

GE (and indeed in the context of the work of this thesis), CFGs are used as

a generative tool; but it will be seen, their is a limit to their expressiveness.

For the reader interested in more detail in the theory of compilers, we

refer to the canonical texts of Aho, Sethi and Ullman [Aho et al., 1986];

Fischer and Le Blanc [Fischer and LeBlanc, 1991], and for a more modern

perspective focusing on programming-language processors in Java; Watt and

Brown’s book [Watt and Brown, 2000] is highly recommended.

1.4.2 Grammar-Based EAs

As seen in the Section 1.3, traditional tree-based GP systems suffer from

the pitfalls of the closure issue - whereby the GP-function and GP-terminal

set were constrained, such that the terminal set is closed under the legal

argument-set of the functions employed. Montana’s strongly-typed system

[Montana, 1994], overcame this problem to an extent; again a problem arose

however, requiring problem-specific analysis to define controlled genetic op-

erators. This heavy reliance on domain-knowledge to provide suitable op-

14

erators, questioned the robustness of GP - it’s usefulness, and scalability to

larger more complex problems.

Whigham [Whigham, 1995] [Whigham, 1996], utilised grammars to pro-

duce an initial population of candidate-solutions - guaranteed to be syntactic-

ally-correct under the definition of a CFG for solutions to the problem ex-

amined. The role of grammars in the initialisation process provided an ini-

tial population - constrained to the language of that CFG. As such, he de-

notes a language-bias through their use [Whigham, 1995]. Derivation-trees

serve to represent individuals in a population; which are generated by the

random selection of production-rules, chosen from a CFG in a depth-first

(left-most) fashion. Limits are placed on the depth to which derivation-

trees may grow; and a subtree-crossover, similar to that proposed by Mon-

tana [Montana, 1994], maintains a type-sensitive crossover; with crossover

restricted over the phrase-structure of the language defined. This is similar

to the subtree-crossover described in the experiments of O’Neill et al., for

grammatical-evolution (GE) [O’Neill et al., 2003] (See Section 6.2).

Wong and Leung [Wong, 1995, Wong and S., 1997] published a similar

system to that of Whigham, whereby the force directing the algorithm was

a logic-grammar working with a tree-based GP system. Geyer-Schulz devel-

oped a similar derivation-tree system which also imposed a bias on the search-

space; this time, utilising ideas from the field of fuzzy-logic [Geyer-Schulz, 1995].

Furthering his earlier work, Whigham devised a method to bias the struc-

ture of the grammar, as the evolutionary run progressed. This bias produced

an order-of-merit for rules which showed-up to be popular in the genera-

tion of highly-fit individuals. He then added a so called replacement strat-

egy, which replaced old, unfit individuals - with newly generated ones; de-

fined now, over the biased grammar. Banzhaf, and together with Keller

15

[Keller and Banzhaf, 1996], introduced the use of grammars, in the context

of what they term a repair mechanism5. In this approach, fixed-length

binary genomes comprised of 5-bit codons are used, to define a many-to-

one genotype-phenotype mapping process6. Each codon translates to the

solution-symbol of a pre-defined genetic-code; and “repair”, is introduced

as an LALR(1) parser which scans a solution generated by the EA. Upon

detecting syntax-errors in the generated sentence, and working with a pre-

defined genetic-code, the parser selects syntax corrections from the LALR(1)

FOLLOW() set [Fischer and LeBlanc, 1991, Watt and Brown, 2000]. Syntax

corrections which are closest in hamming distance to the symbol specified by

the original gene-value are selected. An advantage cited in this (and the

influential earlier work [Banzhaf, 1994]) argues the benefit of allowing un-

constrained genetic-operators; while still overcoming the closure problems of

the more traditional GP tree-based representation7.

The GADS system (Genetic Algorithm for Deriving Software) introduced

by Paterson and Livesley [Paterson and Livesey, 1997] - as with Whigham,

again saw the use of a CFG in a generative role; to specify the output

language of the system. Like Banzhaf [Banzhaf, 1994], fixed-length linear

genomes with a binary encoding, allow the use of unconstrained genetic op-

erators. In this approach however, there is no explicit genetic-code. Rather,

gene values directly represent the choice of production to be made. The

genomes are comprised of n-bit integer genes, where n is sufficiently large

to represent all the production-rules from the grammar. The grammar is

5In the context of this thesis, we see their approach as the use of an LALR(1) parser, to

act - not as a repair - but more correctly, as a decoder for legal sentences (Section 3.5.3).
6A genome-length of 25, 5-bit codons is specified - defining a search-space of 1625

possible genomes.
7Section 3.4.2 further discusses the significance of unconstrained evolutionary operators.

16

adapted, such that, each non-terminal has a default production, which can

be applied; in the event that the fixed-length genome was unable to exhaust

them all. During the mapping process, a derivation-tree is generated by ini-

tialising the root node to the start symbol of the grammar. Starting from

the left-most gene, the genome is searched for a rule corresponding to the

left-most non-terminal in the derivation-tree. If a gene does not correspond

to a suitable production, it is skipped and the next gene is read. Mapping

terminates upon reaching the end of the chromosome. At that point, any

unmapped non-terminals are replaced by the corresponding default symbols.

The method of skipping unsuitable genes, is reported as a problem in the

proliferation of introns (non-coding or redundant genes).

GADS2 [Paterson, 2002] seeks to address some of the issues found with

it’s predecessor. A mapping function is provided such that each gene can

be used to select a production for any non-terminal. With this mapping

function, comes properties of polymorphic genes and a redundant genetic

code8. GADS2 also saw the use of CFG’s coupled with attribute grammars

for what is termed as context-sensitive programming.

Freeman [Freeman, 1998] used an approach similar to GADS, entitled

Context Free Grammars GP (CFG/GP); again using fixed-length linear geno-

mes with integer-valued genes. Gene values are restricted to the indexes of

the rules in the grammar. The major difference with this approach, being,

the ability to map an arbitrary non-terminal as opposed to just the left-most

non-terminal. A gene is applied to a non-terminal regardless of its location;

with the left-most being chosen only in the case of multiple candidates. If

the gene can not be applied, it is skipped and the next gene is read. The

CFG/GP method reduces the proliferation of introns over that of GADS.

8Section 6.2.1 discusses similar properties, but in the context of GE

17

Hoai et. al. [Hoai et al., 2002, Hoai et al., 2003] present an extension of

the derivation-tree based GP proposed by Whigham; incorporating Tree Ad-

joining Grammars (TAG). Joshi and Schabes [Joshi and Schabes, 1997], de-

fine the TAG using a quintuple; with the standard grammar terminal and

non-terminal sets; S the start symbol; and two sets defining subtrees are

included in place of the P (See Section 1.4.1). I the set of initial trees, es-

sentially mapping to the derivation-tree equivalent of phrase-categories; and

A, a special type of derivation-tree with a leaf-node that has the same non-

terminal as the root node of the subtree itself. With the TAG system, two

operations of substitution and adjunction define operators analogous to the

production expansion of CFG-based systems. In their work, the TAG3P sys-

tem is a tree-based system, whereby the genotype records the ordering and

location of adjunction and substitution operations. Applying this encoded

sequence of operations yields a derivation-tree, allowing the phenotype to be

abstracted in the usual way; from the leaf nodes of the tree. TAG3P utilises

standard GP operators of restricted sub-tree crossover and mutation, but

they are performed on the TAG tree as opposed to the derivation-tree. The

resulting representation is less constrained than that of GP or grammar-based

GP, whereby a wide-range of genetic operators are also supported.

Core to the work of this thesis, Grammatical Evolution (GE) has proven

a very successful form of grammar-based EA [O’Neill and Ryan, 2003a]

[O’Neill and Ryan, 2001]. It stands out as one of the few variable-length

linear genome approaches using a binary encoding; and as pointed out in

[O’Neill, 2001] - answers Koza’s critique of linear systems at the time; i.e. does

“the initial selection of string-length limit in advance the number of internal

states of the system and the computational complexity of what the system

can learn” [Koza, 1989] (See Section 3.4.1).

18

Deviating slightly from the standard use of grammars, Keijzer presents

the adaptive logic programming (ALP) system [Keijzer, 2002]. Instead of

using a context-free grammar, it uses a (Prolog) logic program to enlist the

rules of a language’s syntax: a logic grammar. When queried, Prolog finds

all the matches to a query (in a depth-first traversal of the language), to

identify constructs which may match the query. Due to its declarative nature,

logic programming is very suitable for defining computer languages and any

constraints there-imposed, upon them. Such a logic program then, consists of

a definition of all valid computer programs; in effect, the logic program defines

both a parser and a generator for the language. When such a logic program is

run (using the Prolog search strategy), it will enumerate all possible computer

programs in the domain defined by the logic program. When the search is for

that one particular computer-program that performs best on some problem,

and the number of possible programs is large, such an enumeration is not a

viable search strategy. As such, the ALP system uses GE to carry out this

search. The ALP system stems from the earlier inception of inductive logic

programming (ILP) [Muggleton and Raedt, 1994].

This section has given a brief introduction of some of the more prominent

grammar-based EA systems and outlined their most significant properties.

It is by no means a complete survey of grammar-based methods, and we refer

the interested reader to the PhD thesis’ of O’Neill [O’Neill, 2001] and Azad

[Azad, 2003] which provide good reviews with more detailed explanation and

examples. Rather, this section has served as a precursor to a discussion of

the intricacies of the GE algorithm, outlining the works from the literature

which have contributed to it’s inception.

19

1.5 Grammatical Evolution (GE)

Grammatical Evolution (GE) [O’Neill and Ryan, 2003a] is a system that can

evolve sentences in any language defined by a grammar. In it’s standard form,

the system is described as an approach to evolutionary automatic program-

ming (EAP); (this, owing to it’s typical use with an evolutionary algorithm

(EA) - and it’s common application to problems requiring the generation

of programming-language expressions). Variable-length binary genomes pro-

vide the genetic-information needed to evolve, what can effectively be called

- programs (legal sentences of a programming language). In this way, GE can

be considered as a form of grammar-based genetic programming; or grammar-

based GP (See Section 1.4.2).

Lying at it’s core is the use of a grammar - working in a generative role.

It will be seen, that such a grammar provides a powerful expressive force; but

also brings with it some limitations to which the work of this thesis hopes

to address. As such, the following sections seek to introduce the concept

of grammars; in particular their role in the GE algorithm. An example of

the GE mapping process will be provided, with a brief survey of grammar-

based systems which have contributed to it’s inception; and those which have

subsequently emerged.

1.5.1 GE Mapping Example

To explain the Grammatical Evolution (GE) mapping process let us take

an example BNF grammar definition. The following grammar was used in

[O’Neill and Ryan, 2001] to solve the Sante Fe Ant Trial problem (the Sante

Fe Ant Trial problem is a standard problem in the area of GP and is fully

described by Koza [Koza, 1992]). Essentially, the problem concerns the au-

20

tomatic programming of a control program for an artificial ant, such as to

allow the ant to find 89 pieces of food located in a discontinuous trail within a

specified number of time steps. The following defines a CFG for the problem,

N={Code, Line, Expr, If-statement, Op }

T={left(), right(), move(), food_ahead(),

else, if, {, }, (,),; }

with P the set of production-rules as:

S ::= <Code> (0)

<Code> ::= <Line> (0)

| <Code> <Line> (1)

<Line> ::= <Expr> (0)

<Expr> ::= <If-statement> (0)

|<Op> (1)

<If-statement> ::= if (food_ahead()) {

<Expr>

}else{

<Expr>

} (0)

<Op> ::= left(); (0)

| right(); (1)

| move(); (2)

The GE mapping process works, by first constructing a representation of

the grammar, and also a table to denote the number-of-choices - or produc-

tions available for each non-terminal. Table 1.1 describes such a table, while

the grammar representation works - such that, left-hand-side (L.H.S) non-

terminals are used as a key to a corresponding right-hand-side (R.H.S) list of

21

Rule Number Of Choices

<Code> 2

<Line> 1

<Expr> 2

<If-statement> 1

<Op> 3

Table 1.1: A GE lookup table for the Sante-Fe Trail grammar.

possible production-rules (i.e. the index of which are specified in parenthesis).

As it can be seen in Figure 1.3, the representation allows a lookup of each

L.H.S non-terminal to produce a list of the possible re-write, or production-

rules, and in conjunction with the table, the number of choices available for

each rule can be readily accessed. (Note: Any potential representation of the

grammar can be used - in this instance, for the purpose of explanation we

choose a hash-map).

(0)

"<code> <line>"(1)(1)

"<line>"(0)

...

...

...

...

(2) "move();"

(1) "right();"

"left();"(0)

. ...

.

...

...

...

...

"<code>"

"<op>"

...

Figure 1.3: An example of the GE lookup table implemented as a hash-map.

The GE algorithm operates by modeling a left-most derivation of the

pre-specified grammar; i.e. productions are sequentially applied to the start

22

symbol S, such that at each juncture, the left-most non-terminal is always

expanded to some R.H.S production (as defined by it’s corresponding rule).

A variable-length binary genome acts as an encoding for such a derivation,

whereby 8-bit chunks, or codons, are sequentially read to determine which

production-rule is applied to the current non-terminal (i.e. the left-most Vn).

In this way, the GE algorithm begins to derive legal sentential-forms over

the grammar, exhausting each non-terminal to it’s corresponding R.H.S pro-

duction; until finally, a sentence comprising all terminal-symbols exists. In

essence, GE defines the mapping of the binary genome, to a derivation of

the grammar. Production-rules are chosen by deriving the production, at

the index of the current non-terminal’s rule-list; as specified by the following

formula:

Rule = IntegerCodonV alue % NumberOfChoices (1.1)

where % represents the modulus operator.

Figure 1.4 provides an illustrated example of the derivation of a valid con-

trol program for a Sante Fe ant. The start production < S >::=< Code >,

where no choice exists, implies, we begin the parse with the non-terminal

< Code >. Turning then, to the table representation of the grammar, and

the randomly or evolutionary generated individual (i.e. created by initialisa-

tion, or evolutionary operators) - the derivation begins.

As Figure 1.4 depicts, the first codon is read; transcribed to it’s decimal

value; and a rule choice for the < Code > non-terminal, is selected by equa-

tion 1.1. The resulting production chosen is that of the 0th index in the R.H.S

rule-list for the < Code > non-terminal (See Figure 1.3). Similarly, the pro-

cess is continued; at each step exhausting the left-most non-terminal until a

23

if(food_ahead()) {

}else {

}

left();

move();

01100111 00101101 10110001 1110110011001011 1001001100010010

...

203220 103 45 ...

<Expr>

<Op>

left();

<Expr>

<Op>

move();

if(food_ahead()) {
<Expr>

}else {
<Expr>

}

<Line>

<Expr>

<If−statement>

<Code> 220 % 2 = (0)

202 % 2 = (0)

103 % 2 = (1)

45 % 3 = (0)

177 % 2 = (1)

236 % 3 = (2)

No−Choice!

No−Choice!

<S> <Code>::=
Derivation

(0)

(1)

(1)

(0)

(2)

(0)

(1)

(0)

(0)

(0)

 | right();

 | move();

left();<Op> ::=

Program/Sentence

11011100

Binary string

...

CFG grammar

<Code><S>

 | <Code> <Line>

<Line><Code>

<Line> <Expr>

<If−statement>
<Expr>

}else {
<Expr>

}

if(food_ahead()){

::=

::=

::=

 | <Op>

<If−statement><Expr> ::=

::=

Figure 1.4: An example, illustrating the GE mapping process.

sentence of terminal-symbols only, remains9. This process of transcription,

and subsequent translation to a phenotypic trait, stems from a biological

analogy of protein synthesis [O’Neill and Ryan, 2003a, O’Neill and Ryan, 2001,

O’Neill, 2001]; whereby the binary genome reflects the DNA of a biological

organism, and the rules of the grammar are seen as akin to the role played

by amino acids in the building of a protein.

9Note: A recent extension of the GE mapping process deviates from the standard

restriction to a left-most derivation, and allows the order of non-terminal derivation to be

encoded into the genome, in what has been termed πGE [O’Neill et al., 2004a].

24

It can be seen from the example, that where no choice of production

exists, no codon is read. In addition and commonly occurring with the

variable-length representation employed - it can be seen that residual codons

exist; these are codons which are not used in the derivation. Codons of this

type will subsequently be described as residual-introns (further discussed

in Chapter 5), or more commonly as a GE-tail [O’Neill and Ryan, 2003a,

O’Neill, 2001]. Alternatively, it may occur that the binary genome doesn’t

have enough codons to completely exhaust all non-terminal symbols to a

sentence of the language. In this case, either the GE wrapping operator is

employed - allowing the genome to be “wrapped” or re-read over-and-over up

to some maximum number of wraps (defined as a parameter to the system);

or the offending individual is given the worst-possible-fitness, such that it will

eventually be eradicated from the population by the replacement strategy.

1.6 Thesis Outline

The following provides a brief outline of content, for all subsequent chapters

in this thesis.

Chapter 1: Grammars For Constrained-Optimisation Summarising

this first chapter then, we have presented a high-level overview of the process

of artificial-evolution; pointing out it’s key processes of - selection, offspring-

creation (an operation of gene-exchange), and replacement. Evolutionary

Algorithms (EAs) are discussed in the context of the separation of search and

solution spaces: an argument for this approach is presented. Grammatical-

Evolution (GE) is outlined, describing grammars and the BNF notation,

Grammar-Based EAs (a brief review of works contributing to the inception

of GE); and a GE mapping-process example, are presented.

25

Chapter 2: Knapsack Problems This chapter presents an overview of

knapsack problems; with a particular focus on the 01 multi-constrained prob-

lem (01MKP), of most relevance to this thesis. A review presenting essential-

knowledge of the 01MKP itself, (and in separation) required-knowledge for

the understanding of the more-advanced works in the field of EA approaches

to knapsack-problems, is presented. The aim of this chapter, is to equip the

reader with the essential-knowledge; whilst providing a point-of-reference

when encountering the more-advanced works for the first time.

Chapter 3: Review of Approaches to Knapsacks This chapter pro-

vides a survey documenting the efforts of past-research. The goal of this

chapter attempting to provide the aspiring practitioner with all the required

knowledge, to understand the work from the literature.

Chapter 4: GE, Attribute Grammars and Knapsack Problems

Drawing knowledge from Chapters 1,2 and 3; Chapter 4 describes - the what,

the why and the how: discussing, the problem faced by the existing GE sys-

tem; the reasoning behind why this should be overcome; and the method by

which this can be achieved (i.e. an attribute-grammar decoder for knapsack

problems). We draw correlations between the fields of grammar-based GP

and EAs for constrained-optimisation, before initial experiments are detailed

and first-results presented.

Chapter 5: Analysis of Introns From the initial-results of the experi-

mental systems under evaluation, Chapter 5 details a logical-trail of analysis

into, the genetic make-up of the evolving population. Subsequently, experi-

ments with intron-removal techniques led-us to a finding of improved perfor-

mance; and that the presence of introns appear to be of benefit to search.

26

Chapter 6: A Closer Look at Evolution In the absence of any real

conclusive evidence, Chapter 6 takes a view of the attribute grammar sys-

tem, from a macro-level. An analysis looking now at, the driving force of

evolution (or learning) - the artificial-evolution algorithm (or the EA) itself.

The core processes of same (as identified in Chapter 1) are considered before

an argument for the use of crossover as a black-box analysis metric over an

untouched experimental system is proposed.

Chapter 7: Phenotypic-Duplicate Elimination This chapter takes a

brief survey from the literature, detailing works which study the effect main-

taining the population diversity of the EA; particularly for approaches with

a redundant many-to-one genotype-phenotype mapping. Experiments for

phenotypic-duplicate elimination are reported.

Chapter 8: Conclusions and Future Work The thesis conclusion -

a brief summary of work carried-out, conclusion and directions for future

research.

1.7 Contributions of Thesis

• A review of knapsack problems, with a focus on 01MKPs in an attempt

to provide a one-stop point-of-reference for the understanding of the

most advanced works in EA approaches to same; their solutions pointed

out as having a context-sensitive nature to them.

• A review of EA approaches to knapsack problems, again in an attempt

to provide a one-stop point-of-reference for detail in understanding

same. A new/novel method for distinguishing between decoder and

repair based on evolutionary learning, is proposed.

27

• Attribute grammars - are proposed as a mechanism to extend GE for

problems of constrained-optimisation (or indeed any problems with an

inherent context-sensitive nature). They allow the transformation of

GE to the role of a decoder for feasible-only solutions, to constrained

problems. Their incorporation into a new, extended GE mapping pro-

cess is proposed; where the introns (or non-coding codons) emerge as

a consequence.

In the context of the problems examined:

• The existence of the GE-tail of residual-introns - has been demonstrated

as being essential to the successful operation of GE’s ripple-crossover.

• Splicing (the use of an intron-removal technique which splices interspersed-

introns or IIs), is seen to provide (the best and) improved performance

over all other experimental set-ups.

• Analysis provides evidence to suggest that GE’s ripple-crossover under-

goes a mid-evolutionary change-of-role to become a destructive force;

the population is seen to self-adapt in response - via “compression”

of the effective-region to effectively cancel-out the operation of the

crossover operator.

• Population diversity, and it’s maintenance at a phenotypic level, is

observed to improve performance (in accordance with many similar

findings from the literature). Questions are raised as to the imbalance

between the increased redundancy of the extended GE mapping pro-

cess and the explorative capabilities of the traditional GE one-point

crossover operator.

28

Chapter 2

Knapsack Problems

2.1 Introduction

Knapsack problems have undergone intensive study and are a hotbed of re-

search since the pioneering work of Dantzig in 1957 [Dantzig, 1957]. Such

interest stems from their immediate application to industry and financial

management. They have had a more pronounced theoretical interest how-

ever, owing to their frequent occurrence in integer-programming problems.

This chapter seeks to provide the reader with an introduction to knapsack

problems, and serves to give an understanding of their fundamental proper-

ties; particularly those of most relevance to this thesis.

As described by Chinneck [Chinneck, 2000], knapsack problems fall into a

category of combinatorial optimisation known as linear-programming (LP),

where “programming” is an old meaning of the word ‘planning’; so, essen-

tially linear-programming means planning, or modelling a problem; where

such models are linear in nature1. In short, LP deals with optimisation

1This can be thought of, as the behavior that - when a problem-size increases, so too

does the effort to solve it; and in direct-proportion (i.e. they have a linear relation).

29

problems detailing very large numbers of variables (e.g. sometimes millions)

where variables can be real-valued (fractional in nature). In this field, exact-

methods such as branch-and-bound overcome the phenomenon of combinato-

rial explosion (where increasing the number of variables results in an over-

whelming increase in the search-space) by exploring only the most promis-

ing areas of the entire search-space (sometimes referred to as, the fully-

enumerated search-space). The search-space is explored by a directed search

through a tree representation of all solutions; expanding the promising ar-

eas only. That is, search is guided such that at each level of the tree; only

the most promising area is explored. Promising areas are identified by esti-

mating a bound on the best objective value that could possibly be achieved,

by exploring that point in the search space. Chinneck provides an excellent

introduction to practical optimisation, and in particular; simple high-level de-

scriptions of the workings of the branch-and-bound method [Chinneck, 2000].

The field of linear-programming deals with real-valued variables; yet, of-

ten practical problems require the modelling of a situation using integral

values. As seen in the introductory chapter, common real-world usages of

optimisation deal with airlines, delivery companies, manufacturers and the

like. Such fields require scheduling of say, 6 or 7 people as opposed to 6.3, for

example. Knapsack problems, predominantly fall into this category of real-

world problem abstraction. LP solving, in it’s less-constrained real-valued

form, is generally used as a sub-step to solving the more constrained integer-

based real-world problems; the real-world abstraction entering the domain of

integer-programming.

Within the complex domain of integer-programming, real-valued knap-

sack problems (their LP generalisation), occur at each estimation of a bound

for a point in the search space. As a consequence, techniques capable of

30

efficiently solving very complicated knapsack problems; are highly sought af-

ter. In recent years Evolutionary Algorithms and their hybrid coupling with

exact-methods have proven to be the most effective method of solving com-

plex integer-based knapsack problems [Raidl, 1998, Chu and Beasley, 1998,

Raidl, 1999b, Gottlieb, 2000]. That is, when problems are of an integral na-

ture (i.e. binary or integer programming form), hybrid EA’s can outperform

exact-methods over large problem instances. When dealing with the more re-

laxed LP problems, however, exact-methods such as that of the MIP(Mixed-

Integer Programming) solver CPLEX [CPLEX, 2005] outperform all other

approaches.

The following sections detail the intricacies of knapsack problems and

their fundamentals; but with a particular focus on those studied in this thesis,

in what is introduced as the 01 multi-constrained knapsack problem.

2.2 The Problems

Common to all knapsack problems, are a set of all items from which we must

choose a subset. Each item has some objective attribute, most commonly

profit (pj); and some constraint-based attribute such as weight (wj). A subset

of the set of all items must be chosen for inclusion in one or more knapsacks

(or containers) with a given capacity (ci). Co-efficients of an item’s attributes

are generally positive integer values. In the context of this thesis, we discuss

a binary-programming variant of the knapsack problem, the Zero-One (01)

knapsack problem; where the inclusion of an item is a binary decision. An

item is either in, or not in. As such, the category of knapsack problems

subsequently discussed, all stem from what is commonly termed the single-

constrained knapsack problem, whereby we have just one knapsack. It can

31

be formulated as the following maximisation problem:

maximise
n
∑

j=1

pjxj (2.1)

subject to

n
∑

j=1

wjxj ≤ c, (2.2)

xj ∈ {0, 1}, j = 1 . . . n (2.3)

where xj = 1, indicates inclusion of an item in the chosen subset; and an xj =

0, indicates exclusion of an item. A viable solution can thus be represented by

~x, a vector such that xi ∈ {0, 1}. As can be seen from equation 2.1, solutions

are constrained by the capacity of the single knapsack c. Owing to the single

constraint this problem is commonly referred to as the 01 single-constrained

knapsack problem.

Deviating from the binary-programming or 01 knapsack problems, multi-

ple items (of the same type) can be included in the knapsack for an integer-

valued knapsack problem. That is, the number of items of the same type, that

can be included in a knapsack is bounded by some integer value (generalising

here from binary, to the domain of integer-programming).

It is worth noting here, that with an integer-valued knapsack problem,

components of the vector ~x are positive integer-values; and not bounded to a

zero or a one as is the case with a 01 problem. The positive integer, will then

have a multiplicative effect on the evaluation of profits (equation 2.1) and

weights of a viable knapsack (equation 2.2). For example, a viable solution-

vector to a 4 item integer-valued problem may be < 3, 6, 0, 1 >: here, both

the profits and weights of x1 will be multiplied by 3; x2 by 6, and so on. This

is further examined in section 2.4.1.

32

2.3 Fundamental Properties

As stated in Pisinger’s PhD. thesis [Pisinger, 1995], knapsack problems are

highly structured; and problem instances, can and have been formulated,

with varying approaches to such structure. Recall from the previous sec-

tion that a solution can be seen to be a vector which models a set-of-items

~x ⊆ {x1, x2, xj . . . xn}. Items have a single profit, and one-or-more weight

attributes associated to them. The set-of-items we choose is constrained by

the maximum weight our containers can hold. In solving large-scale problem-

instances it is pertinent to understand some fundamentals of the problems.

The goal or objective-function of knapsack problems is stated in terms

of maximising the profit of a set-of-items, while keeping to a minimum the

weight of this set. As a result, a fundamental property of optimal solu-

tions to these problems is that items in the chosen set have higher prof-

its and lower weights where possible. That is, the profit-to-weight ratio

or profit density δi, can be used as a measure of the utility of any given

item [Cotta and Troya, 1998, Pisinger, 1995]. It can be seen that a ‘greedy’

sorting of items, or a sort in terms of benefit by utility, will yield the op-

timum solution for the single-constrained problem. However as pointed out

by Chu and Beasley “. . . when more than one constraint is present, it is not

quite clear how this approach can be generalised”[Chu and Beasley, 1998].

As they point out, several methods for pseudo-utility ratio’s have been re-

searched in answer to this uncertainty; where almost all rely on a relaxation

of the problem to produce some estimate of an items overall profit-density

(See Section 2.5). That is, a pseudo-utility ratio refers to an estimation of

a single profit-to-weight ratio or profit density for the m so-called relative-

weights (See Section 2.4).

33

This ‘greedy’ sorting of the set of all items, is a technique which has

been used in the majority of hybrid approaches [Raidl, 1999b, Raidl, 1998,

Chu and Beasley, 1998]. In this context, sorting is incorporated into a hy-

brid local-optimisation technique or feasibility-algorithm (further discussed

in Section 3.5).

The fundamental properties outlined in this section remain true to all

categories of knapsack problem, where a key goal guiding the generation

of a good solution; remains to be, the accurate estimation of each item’s

‘worth’ in the context of a given viable solution. In the following sections,

we switch the focus from the general properties to the specific attributes of

the problem tackled in the body of this thesis’ experimental section; the 01

multi-constrained knapsack problem.

2.4 The 01 Multi-Constrained Knapsack

Problem (01MKP)

The 01 multi-constrained knapsack problem (or multi-dimensional knapsack

problem) identifies a scenario, where we have a number of knapsacks (or

containers); each to be filled with the same set-of-items. Each knapsack

has an independent maximum capacity or weight-constraint. We must select

a subset of the set of all items (the vector of items), for inclusion in all

knapsacks; such that the combined weight of this chosen subset, doesn’t

violate the weight-constraint of any of the knapsacks. As an added condition

of the problem; the weight of an item is variable, and it is determined with

respect to which knapsack it is included in. This will be termed the relative-

weight of an item. As a consequence, a possible solution or chosen vector of

items will have varying weight in each knapsack.

34

Although the weight of an item is variable, an item has a fixed value or

profit. Thus the goal or objective for this problem, is to select a vector of

items, with maximal profit or worth, whilst respecting the weight-constraints

of all knapsacks. The problem can be formulated as

maximise
n
∑

j=1

pjxj (2.4)

subject to
n
∑

j=1

wijxj ≤ ci, i = 1 . . . m (2.5)

xj ∈ {0, 1}, j = 1 . . . n (2.6)

Where, pj refers to the profit, or worth of item j, xj refers to the item

j, wij refers to the relative-weight of item j, with respect to knapsack i,

and ci refers to the capacity, or weight-constraint of knapsack i. There exist

j = 1 . . . n items, and i = 1 . . . m knapsacks.

The objective function (equation 2.4) tells us to find a subset of the

possible items (i.e. the vector of items); where the sum of the profits of

these items is maximised, according to the constraints presented in equation

2.5. Equation 2.5 states, that the sum of the relative-weights of the vector of

items chosen, is not to be greater than the capacity of any of the m knapsacks.

Equation 2.6 refers to the notion that we wish to generate a vector of items,

of size n, whereby a 0 at the ith index indicates that this item is not in the

chosen subset and a 1 indicates that it is.

As described in [Khuri et al., 1994], it is also worth thinking of the prob-

lem as a matter of resource allocation. That is, we have m resources (knap-

sacks) and n tasks. Each resource has a budget or knapsack capacity Ci, and

Wij represents the consumption of resource i by task j. Thus, taskn may

then have a different resource-consumption, depending on which of the m

resources it is applied to (i.e. it’s relative-weight). The objective then, is to

35

select a set of tasks to be applied to all resources simultaneously, such that,

the budgets of each resource are respected, and the consumption of resources

is optimised.

2.4.1 MKP as Standard Form LP

The introductory sections of this chapter discussed the methods of Linear

Programming (LP) as the most commonly applied form of tackling constrained-

optimisation problems. Although stated above as a standard algebraic ex-

pression, the MKP is often described as a standard form linear programming

model (standard form LP). Different authors vary in the form of expression,

and often switch between the two. Generally the problem is introduced as

a standard algebraic expression; but for example, Bruhn and Geyer-Schulz

adopt the standard form LP to describe examples in their journal paper

[Bruhn and Geyer-Schulz, 2002]. The standard form LP has the following

characteristics: a) an objective function to be maximised; b) constraints of

type less-than-or-equal-to (≤); c) constraint right-hand sides which are non-

negative, and d) variable-bounds are restricted to non-negativity.

Thus, in the standard form LP, as described by Chinneck [Chinneck, 2000],

the MKP may take on the following algebraic representation for a problem

with m constraints (knapsacks) and n variables (items):

• Objective Function: maximise Z = p1x1 + p2x2 + . . . + pnxn

where pi indicates the profit coefficients for each item xi. For example,

maximise Z = 300x1 + 100x2 + 0x3 + 10x4, would indicate the profit

coefficients of the set of 4 items to be the ordered list (300, 100, 0, 10)

objective function units respectively. A corresponding viable solution

vector ~x =< 0, 1, 1, 1 > would infer a profit evaluation of 110 objective-

function units. As previously stated, a viable solution to an integer-

36

valued problem would see a multiplicative effect on these co-efficients

(e.g. ~x =< 2, 4, 0, 0 > would imply an evaluation of 1000 objective-

function units for Z)

• m Functional Constraints, describing problem constraints as func-

tional inequalities

w11x1 + w12x2 + w13x3 . . . + w1nxj ≤ c1

w21x1 + w22x2 + w23x3 . . . + w2nxj ≤ c2

...

wm1x1 + wm2x2 + wm3x3 . . . + wmnxj ≤ cm

where ci are the resource constraints for knapsacks; and the wij are the

relative-weights of the jth item with respect the ith knapsack. In this

way, the sum of the weights of all items, included in the current viable

solution; must not exceed the capacity of the knapsack for which their

weight-determination is relative.

• n Non-Negativity constraints: xj ∈ {0, 1}

Such that, each index of ~x the candidate solution, holds a non-negative

value of either zero or one (thus describing the 01 variant). Note that

non-negativity constraints for an integer-valued version would be ex-

pressed as x1 ≥ 0, x2 ≥ 0 . . . xn ≥ 0.

It can be seen that the above expression of the problem maps to the stan-

dard algebraic equations of equation 2.4, 2.5, and 2.6. The standard-form

LP model then, serves as an expansion of the standard algebra; and its ex-

planation provides the reader with the relevant knowledge required for it’s

understanding.

37

2.5 Relaxations

A relaxation to a knapsack problem generally refers to a break from the more

constrained (or more specific) optimisation problem, to the more general. For

example, the 01 binary-programming problem can be transformed to a less

constrained linear-programming problem when bounded by the fractional val-

ues in the range [0,1] (as opposed to integral 0 or 1). Similarly, transforming a

multi-constrained problem to an approximately equivalent single-constrained

problem, is said to relax the problem. Relaxations to the 01MKP have been

commonly used in the literature, particularly in the application of hybrid

algorithms to perform local-optimisation - but more frequently in the per-

formance evaluation of very-large problem instances [Chu and Beasley, 1998]

[Raidl, 1998] [Raidl, 1999b] [Gottlieb, 1999b] [Raidl and Gottlieb, 1999a]

[Raidl and Gottlieb, 1999b] [Raidl and Gottlieb, 1999c].

This section seeks to equip the reader with knowledge of the most common

relaxations referred to in the literature; particularly when solving complex

knapsack-problems. Generally, such relaxations are used as a performance-

metric for very large instances of knapsack-problem - or as a sub-process in

solving them. For single-constrained problems, exact-methods alone (without

the need for relaxations), suffice.

Relevant in the field of EA approaches to constrained-optimisation prob-

lems, there are predominantly two categories of relaxation 1) heuristic guided

relaxations; and 2) those just relaxing the integrality property. In the lat-

ter, we slip from integer linear programming (ILP), to the less constrained

domain of linear programming (LP), in what is termed the LP-relaxation;

in this field - exact-methods thrive. In the former - heuristic-guided mathe-

matical formulae resolve a multi-constrained problem to (an approximately

equivalent) single-constrained problem for solving.

38

The LP-relaxation is often used, as a measure of performance for very dif-

ficult ILP problem-instances (instances which are computationally intractable

to the point that the value for an optimal-solution is unknown). An LP-

relaxed solution is generally used to give an upper-bound on the maxi-

mum possible objective-function value for these unsolvable ILPs (e.g. a large

01MKP instance). As such, the gap between the best LP-relaxed solution

achievable (by exact-methods) - and that achieved by some new approach;

serves as an upper-bound to the ILP’s optimum. In practice, this perfor-

mance measure is generally referred to as the percentage gap to the LP-relaxed

solution [Raidl, 1999b, Raidl and Gottlieb, 1999a, Raidl and Gottlieb, 1999b,

Chu and Beasley, 1998, Raidl, 1998].

In terms of heuristic-guided relaxations to the 01MKP the surrogate relax-

ation (SR) approach of Pirkul [Pirkul, 1987], and the Lagrangean-relaxation

of Magazine and Oguz [Magazine and Oguz, 1984] predominate. These re-

laxations have been empirically considered in [Raidl and Gottlieb, 1999b]

[Raidl and Gottlieb, 1999a] [Raidl, 1999b] [Chu and Beasley, 1998]

[Raidl, 1998], and all have concluded to the better performance of the SR

relaxation to the problem. As a consequence we omit the Lagrangean re-

laxation from our discussion and briefly outline the basic workings of the

surrogate method. First, let us consider the LP-relaxation.

LP Relaxation The most widely known relaxation to the 01MKP is the

linear-programming or LP-relaxation to the problem. This relaxation is just

as previously described, where the problem now takes the form of what

Pisinger refers to as a bounded problem (in that context, bounded in the

range[0,1] [Pisinger, 1995]). As pointed out in [Chu and Beasley, 1998] exact-

methods such as the CPLEX MIP solver [CPLEX, 2005] have absolutely no

39

problem in solving the LP-relaxation to the problem. To date, they are by

far and away the most efficient and successful methods to solve this relaxed

version of the problem.

The LP-relaxed solution can provide an approximation to an optimum

solution for an ILP problem-instance; where the possibly infeasible LP so-

lution, provides an upper bound on the maximum objective-function value

obtainable for the ILP problem. However, this does not imply that simply

rounding the LP-relaxed values will provide the optimum. On the contrary,

Chinneck shows the dangers of rounding values in constrained optimisation;

clearly showing that adopting this approach will, more often than not, pro-

duce an infeasible solution [Chinneck, 2000].

Surrogate Relaxation The fundamental properties of knapsack problems

(Section 2.3), told us that a greedy sort of items by profit-density or pseudo-

utility ratio, can yield the optimum solution for the single-constrained prob-

lem. Also highlighted was the uncertainty inherent in calculating a pseudo-

utility for a multi-constrained problem. That is, when dealing with a single

weight constraint; it is logical to think that a high pseudo-utility will sug-

gest a more beneficial item than a low pseudo-utility. The situation becomes

fuzzy when each item has a list of weights associated with it: one weight

for each knapsack (relative-weight). The surrogate relaxation is a heuristic

method to transform the multi-constrained problem to a single constrained

equivalent. A set of surrogate multipliers ai (i=1 . . .m) which satisfy the

following constraint:

n
∑

j=1

(

m
∑

i=1

aiwij

)

xj ≤
m
∑

i=1

aici (2.7)

are used to develop µj, the pseudo-resource consumption of an item. Both

Chu and Beasley [Chu and Beasley, 1998], and Raidl provide prominent ex-

40

amples of this relaxation [Raidl, 1999b]. This is essentially a best-guess ap-

proximation to the pseudo-utility of an item when dealing with multiple

relative-weights. Any set of weights which satisfy the constraint of equa-

tion (2.7), will suffice to transform the multi-constrained problem to an ap-

proximately equivalent single-constrained version. Common practice sees

the values of the LP-relaxed solution being used as the values for legal

surrogate multipliers. Chu and Beasley state, “One of the simplest meth-

ods to obtain reasonably good weights is to solve the LP-relaxation of the

original MKP . . . and use the values of the dual variables as the weights”

[Chu and Beasley, 1998]. Subsequently, a greedy sort in terms of pj/µj will

yield a locally-optimised sorting of the items in terms of how beneficial they

are for inclusion in a near optimal solution.

Let us look now at the details of data-sets used to define different problem-

instances, and the terminology used to describe such data sets.

2.6 A Note on Problem-Instances

As previously discussed, items of a knapsack problem have attributes of

weight and profit. Using this information, and knowing that a knapsack

capacity must exist to constrain the problem; problem-instances can be for-

mulated as test-data. An instance, or a problem-instance is generally cat-

egorised by the number of items involved (i.e. a 100 item problem). For

multi-constrained problems, the number of constraints will also be included

(i.e. a 100-50 problem), to indicate fifty constraints, or knapsacks.

A problem-instance consists of a data-file containing a list values for prof-

its (pj’s), possibly multiple lists of values for weights (wj’s) or relative-weights

(wij’s), and a list of knapsack capacities or constraints (ci’s). These corre-

41

spond to the attributes for each item in the problem. For a multi-constrained

problem then, relative-weights will be represented as a list of m weight values,

bound to each particular item; possibly on n separate lines for each item. In

any case, items will have but a single profit-value bound to them2.

New problem-instances can then be formulated. Given the aforemen-

tioned knowledge, of the properties of knapsack problems; a test data-set

can be created where attributes are randomly generated; but bounded by the

following concerns. Capacities are bounded, relative to the summed value of

the m item-weights (determining the tightness of constraints); with profits

also bounded relative to weights (defining the correlation, or pseudo-utility

relation).

As a consequence, the difficulty of a problem instance is referred to in

one of two ways: a) Correlation of the generated instance, and; b) Tight-

ness of constraints. Correlation refers to the relatedness of weights to prof-

its. In highly-correlated data-sets, profits are generated in direct proportion

to the weights; whereas, in weakly-correlated data-sets, the relation between

objective-values, and constrained-attribute values is weak [Michalewicz, 1996].

Constraint-bounds can be set to varying degrees of tightness. Generally

this is achieved by expressing knapsack capacities as a percentage of the total

weight of all items. For example the tightness-ratio, α ∈ {0.25, 0.5, 0.75}

is commonly used to generate capacity constraints (ci); according to the

following simple formula3

α

n
∑

j=1

wj

2Deviating from this definition, defines a multi-objective knapsack problem. Refer to

Zitzler’s work for detail on these [Zitzler, 1999].
3Specialised to: α

∑n

j=1
wij for the multi-constrained problem

42

The values of α determine the restrictivity of the problem. Other values

for α may be used, but these are the most common throughout the literature.

As stated in [Michalewicz, 1996] Martello and Toth report that increasing

the capacity (or, decreasing the restrictivity) does not increase the necessary

computation time for classic algorithms [Martello and Toth, 1990].

For more information on the generation of problem-instances, and sug-

gested procedures, Michalewicz [Michalewicz, 1996] provides more detail, and

Chu and Beasley [Chu and Beasley, 1998] cite a more canonical point of

reference in the work of Freville and Plateau [Freville and Plateau, 1994].

A standard set of greater than 270, 01MKP problem-instances have been

generated in [Chu and Beasley, 1998], and are available at the OR Library

[Beasley, 1990]4. These instances have served as a common ground for the

comparison of the performances of new algorithms and approaches. In essence,

the OR library serves as a common-area available over the world wide web,

set-up as a point of reference for a distributed set of test-data covering a

variety of optimisation problems.

2.7 Conclusion

This chapter has served as an introduction to knapsack problems. Trail-

ing from it’s theoretical grounding as a linear-programming problem - we

present an overview of the key properties of knapsack problems; with a view

to equip the aspiring EA practitioner - with all the necessary background

knowledge to fully-understand the works (from the literature) of EA ap-

proaches to knapsack problems. Only the information of most relevance to

this thesis is detailed, giving reference to more detailed works when required.

4OR Library available at http://www.brunel.ac.uk/depts/ma/research/jeb/info.html

43

The common properties of all knapsack problems have been outlined (in a

general description of the single-constrained problem); from which most if not

all knapsack problems are derived. A discussion on the fundamental proper-

ties of this family of problems, revealed a common approach-to-solution; in

the concept of an item’s pseudo-utility.

A focus on the particular 01 multi-constrained problem, of most relevance

to this thesis, was presented; outlining the detailed properties of this prob-

lem. Owing to the alternate forms of expressing the problem (in particular,

the examples of Bruhn and Geyer-Schulz [Bruhn and Geyer-Schulz, 2002]) -

it’s alternative expression as a standard form linear-programming model is

explained (standard form LP). A review of the literature also revealed, that

state-of-the art approaches to solving this problem utilise local-optimisation

techniques, heavily based on, or working with - relaxations of the problem.

Relaxations are defined and a discussion of the uses and methods of the most

prominent disclosed. Finally, a section devoted to the aspiring practitioner,

outlines the data-sets used to test new methods; and describes the termi-

nology used to describe them. This knowledge is deemed a requirement, for

those wishing to gain a full-understanding of both the past works from the

literature, and the work of this thesis.

44

Chapter 3

Review of EA approaches to

Knapsacks

3.1 Introduction

There exists some confusion in how to classify evolutionary approaches to

knapsack problems. Various representations for the evolutionary chromo-

somes; and in conjunction, differing strategies to ensure that - both a feasible

and optimal solution results from the evolutionary search - have been devel-

oped. As a result, the different authors discuss similar concepts, but with

slightly differing terminology (or overlapping classification). From a review

of the literature, we see the application of EAs for constrained-optimisation:

primarily, as a decision for the encoding of the problem (i.e. the search-space

explored); and thereafter - a twofold consideration pertaining to the core-

design decisions facing the designer of an EA for knapsack problems: the

choice of representation, and the choice of approach to feasibility1.

1Feasibility refers to the wish to ensure the outcome of search is a solution satisfying

all of the problem-constraints.

45

The chapter begins, outlining ambiguities from the literature, which face

the designer of an EA for knapsacks; therein, we outline the motivation be-

hind our subsequent choice of classification (the structure of the chapter).

Following from this, we present a review of the literature, within this classifi-

cation. The primary choice for problem-encoding is first discussed, dividing

it into a decision between a direct or indirect approach. The choice of rep-

resentation details concerns of variable versus fixed-length approaches, and

their subsequent affect to the artificial evolution algorithm. The choice of

approach to feasibility is subdivided into a decision between maintaining a

population allowing or omitting infeasible solutions. As they are of most rel-

evance to the approach taken in this thesis - and among the most successful

approaches - the remainder of the chapter focuses on the latter choice of

maintaining a population of feasible-only solutions. Having provided all the

necessary background-understanding required to appreciate the most promi-

nent approaches from the literature, the chapter concludes with a review of

such EA approaches to knapsack problems.

Where possible, we present the core concepts for each section in isolation;

and follow with a discussion of same, from the works of the literature. In this

way, the reader familiar with the topic-area may choose to view the discussion

alone, or alternatively the unfamiliar reader may gain an understanding for

the concepts without being overcome by the detail of the discussion.

Finally, the forthcoming review of the literature for knapsack problems,

chooses a level of abstraction of most relevance to the reader of this the-

sis. If wishing to assess design-considerations for the application of EAs to

constrained-optimisation - we refer the reader to the work of Michalewicz

(which details an implementation-specific focus) [Michalewicz, 1995]; simi-

larly - but for an understanding of how and where constrained-optimisation

46

affects the standard EA - Yu and Bently present a classification-framework

[Yu and Bentley, 1998] outlining methods to generate legal-phenotypes.

3.2 Existing Ambiguities

In setting about applying an EA to knapsack problems, a review of the

literature may leave the inexperienced designer confused. This confusion,

lies within the differing authors’, preference for explanation. For example,

the works of Hinterding [Hinterding, 1999]; Raidl and Gottlieb [Raidl, 1998]

[Raidl and Gottlieb, 1999a] [Gottlieb, 1999a] [Raidl and Gottlieb, 1999b]

[Raidl and Gottlieb, 1999c]; Michalewicz [Michalewicz, 1996] and Bruhn and

Geyer-Schulz [Bruhn and Geyer-Schulz, 2002]; each classify the different ap-

proaches available to the designer, often describing the same concepts with

slightly differing terminology or overlapping classification.

Hinterding [Hinterding, 1999], whilst discussing the single-constrained

problem gives possibly the best classification; dividing the task of problem

approach into a choice of representation and constraint-handling technique.

Michalewicz [Michalewicz, 1996] (also discussing the single-constrained prob-

lem), briefly describes feasibility issues; in terms of - penalty, repair, and

decoder methods (See Section 3.5). Gottlieb [Gottlieb, 1999a], classifies ap-

proaches by the search-space explored; introducing the notion of a direct

and indirect approach; whilst together with Raidl [Raidl and Gottlieb, 1999a,

Raidl and Gottlieb, 1999c], they classify approaches in terms of decoder-

based EAs. Bruhn and Geyer-Schulz [Bruhn and Geyer-Schulz, 2002], as

with Michalewicz, choose to classify the approach in terms of feasibility.

Owing to a position of retrospect and the benefit of hindsight, this thesis

takes a very simple approach to classify the considerations for an EA ap-

47

proach to knapsack problems. Issues of encoding (or search-space explored)

are first discussed, with subsequent sections relating to - the choice of ap-

proach to representation, and the choice of approach to feasibility. A review

focusing on required background knowledge is outlined, with particular areas

of ambiguity addressed where relevant. The aim is not to re-classify; but to

present the review from a position of abstraction most suited to the reader

of this thesis.

3.3 Direct versus Indirect Encoding

In deciding how to represent a knapsack problem with an evolutionary algo-

rithm, we must choose a suitable data-structure, and decipher, how a solution

(to the problem) transcribes to that data-structure. That is, we determine

how the problem is encoded. The problem-encoding can either directly or

indirectly represent solutions to the problem at hand; and as discussed in

the works of Gottlieb, this implicitly determines the search-space explored

[Gottlieb, 1999b, Gottlieb, 1999a]2. A direct representation refers to a chro-

mosome whereby the search-space explored by the population is equivalent

to S = {0, 1}n; the space of possible solutions. That is, the problem is

viewed as a search through the 2n permutations, or possible configurations-

of-items. Alternatively, an indirect representation refers to a search in some

other space; mapped into S, by some mapping process; i.e. the separation of

search and solution space (See Section 1.3.1).

2Gottlieb provides the definitive classification of EA approaches (in terms of search-

space explored); in this section (and throughout) we subscribe to this system (and recom-

mend it’s use); our chapter incorporates this - but seeks also, to resolve naming confusion

from the other works within the literature.

48

If indirectly encoding the problem, some form of genotype-phenotype

mapping process exists. As will be seen at different points in this chapter,

there are many advantages to an approach of this type; among which robust-

ness and general applicability are to be noted. In the field of EAs for knapsack

problems - direct-approaches (when coupled with hybrid local-optimisation

algorithms) have proven to be the most successful [Gottlieb, 2000].

3.3.1 Permutation-Based EAs

When used as direct encodings, chromosomes encode a permutation of the set

of all items. As a consequence, Gottlieb [Gottlieb, 2000], and also together

with Raidl [Raidl and Gottlieb, 1999a, Raidl and Gottlieb, 1999c], use the

term “permutation-based EA” to generalise a category of fixed-length repre-

sentations of size n. Gottlieb uses the following relation to categorise chro-

mosomes of this type:

π : J → J (3.1)

for J = {1 . . . n} items [Gottlieb, 2000]. The relation presents the chro-

mosome (π), and states that their be a one-to-one mapping between - the

chromosome and the set-of-items encoded; that is, the search-space defined

is S = {0, 1}n. Their definition of this term however, not only refers to

the representation; but also it’s coupling with a decoder using a first-fit al-

gorithm (Section 3.5.2). For the purposes of uniformity - use of the term

“permutation-based EA” or “permutation-based decoder”, will have the same

meaning and intent as Gottlieb; however the term permutation-based repre-

sentation will be used to refer to the chromosome’s representation alone3.

3From Equation 3.1 - the representation requires, only that the chromosome π, repre-

sent a relation with a one-to-one mapping to the set-of-items; with J = {1 . . . n} items.

49

3.4 Choice of Representation

As the problem-encoding describes how a chromosome maps to the solu-

tion of a problem; the choice of representation addresses decisions for the

chromosome-representation itself. For example, the type of data-structure

used; whether it is of fixed or variable-length, etc.; the following outlines

a discussion of these considerations in terms of the literature for knapsack

problems.

Largely, there are two approaches to a chromosome’s representation for

knapsack problems. Chromosomes can be represented as a sequence of bi-

nary, or numeric numbers. The traditional GA approach of using binary

strings of 0’s and 1’s is more common, and has shown the most success to-

date; more recently however, various different types of numeric chromosomes

have shown promise and have proven to be provide comparable results (if

only slightly inferior). Regardless, the choice of chromosome representation

can be categorised as follows:

Binary: A binary or bitstring representation, generally refers to a fixed-

length n-bit binary vector ~x, such that ~x = {x1, x2 . . . xn} and xi ∈

{0, 1} (for an n item problem). An xi = 1 index indicates inclusion of

the corresponding item. This form of representation has emerged in the

most successful approaches to knapsack problems to-date [Raidl, 1998,

Chu and Beasley, 1998, Khuri et al., 1994].

50

Numeric-Integer: A numeric representation which generally refers to a

fixed-length integer vector of size n (for an n item problem). This

representation generally encodes a solution-candidate, by a one-to-one

mapping between the numerical value of a gene and the corresponding

item. The most common use of this representation views the chro-

mosome as a configuration of the set-of-items (i.e. a permutation)4.

Numeric-integer representations have been comprehensively studied in

[Hinterding, 1994, Hinterding, 1999] and [Raidl and Gottlieb, 1999a]

[Raidl and Gottlieb, 1999b, Raidl and Gottlieb, 1999c].

Numeric-Real: A numeric representation which generally refers to a fixed-

length real-valued vector, of size n for an n item problem. Generally,

a chromosome for this type of representation encodes a parameter-

sequence. This sequence is then passed to a decoder (See Section 3.5.3),

which carries out an interpretation of the chromosome in order to build

a legal knapsack solution. Hinterding in [Hinterding, 1999], studies a

random-key encoding strategy of this type and more recently Raidl’s

weight-coded GA [Raidl, 1999a, Raidl, 1999b] and Cotta’s hybrid-GA

utilise this representation for problem-space search (See Section 3.6.2).

It can be seen above, that both the binary and numeric-integer represen-

tations, readily imply the use of a direct-encoding (the exception to the case,

being the stated ordinal-representation discussed in a subsequent section). In

both approaches and as described by Gottlieb - approaches of this kind can

be seen to be searching the solution-space S = {0, 1}n, the space of possi-

ble solutions [Gottlieb, 1999b]. The latter numeric-real approach essentially

describes a form of indirect-encoding (See Section 3.3).

4The ordinal-representation later discussed in Section 3.6.1 presents a numeric-integer

representation which deviates from this definition.

51

3.4.1 Variable versus Fixed-Length

With regard to representation, the designer of an EA must also decide

whether to use a fixed or variable-length structure for chromosome represen-

tation. Throughout the literature for EA approaches to knapsack problems,

fixed-length approaches dominate, and have seen to provide the best results

when coupled with hybrid-algorithms (See Section 3.7) [Michalewicz, 1996,

Hinterding, 1994, Hinterding, 1999, Chu and Beasley, 1998, Raidl, 1998].

Although a fixed-length approach can very conveniently represent each of

the n items of the problem; their scalability and robustness to problems of

higher complexity has been questioned (See Koza’s critique Section 1.4.2).

Variable-length EA’s, on the other hand readily adapt to problems of in-

creasing difficulty. Based on a model of real-world viral-evolution, many of

the evolutionary strategies (for survival) observed in that of a real-life virus -

have been observed with variable-length representations simulating evolution

(variable-length EAs) [Ramsey et al., 1998].

Despite their success in other problem domains, there are few examples

of variable-length representations from the literature of knapsack problems;

Hinterding’s [Hinterding, 1994] “selection-based” GA being one of the only

empirical examples5. Within a genetic-programming (GP) context, (whereby

variable-length of the genome is inherent), one approach to knapsack prob-

lems has been reported to give successful results for the integer-valued MKP

(See Section 2.2) [Bruhn and Geyer-Schulz, 2002]. Interestingly however,

given the time of writing of this thesis; there have been no variable-length

binary representations applied to knapsack problems.

5In this instance, variable-length being bounded by by the number-of-items; i.e. ≤ n.

52

3.4.2 Representation, and Evolutionary Operators

As pointed out in the previous section’s description of permutation-based

EAs - a direct-encoding implicitly defines that a chromosome represent a

permutation of the set-of-items. A problem arises with this approach, when

using a numeric-representation: there is an imposed restriction on the gen-

eration of new chromosomes; that is, they must maintain the permutation

property (i.e. represent a sequence of ≤ n numbers without repeats).

As a consequence the choice of this form of representation requires the use

of order-preserving evolutionary operators. Hinterding [Hinterding, 1994],

for example, reported the use of a uniform order-based crossover and swap-

mutation for this purpose. Michalewicz [Michalewicz, 1996] while studying

these representations, concluded that future-work should explore the use of

crossover operators which are sensitive to preserving the position and order

of items. Gottlieb in later years, carried out such a study [Gottlieb, 2000]:

his results showing a uniform order-based crossover to prevail over a novel

position-sensitive operator. A resulting conclusion pointing-out that sensi-

tivity to order (more-so that position) is of importance for the 01MKP.

In contrast, a binary representation affords the use of classical recombi-

nation and mutation operators. Not only have such approaches proven the

most successful [Gottlieb, 1999b, Raidl, 1998, Chu and Beasley, 1998], but

their use also provides for a more robust system; few problem-specific changes

are required to apply the same algorithm to different areas of application. In

general, this advantage is afforded to most if-not-all indirect-encodings (the

genotype-phenotype mapping process, and separation of search from solution

space providing for this). As a consequence the problem-space search and the

ordinal-representation approaches of Section 3.6; all avail of the ability to use

the more classical evolutionary operators .

53

3.5 Choice of Approach To Feasibility

Having outlined the considerations for the choice of representation, this sec-

tion serves to examine the second of the two core design decisions: the

choice of approach to feasibility. A feasible candidate-solution6 refers to a

viable solution, which guarantees not to violate any of the problem con-

straints (i.e. it is feasible or makes sense to consider this solution). Alterna-

tively, an infeasible candidate-solution refers to a solution - which in it’s raw

(un-interpreted) form - causes the violation of at least one of the problem

constraints. In choosing an approach to feasibility - we essentially face a

binary decision: to choose between the allowance or omittance of infeasible

candidate-solutions (within the population of the EA).

In terms of the work of Cleary and O’Neill [Cleary and O’Neill, 2005],

we can reduce our decision to a choice between a population with infeasible

solutions or feasible-only solutions. Irrespective of the approach, either case

demands, that the population be governed in terms of feasibility; where our

key concern, is the wish to guarantee that the result of search is at least a

feasible-solution (if not close-to, or on the optimum).

With the former approach, an algorithm in the role of a constraint-

violation handler is required; this, to ensure emerging infeasibility is con-

trolled. With the latter (feasible-only) approach, a heuristic-encoding of

the problem-specific domain knowledge: a feasibility-algorithm, narrows the

search space to F (F ⊂ S = {0, 1}n) the feasible-subset of the space of

all possible solutions [Gottlieb, 1999b]. In the domain of EA approaches to

knapsack problems, this narrowing of the search-space explored is commonly

6When discussing issues of feasibility, it is more common to refer to the chromo-

somes in terms of solutions [Michalewicz, 1996, Chu and Beasley, 1998, Gottlieb, 1999b,

Bruhn and Geyer-Schulz, 2002]

54

referred to as heuristic-bias; directly transferring to the more general EA

definition of a genotype-phenotype mapping.

The following presents a review discussing the issues involved in handling

infeasible solutions. Subsequently, the role of heuristics in the maintenance

of a feasible-only population, and what is meant by a hybrid-approach is dis-

cussed in a section detailing heuristic-bias; before the feasible-only approach

(of most relevance to this thesis) is itself described.

3.5.1 Infeasible Solutions

With a direct-encoding or permutation-based representation (Section 3.3.1),

the possibility may arise that a candidate-solution represents a set-of-items

which violate a capacity constraint of the problem. The issue arises, as to

how to evaluate the “goodness” of such individuals.

As argued by Richardson et al. [Richardson et al., 1989], it can be viewed

that such individuals contain good genetic-material - which is of benefit to

the evolutionary-search - and thus, they should be allowed access to the re-

production of new candidate-solutions. Furthermore, both Michalewicz and

Richardson [Michalewicz, 1996, Richardson et al., 1989] present evidence to

suggest that the exclusion of this genetic-material (omitting infeasibles from

search), can cause premature-convergence in highly-restrictive problems.

In any case, when choosing to allow the emergence of infeasible-solutions

in the EA - care must be taken when attributing fitness to these individuals:

we wish to ensure that the population doesn’t become over-run with infea-

sibility (to the point that no feasible-solution remains). The question arises

then, as to how to police the method by which we express fitness to these

individuals. A constraint-violation handler is required; predominately, the

use of either penalty methods or selection-preferences are adopted.

55

Penalty Methods Penalty methods seek to reduce the fitness of candidate-

solutions that violate constraints. For this purpose, the objective function

can be augmented to include a penalty function such that evaluation of can-

didate x is determined by:

eval(x) =
n
∑

j=1

pjxj − pen(x) (3.2)

where pen(x) is zero for all feasible solution candidates. As pointed out in

[Michalewicz, 1996], penalties may be to the “death” (worst possible fitness);

or alternatively, graded to a degree which varies according to the number of

violations which occur: as a consequence this method of penalty-allocation is

commonly refereed to as a graded-penalty method. In any case, it can be seen

that penalty methods serve to handle solutions with constraint-violations

(hence, the term constraint-violation handler) by reducing their fitness, and

thus their chance of contribution to the next-generation’s offspring; as such,

their use is tightly-bound to a fitness-proportionate selection mechanism.

The difficulties in calibrating such graded-penalty terms are discussed in

[Goldberg, 1989, Richardson et al., 1989], where they point out that too se-

vere a penalty may result in premature convergence to “super-individuals”.

On the contrary, a penalty which is too liberal, may result in a final solution

which is infeasible.

Selection-Preferences Selection-preferences are presented by Hinterding

and Michalewicz [Hinterding and Michalewicz, 1998, Hinterding, 1999], and

look at using heuristic-rules which, when selecting a parent for reproduc-

tion - have a preference, or “prefer” the selection of one individual over

another. Though not bound to any particular EA implementation, selection-

preferences lend themselves more easily to work with some style of tournament-

selection (this is most commonly the case). In the role of constraint-violation

56

handler, selection-preferences work, by choosing between classes of infeasi-

ble and feasible candidate-solutions based on the following heuristic selection

rules [Hinterding, 1999]:

• feasible solutions are always better than infeasible ones

• feasible solutions are compared by fitness

• infeasible solutions are compared via the number of violated constraints.

Preferences ensure that the end-solution is feasible; and as seen with the third

point, minimise the probability of infeasible candidate-solutions resulting in

offspring that violate constraints. Extending the use of preferences, Hinter-

ding and Michalewicz adapt the idea of parent matching [Ronald, 1995], and

match infeasible parents - with mates, that satisfy the constraints that they

themselves, do not [Hinterding and Michalewicz, 1998]. That is, given the

first parent, a mate is chosen (based on this first parent); such that the prob-

ability of the offspring having constraint-satisfaction properties is increased:

the second parent satisfies the constraints the first does not.

Discussion of Approaches with Infeasibility

A review of the literature allows us to conclude that, in general - penalty

methods require a problem-specific analysis phase, such that the penalty

can be tailored to the particular fitness-landscape of the problem at hand.

Gottlieb [Gottlieb, 1999b] cites that they are “quite sensitive to the problem

structure at hand”, and gives reference to other works which resulted in

implementing various biasing-techniques in order to ensure feasibility.

Olsen[Olsen, 1994], studied twelve different penalty methods over the

single-constrained problems using both weak and harsh penalties; she re-

ported that the result of search was often an infeasible solution. Khuri et. al

57

[Khuri et al., 1994] applied a graded-penalty term to a test-bed of nine stan-

dard 01MKP problems (multi-constrained); but similarly report, only moder-

ate success with the more constrained problems - one such problem-instance

remaining unsolved.

More conclusively, Michalewicz [Michalewicz, 1996] observed that, (for

problems with restrictive knapsack-capacities) penalty functions do not pro-

duce feasible results: this is in direct support of Olsen’s findings. In this

study, however, he concludes that a wider range of penalty methods would

need to be considered before a broad conclusion could be determined: i.e. it

would be wrong to discard them as a poor approach. We note that for the

01MKP, Khuri et al.’s findings do show some merit for investigation7.

The use of Selection-preferences as a constraint-violation handler, on-the-

other-hand is not so common. Powell and Skolnick [Powell and Skolnick, 1993]

are one of the earliest works to introduce this scheme. Hinterding and

Michalewicz adapt this approach, implementing selection-preferences coupled

with a novel parent-matching system [Hinterding and Michalewicz, 1998].

Applied over a set of linear and non-linear optimisation problems, results

reported were competitive to the GENOCOP system (stated to be the best

adapted EA approach at the time) [Michalewicz and Nazhiyath, 1995]. In a

later work [Hinterding, 1999], he provides a direct comparison with penalty-

methods, reporting a preference-based system to improve over a quadratic-

penalty method; again, this is over a 100 item single-constrained problem.

Although much of the work from the literature discussing constraint-

violation handlers - do so with respect to the single-constrained problem,

our review of the literature leaves us with the impression (as with Hinterding

7It is worth noting that, all of the above outlined penalty methods utilised the same

bitstring representation, working with problems of varying size and constraint-tightness.

58

[Hinterding, 1999]) that selection-preferences provide two main advantages

over penalty methods: they provide an assured feasible end-solution, and

they eradicate the need for problem-dependant tuning of a penalty function.

We note again, that they are particularly suited to a method of tournament

selection.

3.5.2 Heuristic Bias: Maintaining Feasibility

All feasibility-algorithms, essentially serve to build legal knapsack solutions,

from the genetic-material specified on the chromosome. A heuristic-guided

construction occurs; only producing a phenotypic trait, if doing so maintains

all the constraints of the problem at hand. In this way, a heuristic encoding of

the problems weight-constraints is required to act out the role of constraints-

checker (to asynchronously indicate when a constraint-violation might oc-

cur). As such feasibility-algorithms have been termed construction-heuristics

[Cotta and Troya, 1998], constructive base heuristics [Avci et al., 2003] and

decoding heuristics [Raidl, 1999b]. (We conform to the use of Cotta’s term;

i.e. construction-heuristic).

The term heuristic-bias then, describes, the amount of heuristic-encoding

maintained in the feasibility-algorithms construction algorithm. For exam-

ple, a hybrid-approach (incorporating knowledge of the problems objective-

information, as well as the weight-constraints) is said to further narrow the

search-space to the boundary B of the feasible-region (B ⊂ F ⊂ S = {0, 1}n)

[Gottlieb, 1999a, Gottlieb, 1999b]; that is, heuristic-bias maintains that all

genotypes map into a smaller phenotypic space.

In the context of knapsack problems, there are a number of standard ap-

proaches to construction-heuristics8; each varying in the amount of heuristic-

8Martello and Toth’s book is the canonical point-of-reference for an in-depth description

59

bias imposed. Here, we outline two of the more common heuristic-approaches,

and follow with an example of a greedy heuristic (or hybrid-algorithm) in the

first-fit descending.

• Next Fit: The most simple heuristic, which as the name suggests;

scans the chromosome from left to right and tries to add the next item

represented. Items are added until the constraints-checker identifies a

violation;

• First Fit: First fit is an adaption of the next fit whereby a violating

item is skipped over; and what remains of the chromosome is scanned

for any other possible addition. In effect, it’s next-fit but where violat-

ing items are skipped;

• First-Fit Descending: A greedy-heuristic or local-optimisation tech-

nique. A list of the set of possible items is maintained; and sorted

in terms of pseudo-utility ratio (profit-to-weight). Subsequent to this

sorting or ranking, items are added in the manner described by the

next-fit heuristic.

Upon first inspection, it would appear that a greedy sort by pseudo-utility (in

the latter heuristic) would result in the same sort each time. Recall however,

a discussion of this assumption in the previous chapter (Section 2.3), which

points out that for the 01MKP (as opposed to the single-constrained problem)

- estimating the profit-density or pseudo-utility for an m knapsack problem,

is in itself, an NP-hard task.

of heuristic-approaches [Martello and Toth, 1990].

60

3.5.3 Feasible-Only Solutions

We have seen that with the approach to feasibility, whereby infeasible solu-

tions are allowed in the population of an EA - the search-space of all pos-

sible solutions S = {0, 1}n, is directly explored; (with an algorithm in the

role of a constraint-violation handler helping to maintain feasibility of the

end-solution). Alternatively, choosing to ensure all chromosomes represent

feasible-only solutions, implies the use of a feasibility-algorithm to constrain

the search to, F the feasible subset of S.

Essentially, within the domain of EA approaches to constrained optimi-

sation, three main classes of feasibility-algorithm exist: repair, decoders, and

encoders. Upon closer inspection from the literature however [Gottlieb, 2000]

[Bruhn and Geyer-Schulz, 2002] [Chu and Beasley, 1998] [Hinterding, 1994]

[Hinterding, 1999] [Raidl and Gottlieb, 1999a] [Raidl and Gottlieb, 1999b]

[Gottlieb, 1999b] [Michalewicz, 1996], it would seem that they are effectively

synonymous, or defined in terms of the problem encoding - this is not the

case. The clear distinguishing factor of a feasibility-algorithm is is choice of

approach to evolutionary-learning.

With any feasibility-algorithm, heuristic-bias is enforced to ensure all

chromosomes decode to a feasible solution; thereafter, the feasibility algo-

rithm either follows a Lamarkian model of evolutionary-learning (in which a

genetic re-engineering takes place); or a more Baldwinian interaction with the

environment is followed9. The following brief account of each serves to clarify

their distinctions: repair and encoders follow a Lamarkian-model, whereas

decoders follow a Baldwinian approach to evolutionary-learning.

9See Mitchell’s book for a definition of these learning approaches [Mitchell, 1997].

61

Repair With a traditional repair approach, chromosomes representing in-

feasible solutions are allowed in the population; and upon their detection are

“repaired” or fixed. As a feasibility-algorithm - repair defines a construction-

heuristic which determines the selective-interpretation of the genetic-material

encoded. Thereafter, a constraints-checker (acting in the role of censorship),

forbids genes from representing a constraint-violation. This much is clear.

At the point of discovering a constraint-violation then, the repair algo-

rithm performs a genetic re-engineering of the original chromosome (chang-

ing the genetic-structure so as to subsequently represent a feasible-solution).

This is essentially the defining characteristic of repair - a form of Lamarkian

approach to evolutionary-learning whereby, the evolving population of genetic-

material is directly effected, to reflect the changes recommended by the en-

vironment (for survival).

As hinted above, a repair algorithm can enter the realm of a hybrid-

approach by incorporating a more detailed heuristic encoding; this can afford

a locally-optimised order-of-visit (or sorting) of items - resulting that genes

of lower phenotypic benefit get re-engineered as opposed to good-ones. The

more traditional repair (relying on the natural order of the permutation en-

coded) is sometimes refered to as random-repair with the local-optimisation

approach describing hybrid-repair or greedy-repair.

Although repair algorithms, are predominantly used to maintain feasi-

bility of the entire evolving population; infeasible solutions can however,

be allowed in the population to a certain degree. As Michalewicz describes

[Michalewicz, 1996], a replacement-rate can be supported. That is, only a cer-

tain percentage of detected infeasible-individuals need actually be repaired

and replaced (placed back in the population, in their corrected genetic-state.).

Michalewicz points out that, although Orvosh deems this percentage to be

62

a performance related metric [Orvosh and Davis, 1993]; stating that a 5%

replacement is optimum for best-performance: Michalewicz presents contra-

dictory evidence, suggesting that the percentage replacement has no effect

on performance. It may be presumed that this is the reason why the most

prominent repair-based approaches, use a 100% replacement rate. In other

words, repair is used as a feasibility algorithm - maintaining a 100% feasible-

only population.

Encoders Encoders can be seen as a specialisation of repair - whereby

an encoder differs, in that, controlled initialisation and adapted genetic-

operators exist to ensure that a chromosome may never represent an infeasible

solution. The defining difference between an encoder and a repair algorithm,

is that with an encoder, infeasible candidate-solutions never emerge in the

population.

A second point of difference, sees that an encoder must have it’s evolution-

ary operators fitted with a construction-heuristic; to ensure the generation

of feasible-only solutions. The encoding and operators can be sufficiently

matched, such that infeasible solutions never occur; e.g. this is typically

the case with grammar-based EA approaches. In this way, an encoder can

never be used in conjunction with a constraint-violation handler; this, as a

replacement-rate is not an option. Feasibility is built into all facets of the

evolutionary process.

Decoders The family of algorithms referred to as decoders, are distin-

guished by their Baldwinian approach to evolutionary-learning: interaction

with the environment can never effect a change to the genetic-material un-

dergoing evolution. In this way, (as a feasibility-algorithm), the chromosome

decodes to an expressed (legal) phenotype; that is, it maps into F the feasible-

63

subset of the solution space. This phenotype is legal (feasible) and can be

evaluated to yeild a fitness. It is here, that the distinguishing factor between

decoder and repair is exemplified: with a decoder - the (yielded) fitness is

expressed back onto the untouched chromosome (no genetic re-engineeering

of the original genetic material takes place).

In reviewing the literature, it can be seen that decoder approaches for the

MKP are often referred to as being order-based decoders10 [Hinterding, 1994,

Hinterding, 1999, Raidl, 1998]. This being the case, it simply refers to the

use of a decoder, as a permutation-based EA (See Section 3.3.1). Here,

the genotype represents a point in the search-space S (i.e. a permutation),

whereby the decoder’s construction-heuristic maps this, to a point in the

feasible solution-space F . In this case, a decoder operates exactly as a repair-

algorithm; the only difference being - that no genetic re-engineering takes

place.

It is an interesting point to note - that in the field of knapsack prob-

lems the best-performing feasibility algorithms to-date have proven to take

the approach of hybrid-repair algorithm [Gottlieb, 1999b, Gottlieb, 1999a,

Raidl, 1998, Chu and Beasley, 1998]. Contrary to a study by Whitley et al.

[Whitley et al., 1994] (where a Baldwinian form of learning was shown to

sometimes outperform a Lamarkian approach) this would seem to suggest -

that the domain of the 01MKP is best suited to the Lamarkian approach to

evolutionary-learning.

10The term selection-based has also been used by Hinterding [Hinterding, 1994]. As such

we advise against the use of either - as the verbs order and select are commonly used to

describe the operation of an algorithm; in the end, it only leads to confusion.

64

3.6 Indirect Decoders

As the work of this thesis essentially documents research into a novel genotype-

phenotype mapping process (working over an indirect encoding) - this section

details two such similar decoders which have seen substantial research in the

literature [Raidl, 1999b, Cotta and Troya, 1998, Raidl and Gottlieb, 1999a,

Raidl and Gottlieb, 1999b, Raidl and Gottlieb, 1999c]. As such, this sec-

tion encompasses two core themes; a) to provide a brief introduction of

these decoders, and b) to layout their operation with respect to the frame-

work developed in the work of Gottlieb and Raidl [Raidl and Gottlieb, 1999a,

Raidl and Gottlieb, 1999b, Raidl and Gottlieb, 1999c, Gottlieb, 2000]. It is

felt that the relevance of the later consideration is important, as in recent

years theirs is the most significant contribution within the domain of applying

EA’s to MKP’s. In their work, they categorise decoder-based EA approaches

as permutation-based, ordinal-representation based, and as we will interpret

it; problem-space search based11. As permutation-based decoders, have al-

ready been discussed - the following details the remaining; focusing only the

necessary detail for their understanding.

3.6.1 Ordinal-Representation Based Decoder

The ordinal-representation described in [Michalewicz, 1996], and empirically

tested in [Raidl and Gottlieb, 1999a] [Raidl and Gottlieb, 1999b] and

[Raidl and Gottlieb, 1999c] is an example of the numeric-integer representa-

tion of fixed-length, which does not classify as a permutation-based approach.

Although, originally considered for the traveling salesperson problem (TSP)

11For the latter category, we choose to group their use of both the surrogate-relaxation

and Lagrangean-relaxation into the more common term of problem-space search (See Sec-

tion 3.6.2)

65

[Grefenstette et al., 1985], it is easily transfered to the MKP. In the ordinal

representation, each chromosome is a vector ~v, of n integers. At initialisation,

a deterministic method determines the value of each gene - whereby the ith

element of the vector (each gene of a chromosome) has a value in the range

[1, (n − i) + 1]. At it’s core, the decoder maintains an ordered-list of the

n possible items as an internal-representation. This list supports removal of

an item at any index, such that the order of all remaining items is preserved

- subsequent to removal, the size of the list is decremented by 1. As this

suggests, the list reaches size = 1 only when the last item remains. The

following example adapted from Michalewicz’s explanation serves to explain

the internal operation of this method [Michalewicz, 1996]:

Consider L = (1, 2, 3, 4, 5, 6), the internal representation (an ordered-

list), and vector ~v =< 4, 3, 4, 1, 1 >. which is built from the [1, (n − i) + 1]

principle. It can be seen that any vector of items ~v, will always produce a

list of numbers - which (when read sequentially from left to right) result in

a valid index for the removal of an item. In the case of this example, the

viable candidate-solution (4, 3, 6, 1, 2, 5) results.

As Gottlieb and Raidl point out [Raidl and Gottlieb, 1999a], this is effec-

tively similar to the operation of a permutation-based decoder. That is, the

fixed-length vector (chromosome) operates over the internal-representation

L to result in a permutation of the set-of-items; thereafter the use of a

constraints-checker (coupled with a construction-heuristic) can be employed

to ensure feasibility. It’s difference to a permutation-based representation

- and a cited advantage at the time of it’s inception - was the ability to

maintain classical genetic operators. (As illustrated in [Michalewicz, 1996],

classical single-point crossover conducted over the fixed-length vectors (or

chromosomes), can be applied to any two parent vectors producing an off-

66

spring which respects the {1 . . . n − i + 1} principle. Also, a uniformly dis-

tributed random value within this same range can be used to mutate a gene

in a similar way to the classical bit-mutation.)

3.6.2 Problem-Space Search (Weight Coding)

Problem-space search (PSS) was first introduced by Storer et al. in the con-

text of applying genetic-algorithms to scheduling problems [Storer et al., 1992,

Storer et al., 1995]. These works found the approach to be effective for a va-

riety of scheduling problems. The work of Avci et al. provides a good expla-

nation of PSS, applying it to the single-machine weighted tardiness problem

[Avci et al., 2003].

In more recent years, this approach has seen successful application to

the MKP. Cotta in [Cotta and Troya, 1998] utilised problem-space search in

both a standard GA and a distributed version using an island model with

increasing success. More prominently Raidl’s weight-coded GAs provided

highly competitive results to those published in Chu and Beasley’s journal

paper (these have become somewhat of a bench-mark for the measurement of

01MKP performance) [Chu and Beasley, 1998]. Similarly, and building from

this work - the surrogate-relaxation based, and Lagrangean-relaxation based

decoders of [Raidl and Gottlieb, 1999a] [Raidl and Gottlieb, 1999b] and

[Raidl and Gottlieb, 1999c] describe an algorithm working over problem-space

search.

In applying an EA to an optimisation-problem, what is referred to as a

fitness-landscape can be used to describe the search-space12 (See Section 1.2).

Defining the shape of the fitness-landscape, is the objective-function value of

12We refer the reader to Poli’s book for information on search-spaces and fitness-

landscapes [Langdon and Poli, 2002].

67

each feasible set-of-items (each point in the search-space). These values define

the peaks of the landscape. An evolutionary search attempts to search this

fitness-landscape in order to locate the solution which maps to the highest

peak. As pointed out in the introductory section on constrained-optimisation

(See Sect.1.2), the constraints inherent in a constrained-optimisation prob-

lem; identify cutting-planes over the fitness-landscape. These cutting-planes

are unique to a particular problem and never change; in effect, they exclude

certain peaks from the area of feasible search F ⊂ S ∈ {0, 1}n. Problem-

space search, works on the realisation that the optimal solution for a con-

strained problem, lies on the boundary of this feasible region (the boundary

defined by the intersection of these cutting-planes). Owing to fitness-related

selection pressure inherent in a standard GA, evolutionary search will often

result in the convergence of the population to a particular neighbourhood

(within the bounds of a peak). Often the search-algorithm cannot escape a

sub-optimal peak - and therefore never finds the optimum solution.

The thinking behind PSS then, is to alter the fitness landscapes until the

intersection of the cutting-planes (i.e. the optimum point of search) resides

within one of the larger peaks of the landscape. The hope is that the hill-

climbing algorithm, will now have an easy path to the optimum solution.

To paraphrase Cotta in [Cotta and Troya, 1998], in a caption illustrating

the method of problem-space search, “The goal is to find a fitness landscape

that optimally matches the requirements of a given heuristic”. That is, we

are trying to tailor the fitness landscape, such that the largest peak aligns

with the intersection of the cutting-planes (at the optimal point in search).

In this way therefore, allowing the hill-climbing algorithm to soar directly to

the optimal intersection point.

68

3.7 Discussion of Approaches to Feasibility

From a review of the literature; the use of repair and decoder algorithms

predominate over encoder approaches; for which Hinterding’s description

of a “selection-based” genetic algorithm in [Hinterding, 1994] is one of the

few empirical examples. Michalewicz [Michalewicz, 1996], in a study com-

paring preferences, decoder, and random repair; concluded that a greedy

repair method was found to outperform all others over a set of, nine single-

constrained problem instances of increasing difficulty.

Subsequent to this study, the findings of Michalewicz are supported in

later works utilising similar hybrid-repair approaches. For example, Chu

and Beasley, in their journal paper present one of the single most out-

standing works in the field of evolutionary approaches to knapsack problems

[Chu and Beasley, 1998]. We attribute their work as the first to comprehen-

sively attempt a brute-force empirical analysis of an EA approach to the

01MKP. The successful application of their hybrid-repair algorithm over 325

distinct problem instances was, and is to this day; a formidable bench-mark

for comparison of any new approach to these problems. In excess of this

work, they provide comparative results for the same 325 test cases as gener-

ated by the best exact approximation method of the time (V4.0 of the MIP

solver CPLEX [CPLEX, 2005]). Results demonstrate that their hybrid-

GA approach with problem-specific heuristic, outperforms CPLEX’s exact

approximation algorithm, providing improved final results and reduced com-

putational effort. Following from this work, a comparison is performed with

several heuristic methods from the literature, and results presented show the

hybrid-GA to markedly outperform those compared. This work appears to be

the first to utilise either the surrogate or Lagrangean heuristics (See Section

2.5) to solve knapsack problems in an EA context.

69

Consequently, it appears that Raidl chooses to examine the same heuris-

tic methods in his “improved genetic-algorithm” (entitled IGA) [Raidl, 1998].

Together with Gottlieb in their studies of decoder-based EA’s [Raidl, 1998]

[Raidl and Gottlieb, 1999a] [Raidl and Gottlieb, 1999b] [Raidl, 1999b]

[Raidl and Gottlieb, 1999c], they build on the work of Chu and Beasley’s GA

(entitled CHUGA); again using the surrogate and Lagrangean relaxations as

part of their experimental comparison. The IGA improves upon the CHUGA

which requires an average of 33 times the number of evaluations to that of

the improved GA (in order to reach an optimal-solution of a high-quality). A

secondary comparison shows Raidl’s own IGA, and that of Chu and Beasley’s

CHUGA, to both significantly outperform a permutation-based decoder ap-

proach of Hinterding [Hinterding, 1994] (entitled OBGA). The difference with

the order-based (OB)GA, seeing that it doesn’t use local-optimisation. To

provide a more fair-comparison they remove local-optimisation and the spe-

cialised initialisation of the IGA and CHUGA; and still report an improved

performance over OBGA (but to a lessor extent). In this way, they can

a) report improvement over the decoder approach, and b) confirm the ben-

efit of special initialisation and hybrid-repair. Finally, IGA’s improvement

over CHUGA is examined and it is suggested that this improvement is as

a consequence of the non-deterministic (stochastic) implementation in the

IGA’s local-optimisation algorithm. In contrast CHUGA uses determinis-

tic methods. To test this theory, the CHUGA is re-implemented with the

special-initialisation process of IGA (the difference now, narrowed to the

local-optimisation technique) which results in faster convergence to near-

optimal solutions, but at the cost of reduced fitness of the resultant best-

found solution. This leads to the ability to conclude upon the superiority

of having a non-deterministic local-optimisation process. A further point of

70

analysis, suggests the reason for this is the lack of preservation of diverse

high-quality solutions by the deterministic method, which results in conver-

gence to highly fit individuals (See Chapter 7).

In [Gottlieb, 1999a], and stemming from the success of Raidl’s approach,

Gottlieb presents a study into the IGA’s pre-optimised initialisation strategy

and the effect of non-determinism in hybrid local-optimisation algorithms.

His experiments show that pre-optimisation significantly improves all results,

and that too-much non-determinism can degrade performance.

Summarising the most successful EA approaches to knapsack problems

from the literature then, and as documented in Gottlieb’s comparative study

of EAs for the MKP [Gottlieb, 2000] - the IGA of Raidl provides the best

performance, outperforming the hybrid-repair approach of Chu and Beasley

(CHUGA) (upon which Raidl’s work builds). The CHUGA, narrowly out-

performs the problem-space search approaches of Raidl [Raidl, 1999b] with

his best permutation-based EA being inferior to these. The permutation-

based decoder approaches do show, however, an improvement over the previ-

ously tested ordinal-representation [Raidl and Gottlieb, 1999a], and random-

key encoding approach of Hinterding [Hinterding, 1999]13.

3.8 Summary and Conclusion

In this chapter, an attempt has been made to disambiguate overlapping clas-

sifications from EA approaches of the literature. From our review of the lit-

erature, we identify that problem-encoding (and implicitly, the search-space

explored) is the most important feature of concern when categorisation an EA

13Gottlieb’s later work [Gottlieb, 1999b, Gottlieb, 1999a], examines the optimal initial-

isation and local search strategies for both the CHUGA and IGA implementations; we

refer the reader to this work for details of same.

71

approach to constrained-optimisation. Gottlieb’s work is cited as the canon-

ical point-of-reference, for a description of this [Gottlieb, 1999b]). Following

from this, we present a (sub-division-of-labour style) reduction, identifying

two core-considerations of concern to the designer of an EA for knapsack

problems: the choice of approach to representation and choice of approach

to feasibility. In the former, we identify a definition for permutation-based

EAs, before viewing the latter choice of approach to feasibility as a binary-

decision: to allow or omit chromosomes representing infeasible-solutions from

the population of an EA.

In choosing to allow infeasible-solutions, we propose the need for a constrai-

nt-violation handler, and detail a brief review of the works from the literature

pertaining to these. Penalty-methods and selection-preferences are discussed,

with the need for problem-specific tuning of penalties being seen as a disad-

vantage over the latter.

In choosing to omit infeasible-solutions (aiming to ensure all individu-

als in the population represent feasible-solutions), feasibility-algorithms are

described; which serve to channel the arbitrary genotypic search-space S =

{0, 1}n into the feasible-subset F , there-of. The term heuristic-bias was seen

to describe this narrowing of the search-space to a smaller solution-space; and

a correlation made to it’s more common description as a genotype-phenotype

mapping within the GP domain. As such, heuristic-methods are briefly intro-

duced. From the literature, feasibility-algorithms of repair, encoders and de-

coders were identified. A novel method of distinguishing between repair and

decoder was proposed in the approach to evolutionary-learning employed.

Repair and encoders are differentiated from decoders by a Lamarkian, as

opposed to a Baldwinian form of learning.

72

A focus on prominent indirect-decoders presented two specific forms of

decoder, before a discussion reviewing the research of EA approaches to

knapsack problems identified the best-performing approaches relative to the

worst. Fixed-length hybrid-repair strategies were seen to be the best.

73

Chapter 4

GE, Attribute Grammars and

Knapsack Problems

4.1 Introduction

The work of this thesis thus far, has served to provide us with - a perspective

showing the expressive capabilities of Grammatical Evolution (GE); an in-

troduction to knapsack problems as context-sensitive problems; and a survey

of the literature, focusing on EA approaches to knapsack problems. It is now

time to realise the aims of the approach taken in this thesis: to extend the

generative power of GE by embedding an attribute grammar in it’s mapping

process. Core to an understanding of the experimental approach described

here, is the need to be familiar with the terminology of grammars (Section

1.4.1); and the knapsack problems approached (Section 2.4).

The introductory chapter introduced the GE mapping process, and it’s

grammatical background; here we will analyze the limits imposed by it’s

context-free specification of a grammar. A context-sensitive language will be

presented, and the limitations of a context-free grammar (CFG) exposed.

74

The language of knapsack problems (particularly 01MKP’s) will be shown

to require a context-sensitive derivation. The options available to fulfill this

requirement, will be briefly discussed before attribute grammars, will be pro-

posed as a viable solution - furthering the expressive capabilities of the stan-

dard GE. In line with their importance, this chapter will be subdivided into

two parts: the first outlining an introduction to attribute grammars - therein

contained, a section describing why, and when, they are needed; and the

second discussing the experimental approach in retrospect of their study.

The requirement for use of an attribute grammar will be proposed in the

context of the language of 01 knapsack problems (See Section 1.4.1). The

attribute grammar workings and internals will subsequently be explained in

the context of CFG’s. As will be seen, attribute grammars can be used to

drive a context-sensitive derivation over a context-free grammar (CFG); fur-

thermore, experiments are carried out which subtly introduce two grades of

context-sensitivity by varying degrees of attribute grammar, respectively.

Attribute grammars will be introduced purely in their role within our

extension of the GE mapping process. In a discussion on the experimental

approach, liaisons will be made with our study of evolutionary approaches

from Chapter 3; and subsequently the experimental systems will be outlined

in terms of this previous work. By no means is our intent to provide an

in-depth definition of the formal semantics of attribute grammars. The ma-

terial provided here is introductory, but sufficient to understand the work-

ings of our approach. For further detail, we refer the reader primarily to

Knuth’s seminal paper [Knuth, 1968], and the text of Slonneger and Kurtz

[Slonneger and Kurtz, 1995]1; who provide a very well explained account of

both the workings and formal semantics of attribute grammars.

1Also available as an online text at http://www.cs.uiowa.edu/ slonnegr/plf/Book/

75

4.2 Language, Limitations and Attribute

Grammars

Consider the following example BNF specification of a CFG, G:

<S> ::= <A> (0)

<A> ::= a (0)

| a b c (1)

 ::= b (0)

| c (1)

The above grammar specifies three production rules, where index numbers

have been added to allow reference to particular rules. In referring to a

single rule, the left-hand side (L.H.S) non-terminal, coupled with the index

number in subscript, will be used. For example, rule A1, will refer to the

rule A ::= a b c. Also note, that the use of capitalisation will denote non-

terminals when referring to such rules. Finally, for clarity of explanation, we

deviate from the BNF and adopt the notation of Knuth [Knuth, 1968] when

referring to production-rules within the body of text: as such, the above rule

will be specified as A → a b c. This decision has been made - particularly

to provide clarity in explanation of the attribute-grammars described in this

chapter.

As the terminology used by Aho et. al [Aho et al., 1986], in describing

the formal syntax of programming languages, a grammar can be seen as a

phrase-structure generative grammar; whereby, rules of the grammar, out-

line the structure, by which syntactically correct sentences of the language

can be derived. At closer inspection, the grammar G specifies, or defines

a language. This language, written L(G), determines the set of legal (or

syntactically correct) sentences, which can be generated by application of

76

the grammar’s rules. For example, the above grammar, and also within the

illustration (Figure 4.1), defines the language L(G) = a b∗ c : the set of

strings starting with the terminal-symbol ‘a’ - ending in the terminal-symbol

c; and having zero-or-more of the terminal-symbol ‘b’ in between (Note: the

∗ symbol denotes, zero-or-more) [Aho et al., 1986].

The non-terminal symbols ‘A’ and ‘B’ define the phrase-structure of the

language. They define A-phrases and B-phrases, from which the language is

contained. These would be similar to constructs such as noun-phrases in spo-

ken language, or for example, a boolean-expression phrase from the abstract

syntax of a programming language. In terms of the example grammar, a syn-

tactically valid A-phrase contains an ‘a’ followed by a B-phrase. A recursive

definition of the B-phrase thereafter, defines the previously stated language

of the grammar. In this way, the structure of the syntax of an entire language

can be defined in a concise and effective notation.

(1)

(0)b ::=

 | c

<A><S> ::= (0)

(0)

(1)

<A> a ::=

 | abc

CFG grammar

<A><S>::=

b

Bb

B

B

c

A

a

S

A

aB

abB

abbB

abbc

0
B

0
B

1
B

0
A

A
0
S

S abbcabbBabBaB

Derivation−Tree Sentential−Form

Derivation−Sequence

Figure 4.1: A Sample CFG derivation and the relevant terminology.

77

Furthering the explanation, consider the example depicted in Figure 4.1,

which provides an illustration of these concepts. As stated, rules of the gram-

mar are referred to as production-rules, and as such A → aB, can be read as,

“A” produces “aB”. Similarly it can be said that “aB” is derived from A. In

applying productions then, the goal is to derive a sentence of the language.

As such, a completed set of productions - yielding a sentence of the lan-

guage, is said to be a derivation. Each application of a production rule, can

be seen as a derivation-step, whereby at any such derivation-step the applied

production is said to yield a derivation in the sentential-form. A completed

derivation results in a sentential form consisting solely of terminal symbols

- i.e. a sentence of the language. Figure 4.1 also depicts how a derivation

can be represented as a tree structure, with non-terminal symbols defining

the nodes of the tree, and terminal symbols defining the frontier of the tree

(i.e. the leaf nodes). As such it can be seen that an arbitrary derivation over

the grammar G can also be described in a linear form as:

S → A → aB → abB → abbB → abbc

with each derivation-step leading to a derivation in the sentential-form; and

underlines showing the replacement for the previous step’s, left-most non-

terminal. There exists however, a limit to the generative power of the CFG.

As the name suggests context-free grammars cannot express a language in

which; legal phrases, depend on the context in which they are applied. For

example, we cannot define a CFG, G - such that L(G) = an bn cn. That

is, a grammar describing the language of strings having an equal number of

a’s, b’s and c’s - namely the set {abc, aabbcc, . . . , aaaabbbbcccc . . .} cannot be

described by a CFG. As Slonneger points out [Slonneger and Kurtz, 1995],

such a language is context-sensitive or type-1 language according to Chom-

sky’s hierarchy, and requires knowledge of the context at the point of each

78

derivation-step. That is, we need to know how many a’s have been previously

derived, in order to derive ‘b’ and ’c’ terminals. In order to get a feel for

the problem, let us take this previously described context-sensitive language,

and attempt to describe it with a CFG:

<S> ::= <RepeatLetter> (0)

<RepeatLetter> ::= <Apart> <Bpart> <CPart> (0)

<Apart> ::= a (0)

| a <Apart> (1)

<Bpart> ::= b (0)

| b <Bpart> (1)

<CPart> ::= c (0)

| c <Cpart> (1)

The CFG attempts to capture the nature of the language by specifying three

recursively defined production rules; each allowing the multiple generation

of the ‘a’, ‘b’ and ‘c’ terminals. However, it can be seen that at the point

of a given derivation-step, for a terminal-producing production, we require

knowledge of the current state of the derivation-tree. For example, consider

a derivation:

S → RepeatLetter → Apart Bpart Cpart → aApart Bpart Cpart

. . . → aa Bpart Cpart →??.

If at this point we wish to generate a legal Bpart phrase - we must know

the structure of the afore-derived Apart phrase. For example, a derivation of

Bpart → b would break the syntax of the language. The generative power of

the CFG needs to be extended, and as such we have two choices: a) define

a context-sensitive grammar, or b) adapt the CFG to overcome the context-

sensitive nature of the problem solutions.

79

Now, designing a context-sensitive grammar (CSG) is a complex task;

and the resulting grammar is tightly-bound to the specific context-sensitive

language described. As such, for this approach - we fear both a loss of robust-

ness and a dependency on expert-driven domain-knowledge (seen already, as

the pit-fall of penalty-methods in Section 3.5.1). Additionally, it can be al-

most impossible to define a parser for some CSGs. As a consequence, the

choice is narrowed to the adaption of the CFG. Although both Wong and

Leung and Keijzer adopt the definite clause grammars approach of prolog

to achieve this CFG extension [Wong and S., 1997, Keijzer, 2002], we choose

the use of an attribute grammar in the same role. This choice stems both

from the desire to explore their viability, and their ease of extension to both a

CFG, and GE. With an attribute grammar, the context-free grammar essen-

tially remains; but the features of the attribute grammar define a method to

uphold a context-sensitive derivation. The following sections serve to provide

an explanation as to how this can be achieved.

4.2.1 CFG Limitations for Knapsacks

Attribute grammars (AGs) were first introduced by Knuth [Knuth, 1968], as

a method to extend CFGs by assigning attributes (or pieces of information),

to the symbols in a grammar. In their traditional role, attribute grammars

are used in programming-language compilers, to detect syntax errors, over

context-sensitive features of the programming-language in question. In ef-

fect, an understanding of an attribute grammar is more easily attained, if we

consider the derivation-trees produced by applying productions of a gram-

mar. First, let us consider the following CFG which attempts to describe the

language of 01 knapsack problems (See Section2.4).

80

S → K

K → I

K → IK

I → i1
...

I → in

Recalling that the 01 property of knapsack problems, requires that when

proposing a candidate-solution - no item be represented twice (See Section

2.2). Our wish, is to present a grammar which can be used as a generative

force to derive feasible-solutions which are legal: those which adhere to the 01

property. Thinking in a grammatical frame of mind, such feasible-solutions

can be thought of, as those within the language of 01 knapsack solutions.

This language should govern the generation of strings of terminal symbols,

where no terminal symbol is repeated. We can attempt to generate a sentence

in the language of 01 knapsack solutions, by the application of productions

from the grammar, such that, only terminal symbols remain (aiming in the

process to yield a string from the set of items {i1, . . . , in}). Consider however,

the problem of generating such a string, given only the CFG definition above.

Figure 4.2 illustrates the point at which a CFG fails to be able to uphold

context-sensitive (context-specific) information.

Reflecting the figure, the following derivation-sequence points out the sce-

nario where i3 has been derived, and the next derivation-step should ensure

that i3 is not produced again:

S → K → IK → i3K → i3IK → i3?K.

What this derivation-sequence provides is a context; that is, re-deriving an

i3 violates the semantics of the language of 01 knapsacks. A CFG has no

81

K

I K

3
i K

3
i I K

3
i ?K

1

5

3

2

4

Sentential−Form

K

S

KI

i3
KI
...

?

2

3

5

4

1

Derivation−Tree

Figure 4.2: Diagram showing inability of a CFG to drive a context-sensitive derivation.

method of encoding this context-sensitive information and hence, like the

language of the example grammar in Section 4.2 (L(G) = anbncn), it cannot

be captured by a CFG.

Similarly, the same problem arises when a potential production attempts

to add an item, which would result in a weight-constraint of a knapsack

being broken. Say, for example that we’re dealing with a knapsack capacity

of 10 units, and from the diagram above, i3 has a weight of 7 units. It follows,

that the item derived at step 5 above, can have a maximum weight of 3 units

(i.e. (7) + 3 ≤ 10). The following sections provide a definition of attribute

grammars, with examples to demonstrate how an attribute grammar can

be used as a plug-in component of GE - therein allowing us to drive the

context-sensitive derivation of 01 knapsack problem solutions.

82

4.2.2 Attribute Grammar Fundamentals

Distinguishing attribute grammars from CFG’s, attributes can be specified

for the terminal and non-terminal symbols of the CFG. As stated by Slon-

neger and Kurtz [Slonneger and Kurtz, 1995], “A finite, possibly empty set

of attributes is associated with each distinct symbol in the grammar”. In

essence, this translates to a representation, where, as well as the symbol

of the grammar, nodes of the derivation-tree now represent attribute-data.

These attributes are defined (given meaning) by functions associated with

productions in the grammar. These shall be termed the semantic-functions.

In effect, the specification of these semantic-functions, is just a formal spec-

ification of a routine; the routine being executed when carrying-out a pro-

duction. Semantic-functions serve to calculate the values of attributes in the

context of the current derivation-step. As depicted in Figure 4.3, attributes

are thus pieces of data appended to nodes of the tree, and can be evaluated

in one of two ways. In the first, the value of an attribute is determined by

information passed down from parent nodes. That is, a child’s attribute is

evaluated based on information which is inherited down from parent nodes.

The figure depicts a limit attribute, originating at the root node S, which is

inherited down the tree as the derivation progresses.

With the second method of attribute evaluation, the value of an attribute

is determined, by the value of the attributes of child nodes. That is, the

evaluation of a parent attribute can be synthesized or made up of it’s child’s

attribute values. As an example, two attributes are associated with the I

non-terminal: weight, addresses the weight of the item; and item provides a

string representation of the item for the growing solution. Originating values

for these terminal-symbols, typically come from predefined, known values,

encoded in a data-structure. These originating values, feed the attribute

83

S lim 10

K weight (0)+7 = 7

lim 10

items ("")+"i3"

<synthesise>

. . .
I

weight 7

item "i3"

.

TerminalNode

spelling :string = i3

:int = 7weight

i3

<inherit>

Figure 4.3: Diagram detailing the fundamental workings of node attribute-evaluation:

inherited or synthesised attributes. Inherited attributes are demarcated with an up arrow,

and synthesised with a down arrow.

evaluation of all other nodes within the derivation-tree.

In addition to the two main forms of attribute evaluation, attributes of a

particular node can be evaluated in terms of the other attributes, of that same

node. In the figure, for example, K’s weight could be evaluated depending

on the value of K’s limit attribute.

Information however, must originate either from the root node S or leaf

nodes of the tree; which generally provide constant values, from which, the

value of all other nodes in the tree are synthesized or inherited. As an

example, the diagram illustrates how a derivation of the terminal symbol i3,

may require access to a predefined data-structure to produce these originating

data values. The start node’s limit value could be attained in the same way.

84

In terms of understanding AGs then, it’s best to think of the growth of

the derivation-tree, through the application of productions. The grammar

symbols become nodes of the tree; the root node of the tree is S (the start

symbol), and it’s children - the symbols of the applied production. A por-

tion of a derivation-tree descended from a single non-terminal node yields a

derivation in the sentential-form; and constitutes a derivation-step. The term

terminal-producing production will be used to refer to a sentential-form which

contains one-or-more terminal symbols.The fundamental operation of an AG

then, is effectively the same as a CFG; except where attributes are evaluated

at each derivation-step. The following two sections detail how an attribute

grammar’s semantic-functions succeed to carry out this task. An illustrated

example of the attribute grammar workings are left to Section 4.2.4 (describ-

ing an attribute grammar which subsumes the functionality of the first, and

presents a method for generating feasible-solutions for 01MKPs); compre-

hension of the grammar described therein, is deemed to be of more benefit

to the remaining work of the thesis.

4.2.3 An Attribute Grammar for 01 Compliance

In the following attribute grammar specification, it can be seen that at-

tributes can be used, to preserve 01 compliance; when deriving strings in

the language of 01 knapsack solutions. This attribute grammar is identi-

cal to the earlier CFG, with regard to the syntax of the knapsacks it can

generate. The difference here being, the inclusion of attributes associated

with both terminal and non-terminal symbols, and their related semantic-

functions. Following the notation of Knuth [Knuth, 1968], we use a sub-

script notation to differentiate between like-occurrences of the same non-

terminals. This is necessary as each symbol (node) maintains it’s own sepa-

85

rate attribute set. Finally, as the formal semantics of attribute grammars

dictate, each semantic-function is a mapping; which maps values of cer-

tain attributes of one-or-more symbols into the value of some other symbol

[Knuth, 1968, Slonneger and Kurtz, 1995, Aho et al., 1986]2. As no standard

notation exists for conditional mappings, we choose to use a clear distinction

by the keyword condition in bold face, followed by a colon.

S → K

K → I items(K) = items(K) + item(I)

K1 → IK2 items(K1) = items(K1) + item(I)

items(K2) = items(K1)

I → i1 Condition : if(notinknapsack?(i1))

item(I) = “i1”

...

I → in Condition : if(notinknapsack?(in))

item(I) = “in”

As can be seen, the grammar is much the same as the CFG for knapsacks

described earlier in section 4.2.2; the difference lying in the inclusion of

semantic-functions listed to the right of the grammar’s rule-set. Intuitively,

one can see that these represent methods for evaluating attributes to their

relevant values. Conditions govern the firing of the set of semantic-functions

directly below them. The following describes the nature of the appended

attributes:

items(K): A synthesized attribute that records all the items currently in

the knapsack (i.e. the items which have been derived thus far).

2Mathematically, a mapping between sets is essentially a functional relation; and as

such, can be governed by a conditional-expression. As the case may be, it is common to

see attribute grammars with conditions listed amongst the semantic-functions.

86

item(I): A string representation, identifying which physical item the cur-

rent non-terminal will derive. For example item(I) =“ i1”; where the

I non-terminal derives or produces i1 (for item 1) of the problem.

notInKnapsack?(in): A boolean condition, indicating whether the 01

property can be maintained by adding this item (i.e. given the current

derivation - has this item been previously derived?). This is represented

as a string comparison of item(I) over items(K).

Consider the above attribute grammar, when applied to the following derivation-

sequence:

S → K → IK → i1K → i1IK → i1(iλ ∈ {i2...in})K → ...

At the point of mapping I, given the above context, it can be seen (from

the attribute grammar definition), that it’s items(I) attribute will only be

evaluated to “iλ” if the notinknapsack?() condition holds3. Following this the

parent node will have it’s items(K1) updated to include “iλ” which can from

then on be passed down the tree by the inherited attribute of items(K2). This

in turn allows for the next notinknapsack() condition to prevent duplicate

items being derived.

It must be noted, that at the point of a notinknapsack?() condition failing

(or recognising the attempted derivation of a duplicate), we have a syntax-

error. This will be discussed in the context of an attribute grammar mapping

for GE in a proceeding section (Section 4.2.5). The next section follows to

provide a deeper example; showing how we can include the evaluation of

weight-constraints - at the point in a derivation where we derive a terminal-

producing production (See Section 1.5).

3The CFG alone could only ensure i ∈ {i1, i2, . . . , in} is derived from I. An explanation

of what happens when another i1 is produced, is left for a GE mapping example in section

4.2.5

87

4.2.4 An Attribute Grammar for Constraints

Checking

Further attributes can be added, in order to extend the context-sensitive

information captured during a derivation. The following outlines these at-

tributes and their related semantic-functions in a full AG specification for

valid 01MKP solutions: those which maintain both 01 compliance; and

constraint-violation information (See Section 2.4).

lim(S): A global attribute containing each of the m knapsacks’ weight-

constraints. This can be inherited (or passed-down) to all nodes.

lim(K): As lim(S); just used to inherit to each K2 child node.

usage(K): A usage attribute, records the total weight of the the knapsack

to date. That is, the weight of all items which have been derived at

this point.

weight(K): A weight attribute, used as a variable to hold the weight of

the item derived by the descendant I to this K.

weight(I): A synthesized attribute, made-up of the descendant item’s phys-

ical weight.

weight(in): The physical weight of item in(the weight of item in as defined

by the problem instance).

The corresponding attribute grammar is given below with an example show-

ing how it’s attributes are evaluated. At the point of deriving a left-hand side

production, the corresponding right-hand side semantic-functions are evalu-

ated/executed. Again, at the point of their satisfaction, conditions govern

the firing of the set of semantic-functions directly below them. Such is the

88

design of this AG, that conditions serve to test whether it is possible to eval-

uate our synthesised attributes (synthesis); this in turn allows us to evaluate

our inherited attributes (inheritance) - passing their information down to the

next level.

S → K lim(K) = lim(S)

K → I Condition : if(usage(K) + weight(I) <= lim(K))

weight(K) = weight(K) + weight(I)

items(K) = items(K) + item(I)

K1 → IK2 Condition : if(usage(K1) < lim(K1))

weight(K1) = weight(K1) + weight(I)

items(K1) = items(K1) + item(I)

usage(K1) = usage(K1) + weight(I)

lim(K2) = lim(K1)

usage(K2) = usage(K1)

items(K2) = items(K1)

I → i1 Condition : if(notinknapsack?(i1))

item(I) = “i1”

weight(I) = weight(i1)

...

I → in Condition : if(notinknapsack?(in))

item(I) = “in”

weight(I) = weight(in)

For clarity of explanation, the following example will assume a single knap-

sack weight-constraint; however, in terms of the problem being solved, lim(K)

is actually a list of constraint-bounds for each of the m knapsacks, but the

more complicated problem can be extracted by altering the below condi-

89

tions to have lim(K) as an array of constraint-bounds; as opposed to a single

integer value. Figure 4.4, and the following derivation sequence, serve to

weight 3

item "i4"I

i4=3

K

lim 10

usage (7+3)= 10

weight (0+3)= 3

items "i3"+"i4"

K

lim 10

usage (10+0)= 10

weight (0+0)= 0

items "i3"+"i4"+i6

I
weight 0

item "i6"

i6=0

i3=7

I
weight 7

item "i3"

K
usage (0+7)= 7

weight (0+7)= 7

items ("")+"i3"

lim 10

S lim 10

if(usage(K) < lim(K))

3

5

if(...)

4

2

1

Figure 4.4: Diagram showing synthesized and inherited message-passing for evaluating

attributes in the derivation-tree of an attribute grammar.

show the synthesized and inherited message passing involved in evaluating

derivation-trees for the above attribute grammar.

S → K → IK → i1K → i3IK → i3i4K → i1i4I → i1i4i6

We can see, that initially the global limit is passed down to K by the first

semantic-function. From the grammar, we can see that following this, the

first three semantic-functions of K, for weight, items, and usage attributes

respectively, involve evaluation by synthesis of the I node’s attribute values

(these, in their own evaluation, are a synthesis of the originating values). The

tree must expand in depth to evaluate I, prior to it’s K parent’s evaluation.

90

A condition checks to see that we haven’t violated a weight-constraint4, and

passing this the first three semantic-functions may execute. These evalua-

tions are followed by the subsequent three semantic-functions for K; involving

inheritance evaluations.

Similarly, the derivation continues; and the fully decorated derivation-

tree results in a valid 01MKP solution. The next section examines details of

our mapping approach; when things do not work out so well.

4.2.5 GE Mapping Example

Our approach then, has been to extend the mapping process of GE; such as to

embed the above explained attribute grammars, into it’s mapping algorithm.

This section provides an example of how this effects the mapping process,

and describes some of the important implementation-specific details, of our

approach.

As was seen in the previous section (and that which is inherent in the

language of 01 knapsack solutions), preventing the re-mapping a duplicate

item, is controlled by conditions defined within the attribute grammar. Sim-

ilarly, attempting to derive an item which causes a constraint-violation, must

be prevented. We need to discuss what happens upon a condition failure. In

failing a condition, our approach is to re-map the offending I non-terminal;

using the next codon on the genome. Figure 4.5 shows how this results in

the offending codon being set to an intron. (The term intron, stems from it’s

use in genetics where it is used to describe pieces of non-coding DNA.) So in

effect - and by design - our wish is to provide a model, close to that which

occurs in nature. In our model, at the point of constraint-violation or a 01

4For clarity, we assume that the notInKnapsack(i3) condition has passed and its values

have synthesized up the tree.

91

collision, the codon causing the error is skipped (becomes an intron) and the

subsequent codon read. It is worth noting that this is not dissimilar to the ap-

proach taken in the GADS system [Paterson and Livesey, 1997] discussed in

the introductory chapters review of the literature (Section 1.4.2). In terms of

the previous chapter’s discussion of feasibility-algorithms - it can be seen that

we are adopting a Baldwinian approach to evolutionary-learning; (whereby

interaction with the environment has no bearing on the genetic make-up of

an organism) - as such, we define an attribute-grammar decoder for knapsack

problems5 (See Section 3.5.3) [Cleary and O’Neill, 2005].

.
.
.

Evaluate Attributes

eval()

eval()

eval()

eval()

eval()

syntax−error!

...01100111 10110001 11101100 1001001111001011 11011100 0001001000101101

Binary string

...103 45203 220

IKi1

i1 Ki1

i1 Ki3

i1 i3 I

Ki1

i1 i3 i5

IK

K

45 % 5 = (0)

220 % 5 = (0)

203 % 2 = (1)

103 % 2 = (1)

236 % 2 = (0)

177 % 5 = (2)

19 % 5 = (4)

< setIntron() >

KS

K I

 | IK

 | i5

I i1

 | i2

(0)

(1)

(0)

(1)

(0)

(4)

CFG grammar
KS

 i3, i5 }{ i1,

Knapsack Solution/Sentence

Derivation

Figure 4.5: Diagram showing GE mapping process with a full attribute grammar en-

capsulating the 01MKP solution language.

5It is worth noting, that skipping codons which result in infeasibility introduces a bias

to the search; this may or may not be of benefit to the algorithm; Chapter 5 attempts to

further elaborate on the effect of this.

92

It can be seen from Figure 4.5, that the addition of attribute grammars to

the mapping process, involves the evaluation of each productions semantic-

functions (This has been represented by the processing symbol in the dia-

gram). In this way, a controlled derivation can take place and always ensure

a sentence of the (now, context-sensitive) attribute grammar’s language is

derived. The only occasion when this will not be true, is when we do not

have enough genetic material in the genome to continue the process to a fully

exhausted valid solution; in this case, the GE individual will be penalised by

what Michalewicz terms a “death-penalty” (evaluated to the worst possible

fitness) [Michalewicz, 1996].

4.3 Experimental Design and Initial Results

As pointed out in Chapter 3, this thesis sees an EA approach to knapsack

problems as a twofold consideration: the choice of representation, and the

choice of approach to feasibility. Considering that we have decided to use

GE as the core evolutionary algorithm, the experimental design is focused

on the latter consideration - approach to feasibility (an indirect variable-

length binary representation as the GE standard, deciding the first). We

choose to test the standard GE system against the two previously discussed

attribute grammar extensions; each capable of controlling a context-sensitive

derivation to the language of knapsack problems.

It has been seen that the standard GE mapping process is incapable of

providing us with a feasible-only approach (infeasibles can occur). In terms

of the considerations in Section 3.5 (discussing feasibility) - we can now

view the CFG, as defining a heuristic-bias from the standard GE genospace

S = {0, 1}α into the language of the integer-valued MKP (the set of variable-

93

length lists of numbers with repeats allowed)6. At this point - the heuristic-

bias matches what Whigham [Whigham, 1996] describes as language-bias.

That is, we have constrained the search to the language of integer-valued

MKP solutions (a solution-space). Now, what the attribute grammar pro-

vides (and where it’s power lies), is a method to further constrain the map-

ping from search to solution-space. In GE terminology, it is said to further

increase the redundancy of the encoding, or from our new stand-point, we get

an increase in heuristic-bias. Again, Whigham discussed this as increasing

the language-bias [Whigham, 1996, Mitchell, 1997].

By it’s definition, the attribute grammar of Section 4.2.3 extends the stan-

dard CFG mapping process and provides for the generation of 01-compliant

solutions. It’s extension introduces the first increase in heuristic-bias; yet,

even with this constriction it is possible for a 01 compliant solution, to violate

a weight-constraint of the problem (infeasible solutions may arise). As such,

the fully specified attribute grammar of Section 4.2.4 increases the context-

sensitivity captured in the mapping process and essentially provides a mech-

anism to produce feasible-only solutions. In terms of the work of Gottlieb

[Gottlieb, 1999b, Gottlieb, 1999a] we have constrained the search-space to F

the feasible-subset of the space of all possible solutions (F ⊂ S = {0, 1}n).

In the design of our initial experimental research, we define three variants

of GE: standard GE (GE) - to act as the benchmark system; GE using an

attribute grammar for 01 compliance (AG(01)) - to examine the introduction

of context-sensitivity to the mapping process; and GE using a fully specified

attribute grammar (AG(Full)) - to examine the effect of a context-sensitive

mapping procedure that focuses search on the feasible region of the search

6α here defining upper-bound on the maximum variable-length achievable by a GE

chromosome.

94

space. GE, and AG(01) both allow the generation of infeasible solutions,

and so require what has been introduced as a constraint-violation handler to

ensure the result of search is a feasible-solution. With the AG(Full) system,

a feasibility-algorithm exists; the attribute-grammar mapping process pro-

viding for feasible-only solutions (See Section 3.5.3). The following sections

outlines these experimental systems and their problem-instance test-bed.

4.3.1 Experimental Systems and Problem Instances

The choice of constraint-violation handler has been chosen to be that of

penalty-methods (See Section 3.5.1). This has been the case, as selection

preferences in their standard form, require, coupling with a tournament selec-

tion mechanism. As such, for the initial analysis we wish to keep to standard

GE paramaters, and thus use fitness-proportionate roulette-wheel selection.

In systems where infeasible solution candidates are an issue (GE and

AG(01)), we have two choices for penalisation: a death-penalty (penalising

to the worst possible fitness), or a graded-penalty (penalising in proportion

- to the degree to which candidate-solutions violate the constraints of the

problem (See Section 3.5.1)). At the point, then, of mapping a genotype to

an infeasible candidate-solution we have chosen the former approach of the

death penalty7. The following outlines the operation of each system.

GE This system is a standard GE setup, using the standard parameters and

algorithmic configuration (outlined in Section 4.3.2). No attributes or

semantic-functions exist to give context to the current derivation-step.

Infeasible solutions and non 01 compliant solutions can be generated.

7Graded penalties, as used by Khuri et al. [Khuri et al., 1994] - were experimented

with in [O’Neill et al., 2004b], and reflecting the works of Olsen [Olsen, 1994]; showing no

improvement over the death-penalty approach.

95

Possible solutions are examined for 01 compliance prior to their EA

evaluation, with failure resulting in a penalty to the worst possible

fitness. The system uses a standard CFG as defined in Section 4.2.2.

AG(01) This approach is an extension of GE. The standard GE mapping

process is adapted using the attribute grammar of Section 4.2.3, so as to

maintain 01 compliant solutions. With regards this attribute grammar,

a condition on the item(I) attribute - the notInKnapsack?(iλ) condi-

tion, allows the identification of a previously mapped item. The in-

herited attribute, items(K) works in tandem with this process; passing

down all previously mapped items to each derivation-step. In the case

where an item that has been previously derived is detected, the next

codon is read and used to re-map (re-derive) the offending non-terminal

(I). This approach maintains 01 compliant candidate-solutions; but

these may nonetheless be infeasible if violating a weight-constraint of

the problem.

AG(Full) In order to further extend GE, this approach wraps the AG(01)

mapper as a subset of it’s own functionality. This system uses the full

attribute grammar as defined in Section 4.2.4. As well as guaranteeing

the 01 property, it carries out a constraints check on all m knapsacks, for

each terminal-producing production. That is, at the point a terminal

symbol (i.e. an item) is derived, 01 compliance is ensured (by re-use

of the AG(01) features), before further extending GE with yet another

test; it ensures that none of the m weight-constraints are violated by

addition of the item in question. If a weight-constraint is violated, the

next codon is read to re-map (re-derive) the offending non-terminal (I).

This system only allows the generation of feasible solutions.

96

Having defined the experimental systems for comparison, it follows that

a suitable problem-instance test-suite should be justified. From a review

of the literature, many of the most successful works documenting EA ap-

proaches to knapsack problems choose the test-suite of problem instances

first generated by Chu and Beasley [Chu and Beasley, 1998]. These are

very complex problems to solve; so much so, that many do not have a

known optimum-solution. Predominantly, these works deal with EA ap-

proaches tailored specifically to efficient solving of the 01MKP. They essen-

tially wish to build upon the ground-breaking work presented by Chu and

Beasley [Raidl, 1998, Raidl and Gottlieb, 1999a, Raidl and Gottlieb, 1999b,

Gottlieb, 1999b, Raidl and Gottlieb, 1999c]; respecting the experience of pre-

vious work on constrained-optimisation problems, such as that of Michalewicz

[Michalewicz, 1996]. Their focus is to try and develop a system improving on

the state-of-the-art, and compare their results on this basis; often adopting

controlled order-based genetic operators and local search to achieve these

goals.

As it stands, we view our GE approach as somewhat novel; in the applica-

tion of what is essentially a variable-length GA, operating over a grammar-

based GP style, genotype-phenotype mapping process (See Section 1.3.1).

Our goal is to examine the suitability of attribute grammars for controlling

a derivation over a context-sensitive problem. The context-sensitive problem

under empirical investigation here being, the 01 multi-constrained knapsack

problem. At this point of research, we don’t wish to excel at a particular

problem, so much as we wish to investigate the benefits of retrofitting GE

with some context-sensitive ability.

Owing to the novelty of the approach, it was decided to choose a problem-

instance test-suite, simple enough in the first case; to validate the viability of

97

applying GE to knapsack problems; yet growing in complexity to enable us

to examine how the introduction of context-sensitivity re-acts as problems

become more difficult. As a side issue, a test-suite enabling a comparison

of results to give some kind of indication as to the relative performance was

sought after. The test-suite first used by Khuri et. al [Khuri et al., 1994],

and later by Cotta and Troya [Cotta and Troya, 1998] - ranging in problem

difficulty, from 15 to 105 items seemed suitable. Khuri adopted a fixed-length

bit-string representation, with graded penalty term and reported only mod-

erate results. Cotta adopted a problem-space search approach (See Section

3.6.2) and reported superior performance; in both works, results showed that

their system’s were challenged by the more difficult problems.

The chosen problem instances are available from the OR library, or down-

loadable on-line from two separate files8 [Beasley, 1990]. The family of prob-

lem instances with the knap keyword prepended can be found as instances 3

through 7 in the mknap1.txt data-set, and the family of instances prepended

by Sento or Weing can be found in the mknap2.txt data-set under cor-

responding titles. These keywords or recognisers, used in the results of

this thesis correspond to those used by Khuri et. al and Cotta and Troya

[Khuri et al., 1994, Cotta and Troya, 1998], and we use the same to main-

tain consistency.

4.3.2 Initial Experiments

We adopt standard experimental parameters for GE, changing only the pop-

ulation size to that of Khuri et al. [Khuri et al., 1994], who use a population

size of µ = 50 running for up to 4000 generations. We adopt a variable length

one-point crossover probability of 0.9, bit mutation probability of 0.01, and

8Available from: http://www.brunel.ac.uk/depts/ma/research/jeb/orlib/mknapinfo.html

98

fitness-proportionate roulette-wheel selection. A steady-state evolutionary

process is employed, whereby a generation constitutes the evolution and at-

tempted replacement of µ/2 children into the current population. Replace-

ment occurs if the child is better than the worst individual in the popula-

tion. The initial population of variable-length individuals were initialised

randomly, with an average length of 20 codons, and standard-deviation of 5

codons from average. Standard 8-bit codons are employed, and GE’s wrap-

ping operator is turned off.

These standard parameter settings for GE closely reflect those systems

in direct comparison, with the main difference being with Cotta’s choice of

µ = 100 population size, and what is described as Radcliffe’s n-dimensional

R3 crossover operator [Cotta and Troya, 1998]. Primarily, the experimental

metric of percentage of runs yielding an optimum-solution serve to demon-

strate GE’s ability to solve these problems. This metric seems to be a

standard measure in this field for problems of this size [Khuri et al., 1994,

Cotta and Troya, 1998]; whereby more recently, the best competing approach-

es use the % gap from the LP optimum-solution (See Section 2.5); this owing

to the absence of a known optimum for these problems [Chu and Beasley, 1998]

[Raidl, 1998] [Raidl and Gottlieb, 1999a] [Raidl and Gottlieb, 1999b]

[Gottlieb, 1999b] [Raidl and Gottlieb, 1999c]. We also present comparative

results for best and average population fitness, where relevant.

A comparison of the standard GE system, the AG(01) system, and the

AG(Full) system can be seen in Table 4.1 and Table 4.2. The benefit of adopt-

ing an attribute grammar on these problem instances are clear, with the full

attribute grammar (AG(Full)), clearly outperforming the two other gram-

mars analysed. On comparison to the results obtained in [Khuri et al., 1994,

Cotta and Troya, 1998] it can be seen that the results presented show that

99

for a progressive increase in context-sensitivity in the attribute grammar

systems, a corresponding improvement is seen over the standard GE. The

AG(Full) system is seen on most instances to outperform the traditional GA

of Khuri et al., and provide competitive results to the hybrid GA of Cotta

which uses local optimisation over small problem instances. It should be

noted, however, that the best of the attribute grammar results fall short of

the number of successful solutions found by the best results in the literature

[Gottlieb, 1999b].

Tables 4.3, and 4.4 provide results for best-fitness. This metric serves

to re-enforce the argument that the addition of attribute grammars to the

mapping process of GE, does indeed provide an improvement in performance.

These tables show a comparison for the mean best fitness values of the pop-

ulation after a matching number of evaluations with that of Khuri et al.9.

Finally, tables 4.5, and 4.6 provide results for the populations mean

average-fitness. Again these results give testament to attribute grammars

as a benefit to the search-capabilities of what would otherwise be a stan-

dard context-free derivation, resulting in the generation of many infeasible

solutions; presumably acting as noise to the process of evolutionary search.

9Cotta carries out 2∗104 evaluations, but as this work involves the evolution of fitness-

landscape (i.e. problem-space search) as opposed to candidate-solutions, it was deemed

that the parameter of Khuri have more bearing (See Section 3.6.2).

100

Problem knap15 knap20 knap28 knap39 knap50

Runs Opt(Khuri) (83%) (33%) (33%) (4%) (1%)

Runs Opt(Cotta) (100%) (94%) (100%) (60%) (46%)

Runs Opt

GE 3.33% 6.66% 0% 0% 0%

AG(0/1) 50% 30% 3.33% 0% 0%

AG(Full) 83.33% 76.66% 40% 36.66% 3.33%

Table 4.1: Percentage of runs achieving an optimum-solution for knap problems: com-

paring the three grammars and results from [Khuri et al., 1994, Cotta and Troya, 1998].

Problem Sento1-60 Sento2-60 Weing7-105 Weing8-105

Runs Opt(Khuri) (5%) (2%) (0%) (6%)

Runs Opt(Cotta) (75%) (39%) (40%) (29%)

Runs Opt

GE 0% 0% 0% 0%

AG(0/1) 0% 0% 0% 0%

AG(Full) 10% 3.33% 0% 6.66%

Table 4.2: Percentage of runs achieving an optimum-solution for Sento & We-

ing problems: comparing the three grammars and results from [Khuri et al., 1994,

Cotta and Troya, 1998].

Problem knap15 knap20 knap28 knap39 knap50

MeanBst-(Khuri) (4012.7) (6102) (12374.7) (10536.9) (16378.0)

MeanBst

GE 3892.33 5996.33 12191.0 9526.8 15425.36

AG(0/1) 4000.0 6055.5 12326.66 10145.76 15819.03

AG(Full) 4011.33 6111.0 12377.66 10457.63 16266.13

Table 4.3: Mean-best fitness results for knap problems: comparing the three grammars

and results from [Khuri et al., 1994, Cotta and Troya, 1998].

101

Problem Sento1-60 Sento2-60 Weing7-105 Weing8-105

MeanBst-(Khuri) (7626) (8685) (1093897) (613383)

MeanBst

GE 7594.4 8527.93 943661.5 587180.06

AG(0/1) 7615.26 8649.3 1067987.966 594746.06

AG(Full) 7693.2 8670.06 1075950.83 605993.63

Table 4.4: Mean-best fitness results for Sento & Weing problems: comparing the three

grammars and results from [Khuri et al., 1994, Cotta and Troya, 1998].

Problem knap15 knap20 knap28 knap39 knap50

MeanBst-(Cotta) (4015.0) (6119.4) (12400.0) (10609.8) (16512.0)

MeanAvg

GE 3888.67 5989.93 12191.0 9526.57 15424.26

AG(0/1) 3998.06 6053.64 12325.70 10145.30 15816.56

AG(Full) 4011.33 6111.0 12377.66 10457.57 16264.76

Table 4.5: Mean-average fitness results for knap problems: comparing the three gram-

mars and results from [Khuri et al., 1994, Cotta and Troya, 1998].

Problem Sento1-60 Sento2-60 Weing7-105 Weing8-105

MeanBst-(Cotta) (7767.9) (8716.5) (1095386.0) (622048.1)

MeanAvg

GE 7593.322 8523.44 941470.77 586991.36

AG(0/1) 7613.75 8648.45 1059539.97 594746.06

AG(Full) 7693.2 8667.14 1067929.05 605993.63

Table 4.6: Mean-average fitness results for Sento & Weing problems: comparing the

three grammars and results from [Khuri et al., 1994, Cotta and Troya, 1998].

102

4.4 Conclusion

We wished to examine the extension of the standard GE mapping process - to

handle context-sensitive information, via the medium of attribute grammars.

The results demonstrated a clear advantage for the attribute grammars over

the standard context-free grammar on the problem instances examined.

The limitations to the expressiveness of context-free grammars (CFG’s)

were first outlined; with explanation by sample grammars, serving to demon-

strate their potential failings. This provided the impetus for the need to

explore a method to encode context-sensitivity into the derivation process.

Context-sensitive grammars as defined by Chomsky’s hierarchy, were dis-

missed owing to both - the difficulty inherent in the writing of a language pro-

cessor to capture their phrase structure; and a high-dependency on expert-

driven domain-knowledge.

The Fundamental principles of attribute-grammars were outlined with ex-

amples showing their workings and explaining their core features; these in the

context of a context-free language for the description of candidate 01MKP

solutions. The inability of CFG’s again re-iterated by example over this knap-

sack grammar. Two attribute grammars for the different context-sensitive

facets of the knapsack language were introduced; with the later a super-

set of the former providing a method to produce feasible-only candidate-

solutions. It was noted that the attribute-grammar defines a decoder for

knapsack solutions; drawing correlation between heuristic-bias and the re-

dundant genotype-phenotype mapping. An example mapping process served

to outline the intricacies of the attribute grammar decoder.

Finally, the experimental approach and setup was defined with initial re-

sults over the core statistical metrics presented; showing attribute grammars

as a viable extension to the mapping capabilities of GE.

103

Chapter 5

Analysis of Introns

5.1 Introduction

The previous chapter outlined our approach to extending the standard GE

mapping process, thereby enabling it to conduct a derivation for a context-

sensitive language; the use of attribute grammars succeeded in this role. Two

degrees of context-sensitivity were outlined for 01MKP solutions in the fea-

tures of 01 compliance, and constraint-satisfaction; corresponding attribute

grammars were defined for each (the latter grammar being a super-set of the

former). In an example GE mapping process using these attribute grammar

extensions, it was seen that a codon responsible for the derivation of an illegal

item was skipped - marked as an intron, and subsequent codons read until

a valid item was mapped (Section 4.2.5). Introns, we recall, are sections of

the genome which do not code for a phenotypic effect.

This chapter serves to examine the genotype’s make-up - in terms of these

introns. At closer inspection, and as depicted in Figure 5.1, it can be seen

that there are two classes of these introns occurring in the genome: those

that occur in between exons (or expressed-codons), and those that result as

104

residue (or unused genetic material at the tail-end of the genome). The lat-

ter form of intron results, when the individual’s genotype over-specifies the

expressed phenotype; i.e. more codons exist than are necessary to carry-out

a complete derivation. We will refer to these as residual-introns, whereby the

former will be referred to as interspersed-introns (or IIs)1. The region of the

genome encompassing exons will be referred to as the effective-region. It is

worth noting that a sequence of consecutive residual-introns will be referred

to as a GE tail; a phrase coined by O’Neill et al. [O’Neill and Ryan, 2003b]

[O’Neill et al., 2003, O’Neill et al., 2001] to describe the unused genetic ma-

terial that can result from a GE derivation.

Interspersed Introns Residual Introns

� � � � � �� � � � � �� � � � � �
✁ ✁ ✁ ✁ ✁ ✁✁ ✁ ✁ ✁ ✁ ✁✁ ✁ ✁ ✁ ✁ ✁

✂ ✂ ✂✂ ✂ ✂✂ ✂ ✂
✄ ✄ ✄✄ ✄ ✄✄ ✄ ✄

☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎ ☎

✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆ ✆

✝ ✝ ✝ ✝ ✝ ✝ ✝ ✝ ✝ ✝ ✝ ✝ ✝ ✝✝ ✝ ✝ ✝ ✝ ✝ ✝ ✝ ✝ ✝ ✝ ✝ ✝ ✝✝ ✝ ✝ ✝ ✝ ✝ ✝ ✝ ✝ ✝ ✝ ✝ ✝ ✝
✞ ✞ ✞ ✞ ✞ ✞ ✞ ✞ ✞ ✞ ✞ ✞ ✞ ✞✞ ✞ ✞ ✞ ✞ ✞ ✞ ✞ ✞ ✞ ✞ ✞ ✞ ✞✞ ✞ ✞ ✞ ✞ ✞ ✞ ✞ ✞ ✞ ✞ ✞ ✞ ✞

Effective Region

Figure 5.1: Diagram showing the genetic make-up of the genome and terminology

adopted - introns are denoted in black, and the shaded regions serve to clearly identify

them.

1Although similar in concept to the II’s described by Nordin et al. [Nordin et al., 1996,

Nordin et al., 1997] - these should not be confused as the same. The latter referred to

evolved code expressions, evaluating to have no effect on the expressed phenotype, i.e. x =

x+0. Here, they represent attempted derivation steps - failing due to constraint violation.

105

The origin of the forthcoming analysis, stemmed from an initial observa-

tion of relatively slow run-times for those systems using an attribute gram-

mar, to those without. Although, efficacy was not a primary goal, in the

design of these proof-of-concept systems - the decision to implement the at-

tribute grammar systems, whereby codons responsible for a syntactically in-

correct derivation-step, are skipped; came with afore knowledge from the lit-

erature that intron propagation was a possibility [Paterson and Livesey, 1997,

Paterson, 2002]. Nonetheless, results of other work from the literature sug-

gests merit in an approach which allows the emergence of introns on the

genome. Allowing the emergence of introns reflects a close model of nature;

whereby, as pointed out by Nordin, Banzhaf and Francone [Nordin et al., 1997]

up to 70% of the DNA base pairs in eucaryotic life forms do not code for

phenotypic traits (i.e. they are introns). Furthermore, much interesting re-

search has resulted from their inclusion; with Levenick [Levenick, 1991] first

reporting that their explicit insertion into the genotype provided improved

results. More recent research has provided evidence to support the hy-

pothesis that the presence of IIs, may provide a mechanism to self-regulate

the probability of crossover, or protect against building-block destruction

[Nordin et al., 1997, Nordin et al., 1996, Nordin et al., 1999]; similarly, Stree-

ter proposes a method of selection based on highly intronated solutions, also

reporting improved success over standard methods [Streeter, 2003]. As such,

allowing the emergence of IIs was seen as a logical decision - viable for re-

search, and in keeping with our wish to maintain a close model of nature.

In any case, to better understand the behavior exhibited by our initial

experiments, some analysis into the genome make-up was required. The fol-

lowing sections document observations of intron propagation, in what is re-

ferred to as “bloat” or “code-growth” in the GP domain [Nordin et al., 1996]

106

[Streeter, 2003]. Interestingly, we observe that the evolution of residual-

introns dominate over II propagation.

5.2 Initial Results of Bloat

Owing to the comparative performance difference to the benchmark system

(GE), and a general observation of slow execution speeds, our first metric

of analysis, was to examine the length to which genomes were evolving to.

Figures 5.2 and 5.3, plot the average genome-length for the population. Each

plot shows the average genome-length recorded for each system as genera-

tions proceed; again, results being reported for an average of 30 runs (Note

that the knap15 problem has been omitted from the figures for clarity; given

the nature and simplicity of the problem, it was thought to be of least rel-

evance to the presented analysis). It can be seen that in all systems, the

genome-length evolves to greatly over-specify the maximum possible solu-

tion size. That is, if closely examined, all three mappers essentially utilise

the same CFG in a generative capacity. Consider the following CFG common

to all systems2:

S → K

K → I

K → IK

I → i1
...

I → in

2This grammar is a replication of grammar in Section 4.2.1.

107

 0

 5
00

 1
00

0

 1
50

0

 2
00

0

 0
 5

00
 1

00
0

 1
50

0
 2

00
0

Avg Length (in Codons)

G
en

er
at

io
n

3
M

ap
pe

r
C

om
pa

re
:-

G
en

ot
yp

e
Le

ng
th

s
ov

er
 k

na
p3

9
P

ro
bl

em

G
E

A
G

(0
/1

)
A

G
(F

ul
l)

 0

 5
00

 1
00

0

 1
50

0

 2
00

0

 0
 5

00
 1

00
0

 1
50

0
 2

00
0

Avg Length (in Codons)

G
en

er
at

io
n

3
M

ap
pe

r
C

om
pa

re
:-

G
en

ot
yp

e
Le

ng
th

s
ov

er
 k

na
p5

0
P

ro
bl

em

G
E

A
G

(0
/1

)
A

G
(F

ul
l)

 0 5
0

 1
00

 1
50

 2
00

 2
50

 3
00

 0
 5

0
 1

00
 1

50
 2

00
 2

50

Avg Length (in Codons)

G
en

er
at

io
n

3
M

ap
pe

r
C

om
pa

re
:-

G
en

ot
yp

e
Le

ng
th

s
ov

er
 k

na
p2

0
P

ro
bl

em

G
E

A
G

(0
/1

)
A

G
(F

ul
l)

 0

 1
00

 2
00

 3
00

 4
00

 5
00

 6
00

 7
00

 0
 2

00
 4

00
 6

00
 8

00
 1

00
0

Avg Length (in Codons)

G
en

er
at

io
n

3
M

ap
pe

r
C

om
pa

re
:-

G
en

ot
yp

e
Le

ng
th

s
ov

er
 k

na
p2

8
P

ro
bl

em

G
E

A
G

(0
/1

)
A

G
(F

ul
l)

Figure 5.2: Plotting the recorded genome-lengths (averaged over 30 runs), for the 3

systems over knap problems.

108

 0

 5
00

 1
00

0

 1
50

0

 2
00

0

 2
50

0

 3
00

0

 3
50

0

 4
00

0

 0
 5

00
 1

00
0

 1
50

0
 2

00
0

Avg Length (in Codons)

G
en

er
at

io
n

3
M

ap
pe

r
C

om
pa

re
:-

G
en

ot
yp

e
Le

ng
th

s
ov

er
 S

en
to

2-
60

 P
ro

bl
em

G
E

A
G

(0
/1

)
A

G
(F

ul
l)

 0

 5
00

 1
00

0

 1
50

0

 2
00

0

 0
 5

00
 1

00
0

 1
50

0
 2

00
0

Avg Length (in Codons)

G
en

er
at

io
n

3
M

ap
pe

r
C

om
pa

re
:-

G
en

ot
yp

e
Le

ng
th

s
ov

er
 W

ei
ng

8-
10

5
P

ro
bl

em

G
E

A
G

(0
/1

)
A

G
(F

ul
l)

 0

 5
00

 1
00

0

 1
50

0

 2
00

0

 0
 5

00
 1

00
0

 1
50

0
 2

00
0

Avg Length (in Codons)

G
en

er
at

io
n

3
M

ap
pe

r
C

om
pa

re
:-

G
en

ot
yp

e
Le

ng
th

s
ov

er
 S

en
to

1-
60

 P
ro

bl
em

G
E

A
G

(0
/1

)
A

G
(F

ul
l)

 0

 5
00

 1
00

0

 1
50

0

 2
00

0

 0
 5

00
 1

00
0

 1
50

0
 2

00
0

Avg Length (in Codons)

G
en

er
at

io
n

3
M

ap
pe

r
C

om
pa

re
:-

G
en

ot
yp

e
Le

ng
th

s
ov

er
 W

ei
ng

8-
10

5
P

ro
bl

em

G
E

A
G

(0
/1

)
A

G
(F

ul
l)

Figure 5.3: Plotting the recorded genome-lengths (averaged over 30 runs), over Sento &

Weing problems.

109

Distinguishing the attribute grammar systems from standard GE - is the

control of the derivation process via semantic-functions (specified within the

attribute grammar). As such, from careful examination of this CFG, and the

derivation-trees produce-able thereof - it can be seen that it takes 2 codons

initially (e.g. S → K → IK → iλK . . .)3, and subsequent iterations of 2

codons thereafter (e.g. . . . → IK → iλK . . ., OR . . . → I → iλ) in order to

derive items.

Now, given an n-item problem - it is possible for an individual with

2 + (2 ∗ (n − 1)) (5.1)

codons, to completely specify a solution containing exactly n items (This

equation is specific, according to the grammar used). As conditions dictate,

a solution of this size (the set of all n items) may be infeasible; but equation

5.1 can be used as a measure for the lower-bound to the number of codons

required to completely specify n items4. As such, a 20-item problem can

be seen by equation 5.1 to require a maximum of 41 codons to completely

specify n items (20 in this case); for the special case, that is - where all codons

would result in the derivation of a legal item. Thus, equation 5.1 serves as a

lower-bound to the number of codons needed to code for an n-item solution.

Turning again to Figures 5.2 and 5.3, we can see that as problems grow

in size, the number of codons (i.e. the genome-length) is seen to hugely

over-specify the maximum requirement as dictated by equation 5.1. Also, it

can be seen in Figure 5.3, where problems significantly increase in size and

difficulty, that standard GE out-grows the AG(01) system, with the AG(Full)

3Note that for S → K no production decision exists, and so no codon is required.
4In terms of a context-free derivation, it could be seen as a maximum-codon measure:

the maximum number of codons required to derive n terminal symbols. As suggested

above, we feel the lower-bound better reflects the attribute grammar system.

110

system producing very large individuals. In essence, we can generalise that

all systems suffer from the phenomenon previously described as bloat. The

following sections seek to provide a more in-depth analysis of the genome

make-up in order to further understand the reason for this behavior.

5.3 Analysing the Genome Make-Up

To further analyse the genome make-up, the approach taken was to examine

the average presence of the two previously described classes of intron as they

occur along the genome. In order to do this, we first looked to provide a

view, of the proportion of the genome comprised of these different classes of

intron; in so doing, we examined the proportion of IIs (interspersed-introns)

and residual-introns separately. Following from this, a specific examination

of II-regions - in terms of structure and number - will be explored (refer again

to Figure 5.1).

5.3.1 Proportion of Introns

Figures 5.4 and 5.5 show plots depicting the proportion of the genome com-

prised of residual-introns; that is, these plots show the average amount of the

genome which is un-used (i.e. comprise of a GE-tail). As the figures illus-

trate, a vast proportion of the genome is comprised of redundant material.

In some cases, up to 90% of the evolving genomes, are composed of tails of

residual-introns. This behavior is seen to be consistent for all three systems

under investigation.

Figures 5.6 and 5.7 serve to reflect the findings of the tail-proportion

experiments just described; plots are shown for the proportion of the genome

comprised of interspersed-introns (IIs). These plots show the average amount

111

of the genome which is made up of IIs. Plots for standard GE, show a flat line

in all graphs; this is due to it’s context-free mapping process which doesn’t

permit the introduction of II-regions. The figures reflect the findings of the

previous tail-proportion plots, showing that only a very small amount of the

genome is comprised of these IIs; further examination is required in order to

study their size and structure, within the effective region of the genome. At

this juncture, however, it is worth noting that the AG(Full) system seems to

incorporate approximately twice the amount of IIs that the AG(01) system

produces. This is not surprising, as the AG(Full) system specifies a more

constrained language and will obviously encounter more problem-constraint

conflicts: this, resulting in the introduction and subsequent emergence of

more II-regions.

This observed behavior of high tail-proportion is seen to be consistent

for all three systems, with the exception of the plot for the knap20 prob-

lem, where the AG(Full) produces a very low tail proportion comparatively

(Figure 5.4). A correspondingly high II proportion (Figure 5.6) reflects this

observation, but this metric alone gives no insight as to why this may be. It

was suspected that this stagnation of tail-growth may be a result of the pop-

ulation having converged to the optimal fitness: therein removing selection-

pressure for larger individuals. Indeed, and as depicted in Figure 5.8, this

appears to be the case. The figure shows a plot for the mean-best fitness for

each experimental system; it can be seen that after approximately 30 gen-

erations the AG(Full) system converges to the optimal fitness of 6120. This

point in the evolutionary process correlates with the observed stagnation for

tail growth. As such, this is suggestive that selection pressure is selecting

for fit individuals having a large proportion of redundant material in the tail

region; the initial sharp rise in all graphs further supports this to be the case.

112

 0
.6

 0
.6

5

 0
.7

 0
.7

5

 0
.8

 0
.8

5

 0
.9

 0
.9

5 1

 0
 5

00
 1

00
0

 1
50

0
 2

00
0

Proportion of Genome(in Codons)

G
en

er
at

io
n

3
M

ap
pe

r
C

om
pa

re
:-

P
ro

po
rt

io
n

of
 G

en
om

e
co

m
pr

is
in

g
G

E
-T

ai
l k

na
p3

9
P

ro
bl

em

G
E

A
G

(0
/1

)
A

G
(F

ul
l)

 0
.6

 0
.6

5

 0
.7

 0
.7

5

 0
.8

 0
.8

5

 0
.9

 0
.9

5 1

 0
 5

00
 1

00
0

 1
50

0
 2

00
0

Proportion of Genome(in Codons)

G
en

er
at

io
n

3
M

ap
pe

r
C

om
pa

re
:-

P
ro

po
rt

io
n

of
 G

en
om

e
co

m
pr

is
in

g
G

E
-T

ai
l k

na
p5

0
P

ro
bl

em

G
E

A
G

(0
/1

)
A

G
(F

ul
l)

 0
.6

 0
.6

5

 0
.7

 0
.7

5

 0
.8

 0
.8

5

 0
.9

 0
.9

5 1

 0
 5

0
 1

00
 1

50
 2

00
 2

50

Proportion of Genome(in Codons)

G
en

er
at

io
n

3
M

ap
pe

r
C

om
pa

re
:-

P
ro

po
rt

io
n

of
 G

en
om

e
co

m
pr

is
in

g
G

E
-T

ai
l k

na
p2

0
P

ro
bl

em G
E

A
G

(0
/1

)
A

G
(F

ul
l)

 0
.6

 0
.6

5

 0
.7

 0
.7

5

 0
.8

 0
.8

5

 0
.9

 0
.9

5 1

 0
 2

00
 4

00
 6

00
 8

00
 1

00
0

Proportion of Genome(in Codons)

G
en

er
at

io
n

3
M

ap
pe

r
C

om
pa

re
:-

P
ro

po
rt

io
n

of
 G

en
om

e
co

m
pr

is
in

g
G

E
-T

ai
l k

na
p2

8
P

ro
bl

em

G
E

A
G

(0
/1

)
A

G
(F

ul
l)

Figure 5.4: Plotting the proportion of the genome (averaged over 30 runs) comprising

of residual-introns or GE-tail, for knap problems.

113

 0
.6

 0
.6

5

 0
.7

 0
.7

5

 0
.8

 0
.8

5

 0
.9

 0
.9

5 1

 0
 5

00
 1

00
0

 1
50

0
 2

00
0

Proportion of Genome(in Codons)

G
en

er
at

io
n

3
M

ap
pe

r
C

om
pa

re
:-

P
ro

po
rt

io
n

of
 G

en
om

e
co

m
pr

is
in

g
G

E
-T

ai
l S

en
to

2-
60

 P
ro

bl
em

G
E

A
G

(0
/1

)
A

G
(F

ul
l)

 0
.6

 0
.6

5

 0
.7

 0
.7

5

 0
.8

 0
.8

5

 0
.9

 0
.9

5 1

 0
 5

00
 1

00
0

 1
50

0
 2

00
0

Proportion of Genome(in Codons)

G
en

er
at

io
n

3
M

ap
pe

r
C

om
pa

re
:-

P
ro

po
rt

io
n

of
 G

en
om

e
co

m
pr

is
in

g
G

E
-T

ai
l W

ei
ng

8-
10

5
P

ro
bl

em

G
E

A
G

(0
/1

)
A

G
(F

ul
l)

 0
.6

 0
.6

5

 0
.7

 0
.7

5

 0
.8

 0
.8

5

 0
.9

 0
.9

5 1

 0
 5

00
 1

00
0

 1
50

0
 2

00
0

Proportion of Genome(in Codons)

G
en

er
at

io
n

3
M

ap
pe

r
C

om
pa

re
:-

P
ro

po
rt

io
n

of
 G

en
om

e
co

m
pr

is
in

g
G

E
-T

ai
l S

en
to

1-
60

 P
ro

bl
em

G
E

A
G

(0
/1

)
A

G
(F

ul
l)

 0
.6

 0
.6

5

 0
.7

 0
.7

5

 0
.8

 0
.8

5

 0
.9

 0
.9

5 1

 0
 5

00
 1

00
0

 1
50

0
 2

00
0

Proportion of Genome(in Codons)

G
en

er
at

io
n

3
M

ap
pe

r
C

om
pa

re
:-

P
ro

po
rt

io
n

of
 G

en
om

e
co

m
pr

is
in

g
G

E
-T

ai
l W

ei
ng

7-
10

5
P

ro
bl

em

G
E

A
G

(0
/1

)
A

G
(F

ul
l)

Figure 5.5: Plotting the proportion of the genome (averaged over 30 runs), comprising

of residual-introns or GE-tail, for Sento & Weing problems.

114

 0

 0
.0

2

 0
.0

4

 0
.0

6

 0
.0

8

 0
.1

 0
 5

00
 1

00
0

 1
50

0
 2

00
0

Proportion of GenomeLength(in Codons)

G
en

er
at

io
n

3
M

ap
pe

r
C

om
pa

re
:-

P
ro

po
rt

io
n

of
 G

en
om

e
co

m
pr

is
in

g
In

te
rs

pe
rs

ed
 In

tr
on

s
kn

ap
39

 P
ro

bl
em

G
E

A
G

(0
/1

)
A

G
(F

ul
l)

 0

 0
.0

2

 0
.0

4

 0
.0

6

 0
.0

8

 0
.1

 0
 5

00
 1

00
0

 1
50

0
 2

00
0

Proportion of GenomeLength(in Codons)

G
en

er
at

io
n

3
M

ap
pe

r
C

om
pa

re
:-

P
ro

po
rt

io
n

of
 G

en
om

e
co

m
pr

is
in

g
In

te
rs

pe
rs

ed
 In

tr
on

s
kn

ap
50

 P
ro

bl
em

G
E

A
G

(0
/1

)
A

G
(F

ul
l)

 0

 0
.0

5

 0
.1

 0
.1

5

 0
.2

 0
 5

0
 1

00
 1

50
 2

00
 2

50

Proportion of GenomeLength(in Codons)

G
en

er
at

io
n

3
M

ap
pe

r
C

om
pa

re
:-

P
ro

po
rt

io
n

of
 G

en
om

e
co

m
pr

is
in

g
In

te
rs

pe
rs

ed
 In

tr
on

s
kn

ap
20

 P
ro

bl
em

G
E

A
G

(0
/1

)
A

G
(F

ul
l)

 0

 0
.0

5

 0
.1

 0
.1

5

 0
.2

 0
 2

00
 4

00
 6

00
 8

00
 1

00
0

Proportion of GenomeLength(in Codons)

G
en

er
at

io
n

3
M

ap
pe

r
C

om
pa

re
:-

P
ro

po
rt

io
n

of
 G

en
om

e
co

m
pr

is
in

g
In

te
rs

pe
rs

ed
 In

tr
on

s
kn

ap
28

 P
ro

bl
em

G
E

A
G

(0
/1

)
A

G
(F

ul
l)

Figure 5.6: Plotting the proportion of the genome (averaged over 30 runs), comprising

of interspersed-introns (IIs), for knap problems.

115

 0

 0
.0

2

 0
.0

4

 0
.0

6

 0
.0

8

 0
.1

 0
 5

00
 1

00
0

 1
50

0
 2

00
0

Proportion of GenomeLength(in Codons)

G
en

er
at

io
n

3
M

ap
pe

r
C

om
pa

re
:-

P
ro

po
rt

io
n

of
 G

en
om

e
co

m
pr

is
in

g
In

te
rs

pe
rs

ed
 In

tr
on

s
S

en
to

2-
60

 P
ro

bl
em

G
E

A
G

(0
/1

)
A

G
(F

ul
l)

 0

 0
.0

2

 0
.0

4

 0
.0

6

 0
.0

8

 0
.1

 0
 5

00
 1

00
0

 1
50

0
 2

00
0

Proportion of GenomeLength(in Codons)

G
en

er
at

io
n

3
M

ap
pe

r
C

om
pa

re
:-

P
ro

po
rt

io
n

of
 G

en
om

e
co

m
pr

is
in

g
In

te
rs

pe
rs

ed
 In

tr
on

s
W

ei
ng

8-
10

5
P

ro
bl

em

G
E

A
G

(0
/1

)
A

G
(F

ul
l)

 0

 0
.0

2

 0
.0

4

 0
.0

6

 0
.0

8

 0
.1

 0
 5

00
 1

00
0

 1
50

0
 2

00
0

Proportion of GenomeLength(in Codons)

G
en

er
at

io
n

3
M

ap
pe

r
C

om
pa

re
:-

P
ro

po
rt

io
n

of
 G

en
om

e
co

m
pr

is
in

g
In

te
rs

pe
rs

ed
 In

tr
on

s
S

en
to

1-
60

 P
ro

bl
em

G
E

A
G

(0
/1

)
A

G
(F

ul
l)

 0

 0
.0

2

 0
.0

4

 0
.0

6

 0
.0

8

 0
.1

 0
 5

00
 1

00
0

 1
50

0
 2

00
0

Proportion of GenomeLength(in Codons)

G
en

er
at

io
n

3
M

ap
pe

r
C

om
pa

re
:-

P
ro

po
rt

io
n

of
 G

en
om

e
co

m
pr

is
in

g
In

te
rs

pe
rs

ed
 In

tr
on

s
W

ei
ng

7-
10

5
P

ro
bl

em

G
E

A
G

(0
/1

)
A

G
(F

ul
l)

Figure 5.7: Plotting the proportion of the genome (averaged over 30 runs), comprising

of interspersed-introns (IIs), for Sento & Weing problems.

116

 4
00

0

 4
50

0

 5
00

0

 5
50

0

 6
00

0

 6
50

0

 0
 2

0
 4

0
 6

0
 8

0
 1

00
 1

20
 1

40

Fitness

G
en

er
at

io
n

3
M

ap
pe

r
C

om
pa

re
:-

M
ea

n
B

es
t-

F
itn

es
s

ov
er

 k
na

p2
0

P
ro

bl
em

G
E

A
G

(0
/1

)
A

G
(F

ul
l)

Figure 5.8: Plotting the mean-best fitness for the 3 systems (averaged over 30 runs).

AG(Full) system is shown to converge to the optimal fitness of 6120 after approximately

30 generations: this correlates to the observed stagnation of it’s genome’s tail growth; as

seen in Figure 5.4.

117

5.3.2 A Focus on Interspersed-Introns

Realising by analysis, that the evolving genomes are largely comprised of

residual-introns, did not serve to provide any real insight into the difference

(in terms of the structures evolving), which one system provides over the

other. Early analysis showed the fully attributed system (AG(Full)) to be the

best performer; our wish at this point, is to examine the structural dynamics

along the evolving genome which may be contributing to this behavior.

As such, there follows a focused analysis of the 3 Systems, in terms of

the II structures found (on average), along the genome. Again, standard GE

shows a flat line in all graphs; this, as it’s mapping process doesn’t permit

the introduction of IIs. Figures 5.9 and 5.10 show the average number of II-

regions occurring (a contiguous sequence of IIs within the effective-length);

with Figures 5.11 and 5.12, showing the average length of such regions. As

previously discussed, it is not surprising to see the AG(Full) system exhibit-

ing more of these II-regions; and with larger average size. However, one

problem again breaks the consistent behavior exhibited over all others. The

very restrictive problem of Weing7 - for which we fail to report an optimal

solution - shows the two attribute grammar systems exhibiting much the

same structure; in terms of IIs. This is thought to be a result of premature

convergence; as this is a highly restrictive problem (the feasible subset of

the absolute search-space is very small), both systems seem to be unable

to escape local optima and exhibit the same - highly intronated - structural

evolution. This owing to relatively equal constraint-clashes for both systems.

What is interesting, and more significant in terms of information-gain to

our analysis - is the possible positive effect these entities have on evolution.

The following section seeks to examine to effect on behavior, when such

introns are removed from the evolutionary process.

118

 0 1 2 3 4 5 6 7

 0
 5

00
 1

00
0

 1
50

0
 2

00
0

Avg # Non-Coding Regions

G
en

er
at

io
n

3
M

ap
pe

r
C

om
pa

re
:-

In

te
rs

pe
rs

ed
 In

tr
on

 R
eg

io
ns

 o
ve

r
kn

ap
50

 P
ro

bl
em

G
E

A
G

(0
/1

)
A

G
(F

ul
l)

 0 1 2 3 4 5 6 7

 0
 5

00
 1

00
0

 1
50

0
 2

00
0

Avg # Non-Coding Regions

G
en

er
at

io
n

3
M

ap
pe

r
C

om
pa

re
:-

In

te
rs

pe
rs

ed
 In

tr
on

 R
eg

io
ns

 o
ve

r
kn

ap
39

 P
ro

bl
em

G
E

A
G

(0
/1

)
A

G
(F

ul
l)

 0 1 2 3 4 5

 0
 5

0
 1

00
 1

50
 2

00
 2

50

Avg # Non-Coding Regions

G
en

er
at

io
n

3
M

ap
pe

r
C

om
pa

re
:-

In

te
rs

pe
rs

ed
 In

tr
on

 R
eg

io
ns

 o
ve

r
kn

ap
20

 P
ro

bl
em

G
E

A
G

(0
/1

)
A

G
(F

ul
l)

 0 1 2 3 4 5

 0
 2

00
 4

00
 6

00
 8

00
 1

00
0

Avg # Non-Coding Regions

G
en

er
at

io
n

3
M

ap
pe

r
C

om
pa

re
:-

In

te
rs

pe
rs

ed
 In

tr
on

 R
eg

io
ns

 o
ve

r
kn

ap
28

 P
ro

bl
em

G
E

A
G

(0
/1

)
A

G
(F

ul
l)

Figure 5.9: Plotting the average number of II Regions (averaged over 30 runs), occurring

within the effective-region of the genome, for knap problems.

119

 0 1 2 3 4 5 6 7

 0
 5

00
 1

00
0

 1
50

0
 2

00
0

Avg # Non-Coding Regions

G
en

er
at

io
n

3
M

ap
pe

r
C

om
pa

re
:-

In

te
rs

pe
rs

ed
 In

tr
on

 R
eg

io
ns

 o
ve

r
S

en
to

2-
60

 P
ro

bl
em

G
E

A
G

(0
/1

)
A

G
(F

ul
l)

 0 1 2 3 4 5 6 7

 0
 5

00
 1

00
0

 1
50

0
 2

00
0

Avg # Non-Coding Regions

G
en

er
at

io
n

3
M

ap
pe

r
C

om
pa

re
:-

In

te
rs

pe
rs

ed
 In

tr
on

 R
eg

io
ns

 o
ve

r
W

ei
ng

8-
10

5
P

ro
bl

em

G
E

A
G

(0
/1

)
A

G
(F

ul
l)

 0 1 2 3 4 5 6 7

 0
 5

00
 1

00
0

 1
50

0
 2

00
0

Avg # Non-Coding Regions

G
en

er
at

io
n

3
M

ap
pe

r
C

om
pa

re
:-

In

te
rs

pe
rs

ed
 In

tr
on

 R
eg

io
ns

 o
ve

r
S

en
to

1-
60

 P
ro

bl
em

G
E

A
G

(0
/1

)
A

G
(F

ul
l)

 0 1 2 3 4 5 6 7

 0
 5

00
 1

00
0

 1
50

0
 2

00
0

Avg # Non-Coding Regions

G
en

er
at

io
n

3
M

ap
pe

r
C

om
pa

re
:-

In

te
rs

pe
rs

ed
 In

tr
on

 R
eg

io
ns

 o
ve

r
W

ei
ng

7-
10

5
P

ro
bl

em

G
E

A
G

(0
/1

)
A

G
(F

ul
l)

Figure 5.10: Plotting the average number of II Regions (averaged over 30 runs), occur-

ring within the effective-region of the genome, for Sento & Weing problems.

120

 0 2 4 6 8 1
0

 1
2

 0
 5

00
 1

00
0

 1
50

0
 2

00
0

Avg Non-Coding Region Length(In Codons)

G
en

er
at

io
n

3
M

ap
pe

r
C

om
pa

re
:-

 In
te

rs
pe

rs
ed

In
tr

on
 L

en
gt

hs
 o

ve
r

kn
ap

39
 P

ro
bl

em

G
E

A
G

(0
/1

)
A

G
(F

ul
l)

 0 2 4 6 8 1
0

 1
2

 0
 5

00
 1

00
0

 1
50

0
 2

00
0

Avg Non-Coding Region Length(In Codons)

G
en

er
at

io
n

3
M

ap
pe

r
C

om
pa

re
:-

 In
te

rs
pe

rs
ed

In
tr

on
 L

en
gt

hs
 o

ve
r

kn
ap

50
 P

ro
bl

em

G
E

A
G

(0
/1

)
A

G
(F

ul
l)

 0 2 4 6 8 1
0

 1
2

 0
 5

0
 1

00
 1

50
 2

00
 2

50

Avg Non-Coding Region Length(In Codons)

G
en

er
at

io
n

3
M

ap
pe

r
C

om
pa

re
:-

 In
te

rs
pe

rs
ed

In
tr

on
 L

en
gt

hs
 o

ve
r

kn
ap

20
 P

ro
bl

em

G
E

A
G

(0
/1

)
A

G
(F

ul
l)

 0 2 4 6 8 1
0

 1
2

 0
 2

00
 4

00
 6

00
 8

00
 1

00
0

Avg Non-Coding Region Length(In Codons)

G
en

er
at

io
n

3
M

ap
pe

r
C

om
pa

re
:-

 In
te

rs
pe

rs
ed

In
tr

on
 L

en
gt

hs
 o

ve
r

kn
ap

28
 P

ro
bl

em

G
E

A
G

(0
/1

)
A

G
(F

ul
l)

Figure 5.11: Plotting the average length of II-regions within the genome (averaged over

30 runs), for knap problems.

121

 0 1 2 3 4 5 6 7 8 9

 0
 5

00
 1

00
0

 1
50

0
 2

00
0

Avg Non-Coding Region Length(In Codons)

G
en

er
at

io
n

3
M

ap
pe

r
C

om
pa

re
:-

 In
te

rs
pe

rs
ed

In
tr

on
 L

en
gt

hs
 o

ve
r

S
en

to
2-

60
 P

ro
bl

em

G
E

A
G

(0
/1

)
A

G
(F

ul
l)

 0 1 2 3 4 5 6 7 8 9

 0
 5

00
 1

00
0

 1
50

0
 2

00
0

Avg Non-Coding Region Length(In Codons)

G
en

er
at

io
n

3
M

ap
pe

r
C

om
pa

re
:-

 In
te

rs
pe

rs
ed

In
tr

on
 L

en
gt

hs
 o

ve
r

W
ei

ng
8-

10
5

P
ro

bl
em

G
E

A
G

(0
/1

)
A

G
(F

ul
l)

 0 2 4 6 8 1
0

 1
2

 0
 5

00
 1

00
0

 1
50

0
 2

00
0

Avg Non-Coding Region Length(In Codons)

G
en

er
at

io
n

3
M

ap
pe

r
C

om
pa

re
:-

 In
te

rs
pe

rs
ed

In
tr

on
 L

en
gt

hs
 o

ve
r

S
en

to
1-

60
 P

ro
bl

em

G
E

A
G

(0
/1

)
A

G
(F

ul
l)

 0 1 2 3 4 5 6 7 8 9

 0
 5

00
 1

00
0

 1
50

0
 2

00
0

Avg Non-Coding Region Length(In Codons)

G
en

er
at

io
n

3
M

ap
pe

r
C

om
pa

re
:-

 In
te

rs
pe

rs
ed

In
tr

on
 L

en
gt

hs
 o

ve
r

W
ei

ng
7-

10
5

P
ro

bl
em

G
E

A
G

(0
/1

)
A

G
(F

ul
l)

Figure 5.12: Plotting the average length of II-regions within the genome (averaged over

30 runs), for Sento & Weing problems.

122

5.4 Intron Removal Strategies

We enter this section having conducted the initial analysis of the systems

under empirical investigation (Section 4.3.2). At this point, and in light of

the initial analysis - we reduce further investigations to (the most promising)

AG(Full) system, and attempt to discover the role of the various non-coding

components of the genome therein. We wish to discover if there is anything

structural, giving this system a comparatively superior performance over the

others. Primarily, we wish to study if the presence of introns provides any

positive effect to the evolutionary process.

In this examination, we introduce a set of proprietary genetic-operators

which allow various combinations of intron removal. The purpose and goal

of which - is to allow us to discover the effect of their presence, on this partic-

ular system’s performance. Each operator tested, carries out intron-removal

prior to replacement; an evolving population of altered genetic structures,

is subsequently maintained. In this way, the operators work in a form of

Lamarkian evolution. To better describe the operators, each section will

provide a graphical example to illustrate how they operate.

5.4.1 Pruning

Results from previous analysis in this chapter, identified the propagation of

individuals with exceptionally large genome-lengths (Section 5.2). Further

analysis showed that genomes were predominantly comprised of residual-

introns. That is, this redundant non-coding material at the end of the

genome, commonly known as the GE-tail [O’Neill and Ryan, 2003b] was be-

ing propagated from generation to generation resulting in the phenomenon

of bloat. Nordin and Banzhaf [Nordin et al., 1997], in the context of a linear

123

GP system, suggest that this particular type of intron-propagation is sug-

gestive of an emergent protection-mechanism, against any destructive-effects

exhibited by the evolutionary operators; predominantly crossover. Similarly,

Streeter also takes this view, summarising several other works which propose

comparable theories based on the same premise [Streeter, 2003].

� � � � � � � � � � � � �� � � � � � � � � � � � �� � � � � � � � � � � � �� � � � � � � � � � � � �

✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁

✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂
✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄

Figure 5.13: Diagram illustrating the operation of the pruning operator.

Born out of this work, we attempt to analyse - the effect to evolution - when

we remove these tails of residual-introns, by a genetic pruning operator simi-

lar to that described in [O’Neill and Ryan, 1999]. Figure 5.13, illustrates the

operation of the pruning technique; again, the operator takes effect imme-

diately after the evaluation process - prior to replacement. The population

is thus maintained such that evolution occurs over genomes which have had

their tails “pruned” or cut away. interspersed-introns (IIs) which emerge via

the AG(Full) algorithm remain. This is essentially a form of genetic clean-

up, removing the genetic material which was unused (i.e. the residue) in the

mapping of genotype - to phenotypic solution.

In terms of evolution, this operator has the effect of magnifying the

effective-region; forcing crossover and mutation to occur within this space.

In terms of the defacto AG(Full) algorithm, free from pruning - this oper-

124

Problem knap15 knap20 knap28 knap39 knap50

AG(Full) 83.33% 76.66% 40% 36.66% 3.33%

Pruning 66.66% 60% 10% 10% 6.66%

Problem Sento1-60 Sento2-60 Weing7-105 Weing8-105

AG(Full) 10% 3.33% 0% 6.66%

Pruning 6.66% 0% 0% 6.66%

Table 5.1: Comparing problem success-rate of the pruning strategy over the AG(Full)

control: the effect of pruning GE-tails. Table shows the % of successful runs (i.e. achieving

an optimal solution) over 30 independent runs

ator provides an increase in probability of crossover occurring within the

effective-region; the increase being directly proportional to the size of the

pruned tails. As mutation is bitwise, the probability of mutation remains un-

affected. Based on the observations of Nordin and Banzhaf, removal of this

redundant genetic material, decreases what they term as the effective-region’s

“compression”, and we would expect a direct decrease in performance as a

result [Nordin et al., 1999] [Nordin et al., 1997]. Indeed the results support

this, and give rise to the suggestion that our standard genetic operators may

well be of destructive or predominantly neutral influence. Further analysis

is required in order to further substantiate this observation.

Results Table 5.1 shows the comparative performance of the AG(Full)

system with pruning, compared to the AG(Full) system, without; results

presented are an average of 30 independent runs. Employing the pruning

strategy shows a degradation of performance over most problems; with the

exception of the knap50 problem - where an increase of 1 more successful

run is achieved. For the more difficult Weing problems, however, there is no

reported difference between the pruning system and the standard prune-free.

125

5.4.2 Splicing

The splicing operator has the effect of removing the interspersed-introns in-

troduced by the mapping process. Again, removal occurs immediately after

evaluation of the genome, and prior to replacement in the population. That

is, the population is maintained such that evolution occurs over genomes

which have had their interspersed-introns “spliced”. The GE-tail or residual

intron sequence remains. If you like; this operator enforces a form of genetic

� � � � � � � � � � � � �� � � � � � � � � � � � �� � � � � � � � � � � � �
✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁

✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂
✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄

☎ ☎ ☎ ☎☎ ☎ ☎ ☎☎ ☎ ☎ ☎☎ ☎ ☎ ☎

✆ ✆ ✆✆ ✆ ✆✆ ✆ ✆
✝ ✝ ✝ ✝ ✝✝ ✝ ✝ ✝ ✝✝ ✝ ✝ ✝ ✝✝ ✝ ✝ ✝ ✝

✞ ✞ ✞ ✞ ✞✞ ✞ ✞ ✞ ✞✞ ✞ ✞ ✞ ✞

Figure 5.14: Diagram illustrating the operation of the splicing operator.

repair; translating the genome into a sequence of codons, which subsequently

represent a contextually-correct derivation sequence (an uninterrupted se-

quence of expressed codons (or exons)).

In effect, this operator shortens the effective-region, increasing it’s com-

pression against the absolute length of the genome. This has the effect of

reducing the probability that crossover will occur in this area. As can be seen

in Figure 5.14, this reduction in the probability corresponds to the propor-

tion of the entire genome which had formerly been comprised of interspersed-

introns.

126

Problem knap15 knap20 knap28 knap39 knap50

AG(Full) 83.33% 76.66% 40% 36.66% 3.33%

Splicing 86.66% 80% 30% 33.33% 3.33%

Problem Sento1-60 Sento2-60 Weing7-105 Weing8-105

AG(Full) 10% 3.33% 0% 6.66%

Splicing 40% 13.33% 0% 33.33%

Table 5.2: Comparing problem success-rate of the splicing strategy over the AG(Full)

control: the effect of IIs. Table shows the % of successful runs (i.e. achieving an optimal

solution) over 30 independent runs

Results Table 5.2 shows the comparative performance of how the AG(Full)

system with this splicing strategy compares to the standard AG(Full) system

which is untouched; again, results presented are an average of 30 independent

runs. With this strategy we see a slight increase in success for the easy prob-

lems of knap15 and knap20, a slight decrease in performance for the problems

with up to 50 items; but a marked increase in performance is recorded for

the larger, and more difficult, Sento and Weing problems. Alternatively,

Table 5.3 shows how the splicing strategy measures-up against the previous

pruning strategy. On the whole, splicing shows a marked improvement in

performance over the pruning strategy - making it the best-to-date (results

are significantly better for all but the knap50 problem, for which pruning

produces only one more optimal run to splicing).

In all, the behavior depicted in Table 5.2 and 5.3 serve to suggest that - in

the presence of a GE-tail - IIs occurring along the genomes’ effective-region

are of negative effect to performance (i.e. splicing them, improves perfor-

mance). Looking again at figure 5.14, it can be seen that evolution occurs

over sequences of un-interrupted, contextually-correct codons (a contiguous

sequence of codons, which result in a contextually-correct derivation-step

127

Problem knap15 knap20 knap28 knap39 knap50

Pruning 66.66% 60% 10% 10% 6.66%

Splicing 86.66% 80% 30% 33.33% 3.33%

Problem Sento1-60 Sento2-60 Weing7-105 Weing8-105

Pruning 6.66% 0% 0% 6.66%

Splicing 40% 13.33% 0% 33.33%

Table 5.3: Comparing problem success-rate of the splicing strategy over the previous

pruning strategy. Table shows the % of successful runs (i.e. achieving an optimal solution)

over 30 independent runs

- at each mapping to a terminal-symbol or item) where the presence of a

GE-tail of residual-introns exists. This removal of interspersed-introns, and

consequent increase in compression - of the effective-region - over the abso-

lute length of the genome, would appear to be favourable for the creation

and exchange of sub-solutions or building blocks. A spiral in tail-growth re-

mains; and this would seem to support the suggestions of Nordin and Banzhaf

[Nordin et al., 1997], that this residual-intron propagation acts as a form of

self-regulation to the probability of crossover.

128

5.4.3 Splicing & Pruning

This system setup, combines the two operators previously described in Sec-

tion 5.4.2 and Section 5.4.1, having the effect of removing all introns from

the genotypic material. Again, operators work immediately after evaluation

of the genome, and prior to replacement. With this setup, splicing removes

any IIs introduced by the attribute grammar’s mapping process; and pruning

removes the residual intron sequence of the GE-tail. Figure 5.15 shows the

effect of this system setup in operation; it is akin to both genetic repair and

clean-up. This strategy effectively operates by removing all introns so that

� � � � � � � � � � � � �� � � � � � � � � � � � �� � � � � � � � � � � � �
✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁ ✁

✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂ ✂
✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄

☎ ☎ ☎☎ ☎ ☎☎ ☎ ☎
✆ ✆ ✆✆ ✆ ✆✆ ✆ ✆

✝ ✝ ✝ ✝ ✝ ✝✝ ✝ ✝ ✝ ✝ ✝✝ ✝ ✝ ✝ ✝ ✝
✞ ✞ ✞ ✞ ✞ ✞✞ ✞ ✞ ✞ ✞ ✞✞ ✞ ✞ ✞ ✞ ✞

Figure 5.15: Diagram illustrating the effect on the genome of the splice+prune strategy.

evolution occurs over genotypes, which subsequently represent contextually-

correct derivation sequences. In terms of evolution, this setup is essentially

an extension of the pruning strategy (in which, the evolutionary operators

of crossover and mutation must occur in the effective-region); the major dif-

ference here being, that crossovers occurring at interspersed intron (II) sites

can no longer occur. It was hoped that this measure would help to provide

us with an observation either in support or contradiction to the findings of

Nordin and Banzhaf’s research - suggesting a) that introns exist to guard

129

against any destructive effects of crossover, and b) that IIs act as a form of

sub-solution protector [Nordin et al., 1997].

Results As can be seen from the results presented in Table 5.4, this strat-

egy shows a degradation in performance over all problem instances, and gives

the worst success rate of all the intron-removal strategies documented in this

chapter. In terms of extending the pruning strategy - removing interspersed-

introns (IIs) (as well as tails), we see a marked decrease in success-rate over

all but the knap15 problem; who’s success improvement is negligible. This

would seem to suggest, that the difference to pruning (i.e. the presence of

interspersed-introns) is of benefit to search5; Figure 5.16 serves to demon-

strate the difference visually. In this context then, the observed results for the

<<Pruned>>

<<Pruned&Spliced>>

<<Improves Over>>

Figure 5.16: Diagram illustrating the difference between evolving structures for pruning

strategy (Top), against splice+prune (Bottom).

(beneficial) presence of IIs in pruning, gives credence and supports the argu-

ment of Nordin and Banzhaf, who describe IIs to provide a “structural protec-

tion” of building-blocks or sub-solutions. That is, their presence may guard

against any sub-solution disruption which the genetic operators can cause.

Where splicing-alone was seen to further the compression of the effective-

5It is worth noting, that this, positive observation as to the presence of IIs, can only be

made in the absence of a GE-tail; if a tail is present, the splicing strategy has illustrated

that II-removal leads to improved performance.

130

Problem knap15 knap20 knap28 knap39 knap50

AG(Full) 83.33% 76.66% 40% 36.66% 3.33%

Splice+Prune 73.33% 40% 3.33% 3.33% 0%

Pruning 66.66% 60% 10% 10% 6.66%

Splicing 86.66% 80% 30% 33.33% 3.33%

Problem Sento1-60 Sento2-60 Weing7-105 Weing8-105

AG(Full) 10% 3.33% 0% 6.66%

Splice+Prune 6.66% 0% 0% 0%

Pruning 6.66% 0% 0% 6.66%

Splicing 40% 13.33% 0% 33.33%

Table 5.4: Splice+Prune results: comparison to the AG(Full) system, and all previous

systems examined. Table shows the % of successful runs (i.e. achieving an optimal solution)

over 30 independent runs

region against the tail of residual-introns, Table 5.4 also shows how eradi-

cating this compression (adding pruning to splicing - removing the GE-tail),

results in an extreme drop in performance.

5.5 Conclusion

This chapter has essentially presented an analysis of the genetic structures

evolving (the variable-length binary genomes of codons). We have examined

these genomes in terms of their make-up, focusing on the relations between

coding-regions (exons) and non-coding regions (introns). A common-sense,

preliminary analysis led to the naming of two different classes of introns;

interspersed and residual respectively (Figure 5.1). A logical trail of analysis,

stemming from the initial results of what is commonly referred to as code-

growth (or bloat) - led to a focused analysis of the genome make-up in terms

of introns.

131

An exceptional behavior observed for the AG(Full) system, over one par-

ticular problem-instance - led us to deduce that a stagnation in tail-growth

can be indicative of convergence to the optimal solution; and a consistent

rise in tail-proportion for all systems in the early generations gives credence

to the notion that these residual-introns are being selected-for in highly fit

individuals.

A look at the length and structure of IIs enforced our belief that the

AG(Full) system brings about the insurgence of more IIs; with II-regions (a

contiguous sequence of IIs within the effective-length) being generally longer -

owing to the greater number of problem-constraint clashes (clashes occurring

as a consequence, of the more tightly constrained search space explored by

the attribute grammar system).

This observation, gave rise to an analysis, with a mind to examining -

whether or not the presence of these introns, was providing positive support

to search - and if so, in what role. Previous work from the literature, provided

the impetus to examine intron removal strategies [O’Neill and Ryan, 1999]

[Nordin et al., 1997, Nordin et al., 1996] and how to subsequently examine

their contribution to search. Bourne out of this study of the literature, a set

of proprietary intron removal operators allowed a comparative with/without

study, to examine the effect of introns. The result of this analysis - leading

us to believe (and in support of Nordin and Banzhaf’s argument) - that both

forms of intron identified act in a role of sub-solution, and indeed possibly

full-solution protection.

The splicing strategy emerged as the best performer; early analysis sug-

gested that, this is primarily due to a compression of the effective-region; with

the splicing of IIs, effectively acting as a form of what Nordin and Banzhaf de-

scribe as a “global-protection” mechanism. In this context, “global-protection”

132

eluding to a preserving behavior - where large tails of residual-introns serve

to protect the current effective-region (a whole solution) - from disruption

through crossover6.

Two other strategies of pruning and splice+prune (a combination), pro-

vided results to suggest that in the absence of the previously observed com-

pression, IIs act as a form of sub-solution protector. The combined obser-

vation of the splice and splice+prune strategies, allowed further analysis of

the evidence. We see that our results to-date provide evidence to support

a two-prong argument a) that the GE-tail, is essential to the performance

improvements observed; and also, b) that IIs (in the absence of a tail) pro-

vide a form of protection against any disruption effected by the evolutionary

operators.

The former argument could be viewed, as by Nordin and Banzhaf - that

the GE-tail provides a compression of the effective-region; this compression

results in a self-adaptation of the probability of crossover: as yet, however,

we feel there is not enough evidence to make the claim that this is the case.

Similarly, the latter argument - suggesting that IIs play a role in structural

protection of building blocks or sub-solutions; also requires further research.

As it stands, we cannot deny that Nordin and Banzhaf’s observations

(over a linear GP system) seem to hold true for our attribute grammar exten-

sion of the standard GE. The subsequent analysis will attempt to strengthen

or weaken this analysis : looking more closely at the evolutionary process

and it’s core operating components.

6Note: as mutation is bitwise by probability, the observed compression will have no

bearing to any of the disruptive forces to which it may exhibit

133

Chapter 6

A Closer Look at Evolution

6.1 Introduction

The analysis to-date, has identified the need to examine the process of

artificial-evolution, more closely. Standing back from, and looking again

at the attribute grammar system under examination, it is easily seen - that

what actually drives evolution (or learning), is that which is essentially, a

variable-length genetic algorithm (GA). Changing the state of the popula-

tion, from one generation to the next are - selection (the Darwinian principle

of artificial-evolution); the replacement policy - effectively controlling the in-

troduction of new genetic material into the population of the GA; and the

core evolutionary operators of crossover and mutation.

We turn then, to a closer look at the evolutionary process; this, in order

to add weight to our current suspicions, and help to ultimately affirm our

thesis conclusions. Although the outset research-philosophy of this thesis,

is to make as few assumptions as possible - we must note here, that we are

following the line of continued-research; and as such, the following findings

are to be made with respect of the underlying evolutionary setup. That is,

134

in respect of the research which has gone before we choose the configura-

tion for artificial-evolution, thereby recommended [O’Neill and Ryan, 2003a,

O’Neill et al., 2003, O’Neill, 2001] (See Section 4.3.2).

As outlined above, the setup is governed by the three key processes driving

artificial-evolution. The standard evolutionary setup for GE incorporates se-

lection, as a fitness-proportionate roulette-wheel algorithm; and replacement,

as a steady-state algorithm - serving to maintain the incumbent (best-fitness)

individual, and ensure the removal of poor genetic-material (in terms of fit-

ness)1. In respect of O’Neill et al.’s research findings [O’Neill and Ryan, 2003a,

O’Neill, 2001], we choose to maintain these operators (or evolutionary sub-

processes) as fixed; we do not change the setup, but view the algorithm for

what it is; and attempt to figure out the behavior it exhibits

Turning then to the third of the three key processes - We view the

core evolutionary operators of crossover and mutation as the main turning-

cogs of the artificial-evolution algorithm, and choose to utilise the opera-

tors which research has shown to work well (i.e. bitwise mutation by prob-

ability, and variable-length one-point crossover) [O’Neill and Ryan, 2003a]

[O’Neill et al., 2003, O’Neill et al., 2001]. Further, we present an argument

- reasoning that the variable length one-point crossover operator, is a viable

metric of analysis for our study. We look predominantly at crossover; viewing

this as paramount in the EA’s struggle for balance between exploration and

exploitation of the search-space: this is the looking-glass through which our

analysis observes the attribute grammar system’s behavior.

1Note: Owing to the absence of wrapping (wrapping turned-off) steady-state replace-

ment also serves to eradicate new offspring which under-specify a solution (See Section

6.4)

135

Owing then, to it’s importance, we begin with a brief overview of crossover

in GE - discussing some of the important considerations to which one should

be aware when analysing crossover in GE. Following from this, we outline

our crossover-focused approach to system-analysis, and as this analysis pro-

gresses, we discuss some experiments describing the effect of the GE-tail to

search. Some correlations are drawn with our previous findings and in light of

these (and the findings of this chapter), we present our thesis on the observed

behavior of the attribute grammar system.

6.2 Crossover & Approach to Analysis

Our continued-research (or extension) of the standard GE algorithm essen-

tially chooses to, a) redefine the mapping process with an attribute gram-

mar, and b) carry-out an analysis of the resulting genetic-structures being

evolved. From the former’s constraint-based mapping process, we discov-

ered the insurgence of interspersed-introns (IIs), and consequently, intron-

removal strategies served as an initial metric of analysis to present our

research findings. Following from these initial findings, and as stated, we

choose to maintain the standard GE setup, tried-and-tested in the field of

research [O’Neill and Ryan, 2003a], [O’Neill et al., 2003], and use the core-

component: crossover, as the next metric of analysis. Now, it could be viewed

that a study exchanging different types of operator should be carried out, or

indeed, that crossover experiments should be carried out in the absence of

mutation - our view, is that this is a valid argument; just not the approach

best suited to meet the goals of this research.

We wish to examine the behavior of the current system under exami-

nation, such that we can learn more about GE, and (more specifically) the

136

AG(Full) GE system. As such, we do not change the crossover operator;

instead viewing it as a metric of behavioral insight into the workings of the

un-altered system’s behavior.

Guided by the works of O’Neill et al. [O’Neill et al., 2003], Nordin and

Banzhaf [Nordin et al., 1997, Nordin et al., 1996], and Gottlieb and Raidl

[Raidl and Gottlieb, 1999a, Raidl and Gottlieb, 1999b]; we take the view that

crossover can be used as a logical metric of analysis; to access the behavior

of the artificial-evolution algorithm. Reference material for the forthcom-

ing presentation can be reduced predominantly, to the work of O’Neill et

al. [O’Neill et al., 2003], and Nordin and Banzhaf’s 1997 conference paper

[Nordin et al., 1997]2.

O’Neill et al.’s study of crossover in the context of GE, shows the variable-

length one-point operator - in comparison to, two variants of homologous

crossover; two variants of two-point crossover; and a uniform crossover oper-

ator. The one-point crossover operator, essentially emerges as the operator

which:

1. Provides the best cumulative frequency of success for a quartic-polynomial

symbolic regression problem;

2. Provides a non-erratic (as with the homologous crossover’s) behavior,

when examined over the metric of - the number of newly-evolved indi-

viduals which propagate to the next generation; and

3. Shows again, consistent (non-erratic) results, when examined under a

metric to measure - the amount of genetic-information being exchanged

at each crossover event.

2Although these are the main sources, we recommend the interested reader to view all

cited material.

137

The one-point crossover emerges as providing (on average) a 50% exchange

of information throughout the runs recorded; that is, approximately half the

genetic-material of each parent is exchanged. In this way, and as pointed

out, GE with one-point crossover demonstrates operation as a global search

algorithm throughout an evolutionary run. This point is emphasised in com-

parison to Poli’s findings for GP crossover [Poli and Langdon, 1998], which

state that crossover (in a GP context), starts out as a global search operator,

but rapidly declines to local-search as the run progresses.

In their study, O’Neill et al.’s metric, of the number of newly-evolved-

individuals which propagate to the next generation - although, not providing

a model of crossover - does serve to illustrate that at least ≈ 35% of the

time, crossover is not working as a negative search operator (for the symbolic-

regression problem - that is).

Nordin and Banzhaf also study crossover to examine the behavior of

their system [Nordin et al., 1997, Nordin et al., 1996]. In these studies, a full

model of crossover is presented; where we can see the number of crossovers

resulting in a positive, or negative fitness-change (with respect to their par-

ents). Their study is also carried out in light of initial observations of intron

propagation, and it is this work in particular, which gave rise to our initial

interest in the use of crossover to examine the EA behavior.

Inspired by these two surveys of crossover, for differing GP-based sys-

tems, we present a positive model of crossover: choosing to analyse only

the positive effects which the crossover operator bears to evolution. From

O’Neill et al.’s study we can assume that one-point crossover with the stan-

dard GE setup will result predominantly in a non-negative fitness-change

(≈ 35% of the time for the symbolic-regression problem): this assumption

presumes a translation to the knapsack problem in question. In any case,

138

our approach is to access the number of crossover operations which result

in a newly-evolved offspring having greater fitness than a parent. This is

similar, but not to be confused with the term used by Gottlieb and Raidl

[Raidl and Gottlieb, 1999a, Raidl and Gottlieb, 1999b]; when they describe

their crossover-innovation (CI) metric: there, innovation describing the mea-

sure of phenotypic change - or evolved-solution difference, from parent to

offspring.

6.2.1 Crossover: A GE-Specific Study

We have presented an argument for the use of crossover as a metric of analy-

sis for the system under evaluation. Before delving further into this analysis,

there are some GE-specific considerations for crossover which should be dis-

cussed; understanding these, will provide further insight from which one can

gain a greater appreciation for the results and analysis.

The crossover operator, and it’s role in the effective search of the GE al-

gorithm, has undergone heavy research in recent years [O’Neill et al., 2003,

O’Neill et al., 2001, O’Neill and Ryan, 2003a]: one outcome of this research,

pointing out that crossover considerations for a GP-system - do not map

directly to GE. Primarily, this is due to GE’s separation of search and solu-

tion space - which affords the variable-length one-point crossover that is the

defacto standard for a typical GE run3. Furthermore, owing to it’s genotype-

phenotype mapping process; GE’s codons - or tokens of genetic material -

are seen to exhibit intrinsic polymorphism [O’Neill et al., 2003]. That is - a

codon, when applied to the same non-terminal grammar-symbol - will always

derive the same production; applied however in a different context (i.e. to a

3This one-point crossover is verbatim to any variable-length GA one-point crossover -

except to say, that typically GE restricts cross-sites to be between codons.

139

different non-terminal), it will result in an entirely different phenotypic ef-

fect. At the phenotypic level, then, a codon applied to two different terminal-

producing productions, will result in a different phenotypic form. Atomically,

codons exhibit polymorphism: there are many phenotypic forms depending

on the production to which they are applied; and intrinsic-polymorphism is

thus the first point of importance to a discussion of crossover in GE.

The diagram in Figure 6.1 shows two GE individuals, and their result-

ing derivation-sequences. Considering the diagram: we can see, firstly that

different codons (codon4 in each case), result in a different phenotypic effect

for the same non terminal4. Secondly, it can be seen that the emergence of

interspersed-introns (IIs) are particularly context-sensitive: in both individ-

uals codon4 emerges as an II, only because the attempted production of i4

and i2 violate constraints of the problem. That is, they are introns here -

only in the context that an i2 has previously been derived.

Codon6 Codon7Codon1 Codon2 Codon3 Codon5

�✁

�

�✁

�

�✁

�

�✁

�

�✁

�

�✁

�

�✁

�

�✁

�

✂✁

✂

✂✁

✂

✂✁

✂

✂✁

✂

✂✁

✂

✂✁

✂

✂✁

✂

✂✁

✂Codon4

✄✁

✄

✄✁

✄

✄✁

✄

✄✁

✄

✄✁

✄

✄✁

✄

✄✁

✄

✄✁

✄

☎✁

☎

☎✁

☎

☎✁

☎

☎✁

☎

☎✁

☎

☎✁

☎

☎✁

☎

☎✁

☎Tail1

✆✁

✆

✆✁

✆

✆✁

✆

✆✁

✆

✆✁

✆

✆✁

✆

✆✁

✆

✆✁

✆

✝✁

✝

✝✁

✝

✝✁

✝

✝✁

✝

✝✁

✝

✝✁

✝

✝✁

✝

✝✁

✝Tail2

✞✁

✞

✞✁

✞

✞✁

✞

✞✁

✞

✞✁

✞

✞✁

✞

✞✁

✞

✞✁

✞

✟✁

✟

✟✁

✟

✟✁

✟

✟✁

✟

✟✁

✟

✟✁

✟

✟✁

✟

✟✁

✟Tail−n

Codon1 Codon2 Codon3 Codon5

✠✁

✠

✠✁

✠

✠✁

✠

✠✁

✠

✠✁

✠

✠✁

✠

✠✁

✠

✠✁

✠

✡✁

✡

✡✁

✡

✡✁

✡

✡✁

✡

✡✁

✡

✡✁

✡

✡✁

✡

✡✁

✡Codon4

☛✁

☛

☛✁

☛

☛✁

☛

☛✁

☛

☛✁

☛

☛✁

☛

☛✁

☛

☛✁

☛

☞✁

☞

☞✁

☞

☞✁

☞

☞✁

☞

☞✁

☞

☞✁

☞

☞✁

☞

☞✁

☞Tail1

✌✁

✌

✌✁

✌

✌✁

✌

✌✁

✌

✌✁

✌

✌✁

✌

✌✁

✌

✌✁

✌

✍✁

✍

✍✁

✍

✍✁

✍

✍✁

✍

✍✁

✍

✍✁

✍

✍✁

✍

✍✁

✍Tail2

✎✁

✎

✎✁

✎

✎✁

✎

✎✁

✎

✎✁

✎

✎✁

✎

✎✁

✎

✎✁

✎

✏✁

✏

✏✁

✏

✏✁

✏

✏✁

✏

✏✁

✏

✏✁

✏

✏✁

✏

✏✁

✏Tail−n

P1

P2

i7i2i2 i2K IK i2

Codon4 Codon5Codon2 Codon3Codon1

S Ki2 I

K IK i2 K i2IK i2 i4 K i2 i7 K i2 i7 I i3i7i2

Codon2 Codon3 Codon4Codon1 Codon5 Codon6 Codon7

S

P1

P2

Figure 6.1: Diagram describing two example GE Individuals (for the attribute gram-

mar system). The diagram depicts individuals as codon streams - and as corresponding

derivation sequences. Introns are shaded, with “Tail” denoting a residual-intron: i.e. the

preceding codon denotes the last codon used to completely specify a solution.

Looking at GE from this current perspective, we note an important dis-

covery. It can be seen that what is an II in one context (i.e. an i2 being

4There are various arrangements of outcome - for codons of different size, value, and

applied-production; this is relatively irrelevant in this context, so we refer the reader to

O’Neill’s research for further information [O’Neill and Ryan, 2003a].

140

previously derived); may not necessarily be an II in another context. In

order to understand this, let us turn then to examine a simple crossover op-

eration. A crossover at any point in the codon-stream of a GE individual will

result in the remainder of the individual being applied in a different context

in the receiving individual. As such we get what is termed a ripple-crossover

[O’Neill et al., 2003]. To give an example, consider the occasion that the par-

ent cross-site in Figure 6.1, is prior to codon5 in the first parent; and again

prior to codon4 in the second. In the original context, both codon’s emerge

as IIs - swapped however, the first will result in a continued legal derivation

(II free); with the second emerging as a second II for P1, with a ripple ef-

fect thereafter. Ripple-crossover is thus the second point of importance to a

discussion of crossover in GE.

This observation is of particular importance to both - the observed be-

havior of IIs in pruning systems, where they possibly act as sub-solution

protectors (for which we are currently inconclusive); and also, in under-

standing the danger of transferring observations from a GP-system to GE.

In Nordin and Banzhaf’s work with a linear GP-system [Nordin et al., 1996,

Nordin et al., 1997], they find that IIs and more specifically explicitly defined

introns (EDIs) are observed to behave as sub-solution, or building block pro-

tectors. It can easily be seen, that this is not the case with the AG(Full) GE

system. With our system, and as depicted in Figure 6.1, IIs arise through a

conflict with a problem constraint. As such, the emergence of a codon as an II

is inherently dependent on the context: it is an extremely context-sensitive

behavior. Owing to this intrinsic polymorphism of GE codons; crossovers

at II-regions do not necessarily result in non-disruption of sub-solutions, as

indeed is the case with the GP-system5.

5Introns in the GP-system translate to code-fragments of redundant effect to the overall

141

This understanding settles our previously inconclusive affirmations of IIs

as sub-solution protectors for GE. The improved results of the splicing strat-

egy had contradicted this to be the case, but we still noted the apparent

utility of IIs; in the absence of the GE-Tail. In any case, and as can be seen

through the example, crossovers at II-regions will more likely result in ripple

crossovers (owing to the change of context); and will very rarely, as the case

may be, result in non-disruption of sub-solutions.

In the same way, an understanding of this can lead us to better under-

stand the degradation of performance exhibited by systems which prune away

the GE-tail. As outlined in the experimental setup (Section 4.3.2), our GE’s

wrapping operator is turned off. As such, the operation of the resulting map-

ping process is possibly best described by O’Neill et al. [O’Neill et al., 2003]:

“If, during the decoding process the generative string runs out of

genetic material, the individual is killed (i.e., gets worst fitness).”

Given our understanding of ripple crossover, it can be seen that a cross-site

in the latter half of the effective-region will most probably result in, the use

of the GE-tail (of residual introns) to grow the newly-emerging ripple-trees to

completion [O’Neill et al., 2003]. Pruning of this redundant-store of genetic

material will therefore result in an inhibition of ripple-crossovers generative

capabilities. Subsequent sections will provide evidence in support of this

claim.

Finally, let us consider one more facet of crossover in GE. This is what

we define as a tail-crossover. A tail-crossover occurs when the cross-site of

an individual is selected in the tail. What can be seen, and is depicted in

Figure 6.4 of Section 6.3 (which also serves to demonstrate an effective-region

solution: they are redundant in any context. Thus, coupled with GP’s sub-tree crossover

will result in a crossover with no disruption to sub-solutions.

142

crossover), is that the resulting offspring will be phenotypically indifferent to

the parent (See individual C2 of Figure 6.4). It is important to note here, that

this suggestion can be made only from a perspective of crossover alone. One

must realise, that subsequent to crossover - a mutation in the effective-region

could result in what is effectively identical to a ripple-crossover.

Alternatively, such a mutation may be neutral with respect to change

- such mutations commonly known as neutral-mutations provide a random

walk within a fitness plateau, where this process may discover a useful phe-

notypic change: as such, the term used to describe this behavior is genetic-

drift; this has been one of the attributed powers of GE’s separation of search

and solution space (See Section 1.3.1). Owing to a redundant many-to-one

genotype-phenotype mapping process - it is speculated that a set of linked

neutral-mutations (generally referred to as a neutral-network) can result in an

escape from local-optima [O’Neill and Ryan, 2003a, O’Neill, 2001]. This is of

particular interest to problems of constrained-optimisation - where saddle-

surfaces frequently arise at the point that the cutting-planes intersect the

fitness-landscape (See Section 1.2).

6.3 Analysis by a Model of Crossover

The following graphs of Figure 6.2 and Figure 6.3, present a model of -

the operation of the crossover operator, in the described artificial-evolution

system. Two graphs for each of the intron-removal strategies, seen thus far,

are presented; with the graph on the left showing a model of crossover, and

the graph on the right attempting to demonstrate it’s subsequent effect to

the populations best-fitness achieved. Results presented are an average of 30

independent runs.

143

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100

E
vo

lv
ed

 O
ffs

pr
in

g

Generation

AG(Full):- PruneFree Crossover Model Sento1-60 Problem

#XOvers
#ERXOvers

+XOvers
+ERXover

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 20 40 60 80 100

M
ea

n-
B

es
t F

itn
es

s

Generation

AG(Full):-PruneFree Best Fitness plot over Sento1-60 Problem

AG(Full):-PruneFree

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100

E
vo

lv
ed

 O
ffs

pr
in

g

Generation

AG(Full):- SpliceOn Crossover Model Sento1-60 Problem

#XOvers
#ERXOvers

+XOvers
+ERXover

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 20 40 60 80 100

M
ea

n-
B

es
t F

itn
es

s

Generation

AG(Full):-SpliceOn Best Fitness plot over Sento1-60 Problem

AG(Full):-SpliceOn

Figure 6.2: Crossover models and associated mean-best fitness plots, for the untouched

AG(Full) (PruneFree), and AG(Full)-with-splicing (SpliceOn), systems. This figure shows

the crossover models for systems where the GE-tail remains. Results presented, are aver-

aged over 30 independent runs.

144

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100

E
vo

lv
ed

 O
ffs

pr
in

g

Generation

AG(Full):- PruneOn Crossover Model Sento1-60 Problem

#XOvers
#ERXOvers

+XOvers
+ERXover

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 20 40 60 80 100

M
ea

n-
B

es
t F

itn
es

s

Generation

AG(Full):-PruneOn Best Fitness plot over Sento1-60 Problem

AG(Full):-PruneOn

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100

E
vo

lv
ed

 O
ffs

pr
in

g

Generation

AG(Full):- BothOn Crossover Model Sento1-60 Problem

#XOvers
#ERXOvers

+XOvers
+ERXover

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 20 40 60 80 100

M
ea

n-
B

es
t F

itn
es

s

Generation

AG(Full):-BothOn Best Fitness plot over Sento1-60 Problem

AG(Full):-BothOn

Figure 6.3: Crossover models and associated mean-best fitness plots, for the AG(Full-

with-pruning (PruneOn), and AG(Full)-with-splice+prune (BothOn), systems. This figure

shows the crossover models for systems where the GE-tail has been removed. Results

presented are averaged over 30 independent runs.

145

The Figures are displayed, such that only the intron-removal strategies

seen thus far, are presented and as will become evident, we have chosen to

group these systems together according to their allowance or exclusion of

individuals with a GE-tail, to evolve. Figure 6.2 thus shows the untouched

AG(Full) system, coupled with the system using the splicing operator (be-

low it). Similarly, Figure 6.3, shows the pruning system, coupled with the

splice+prune system (below it); again here, but in direct contrast to the for-

mer - these systems are grouped according to the absence of the GE-tail.

Plots are shown only for the first 100 generations, as each metric of anal-

ysis is seen to plateau thereafter; in this way, one can view the changing -

and therefore, more important system behavior, at a closer perspective. In

order to unify the behavior exhibited by crossover, we examined all problem-

instances tested, and highlighted the problem instance of Sento1-60 as being

most representative of the overall behavior. No other instances showed a

deviation from the behavior displayed forthwith.

The model of crossover presented, shows plots for four independent met-

rics of analysis described as follows:

#XOvers The number of crossovers metric: shows the number of newly

evolved offspring (conceived by crossover), that occur at each genera-

tion. For example, as described in the experimental setup, we choose

a population size of µ = 50, and as such, this plot effectively shows

µ ∗ Pc; as occurring for each steady-state generation - where Pc is the

probability of crossover; i.e. 0.9 (Section 4.3.2).

#ERXOvers The number of newly-evolved individuals, conceived as a re-

sult of a cross-site in the effective-region. Figure 6.4, serves to clarify

this definition: P1 and P2 depict parents, with C1 and C2 their re-

spective offspring - the figure shows that C2 fails to register as an

146

ERXOver as it was conceived with a cross-site in the GE-tail, and is

thus phenotypically identical with it’s first contributing parent (P2).

Redundant Addition to

Original GE−Tail

Solution Fully Specified
At This Point

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✂

✂

✂

✂

✂

✂

✂

✂

✂

✂

✂

✂

✂

✂

✂

✂

✂

✂

✂

✂

✂

✂

✂

✂

✂

✂

✂

✂

✂

✂

✂

✂

✂

✂

✂

✂

✂

✂

✂

✂

✂

✂

✂

✂

✂

✂

✂

✂

✂

✂

✂

✂

✄

✄

✄

✄

✄

✄

✄

✄

✄

✄

✄

✄

✄

✄

✄

✄

✄

✄

✄

✄

✄

✄

✄

✄

✄

✄

✄

✄

✄

✄

✄

✄

✄

✄

✄

✄

✄

✄

✄

✄

✄

✄

✄

✄

✄

✄

✄

✄

✄

✄

✄

✄

ERXOver

ERXOver
☎

☎

☎

☎

☎

☎

☎

☎

☎

☎

☎

☎

☎

☎

☎

☎

☎

☎

☎

☎

☎

☎

☎

☎

☎

☎

☎

☎

☎

☎

☎

☎

☎

☎

☎

☎

☎

☎

☎

☎

☎

☎

☎

☎

☎

☎

☎

☎

☎

☎

☎

☎

✆

✆

✆

✆

✆

✆

✆

✆

✆

✆

✆

✆

✆

✆

✆

✆

✆

✆

✆

✆

✆

✆

✆

✆

✆

✆

✆

✆

✆

✆

✆

✆

✆

✆

✆

✆

✆

✆

✆

✆

✆

✆

✆

✆

✆

✆

✆

✆

✆

✆

✆

✆P1

✝

✝

✝

✝

✝

✝

✝

✝

✝

✝

✝

✝

✝

✝

✝

✝

✝

✝

✝

✝

✝

✝

✝

✝

✝

✝

✝

✝

✝

✝

✝

✝

✝

✝

✝

✝

✝

✝

✝

✝

✝

✝

✝

✝

✞

✞

✞

✞

✞

✞

✞

✞

✞

✞

✞

✞

✞

✞

✞

✞

✞

✞

✞

✞

✞

✞

✞

✞

✞

✞

✞

✞

✞

✞

✞

✞

✞

✞

✞

✞

✞

✞

✞

✞

✞

✞

✞

✞

C1

C2

P2

Figure 6.4: Diagram defining an effective-region crossover (ERXOver): specific to GE’s

one-point crossover - a child becoming an ERXOver, only, if a parent cross-site is selected

within the effective region.

+XOvers The number of newly evolved individuals contributing to fitness-

innovation. As depicted in Table 6.1, we define this fitness-innovation,

according to an offspring’s parent-relative fitness: a fitness-innovation

has occurred when a child’s fitness exceeds it’s parents’ best (i.e. parent

upper-bound) - or exceeds the parents’ worst (i.e. lower-bound). A

crossover event produces 2 offspring, and as such we mark the respective

child’s parent-relative fitness with an x in the corresponding row (rows

depicting parent-relative fitness brackets - above, in-between, below).

+ERXOvers This metric captures the newly-evolved individuals which are

fitness-innovative and have been conceived via an ERXOver. This plot

attempts to illustrate the benefit of ERXOvers to the fitness-innovation.

As depicted in Figure 6.4 and eluded-to in the accompanying text - offspring

resulting from a tail-crossover (tail-crossover offspring), can never produce

147

Innovation Score 2 2 1 1 1 0

C1 x xx x

Parent-upper

C2 x xx x

Parent-lower

C3 x x xx

Table 6.1: The fitness-innovation metric: Parent−upper and Parent− lower show the

upper and lower bounds covered by both parents’ fitness; C1, C2 and C3, denote a possible

offspring’s parent-relative fitness position; with a single x showing only 1 evolved offspring

in this fitness-range, and an xx denoting both. InnovationScore shows the weighted

contribution to the fitness-innovation for each possibility.

a fitness-innovation or an innovative phenotypic-effect. As such, all fitness-

innovation should result from ERXOver’s. It is important to note, however

- that a tail-crossover can result in a fitness-innovation; in the rare occasion

that it is followed by a mutation in the effective-region. (As such and as will

be seen, we do report innovative tail-crossovers; although very-few).

Looking then, for the first time - at the crossover-model graphs in Figure

6.2, we can clearly see that the #ERXovers is quite low with respect to the

total (i.e. #XOvers). For the untouched AG(Full) system, we begin with

≈ 44% of crossovers being ERXOvers (by generation 5), and this is halved

to ≈ 22% by generation [40-50]; the plots plateau thereafter. In general, this

shows that less than half of the newly-evolved individuals involve a parent

cross-site in the effective-region; and as evolution progresses, this measure

can be seen to further reduce by half again. This serves to illustrate that

crossover is predominantly operating via tail-crossovers (the space above the

plot for #ERXOvers shows this). Through the eyes of crossover alone, and

as depicted in Figure 6.4, these will always result in zero innovation (newly

emerging phenotypic information), and are always neutral with respect to

148

fitness increase. As previously stated - the exception to the case being, a

subsequent innovative-mutation in the effective-region.

Looking at Figure 6.2 from a more comparative perspective, we see con-

firmation of our suspicions that the splicing strategy increases compression

(splicing decreases the #ERXOvers to ≈ 17% whereas the straight AG(Full)

system remains at ≈ 22%): more specifically, we observe this to occur in the

latter generations - presumably increasing the number of neutral crossovers,

and giving support to the Nordin and Banzhaf argument; that compression

of the effective-length acts as a form of self adaptation to the probability of

crossover.

Looking more closely at the graphs, and with emphasis again on our

model’s goal (to analyse the positive effects of crossover), we can see that

initially - there is approximately 13% fitness-innovation (+XOver), with ap-

proximately 6% (half) occurring in the effective-region (+ERXOvers). The

gap between +XOver and +ERXOver, therefore shows, the number of in-

novative tail-crossovers; as pointed out, this signals the number of fitness-

innovations occurring as a result of positive mutations, subsequent to the

crossover operation. In essence, what is happening here - is that, muta-

tions occur after a tail-crossover and it is these mutations which result in a

fitness-innovation.

One should now continue to view the model in this way: the space above

the #ERXOvers represents the number of tail crossovers and the space be-

tween #ERXOvers to +XOvers, represents effective-region crossovers which

show no record of fitness-innovation. The space from +XOvers to +ERXOvers

represents the number of innovative tail-crossovers (by mutation) and finally

the space below the +ERXOvers; illustrates just that. Viewed therefore,

from top to bottom - we get, tail-crossover offspring; effective-region crossover

149

offspring; innovative tail-crossover offspring, and innovative effective-region

crossover offspring, respectively: innovative-crossovers, (it can be seen) ac-

count for only a very small percentage of the overall.

In respect of this explanation, and looking again at Figure 6.2, we can see

that after approximately 100 generations, the crossovers are predominantly

- if not all - of neutral or negative effect, so no longer are sub-solutions

combining; what we see is that search is effectively reduced to random ex-

ploration by mutation, operating at a very low probability of application.

The gap between +XOver and +ERXOver further demonstrates that as

evolution progresses - mutation also has little or no effect: the population

has converged, and search is effectively discontinued.

The included mean-best fitness plots (also averaged over 30 independent

runs), serve to reflect the effects of either strategy on the populations mean-

best fitness. As with the earlier presented results, it can be seen that the

splicing strategy achieves a higher fitness plot - particularly in the first 50

generations; this can be seen in the more pronounced belly of the plot. Fur-

thermore, the plot shows the greater end-fitness achieved which is not sur-

prising owing to the previous results for a 40%-10% success rate in favour of

the splicing stragegy (Section 5.4.2, Table 5.2). On analysis of the crossover

model - we can only assume (at this point), that the slightly higher plot for

splicing’s #ERXOvers and +XOvers alike - in the early generations - (which

incidentally are maintained for slightly longer), coupled with the already-

noted increase in compression from generation 50 on; can be the observed

cause for the improvement in performance.

Presumably, owing to the increase in duration of #ERXOvers, this cre-

ates a population with more effective-diversity in the early phase of evolution.

This could provide a greater genetic-store for exploration. Further, the com-

150

pression exhibited by splicing (i.e. reducing ERXOvers to ≈ 17%) minimises

disruption of this diversity and results in a better balance between explo-

ration and exploitation of the populations pool of genetic material. Future

analysis will seek to confirm these suspicions.

As previously stated, Figure 6.3 shows graphs plotted for the two sys-

tems employing the pruning operator: pruning and prune+splice. For these,

and subsequent graphs of systems which do not permit the presence of the

GE-tail; we must take a slightly altered - if not more simplistic - view of

the crossover model. In these systems, tail-crossover offspring cannot oc-

cur, and so all crossover events occur within the effective-region only. As

such, #ERXOvers and #XOvers show the same plot. Similarly, plots for the

metrics of +XOvers (crossover innovations) and +ERXOvers (innovations re-

sulting from ERXOvers) match; as all newly-evolved individuals, must now

result from an effective-region crossover.

Effectively in these graphs, we get - one plot showing the number of

offspring evolved by crossover (always ERXOvers now), and one plot showing

the number of innovative-offspring resulting thereof. As there is no significant

difference between the fitness-innovation occurring in these and the non-

pruned systems; (crossover is resulting in much the same fitness-innovation

for pruned and non-pruned systems) - we turn to an examination of the

GE-tail (the difference) in an attempt to gain further insight.

151

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 20 40 60 80 100

A
vg

 #
 In

di
vi

du
al

s

Generation

Intron Removal Strategies:- # Failing Individuals over knap20 Problem

AG(Full)
Prune
Splice

Splice+Prune

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 20 40 60 80 100

A
vg

 #
 In

di
vi

du
al

s

Generation

Intron Removal Strategies:- # Failing Individuals over knap28 Problem

AG(Full)
Prune
Splice

Splice+Prune

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 20 40 60 80 100

A
vg

 #
 In

di
vi

du
al

s

Generation

Intron Removal Strategies:- # Failing Individuals over knap39 Problem

AG(Full)
Prune
Splice

Splice+Prune

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 20 40 60 80 100

A
vg

 #
 In

di
vi

du
al

s

Generation

Intron Removal Strategies:- # Failing Individuals over knap50 Problem

AG(Full)
Prune
Splice

Splice+Prune

Figure 6.5: The effect of pruning on underspecified-offspring (Failing Individuals). Plot-

ting the number of individuals who fail for knap problems: individuals which do not have

enough codons to completely specify a solution. GE’s wrapping operator is turned off,

and all results presented are an average of 30 independent runs.

152

6.4 The Tail of Ripple-Crossover

The purpose of this section is to follow the lead of the analysis which has gone

before, and attempt to evaluate the effect that the presence of a GE-tail has

on the evolving systems, in question. The results to-date have shown pruning

to degrade performance and we now suspect that this is the case - owing to

the absence of the GE-tail. In order to assess this, we have developed a set of

experiments which restrict the crossover operator: the purpose of this being,

to allow us to emulate the exact behavior of the pruning system - only where

a tail of residual-introns remain. In this way, it is hoped that we can assess

whether the absence of a GE-tail in pruning systems, is indeed a hindrance

to the generative capabilities of ripple crossover.

Figures 6.5 and 6.6, show graphs for a metric measuring the number of

offspring failing to result in a complete derivation (underspecified offspring).

A clear divide between the plots for different intron-removal techniques can

be seen: systems which involve pruning show-up to produce approximately

three times the number of underspecified offspring. (The graphs of Figures

6.5 and 6.6 are shown for all eight problem instances; behavior is consistent

throughout, and again results presented are an average of 30 independent

runs).

It is suspected that this behavior is due to the absence of the residual

store of genetic material found in the GE-tail (for pruned systems); therein,

we suspect that the previously described ripple-crossover cannot complete

it’s ripple-trees and an underspecified offspring results. It is hoped that the

experimentation of this section, will serve to affirm our current two-part

thesis: a) that the removal of the GE-tail is indeed an inhibition on ripple

crossover; and also, b) that the compression of the effective-region - affords

a form of protection against the disruptive-effects exhibited by crossover.

153

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 20 40 60 80 100

A
vg

 #
 In

di
vi

du
al

s

Generation

Intron Removal Strategies:- # Failing Individuals over Sento1-60 Problem

AG(Full)
Prune
Splice

Splice+Prune

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 20 40 60 80 100

A
vg

 #
 In

di
vi

du
al

s

Generation

Intron Removal Strategies:- # Failing Individuals over Sento2-60 Problem

AG(Full)
Prune
Splice

Splice+Prune

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 20 40 60 80 100

A
vg

 #
 In

di
vi

du
al

s

Generation

Intron Removal Strategies:- # Failing Individuals over Weing7-105 Problem

AG(Full)
Prune
Splice

Splice+Prune

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 20 40 60 80 100

A
vg

 #
 In

di
vi

du
al

s

Generation

Intron Removal Strategies:- # Failing Individuals over Weing8-105 Problem

AG(Full)
Prune
Splice

Splice+Prune

Figure 6.6: The effect of pruning on underspecified-offspring (Failing Individuals). Plot-

ting the number of individuals who fail for Sento & Weing problems: individuals which

do not have enough codons to completely specify a solution. GE’s wrapping operator is

turned off, and all results presented are an average of 30 independent runs.

154

6.4.1 Experiments with a Restrictive Crossover

In an attempt to capture the utility, if any, of the GE-tail to ripple crossover,

we choose to experiment with a restriction on the standard GE one-point

crossover. As depicted in Figure 6.7, this amendment to crossover regulates,

that cross-sites be chosen within the bounds of the effective-region (emu-

lating the pruning strategy’s lack of tail). With this strategy however, a

GE-tail exists; capable of feeding the growth of expansive ripple-trees where

necessary.

Crossover Bounds

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

Figure 6.7: Diagram illustrating the restriction enforced by the restrictive crossover

operator.

Results The restrictive-crossover setup is compared against the pruning

strategy. Table 6.2 presents the core findings of the study: restrictive-

crossover is found to significantly outperform it’s pruning counterpart. This

direct comparison implies, that the presence of a GE-tail is beneficial to

search. Table 6.3 shows the results relative to the untouched AG(Full) sys-

tem, with Table 6.4 showing that restrictive-crossover, although a significant

improvement over the AG(Full) and pruning systems; does not measure up

to the splicing strategy.

As the difference between the two systems being compared is the presence

of the GE-tail - we can strongly believe that the first part of our thesis is

confirmed: removal of the GE-tail (by pruning) is inhibiting the generative-

power of ripple-crossover.

155

Problem knap15 knap20 knap28 knap39 knap50

Pruning 66.66% 60% 10% 10% 6.66%

RXOver 86.66% 93.33% 43.33% 23.33% 0%

Problem Sento1-60 Sento2-60 Weing7-105 Weing8-105

Pruning 6.66% 0% 0% 6.66%

RXOver 13.33% 0% 0% 10%

Table 6.2: Core Results for restrictive crossover as a simulation of the pruning strategy;

but where a GE-tail exists. Restrictive crossover is compared to pruning, showing a

substantial improvement. Results presented are an average of 30 independent runs.

Problem knap15 knap20 knap28 knap39 knap50

AG(Full) 83.33% 76.66% 40% 36.66% 3.33%

RXOver 86.66% 93.33% 43.33% 23.33% 0%

Problem Sento1-60 Sento2-60 Weing7-105 Weing8-105

AG(Full) 10% 3.33% 0% 6.66%

RXOver 13.33% 0% 0% 10%

Table 6.3: Results for restrictive crossover against the standard AG(Full) system: a

general increase in improvement is observed, particularly over the more difficult problems.

Results presented are an average of 30 independent runs.

Problem knap15 knap20 knap28 knap39 knap50

Splicing 86.66% 80% 30% 33.33% 3.33%

RXOver 86.66% 93.33% 43.33% 23.33% 0%

Problem Sento1-60 Sento2-60 Weing7-105 Weing8-105

Splicing 40% 13.33% 0% 33.33%

RXOver 13.33% 0% 0% 10%

Table 6.4: Results for restrictive crossover against the best-performing splicing strategy:

a improvement is observed over the easy problems, but a general degradation is observed

over all difficult problems. Results presented are an average of 30 independent runs.

156

6.4.2 Splicing & Restrictive Crossover

This further experiment was developed - essentially, to examine the effect

of interspersed-introns (IIs) in the previously described restrictive-crossover

setup (See again, Figure 6.7). Figure 6.8 shows the effect-to-evolution of the

combined splicing and restrictive-crossover system proposed.

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✁

✂

✂

✂

✂

✂

✂

✂

✂

✂

✂

✂

✂

✄

✄

✄

✄

✄

✄

✄

✄

✄

✄

✄

✄

☎

☎

☎

☎

☎

☎

☎

☎

☎

☎

☎

☎

☎

☎

☎

☎

☎

☎

☎

☎

☎

☎

✆

✆

✆

✆

✆

✆

✆

✆

✆

✆

✆

✆

✆

✆

✆

✆

✆

✆

✆

✆

✆

✆

Crossover Bounds

✝

✝

✝

✝

✝

✝

✝

✝

✝

✝

✝

✝

✝

✝

✝

✝

✝

✝

✝

✝

✝

✝

✝

✝

✝

✝

✝

✝

✝

✝

✝

✝

✝

✝

✝

✝

✝

✝

✝

✝

✝

✝

✝

✝

✝

✝

✝

✝

✝

✝

✝

✝

✞

✞

✞

✞

✞

✞

✞

✞

✞

✞

✞

✞

✞

✞

✞

✞

✞

✞

✞

✞

✞

✞

✞

✞

✞

✞

✞

✞

✞

✞

✞

✞

✞

✞

✞

✞

✞

✞

✞

✞

✞

✞

✞

✞

✞

✞

✞

✞

✞

✞

✞

✞

Figure 6.8: Diagram illustrating the effect to the evolving genome, of the splice and

restrictive crossover combination.

Results It can be seen that there are two ways one can attempt to anal-

yse the results for this setup. Firstly , as restrictive-crossover without IIs -

Table 6.5 provides an initial examination, showing that the removal of IIs

(increase in compression) does indeed demonstrate an improvement in re-

sults. Alternatively, we could interpret the results as - splicing-alone, with

crossover restricted to the bounds of the effective-region (i.e. compression by

splicing, but no tail-crossovers). This perspective allows us to question the

benefit of tail-crossovers in the splicing strategy. Table 6.6 shows that the

absence of tail-crossover in Splice + RXOver result in a general degrada-

tion in performance; with respect to splicing-alone where tail-crossovers are

permitted.

In order to confirm the second-part of our two-part thesis then, the

first perspective - i.e. the absence of IIs (and furthered compression of the

157

Problem knap15 knap20 knap28 knap39 knap50

RXOver 86.66% 93.33% 43.33% 23.33% 0%

Splice+RXOver 86.66% 90% 13.33% 16.66% 3.33%

Problem Sento1-60 Sento2-60 Weing7-105 Weing8-105

RXOver 13.33% 0% 0% 10%

Splice+RXOver 13.33% 6.66% 0% 26.66%

Table 6.5: Splice+RXOver Results: effect of removing IIs from restrictive crossover.

Removal of IIs is seen to show an improvement in performance for more difficult problems.

Results presented are and average of 30 independent runs.

effective-region thereof) - would have us expect to see an improvement,

and we do; similarly, tail-crossovers (we suspect) emerge as a protection-

mechanism to the destructive effects of crossover: as such we can confirm

that their improvement (in Splicing) over Splice + RXOver, suggests that

they are of merit, but as yet we cannot conclusively confirm our hypothesis.

In a more global context, Table 6.7 shows how the Splice+RXOver strat-

egy measures up to the other two. We can see that although an improvement

over the standard AG(Full) algorithm and RXOver alike; it doesn’t measure-

up to the Splicing strategy alone.

As such, we are left with the following suspicions: that either tail-crossovers

are innovative with respect to the exploration/exploitation balance of search;

or, that their existence affords a greater number of neutral crossovers. The

latter case drawing from the previous assertion - that bloat, with an increased

probability of tail-crossovers, can be interpreted as a self-adaptive behavior

in response to disruptive crossovers.

158

Problem knap15 knap20 knap28 knap39 knap50

Splicing 86.66% 80% 30% 33.33% 3.33%

Splice+RXOver 86.66% 90% 13.33% 16.66% 3.33%

Problem Sento1-60 Sento2-60 Weing7-105 Weing8-105

Splicing 40% 13.33% 0% 33.33%

Splice+RXOver 13.33% 6.66% 0% 26.66%

Table 6.6: Comparing Splice+RXOver to Splicing: effect of restricting crossover to the

splicing setup: tail-crossovers in splicing are responsible for the improvement. Results

presented are and average of 30 independent runs.

Problem knap15 knap20 knap28 knap39 knap50

AG(Full) 83.33% 76.66% 40% 36.66% 3.33%

Splicing 86.66% 80% 30% 33.33% 3.33%

RXOver 86.66% 93.33% 43.33% 23.33% 0%

Splice+RXOver 86.66% 90% 13.33% 16.66% 3.33%

Problem Sento1-60 Sento2-60 Weing7-105 Weing8-105

AG(Full) 10% 3.33% 0% 6.66%

Splicing 40% 13.33% 0% 33.33%

RXOver 13.33% 0% 0% 10%

Splice+RXOver 13.33% 6.66% 0% 26.66%

Table 6.7: Splice+RXOver Results: a comparison to all related systems. The table shows

the incumbent (best-performing) strategy for each problem-instance. Results presented

are an average of 30 independent runs.

159

6.4.3 Analysis of Restrictive Crossover

Up to this point, the analysis of this chapter has essentially utilised two met-

rics of examination to observe the behavior of intron-removal in the AG(Full)

system. The initial intron-removal techniques have been studied by a) a

model of the behavior of crossover, and b) by examining their respective ef-

fects on the number of newly-evolved individuals, failing to grow ripple-trees

to completion.

In order to maintain consistency and complete the analysis, this section

presents a corresponding study for the restrictive-crossover experiments. Fig-

ure 6.9 shows the crossover models for the two respective systems; again here

these models can be viewed in the more simplistic way - as having one plot

for the number of offspring evolved by crossover (always ERXOver here, ow-

ing to the restriction), and one plot for the number of innovative-offspring

resulting thereof (See Section 6.3).

Examining the graphs for the model of restrictive crossover (i.e. pres-

ence of GE-tail) in Figure 6.9, and referring back to that of the pruning

technique (Figure 6.3) - it can be seen that particularly from generation

[0-20]; restrictive-crossover shows a higher plot for the number of innovative-

offspring. This is further, reflected in the corresponding graphs for mean-

best fitness - after ≈ 20 generations, the restrictive-crossover has achieved a

fitness-difference of, ≈ 1000 fitness units6, to that of pruning. It is suspected

that the observed rise in innovative-offspring, is a direct result of the restora-

tion of ripple-crossover - through the reinstatement of the GE-tail, and thus

ripple-crossover’s store of residual genetic-information.

We have seen that splicing demonstrates an improved compression of

the effective-region, and further - that forbidding tail-crossovers (Splice +

6Raw-fitness of the knapsack-profit for the evolved solution is shown.

160

RXOver), disimproves performance. Looking at the comparative crossover

models of Figure 6.9 for Splice + RXOver, with plain splicing in Figure 6.2;

it can be seen that the addition of RXOver provides an initial increase in

fitness-innovation - but a stronger plateau thereafter; again after ≈ 20 gen-

erations. This can be seen in both, the crossover models and accompanying

mean-best fitness plots. We suspect that the following explanation describes

this behavior.

As solution sizes increase, they become closer to a weight-constraint vio-

lation. Restricting crossover to the effective-region will result in more ripple

crossovers - these facts remain plain-to-see. We believe that early in the

evolutionary process - this increase in ripple-crossovers (for the restrictive-

crossover setup) improves exploration (hence the higher initial innovation and

fitness increase); later in evolution however, as solution sizes increase (near-

ing optimum), ripple-crossover operates as a disruptive influence to search -

presumably causing large changes at a phenotypic level. As such, it is here

that plain splicing outperforms Splice + RXOver. As evolution progresses

- compression increases, and the evolving population effectively self-adapts

to the disruption being caused by the ripple-effect to these good solutions:

self adaptation occurring through residual-intron propagation. The result-

ing increase in the probability of tail-crossovers, effectively renders crossover

in-operational. We can thus confirm the second-part of our thesis to the

strength this suggestive-evidence.

This claim of self adaptation via residual-intron propagation remains con-

sistent with our earlier findings: where it was observed that, for the knap20

problem-instance, a stagnation in tail-growth resulted - as a consequence of

convergence to the optimal solution (Section 5.3.1). This further supports

the notion that selection is acting in favour of highly-fit individuals with a

161

high tail-proportion. It appears that residual-intron propagation results in

direct response to the mid-evolutionary change-of-role for ripple-crossover:

from constructive to disruptive. These findings, together with the observed

exhibition of a continually reducing innovation in the crossover models, oblige

us to observe that - for these problems - crossover is effectively cancelled-out

as a search operator after approximately 20 generations. That is, referring to

the crossover-models for all systems examined - it can be seen that - each ex-

hibits a short, successful, explorative-phase (up to ≈ 20 generations); before

a large dip results thereafter; we attribute this dip to a disruptive change-

of-role exhibited by ripple-crossover as solutions near the optimal solution.

It appears that O’Neill et al.’s findings for standard GE over the symbolic-

regression and Santa-Fe ant, trail problems - do not translate to the attribute

grammar system over constrained knapsack problems: the power of ripple-

crossover’s global-search is effectively nullified by this self-adaptive behavior,

protecting against disruption of solutions.

Furthermore, the graphs of Figure 6.10 and 6.11 serve to show a direct

comparison of pruning and restrictive-crossover; in terms of, the number of

underspecified offspring. Pruning emerges once again as comparatively detri-

mental to search with approximately twice the number of offspring having

inability to specify a solution. This again, furthering the evidence to show

that ripple-crossover relies on the GE-tail to fulfill it’s ripple-trees.

162

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100

E
vo

lv
ed

 O
ffs

pr
in

g

Generation

AG(Full):- RestrainXOver Crossover Model Sento1-60 Problem

#XOvers
#ERXOvers

+XOvers
+ERXover

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 20 40 60 80 100

M
ea

n-
B

es
t F

itn
es

s

Generation

AG(Full):-RestrainXOver Best Fitness plot over Sento1-60 Problem

AG(Full):-RestrainXOver

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100

E
vo

lv
ed

 O
ffs

pr
in

g

Generation

AG(Full):- Splice-N-RXOver Crossover Model Sento1-60 Problem

#XOvers
#ERXOvers

+XOvers
+ERXover

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 20 40 60 80 100

M
ea

n-
B

es
t F

itn
es

s

Generation

AG(Full):-Splice-N-RXOver Best Fitness plot over Sento1-60 Problem

AG(Full):-Splice-N-RXOver

Figure 6.9: Crossover models and associated mean-best fitness plots, for the AG(Full)-

with-restrictive crossover (RestrainXover), and AG(Full)-with-splice+restrictive crossover

(Splice-N-RXOver), systems. Results presented are averaged over 30 independent runs.

163

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 20 40 60 80 100 120 140

A
vg

 #
 In

di
vi

du
al

s

Generation

Intron Removal Strategies:- # Failing Individuals over knap20 Problem

AG(Full)
Pruning
RXOver

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 20 40 60 80 100 120 140

A
vg

 #
 In

di
vi

du
al

s

Generation

Intron Removal Strategies:- # Failing Individuals over knap28 Problem

AG(Full)
Pruning
RXOver

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 20 40 60 80 100 120 140

A
vg

 #
 In

di
vi

du
al

s

Generation

Intron Removal Strategies:- # Failing Individuals over knap39 Problem

AG(Full)
Pruning
RXOver

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 20 40 60 80 100 120 140

A
vg

 #
 In

di
vi

du
al

s

Generation

Intron Removal Strategies:- # Failing Individuals over knap50 Problem

AG(Full)
Pruning
RXOver

Figure 6.10: The effect of pruning on underspecified-offspring (Failing Individuals).

Plotting the number of individuals who fail for knap problems: individuals which do not

have enough codons to completely specify a solution. GE’s wrapping operator is turned

off, and all results presented are an average of 30 independent runs.

164

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 20 40 60 80 100 120 140

A
vg

 #
 In

di
vi

du
al

s

Generation

Intron Removal Strategies:- # Failing Individuals over Sento1-60 Problem

AG(Full)
Pruning
RXOver

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 20 40 60 80 100 120 140

A
vg

 #
 In

di
vi

du
al

s

Generation

Intron Removal Strategies:- # Failing Individuals over Sento2-60 Problem

AG(Full)
Pruning
RXOver

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 20 40 60 80 100 120 140

A
vg

 #
 In

di
vi

du
al

s

Generation

Intron Removal Strategies:- # Failing Individuals over Weing7-105 Problem

AG(Full)
Pruning
RXOver

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 20 40 60 80 100 120 140

A
vg

 #
 In

di
vi

du
al

s

Generation

Intron Removal Strategies:- # Failing Individuals over Weing8-105 Problem

AG(Full)
Pruning
RXOver

Figure 6.11: The effect of pruning on underspecified-offspring (Failing Individuals).

Plotting the number of individuals who fail for Sento & Weing problems: individuals which

do not have enough codons to completely specify a solution. GE’s wrapping operator is

turned off, and all results presented are an average of 30 independent runs.

165

6.5 Summary and Conclusion

In this chapter, we have identified the attribute grammar system as an ex-

tension to the standard GE. Standing back from the algorithm, we realised

that we are essentially dealing with a search algorithm: in this case that

search algorithm is a variable-length GA. As such, we identify the three key

sub-processes which underpin the GA (and, in-fact most EAs): selection,

replacement, and the core operators of - crossover and mutation.

An argument is presented for the use of the crossover-operator as an

analysis-tool (akin to a looking-glass over the black-box operation of the

GA) - we do not choose to augment the natural behavior of the attribute

grammar systems in any way - but instead, build a model of the behavior

of crossover. The defined model, focused on examining crossover’s benefit to

search; defining fitness-innovation as a metric to measure the utility of the

newly-evolved offspring with respect to improvements in fitness.

Prior to the observation of results, we present a brief study of GE-

specific crossover considerations - pointing out the behavior of intrinsic-

polymorphism (exhibited by GE’s codons) and the consequent phenomena

of ripple-crossover. An understanding of these - GE behavioral traits - led

us to believe that contrary to Nordin and Banzhaf’s linear GP-system -

interspersed-introns (IIs) in GE are very-much less likely to act in a role of

sub-solution protector [Nordin et al., 1997]; the attribute grammar system’s

II emergence was seen to be a highly context-sensitive issue.

Analysis of the systems by the model of crossover showed interesting re-

sults - with crossover showing-up to be a) of little benefit to fitness-innovation,

and b) predominantly producing offspring by means of tail-crossovers. Mu-

tations within the effective-region of these such offspring, were observed to

contribute to fitness-innovation - this observation holding true for only a

166

very small percentage of the evolved offspring. For systems eliminating the

GE-tail by pruning - the crossover model became more simplistic; in this

case, showing just the number of evolved crossover-offspring; and the fitness-

innovative offspring thereof.

Results from analysis of the model of crossover gave the impetus for a

set of experiments describing a restricted-crossover (working now within the

bounds of the effective-region). Initial results for these experiments, served

as confirmation that the absence of the GE-tail in pruning gave rise to an

inhibition of the ripple-effect of GE’s crossover. Further experiments into

the removal of IIs in this - restricted-crossover environment - lead to confirm

that tail-crossovers exist as a self-adaptive response to the destruction of sub-

solutions. These findings correlate to Nordin and Banzhaf’s GP discovery

[Nordin et al., 1997].

Finally and most conclusively, the analysis of this chapter has led us

to an understanding of the attribute grammar system’s behavior. We view

crossover, as paramount to the observed behavior: the results and analysis

presented provide evidence to suggest that ripple-crossover is the key player

in the behavior of the system. We believe that - early in the evolution-

ary process, ripple-crossover causes a diverse search of the solutions in the

search-space; but as evolution progresses, and solutions approach the max-

imum allowable length - ripple-crossover acts in a destructive role. This,

we believe is the reason that splicing-alone exhibits a better performance

than splicing with restrictive crossover: tail-crossovers in the former allow-

ing a form of self-adaptation to the mid-evolutionary disruption caused by

crossover. Unfortunately, this has the effect of crippling the core operators of

search, and consequently we observe that search is effectively discontinued.

167

Chapter 7

Phenotypic-Duplicate

Elimination

7.1 Introduction

Results and analysis from the previous chapter led us to propose that a mid-

evolutionary change-of-role is observed for ripple-crossover in the attribute

grammar system. This change-of-role seems to effect a change from an early

constructive-phase (exploration), to an observed dip in fitness-innovation

thereafter (from approximately 20 generations). We propose, that this dip - is

a consequence of a protective-behavior of the system; effectively self-adapting

against the disruptive effects of the said ripple-crossover. Experimental-

results comparing splicing with-and-without a restricted crossover, identified

that tail-crossovers (Section 6.3) were responsible for this protection; provid-

ing a mechanism to reduce the probability of disruptive-crossovers (crossovers

in the effective-region) . Observations from earlier results (which identi-

fied a correlation between - the stagnation of tail-growth, and convergence

to the optimum-solution) supported the notion that tail-growth was being

168

selected-for in high-fitness individuals; upon finding the optimum - growth

stops. This gave credence to our argument that the subsequent rise in tail-

crossovers effectively canceled-out the operation of crossover; analysis of the

crossover-models from Section 6.3 confirming an increase in tail-crossovers.

The evidence, up to this point, has essentially served to support the find-

ings of Nordin and Banzhaf [Nordin et al., 1996, Nordin et al., 1997], which

suggests that the observed intron-propagation (tail-growth) is a protective

behavior against the destructive effects of crossover. Splicing was seen to

increase the compression of the effective-region (thereby reducing the prob-

ability of disruptive-crossover); enacting a form of “global-protection” to

solutions of high quality. To support this claim, an example showed tail-

crossovers to be neutral with respect to fitness; and their offspring to be of

phenotypic identity to their parents (Section 6.3). Owing to the phenotypic-

identity of tail-crossover offspring, and their observed insurgence - phenotypic-

duplicate elimination, is examined with a brief review detailing it’s genesis.

7.2 Investigating Phenotypic-Duplicate Elim-

ination

We have noted that results from the previous chapter, raised a question con-

cerning the maintenance of population-diversity. From knowledge of GE’s

mapping process we were aware of the redundant-encoding inherent in the

system. That is, for the standard 8-bit codon, there are a possible 256 deci-

mal values transcribable. Now, it has been seen that GE’s mapping process

- at each derivation-step - uses this (transcribed) decimal-value, to choose a

production-rule for the current non-terminal; this, by way of a modulus oper-

ation (Section 1.5.1). It can easily be seen (that for most production-rules),

169

many different codon-values will encode for the same production1. As such,

it can be seen that many genotypicly-different individuals, will commonly

derive the same phenotypic-solution - this especially being the case where

grammar-rules contain few choices.

Cleary and O’Neill [Cleary and O’Neill, 2005], propose that the attribute

grammar system, can be viewed as a decoder for legal-knapsacks - effec-

tively confining search to the feasible-subset F of the search-space (F ⊂

S = {0, 1}n). In this way, our approach can be seen as an indirect-decoder,

which effectively introduces what has been termed a heuristic-bias (See Sec-

tion 3.5.2). This adds to the already redundant-mapping of GE - further

channeling multiple-genotypes into the same phenotypic output. It is worth

noting, that the more restrictive the problem - the greater the heuristic-bias

imposed by the attribute grammar (a higher number of constraint-clashes

and subsequent IIs causing many more genotypes to decode to the same

phenotype). In any case, what results, is a heavily redundant-encoding and

there has been much work from the literature documenting research into the

applications of such systems to knapsack-problems. As such, a short review

(surveying, only the conclusions of these works), highlights the suggested

importance of population-diversity, before introducing the best-known tech-

nique for it’s maintenance in phenotypic-duplicate elimination.

It should be noted that there are many techniques for the maintainence

of population diversity. Burkes et al.’s work provides a good review of such

methods [Burke et al., 2004]; phenotypic-duplicate elimination has been cho-

sen owing to it’s particular success in the field of EAs for knapsack problems

[Raidl and Gottlieb, 1999c, Hinterding, 1999, Hinterding, 1994].

1We refer the reader to the canonical text on GE for further explanation of this

[O’Neill and Ryan, 2003a, O’Neill, 2001].

170

7.2.1 Diversity and Redundant-Encoding

We attribute Hinterding [Hinterding, 1994], in his study of decoder approach-

es, as the first author to comment on the importance of population-diversity

for the success of an EA approach to knapsack-problems. In this work, he

comments on the use of a group-mutation operator (which strongly supports

the introduction of diversity), as being essential to the decoder’s effective

operation. Furthermore, and in respect of his earlier observations, he finds

that specialising the evolutionary process to promote diversity significantly

improves results. This is achieved by a process which discards newly-created

offspring, already represented in the current population (See Section 7.2.2).

In the same work, the effect of population-size on diversity is examined.

Varyious population-sizes are examined, showing that for the proposed de-

coder (with a redundant-mapping) - a large population is required for high

success; increased diversity being pointed-out as the source of success.

Similarly, in a later work [Hinterding, 1999], Hinterding attributes the

comparatively poor performance of a random-key encoding (a numeric-real

representation (See Section 3.4)), to be a consequence of the very-strong

redundancy inherent in it’s representation and decoder-coupling; premature-

convergence results, and it is observed that an overly-strong redundant map-

ping can be detrimental to search. This owing to an extreme number of

genotypes mapping to the same phenotype.

Raidl in his improved GA [Raidl, 1998], comments on the importance of

a diverse initial population. His special pre-optimised initialisation proce-

dure, utilises a stochastic implementation to ensure the probability of high-

diversity in this initial population. As noted in the discussion of Section 3.7,

it is this non-determinism and improved diversity which is shown to provide

the improvement over the earlier GA of Chu and Beasley.

171

7.2.2 Phenotypic-Duplicate Elimination

While the rejection of duplicate-offspring had been previously recognised as

beneficial to search [Hinterding, 1994] [Hinterding, 1999] [Raidl, 1998]

[Raidl, 1999b] [Chu and Beasley, 1998] [Raidl and Gottlieb, 1999a]

[Raidl and Gottlieb, 1999b]; Raidl and Gottlieb present an empirical analy-

sis into the effect, in terms of premature convergence and maintaining diver-

sity in this way [Raidl and Gottlieb, 1999c]. They study the differences be-

tween maintaining genotypic-diversity and maintaining phenotypic-diversity.

That is, in the context of decoders which provide redundant many-to-one

genotype-phenotype mapping process, they find that ensuring the popula-

tion represents a phenotypically diverse set of solutions - is most important

to the success of the EA2. Similarly, they find that maintaining a genotyp-

ically diverse population fails to ensure that distinct areas of the solution

space are being searched.

Building on their earlier work, statistical measures are put in place such

that the black-box process of evolution, can be examined in terms of - the ef-

fect of the evolutionary-operators on phenotypic-diversity. Four decoders

are examined under these statistical measures: once using no duplicate-

elimination, once using genotypic-duplicate elimination and once using pheno-

typic-duplicate elimination. Results of the study showed phenotypic-duplicate

elimination to be very important for good performance. Without it, the

crossover is reported to be unreliable in maintaining an explorative search,

and as such the EA’s get stuck in very bad local optima3.

2It is important to note, that duplicate-elimination (when carried out over a direct

encoding) implicitly signifies phenotypic-duplicate elimination.
3At this point, we note the observed results for crossover over the attribute grammar

system (Section 6.3); although finding optimal-solutions, and not exhibiting an overly-

premature convergence - our results observe an interesting correlation to these findings

172

The use of duplicate-elimination at the genotypic level failed to prevent

premature-convergence to highly-fit regions of the phenotypic solution-space.

As such the redundant-mapping is not controlled and is overpowering (an

overly-strong heuristic-bias exists). Only the strategy of phenotypic duplicate

elimination was able to work in synergy with the redundancy of the mapping

to prevent premature-convergence and consistently produce highly-fit near

optimal solutions

The importance of duplicate-elimination in the up-keep of population-

diversity, seems not to be understated. Raidl, while comparing three GA’s -

each with a many-to-one redundant-encoding points out that: “In all three

GAs it proved to be essential to avoid duplicates in the population. Otherwise

the population diversity gets lost very soon, and only few super-individuals

survive” [Raidl, 1998]. Again, when examining problem-space search ap-

proaches [Raidl, 1999b], he notes it “to be essential to disallow duplicates in

the population”. Similarly, O’Neill et al., while not explicitly stating that

they use the strategy of duplicate-elimination, do state - that in one of their

experiments - in the creation of the initial-population a check is carried out to

ensure that a diverse genetic-population exists: i.e. genotypic-duplicate elimi-

nation is employed (this, they note, is owing to experimentation with a closed-

grammar which introduced significant heuristic-bias) [O’Neill et al., 2003].

7.2.3 Results for Phenotypic-Duplicate Elimination

Bourne from the recognition of this increased-redundancy of GE’s encoding

(i.e. the heuristic-bias imposed by the attribute-grammar), and the above-

outlined work from the literature, we implemented the following study of the

attribute-grammar system; examining the effect to performance of phenotypic-

duplicate elimination. Table 7.1 documents the results. Results for the at-

173

Problem Khuri Cotta AG(Full) AG(Full) AG(Full)+DE AG(Full)+DE

+Splice +Splice

knap15 83% 100% 83.33% 86.66% 96.6% 100%

knap20 33% 94% 76.66% 80% 100% 100%

knap28 33% 100% 40% 30% 90% 80%

knap39 4% 60% 36.66% 33.33% 43.33% 60%

knap50 1% 46% 3.33% 3.33% 16.66% 20%

Sento1 5% 75% 10% 40% 66.66% 90%

Sento2 2% 39% 3.33% 13.33% 30% 20%

Weing7 0% 40% 0% 0% 0% 0%

Weing8 6% 29% 6.66% 33.33% 36.66% 76%

Table 7.1: Table shows results for the attribute grammar system: alone; with splic-

ing; with phenotypic-duplicate elimination(DE); and with a combination of splicing and

DE. Results are again compared to [Khuri et al., 1994] - with the addition of Cotta’s

problem-space search approach gives comparison against a more capable algorithm. Re-

sults presented are an average of 30 independent runs.

tribute grammar system and it’s splicing variant are replicated from before,

with results for the addition of phenotypic-duplicate elimination (PhenoDE)

being displayed for each, in direct comparison. As can be seen and in support

of suggestions from the literature, PhenoDE provides a significant advantage

over systems without such a diversity-maintenance measure. All results im-

prove, with the exception of one-result for the Sento2 problem.

With respect to our research from the literature - the results are not

surprising. Phenotypic-duplicate elimination provides a method to ensure a

minimum level of diversity within the population of the EA. Conclusions from

the latter chapter pointed-out that (in the context of knapsack-solutions),

ripple-crossover bears too much of a disruptive force to evolving solutions,

when approaching the optimum-length (i.e. crossover is only constructive in

the early generations). As such we would expect to see the same disruptive

change-of-role exhibited by crossover, early in evolution. Indeed, looking at

174

the crossover-model of Figure 7.1 our suspicions are confirmed. It can be

seen that for systems using PhenoDE, there is a reduction in tail-crossovers,

and a slight increase in fitness-innovation being demonstrated only, in the

early generations (tail-crossovers again, being represented by the gap be-

tween #XOvers and #ERXOvers). The observed increase in effective-region

crossover (ERXOvers) can be seen as a direct-consequence of PhenoDE. As

previously stated (See Section 6.3), offspring created from tail-crossovers were

seen to be (predominantly) of phenotypic-identity to their parents. They are

phenotypic duplicates, and as a consequence - in systems running PhenoDE,

they are eliminated. The higher plot for ERXOvers is accounted for by this

removal process.

Table 7.1’s improved results for PhenoDE, demonstrates the better ability

of the system to preserve diversity; that is, the gain in success rate can

be attributable to greater diversity in the earlier generations - giving rise

to more effective-diversity and therein providing a greater probability that

search will find the optimal-solution. This can be seen in the slight increase

in the PhenoDE plots for fitness-innovation (+XOvers and +ERXOvers) in

the early generations.

Tail-crossover offspring are still reported - but as mentioned - subsequent

mutations may allow them to observe a ripple-crossover effect and become

phenotypically different. The remaining - low plot - for fitness-innovation

would suggest that such mutations (although providing phenotypic-exploration)

are not of any remarkable benefit to fitness.

From the difference observed with the crossover-models for their counter-

part systems in Figure 7.1 (without PhenoDE), it can be seen that mutation

is significant; working to create a phenotypic effect; but without major impact

on the fitness-innovation. We must assume from this, that such mutations

175

show more of a resemblance with random-search as opposed to a balanced

exploration/exploitation trade-off. It would appear that crossover is inca-

pable of complimenting the now, highly redundant encoding; and as such we

observe a random-search effect through mutation alone.

7.3 Conclusion

If all work and no play makes Jack a dull boy - then all genotypic-search and

no phenotypic-search makes an indirect-decoder ineffective. This chapter

has detailed experiments over the minimum-diversity maintenance technique

of phenotypic-duplicate elimination. Research from the literature allowed

us to identify that for all works with a redundant many-to-one genotype-

phenotype mapping process (or high heuristic-bias) - diversity, and partic-

ularly it’s maintenance at a phenotypic level was reported to be of major

importance to search.

Experiments were carried out for it’s addition to the most prominent at-

tribute grammar systems; and a significant increase in results reported in

all cases (with the exception of one problem instance). A look at the model

of crossover for these systems, identified that a greater number of effective-

region crossovers (ERXOvers) were observed as a direct consequence. This

was seen to be owing to the removal of offspring of phenotypic-identity to

their parents. A significant number of tail-crossovers remain - and we ob-

serve that their existence holds evidence that mutation is working as an

exploratory operator; but owing to it’s previously identified ripple-effect and

the lack of any significant increase in fitness-innovation, it would appear

that it is working more like random-search as opposed to locally exploring

the solution-space. The evolutionary operators (it is suggested), are inca-

176

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100

Ev
ol

ve
d

O
ffs

pr
in

g

Generation

AG(Full):- PruneFree Crossover Model Sento1-60 Problem

#XOvers
#ERXOvers

+XOvers
+ERXover

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100

Ev
ol

ve
d

O
ffs

pr
in

g

Generation

AG(Full):- DE-PruneFree Crossover Model Sento1-60 Problem

#XOvers
#ERXOvers

+XOvers
+ERXover

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100

Ev
ol

ve
d

O
ffs

pr
in

g

Generation

AG(Full):- SpliceOn Crossover Model Sento1-60 Problem

#XOvers
#ERXOvers

+XOvers
+ERXover

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100

Ev
ol

ve
d

O
ffs

pr
in

g

Generation

AG(Full):- DE-SpliceOn Crossover Model Sento1-60 Problem

#XOvers
#ERXOvers

+XOvers
+ERXover

Figure 7.1: Crossover models and associated mean-best fitness plots, for systems with

phenotypic-duplicate elimination (PhenoDE) and without. AG(Full), and AG(Full)-with-

splicing, now compared against their equivalent with PhenoDE (marked DE). Again,

crossover models are for systems where the GE-tail remains. Results presented, are aver-

aged over 30 independent runs.

177

pable of conducting a balance between exploration and exploitation as they

are unable to control the highly redundant mapping imposed by the attribute

grammar’s increase in heuristic-bias.

178

Chapter 8

Conclusions and Future Work

8.1 Summary and Conclusion

The grammar-based evolutionary algorithm of Grammatical Evolution (GE)

has been proposed for application to problems of constrained-optimisation.

More generally, this thesis sought to examine it’s general applicability to

the generation of problem solutions - which are context-sensitive in nature.

In it’s standard form, the generative-power of a context-free grammar (ly-

ing at the core of GE) was shown to be insufficient in this role - and infe-

rior to an extended system which uses an attribute grammar to encode the

context-sensitivity of the problems examined. Attribute grammars have been

shown as a viable method to successfully describe context-sensitive problem-

solutions, and by extension - show a significant performance improvement

over the standard context-free mapping process.

Grammars are described under the canonical guise of Chomsky’s hi-

erarchy - with a focus on the context-free (CFGs); they are highlighted

as a method to describe a confined search-space. Combining work from

the field of grammar-based GP [Whigham, 1996] and EA approaches to

179

knapsack-problems [Raidl and Gottlieb, 1999a] [Raidl and Gottlieb, 1999b]

[Gottlieb, 1999a] [Gottlieb, 1999b], the standard CFG mapping process is

seen to provide a language-bias constraining the space of search-able so-

lutions to that of the confines of the language defined therein. Attribute

grammars were seen as a method to increase the search or heuristic-bias -

further constraining the space of search-able solutions. Work from the lit-

erature, suggests that this is an optimal approach to solving problems of a

static-nature [Gottlieb, 1999b, Gottlieb, 1999a]. It was noted that - from a

GE perspective - this is seen as furthering the redundancy of the genotype-

phenotype mapping.

A new method has been presented, by which to classify feasibility al-

gorithms. We acknowledge Gottlieb’s method of classifying approaches to

constrained-optimisation by the search-space explorable [Gottlieb, 1999b],

but identify the distinguishing feature between feasibility-algorithms as their

approach to evolutionary-learning: decoders promoting a model of Bald-

winian evolutionary learning, with repair encompassing a Lamarkian ap-

proach. Upon application to a series of knapsack problems, it is found that

the attribute grammar system - enabling GE to act as a feasible-only decoder

for knapsack problems - significantly outperforms the standard CFG-based

algorithm; which allowed the generation of infeasible candidate-solutions.

A closer look at the evolving genetic-structures allowed us to identify

two classes of intron occurring along the genome: interspersed-introns (IIs)

and residual-introns were identified respectively. We identified a sequence

of un-interrupted IIs as an II-region; whereas a sequence of the latter (we

noted) were previously referred to as a GE-tail [O’Neill, 2001]. The bounds

of actively-coding expressed codons (or exons) was identified as the effective-

region. Following from this analysis, a logical-trail of experimentation led-us

180

to the initial findings of a code-growth like, propagation of residual-introns.

Further investigation, led-us to believe that these large tails of residual-

introns were being selected for in high-fitness individuals. As such a set of

experiments describing with/without intron-removal techniques realised the

finding, that reduction of the - effective-region to absolute-size ratio - (com-

pression of the effective-region [Nordin et al., 1997]) through a novel splicing

operator; significantly improved performance. The GE-tail was found to be

essential to the reported improvement in performance. Questions were raised

as to the benefit of IIs, where (in the absence of a GE-tail), they were seen

to improve performance - whereas in it’s presence, the reverse was true.

A positive model of the fitness-innovation emerging from GE’s one-point

crossover was presented and analysed. A discovery as to the context-sensitive

nature of II emergence was proposed, outlining the intrinsic-polymorphism of

GE codons and their subsequent ripple-crossover effect. GE-tails of residual-

introns were found to be essential to the workings of this ripple-crossover

acting as a buffer of residual genetic-material upon which it relies to fill it’s

ripple-trees. Results and analysis suggested that (for the examined problem

test-suite) after ≈ 20 generations - ripple-crossover exhibits a change-of-role

from a constructive, to disruptive force. It is suggested that in support of the

findings of Nordin and Banzhaf (over a linear-GP system), that the attribute

grammar system, thereafter exhibits a self-adaptive behavior, whereby in-

dividuals with a high tail-proportion propagate to subsequent generations.

This effectively cancels-out crossover as a search operator.

Results for phenotypic-duplicate elimination showed that, maintaining a

diverse population provides improvement to results. It is suggested that

this diversity helps search in the early-generations and ultimately leads to

a better chance of an optimum-solution being the result of an EA run. In

181

conclusion, we find that (in the context of the problems examined) the core

evolutionary operator (of crossover) is destructive in nature. As a result, a

self-adaptive protection mechanism is observed by the evolving population:

genomes with higher tail-proportions are seen to propogate and survive - as

they have less chance of producing offspring which will be disrupted. In this

way, the genetic-encoding of strong phenotypic traits can survive. This is a

perfect example of evolution working as the Darwinian theory of biological-

evolution would have us believe.

As recommendation of future work - we suggest that the investigations

into tailoring the attribute grammar system specifically for knapsack prob-

lems; be undertaken. In this regard (and as seen in previous approaches from

the literature [Gottlieb, 2000]), a look at order-preserving crossover opera-

tors is recommended (See Section 3.4.2). We suspect that they may result in

a lower likelyhood of destruction as evolution progresses.

Finally, in conclusion - we reflect on the work of this thesis from an

evolutionary-learning point-of-view. It was commented that the best EA

approaches for knapsack-problems to-date use a Lamarkian repair strategy;

similarly, in the work of this thesis - we note that the best results came as a

result of the splicing (intron-removal) strategy. Effecting a form of genetic-

repair we can postulate that the experimental evidence (combined with that

of the literature) would suggest that there is some merit in the Lamarkian

philosophy for evolutionary-learning. Indeed it is the opinion of the author,

that a hybrid-approach to evolutionary-learning may have benefit; in the

work of this thesis, for example; the attribute grammar decoder was seen to

effect a form of Baldwinian learning - whilst it’s coupling with a Lamarkian

genetic-repair yielded the best results. This we feel is also an area for future

research.

182

Appendix A

Publications

Some of the work reported in this thesis has already been published. The

details are given below.

Conference Papers

• O’Neill, M., Cleary, R., and Nikolov, N. (2004) Solving knapsack prob-

lems with attribute grammars. In Proceedings of the Grammatical

Evolution Workshop 2004.

• Cleary, R., O’Neill, M. (2005) An attribute grammar decoder for the

01 multiconstrained knapsack problem. In 5th European Conference

on Evolutionary Computation in Combinatorial Optimization.

183

Bibliography

[Aho et al., 1986] Aho, A., Sethi, R., and Ullman, J. (1986). Compilers:

Principles, Techniques, and Tools. Addison-Wesley.

[Angeline and Kinnear, 1996] Angeline, P. J. and Kinnear, J. K. E. (1996).

Advances in Genetic Programming 2. MIT Press, Cambridge, MA, USA.

[Avci et al., 2003] Avci, S., Akturk, S. M., and Storer, R. H. (2003). A

problem space algorithm for single machine weighted tardiness problems.

In IIE Transactions.

[Azad, 2003] Azad, R. M. A. (2003). A Position Independent Representa-

tion for Evolutionary Automatic Programming Algorithms - The Chorus

System. PhD thesis, University Of Limerick.

[Banzhaf, 1994] Banzhaf, W. (1994). Genotype-phenotype mapping and neu-

tral variation - a case study in genetic programming. In Parallel Problem

Solving from Nature III.

[Banzhaf et al., 1998] Banzhaf, W., Nordin, P., Keller, R. E., and Francone,

F. D. (1998). An Introduction; On the Automatic Evolution of Computer

Programs and its Applications. Morgan Kaufmann, dpunkt.verlag.

184

[Beasley, 1990] Beasley, J. (1990). Or-library: distributing test problems by

electronic mail. Journal of the Operational Research Society, 41(11):1069–

1072.

[Bruhn and Geyer-Schulz, 2002] Bruhn, P. and Geyer-Schulz, A. (2002). Ge-

netic programming over context-free languages with linear constraints for

the knapsack problem: First results. Evolutionary Computation.

[Burke et al., 2004] Burke, E. K., Gustafson, S., and Kendall, G. (2004).

Diversity in genetic programming: An analysis of measures and correlation

with fitness. IEEE Transactions on Evolutionary Computation, 8(1):47–

62.

[Chinneck, 2000] Chinneck, J. W. (2000). Practical opti-

mization: a gentle introduction. Online Textbook at

http://www.sce.carleton.ca/faculty/chinneck/po.html.

[Chomsky, 1956] Chomsky, N. (1956). Three models for the description of

language. In IRE Transactions on Information Theory, pages 113–124.

[Chomsky, 1959] Chomsky, N. (1959). On certain formal properties of gram-

mars. Information and Control, pages 137–167.

[Chu and Beasley, 1998] Chu, P. and Beasley, J. (1998). A genetic algorithm

for the multidimensional knapsack problem. Journal of Heuristics, 4:63–

86.

[Cleary and O’Neill, 2005] Cleary, R. and O’Neill, M. (2005). An attribute

grammar decoder for the 01 multiconstrained knapsack problem. In 5th

European Conference on Evolutionary Computation in Combinatorial Op-

timization.

185

[Cotta and Troya, 1998] Cotta, C. and Troya, J. M. (1998). A hybrid genetic

algorithm for the 0-1 multiple knapsack problem. In Artificial Neural Nets

and Genetic Algorithms 3.

[CPLEX, 2005] CPLEX (2005). Cplex 9.0., paragon decision technology b.v.

http://www.ilog.com/products/cplex.

[Dantzig, 1957] Dantzig, G. B. (1957). Discrete variable extremum problems.

Operations Research, 5:266–277.

[Darwin, 1859] Darwin, C. (1859). On the origins of the species by means of

natural selection, or the preservation of favoured races in the struggle for

life.

[De Jong, 1999] De Jong, K. (1999). Evolutionary Computation: Recent De-

velopments and Open Issues, chapter Evolutionary Algorithms in Engi-

neering and Computer Science, pages 43–54. Wiley.

[Fischer and LeBlanc, 1991] Fischer, C. and LeBlanc, R. (1991). Crafting a

compiler with C. Benjamin/Cummings.

[Freeman, 1998] Freeman, J. J. (1998). A linear representation for gp using

context free grammars. In Koza, J. R., Banzhaf, W., Chellapilla, K., Deb,

K., Dorigo, M., Fogel, D. B., Garzon, M. H., Goldberg, D. E., Iba, H., and

Riolo, R., editors, Genetic Programming 1998: Proceedings of the Third

Annual Conference, pages 72–77. Morgan Kaufmann.

[Freville and Plateau, 1994] Freville, A. and Plateau, G. (1994). An efficient

preprocessing procedure for the multidimensional 0-1 knapsack problem.

Discrete Applied Mathematics.

186

[Geyer-Schulz, 1995] Geyer-Schulz, A. (1995). Fuzzy Rule-Based Expert Sys-

tems and Genetic Machine Learning, volume 3 of Studies in Fuzziness.

Physica-Verlag, Heidelberg.

[Goldberg, 1989] Goldberg, D. E. (1989). Genetic Algorithms in Search, Op-

timisation and Machine Learning. Addison-Wesley.

[Gottlieb, 1999a] Gottlieb, J. (1999a). Evolutionary algorithms for multidi-

mensional knapsack problems: the relevance of the boundary of the feasi-

ble region. In Proceedings of the Genetic and Evolutionary Computation

Conference, page 787. Morgan Kaufman.

[Gottlieb, 1999b] Gottlieb, J. (1999b). On the effectivity of evolutionary al-

gorithms for the multidimensional knapsack problems. In Proc. of Artificial

Evolution. Springer LNCS.

[Gottlieb, 2000] Gottlieb, J. (2000). Permutation-based evolutionary algo-

rithms for multidimensional knapsack problem. In Proceedings of ACM

Symposium on Applied Computing.

[Grefenstette et al., 1985] Grefenstette, J. J., Gopal, R., Rosmaita, B., and

Van Gucht, D. (1985). Genetic algorithms for the traveling salesman prob-

lem. In Proceedings of the 1st Int. Conf. on Genetic Algorithms, pages

160–168.

[Hinterding, 1994] Hinterding, R. (1994). Mapping, order-independant genes

and the knapsack problem. In Proc. of 1st IEEE Int. Conf. on Evolutionary

Computation.

[Hinterding, 1999] Hinterding, R. (1999). Representation, constraint satis-

faction and the knapsack problem. In Proc. of 1999 IEEE Congress on

Evolutionary Computation.

187

[Hinterding and Michalewicz, 1998] Hinterding, R. and Michalewicz, Z.

(1998). Your brains and my beauty: Parent matching for constrained

optimisation. In Proc. of 1998 IEEE Conference on Evolutionary Compu-

tation. IEEE Press.

[Hoai et al., 2003] Hoai, N. X., McKay, R. I., and Abbass, H. A. (2003). Tree

adjoining grammars, language bias, and genetic programming. In Ryan,

C., Soule, T., Keijzer, M., Tsang, E., Poli, R., and Costa, E., editors,

Genetic Programming, Proceedings of EuroGP 2003, volume 2610, pages

340–349, Essex. Springer-Verlag.

[Hoai et al., 2002] Hoai, N. X., McKay, R. I., and Essam, D. (2002). Some

experimental results with tree adjunct grammar guided genetic program-

ming. In Foster, J. A., Lutton, E., Miller, J., Ryan, C., and Tettamanzi,

A. G. B., editors, Genetic Programming, Proceedings of the 5th European

Conference, EuroGP 2002, volume 2278, pages 228–237, Kinsale, Ireland.

Springer-Verlag.

[Joshi and Schabes, 1997] Joshi, A. and Schabes, Y. (1997). Handbook of

Formal Languages, volume 3, chapter Tree-adjoining grammars, pages 69–

124. Springer, Berlin, New York.

[Keijzer, 2002] Keijzer, M. (2002). Scientific Discovery Using Genetic Pro-

gramming. PhD thesis, Danish Technical University, Lyngby, Denmark.

[Keller and Banzhaf, 1996] Keller, R. E. and Banzhaf, W. (1996). Genetic

programming using genotype-phenotype mapping from linear genomes into

linear phenotypes. In Genetic Programming 1996: Proceedings of the First

Annual Conference.

188

[Khuri et al., 1994] Khuri, S., Back, T., and Heitkotter, J. (1994). The

zero/one multiple knapsack problem and genetic algorithms. In Proceed-

ings of the 1994 ACM symposium of Applied Computation.

[Kimura, 1983] Kimura, M. (1983). Neutral theory of molecular evolution.

Cambridge University Press.

[Kinnear, 1994] Kinnear, J. K. E. (1994). Advances in Genetic Programming.

MIT Press, Cambridge, MA.

[Knuth, 1968] Knuth, D. (1968). Semantics of context-free languages. Math-

ematical Systems Theory, 2(2).

[Koza, 1989] Koza, J. (1989). Hierarchical genetic algorithms operating on

populations of computer programs. In Sridharan, N., editor, Proceedings of

the 11th international conference on Artificial Intelligence, pages 768–774.

Morgan Kaufman.

[Koza, 1992] Koza, J. R. (1992). Genetic Programming: On the Program-

ming of Computers by Means of Natural Selection. MIT Press, Cambridge,

MA, USA.

[Koza, 1994] Koza, J. R. (1994). Genetic Programming II: Automatic Dis-

covery of Reusable Programs. MIT Press, Cambridge Massachusetts.

[Koza et al., 1999] Koza, J. R., Andre, D., Bennett III, F. H., and Keane,

M. (1999). Genetic Programming 3: Darwinian Invention and Problem

Solving. Morgan Kaufman.

[Langdon and Poli, 2002] Langdon, W. B. and Poli, R. (2002). Foundations

of genetic programming. Springer.

189

[Levenick, 1991] Levenick, J. R. (1991). Inserting introns improves genetic

algorithm success rate: Taking a cue from biology. In Belew, R. and

Booker, L., editors, Proceedings of the Fourth International Conference on

Genetic Algorithms, pages 123–127, San Mateo, CA. Morgan Kaufman.

[Magazine and Oguz, 1984] Magazine, M. and Oguz, O. (1984). A heuristic

algorithm for the multidimensional zero-one knapsack problem. Opera-

tional Research.

[Martello and Toth, 1990] Martello, S. and Toth, P. (1990). Knapsack Prob-

lems. J. Wiley & Sons, Chicester.

[Michalewicz, 1995] Michalewicz, Z. (1995). A survey of constraint handling

techniques in evolutionary computation methods. In Proceedings of the

4th Annual Conference on Evolutionary Programming.

[Michalewicz, 1996] Michalewicz, Z. (1996). Genetic Algorithms + Data

Structures = Evolution Programs, Third Edition. Springer Verlag, third

edition.

[Michalewicz and Nazhiyath, 1995] Michalewicz, Z. and Nazhiyath, G.

(1995). Genocop 3: A co-evolutionary algorithm for numerical optimiza-

tion problems with nonlinear constraints. In Proc. of 2nd IEEE Interna-

tional Conf. on Evolutionary Computation.

[Mitchell, 1997] Mitchell, T. M. (1997). Machine Learning. McGraw Hill,

New York.

[Montana, 1994] Montana, D. J. (1994). Strongly typed genetic program-

ming. BBN Technical Report 7866, Bolt Beranek and Newman, Inc., 10

Moulton Street, Cambridge, MA 02138, USA.

190

[Muggleton and Raedt, 1994] Muggleton, S. and Raedt, L. D. (1994). In-

ductive logic programming: Theory and methods. Journal of Logic Pro-

gramming, 19(20):629–679.

[Naur, 1963] Naur, P. (1963). Revised report on the algorithmic language

algol 60. Communications of the ACM, 6.1, pages 1,20.

[Nordin et al., 1999] Nordin, P., Banzhaf, W., and Francone, F. (1999).

Compression of effective size in genetic programming. In Haynes, T., Lang-

don, W. B., O’Reilly, U.-M., Poli, R., and Rosca, J., editors, Foundations

of Genetic Programming, Orlando, Florida, USA.

[Nordin et al., 1997] Nordin, P., Banzhaf, W., and Francone, F. D. (1997).

Introns in nature and in simulated structure evolution. In Lundh, D.,

Olsson, B., and Narayanan, A., editors, Bio-Computation and Emergent

Computation, Skovde, Sweden. World Scientific Publishing.

[Nordin et al., 1996] Nordin, P., Francone, F., and Banzhaf, W. (1996). Ex-

plicitly defined introns and destructive crossover in genetic programming.

In Angeline, P. J. and Kinnear, Jr., K. E., editors, Advances in Genetic

Programming 2, chapter 6, pages 111–134. MIT Press, Cambridge, MA,

USA.

[Olsen, 1994] Olsen, A. L. (1994). Penalty functions and the knapsack prob-

lems. In Proc. of the 1st Int. Conf. on Evolutionary Computation.

[O’Neill, 2001] O’Neill, M. (2001). Automatic Programming in an Arbitrary

Language: Evolving Programs with Grammatical Evolution. PhD thesis,

University Of Limerick.

191

[O’Neill et al., 2004a] O’Neill, M., Brabazon, A., Nicolau, M., McGarraghy,

S., and Keenan, P. (2004a). π grammatical evolution. In Proceedings of

the Genetic and Evolutionary Computation Conference.

[O’Neill et al., 2004b] O’Neill, M., Cleary, R., and Nikolov, N. (2004b). Solv-

ing knapsack problems with attribute grammars. In Proceedings of the

Grammatical Evolution Workshop 2004.

[O’Neill et al., 2001] O’Neill, M., Keijzer, M., Ryan, C., Cattolico, M., and

Babovic, V. (2001). Ripple crossover in genetic programming. In Proceed-

ings of EuroGP 2001.

[O’Neill and Ryan, 1999] O’Neill, M. and Ryan, C. (1999). Under the hood

of grammatical evolution. In Banzhaf, W., Daida, J., Eiben, A. E., Garzon,

M. H., Honavar, V., Jakiela, M., and Smith, R. E., editors, Proceedings of

the Genetic and Evolutionary Computation Conference, Orlando, Florida

USA. San Francisco, CA. Morgan Kaufmann.

[O’Neill and Ryan, 2001] O’Neill, M. and Ryan, C. (2001). Grammatical

evolution. In IEEE Transaction on Evolutionary Compuation.

[O’Neill and Ryan, 2003a] O’Neill, M. and Ryan, C. (2003a). Grammatical

Evolution: Evolutionary Automatic Programming in an Arbitrary Lan-

guage. Kluwer Academic Publishers.

[O’Neill and Ryan, 2003b] O’Neill, M. and Ryan, C. (2003b). Grammatical

Evolution: Evolutionary Automatic Programming in an Arbitrary Lan-

guage, chapter 7. Kluwer Academic Publishers.

[O’Neill et al., 2003] O’Neill, M., Ryan, C., Keijzer, M., and Cattolico, M.

(2003). Crossover in grammatical evolution. Genetic Programming and

Evolable Machines, 4(1).

192

[Orvosh and Davis, 1993] Orvosh, D. and Davis, L. (1993). Shall we repair?

genetic algorithms, combinatorial optimization, and feasibility constraints.

In Proceedings of the 5th International Conference on Genetic Algorithms.

[Paterson, 2002] Paterson, N. (2002). Genetic programming with context-

sensitive grammars. PhD thesis, Saint Andrew’s University.

[Paterson and Livesey, 1997] Paterson, N. and Livesey, M. (1997). Evolving

caching algorithms in c by genetic programming. In Koza, J. R., Deb, K.,

Dorigo, M., Fogel, D. B., Garzon, M., Iba, H., and Riolo, R. L., editors,

Genetic Programming 1997: Proceedings of the Second Annual Conference.

[Pirkul, 1987] Pirkul, H. (1987). A heuristic solution procedure for the mul-

ticonstraint zero-one knapsack problem. Naval Research Logistics.

[Pisinger, 1995] Pisinger, D. (1995). Algorithms for Knapsack Problems.

PhD thesis, University of Copenhagen.

[Poli and Langdon, 1998] Poli, R. and Langdon, W. B. (1998). On the search

properties of different crossover operators in genetic programming. In

Koza, J., Banzhaf, W., Chellapilla, K., Deb, K., Dorigo, M., Fogel, M. H.,

Garzon, D. E., Goldberg, D. E., Iba, H., and Riolo, R., editors, Genetic

Programming 1998: Proceedings of the Third Annual Conference, pages

293–301, San Francisco, CA. Morgan Kaufmann.

[Powell and Skolnick, 1993] Powell, E. and Skolnick, M. M. (1993). Using ge-

netic algorithms in engineering design optimisation, with non-linear con-

straints. In Proceedings of the Fifth IEEE Conference on Evolutionary

Computation.

193

[Raidl, 1998] Raidl, G. R. (1998). An improved genetic algorithm for the

multiconstrained 0-1 knapsack problem. In Proc of 1998 IEEE Congress

on Evolutionary Computation, pages 207 – 211.

[Raidl, 1999a] Raidl, G. R. (1999a). A weight-coded genetic algorithm for the

multiple container packing problem. In Proc of the 14th ACM Symposium

on Applied Computing, pages 596–603.

[Raidl, 1999b] Raidl, G. R. (1999b). Weight-codings in a genetic algorithm

for the multiconstraint knapsack problem. In Proc of 1999 IEEE Congress

on Evolutionary Computation, pages 596–603.

[Raidl and Gottlieb, 1999a] Raidl, G. R. and Gottlieb, J. (1999a). Charac-

terizing locality in decoder-based EAs for the multidimensional knapsack

problem. In 4th European Conference on Artificial Evolution, pages 38–52.

Springer-Verlag.

[Raidl and Gottlieb, 1999b] Raidl, G. R. and Gottlieb, J. (1999b). The ef-

fects of locality on the dynamics of decoder-based evolutionary search.

In Proceedings of the Genetic and Evolutionary Computation Conference,

page 787. Morgan Kaufmann.

[Raidl and Gottlieb, 1999c] Raidl, G. R. and Gottlieb, J. (1999c). On the

importance of phenotypic duplicate elimination in decoder-based evolu-

tionary algorithms. In Proceedings of the Genetic and Evolutionary Com-

putation Conference, pages 204–211. Late-Breaking Papers.

[Ramsey et al., 1998] Ramsey, C. L., Jong, K. A. D., Grefenstette, J. J., Wu,

A. S., and Burke, D. S. (1998). Genome length as an evolutionary self-

adaptation. In Proceedings of the 5th International Conference on Parallel

Problem Solving from Nature.

194

[Richardson et al., 1989] Richardson, J. T., R., P. M., G., L., and M., H.

(1989). Some guidelines for genetic algorithms with penalty functions. In

Proc. of the 3rd Int. Conf. on Genetic Algorithms.

[Ronald, 1995] Ronald, E. (1995). When selection meets seduction. In Proc.

of the 6th Int. Conf. on Genetic Algorithms.

[Slonneger and Kurtz, 1995] Slonneger, K. and Kurtz, B. (1995). Formal

Syntax and Semantics of Programming Languages: A Laboratory Based

Approach. Addison-Wesley Publishing Company.

[Spector et al., 1999] Spector, L., Langdon, W. B., O Reilly, U.-M., and An-

geline, P. J. (1999). Advances in Genetic Programming 3. MIT Press,

Cambridge, MA, USA.

[Spencer, 1864] Spencer, H. (1864). The Principles of Biology. Williams and

Norgate, London and Edinburgh.

[Storer et al., 1992] Storer, R., Wu, S., and Vaccari, R. (1992). New search

spaces for sequencing problems with application to job shop scheduling.

Management Science.

[Storer et al., 1995] Storer, R., Wu, S., and Vaccari, R. (1995). Local search

in problem and heuristic space for job shop scheduling. In in Artificial

Neural Nets and Genetic Algorithms 3, ORSA Journal on Computing.

[Streeter, 2003] Streeter, M. J. (2003). The root causes of code growth in

genetic programming. In Genetic Programming, Proceedings of EuroGP

2003, volume 2610 of LNCS, pages 449–448, Essex. Springer-Verlag.

195

[Watt and Brown, 2000] Watt, D. A. and Brown, D. F. (2000). Programming

language processors in Java : compilers and interpreters. Harlow:Prentice

Hall.

[Whigham, 1995] Whigham, P. A. (1995). Inductive bias and genetic pro-

gramming. In First International Conference on Genetic Algorithms in

Engineering Systems: Innovations and Applications.

[Whigham, 1996] Whigham, P. A. (1996). Search bias, language bias, and

genetic programming. In Genetic Programming 1996: Proceedings of the

First Annual Conference, pages 230–237.

[Whitley et al., 1994] Whitley, D., Gordon, S., and Mathias, K. (1994).

Lamarkian evolution, the baldwin effect and function optimization. In

Proceedings of the 3rd International Conference on Parallel Problem Solv-

ing from Nature.

[Wong, 1995] Wong, M. L. (1995). Evolutionary program induction directed

by logic grammars. PhD thesis, Department of Computer Science and

Engineering. The Chinese University of Hong Kong.

[Wong and S., 1997] Wong, M. L. and S., L. K. (1997). Evolutionary pro-

gram induction directed by logic grammars. Evolutionary Computation.

[Yu and Bentley, 1998] Yu, T. and Bentley, P. (1998). Methods to evolve

legal phenotypes. In Proceedings of the Fifth International Conference on

Parallel Problem Solving From Nature, pages 280–291.

[Zitzler, 1999] Zitzler, E. (1999). Evolutionary Algorithms for Multiobjec-

tive Optimization: Methods and Applications. PhD thesis, Swiss Federal

Institute of Technology (ETH), Zurich, Switzerland.

196

