
Extending Hardware Transactional Memory

Capacity via Rollback-Only Transactions and

Suspend/Resume∗†

Shady Issa1, Pascal Felber2, Alexander Matveev‡3, and

Paolo Romano4

1 INESC-ID / Instituto Superior Técnico, University of Lisbon, Portugal

2 University of Neuchatel, Switzerland

3 MIT, Cambridge, USA

4 INESC-ID / Instituto Superior Técnico, University of Lisbon, Portugal

Abstract

Transactional memory (TM) aims at simplifying concurrent programming via the familiar abstrac-

tion of atomic transactions. Recently, Intel and IBM have integrated hardware based TM (HTM)

implementations in commodity processors, paving the way for the mainstream adoption of the TM

paradigm. Yet, existing HTM implementations suffer from a crucial limitation, which hampers

the adoption of HTM as a general technique for regulating concurrent access to shared memory:

the inability to execute transactions whose working sets exceed the capacity of CPU caches. In

this paper we propose P8TM, a novel approach that mitigates this limitation on IBM’s POWER8

architecture by leveraging a key combination of techniques: uninstrumented read-only trans-

actions, Rollback Only Transaction-based update transactions, HTM-friendly (software-based)

read-set tracking, and self-tuning. P8TM can dynamically switch between different execution

modes to best adapt to the nature of the transactions and the experienced abort patterns. In-

depth evaluation with several benchmarks indicates that P8TM can achieve striking performance

gains in workloads that stress the capacity limitations of HTM, while achieving performance on

par with HTM even in unfavourable workloads.
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1 Introduction

Transactional memory (TM) has emerged as a promising paradigm that aims at simplify-

ing concurrent programming by bringing the familiar abstraction of atomic and isolated

transactions to the domain of parallel computing. Unlike when using locks to synchronize

access to shared data or code portions, with TM programmers need only to specify what

is synchronized and not how synchronization should be performed. This results in simpler

designs that are easier to write, reason about, maintain, and compose [4].
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Over the last years, the relevance of TM has been growing along with the maturity of

available supports for this new paradigm, both in terms of integration at the programming

language as well as at the architectural level. On the front of integration with programming

languages, a recent milestone has been the official integration of TM in mainstream languages,

such as C/C++ [2]. On the architecture’s side, the integration of hardware supports in Intel’s

and IBM’s processors, a technology that goes under the name of hardware transactional

memory (HTM), has represented a major breakthrough, thanks to enticing performance

gains that such an approach can, at least potentially, enable [15, 17, 24].

Existing hardware implementations share various architectural choices, although they

do come in different flavours [19, 22, 25]. The key common trait of current HTM systems

is their best effort nature: current implementations maintain transactional metadata (e.g.,

memory addresses read/written by a transaction) in the processor’s cache and rely on

relatively non-intrusive modification to the pre-existing cache coherency protocol to detect

conflict among concurrent transactions. Due to the inherently limited nature of processor

caches, current HTM implementations impose stringent limitations on the number of memory

accesses that can be performed within a transaction,1 hence providing no progress guarantee

even for transactions that run in absence of concurrency. As such, HTM requires a fallback

synchronization mechanism (also called fallback path), which is typically implemented via a

pessimistic scheme based on a single global lock.

Despite these common grounds, current HTM implementations have also several relevant

differences. Besides internal architectural choices (e.g., where and how in the cache hierarchy

transactional metadata are maintained), Intel’s and IBM’s implementations differ notably by

the programming interfaces they expose. In particular, IBM POWER8’s HTM implementa-

tion extends the conventional transactional demarcation API (to start, commit and abort

transactions) with two additional, unique features [5]:

Suspend/resume: the ability to suspend and resume a transaction, allowing, between the

suspend and resume calls, for the execution of instructions/memory accesses that escape

from the transactional context.

Rollback-only transaction (ROT): a lightweight form of transaction that has lower overhead

than regular transactions but also weaker semantics. In particular ROTs avoid tracking

load operations, i.e., they are not isolated, but still ensure the atomicity of the stores

issued by a transaction, which appear to be all executed or not executed at all.

In this work we present POWER8 TM (P8TM), a novel TM that exploits these two

specific features of POWER8’s HTM implementation in order to overcome (or at least

mitigate) what is, arguably, the key limitation stemming from the best-effort nature of

existing HTM systems: the inability to execute transactions whose working sets exceed the

capacity of CPU caches. P8TM pursues this objective via an innovative hardware-software

co-design that leverages several novel techniques, which we overview in the following:

Uninstrumented read-only transactions (UROs). P8TM executes read-only trans-

actions outside of the scope of hardware transactions, hence sparing them from spurious

aborts and capacity limitations, while still allowing them to execute concurrently with

update transactions. This result is achieved by exploiting the POWER8’s suspend/re-

sume mechanism to implement a RCU-like quiescence scheme that shelters UROs from

observing inconsistent snapshots that reflect the commit events of concurrent update

transactions.

1 The list of restrictions is actually longer, including the lack of support for system calls and other
non-undoable instructions, context switches and ring transitions.
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ROT-based update transactions. In typical TM workloads the read/write ratio tends

to follow the 80/20 rule, i.e., transactified methods tend to have large read-sets and much

smaller write sets [12]. This observation led us to develop a novel concurrency control

scheme based on a novel hardware-software co-design: it combines the hardware-based

ROT abstraction—which tracks only transactions’ write sets, but not their read-sets,

and, as such, does not guarantee isolation—with software based techniques aimed to

preserve correctness in presence of concurrently executing ROTs, UROs, and plain HTM

transactions. Specifically, P8TM relies on a novel mechanism, which we called Touch-To-

Validate (T2V), to execute concurrent ROTs safely. T2V relies on a lightweight software

instrumentation of reads within ROTs’ and a hardware aided validation mechanism of

the read-set during the commit phase.

HTM-friendly (software-based) read-set tracking. A key challenge that we had

to tackle while implementing P8TM was to develop a “HTM-friendly” software-based

read-set tracking mechanism. In fact, all the memory writes issued from within a ROT,

including those needed to track the read-set, are transparently tracked in hardware.

As such, the read-set tracking mechanism can consume cache capacity that could be

otherwise used to accommodate application-level writes. P8TM integrates two read-set

tracking mechanisms that explore different trade-offs between space and time efficiency.

Self-tuning. To ensure robust performance in a broad range of workloads, P8TM integ-

rates a lightweight reinforcement learning mechanism (based on the UCB algorithm [21])

that automates the decision of whether: i) to use upfront ROTs and UROs, avoiding at all

to use HTM; ii) to first attempt transactions in HTM, and then fallback to ROTs/UROs

in case of capacity exceptions; iii) to completely switch off ROTs/UROs, and use only

HTM.

We evaluated P8TM by means of an extensive study that encompasses synthetic micro-

benchmarks and the benchmarks in the Stamp suite [7]. The results of our study show

that P8TM can achieve up ∼5× throughput gains with respect to plain HTM and extend

its capacity by more than one order of magnitude, while remaining competitive even in

unfavourable workloads.

2 Related Work

Since the introduction of HTM support in mainstream commercial processors by Intel

and IBM, several experimental studies have aimed to characterize their performance and

limitations [15, 17, 24]. An important conclusion reached by these studies is that HTM’s

performance excels with workloads that fit the hardware capacity limitations. Unfortunately,

though, HTM’s performance and scalability can be severely hampered in workloads that

contain even a small percentage of transactions that do exceed the hardware’s capacity. This

is due to the need to execute such transactions using a sequential fallback mechanism based

on a single global lock (SGL), which causes the immediate abort of any concurrent hardware

transactions and prevents any form of parallelism.

Hybrid TM [9, 20] (HyTM) attempts to address this issue by falling back to software-based

TM (STM) implementations when transactions cannot successfully execute in hardware.

Hybrid NoRec (Hy-NoRec) is probably one of the most popular and effective HyTM designs

proposed in the literature. Hy-NoRec [8] falls back on using the NoRec STM, which lends

itself naturally to serve as fallback for HTM. In fact, NoRec uses a single versioned lock for

synchronizing (software) transactions. Synchronization between HTM and STM can hence

be attained easily, by having HTM transactions update the versioned lock used by NoRec.

DISC 2017
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Unfortunately, the coupling via the versioned lock introduces additional overheads on both

the HTM and STM side, and can induce spurious aborts of HTM transactions.

Recently, RHyNoRec [23] proposed to decompose a transaction running on the fallback

path into multiple hardware transactions: a read-only prefix and a single post-fix that

encompasses all the transaction’s writes, with regular NoRec shared operations in between.

This can reduce the false aborts that would otherwise affect hardware transactions in Hy-

NoRec. Unfortunately, though, this approach is only viable if the transaction’s postfix, which

may potentially encompass a large number of reads, does fit in hardware. Further, the

technique used to enforce atomicity between the read-only and the remaining reads relies

on fully instrumenting every read within the prefix hardware transaction, this utterly limits

the capacity—and consequently the practicality—of these transactions. Unlike RHyNoRec,

P8TM can execute read-only transactions of arbitrary length in a fully uninstrumented way.

Further, the T2V mechanism employed by P8TM to validate update transactions relies on a

much lighter and efficient read-set tracking and validation schemes that can even further

increase the capacity of transactions.

Our work is also related to the literature aimed to enhance HTM’s performance by

optimizing the management of the SGL fallback path. A simple, yet effective optimization,

which we include in P8TM, is to avoid the, so called, lemming effect [11] by ensuring that

the SGL is free before starting a hardware transaction. An alternative solution to the same

problem is the use of an auxiliary lock [3]. In our experience, these two solutions provide

equivalent performance, so we opted to integrate in P8TM the former, simpler, approach.

Herihly et al. [6] suggested lazy subscription of the SGL in order to decrease the vulnerability

window of HTM transactions. However, this approach was shown to be unsafe in subtle

scenarios that are hard to fix using automatic compiler-based techniques [10].

P8TM integrates a self-tuning approach that shares a common theoretical framework

(the UCB reinforcement learning algorithm [21]) with Tuner [13]. However, Tuner addresses

an orthogonal self-tuning problem to the one we tackled in P8TM: Tuner exploits UCB

to identify the optimal retry policy before falling back to the SGL path upon a capacity

exception; in P8TM, conversely, UCB is to determine which synchronization to use (e.g.,

ROTs/UROs vs. plain HTM). Another recent work that makes extensive use of self-techniques

to optimize HTM’s performance is SEER [14]. Just like Tuner, SEER addresses an orthogonal

problem—defining a scheduling policy that seeks an optimal trade-off between throughput

and contention probability—and could, indeed, be combined with P8TM.

Finally, P8TM builds on and extends on HERWL[16], where we introduced the idea

of using POWER8’s suspend-resume and ROT facilities to elide read-write locks. Besides

targeting a different application domain (transactional programs vs. lock elision), P8TM

integrates a set of novel techniques. Unlike HERWL, P8TM supports the concurrent execution

of update transactions in ROTs. Achieving this result implied introducing a novel concurrency

control mechanism (which we named Touch-To-Validate). Additionally, P8TM integrates

self-tuning techniques that ensure robust performance also in unfavourable workloads.

3 Background on POWER8’s HTM

This section provides background on POWER8’s HTM system, which is relevant to the

operation of P8TM. Analogously to other HTM implementations, POWER8 provides an

API to begin, commit and abort transactions. When programs request to start a transaction,

a started code is placed in the, so called, status buffer. If, later, the transaction aborts,

the program counter jumps back to just after the instruction used to begin the transaction.
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Hence, in order to distinguish whether a transaction has just started, or has undergone an

abort, programs must test the status code returned after beginning the transaction.

POWER8 detects conflicts with granularity of a cache line. The transaction capacity

(64 cache lines) in POWER8 is bound by a 8KB cache, called TMCAM, which stores the

addresses of the cache lines read or written within the transaction.

As mentioned, in addition to HTM transactions, POWER8 also supports Rollback-Only

Transactions (ROT). The main difference being that in ROTs, only the writes are tracked

in the TMCAM, giving virtually infinite read-set capacity. Reads performed by ROTs are

essentially treated as non transactional reads. From this point on, whenever we use the term

transaction, we refer to a plain HTM transaction.

Both transactions and ROTs detect conflict eagerly, i.e., they are aborted as soon as

they incur a conflict. The only exception is when they incur a conflict while in suspend

mode: in this case, they abort only once they resume. Finally, P8TM exploits how POWER8

manages conflicts that arise between non-transactional code and transactions/ROTs, i.e., if a

transaction/ROT issues a write on X and, before it commits, a non-transactional read/write

is issued on X, the transaction/ROT is immediately aborted by the hardware.

4 The P8TM Algorithm

This section describes P8TM (POWER8 Transactional Memory). We start by overviewing

the algorithm. Next, we detail its operation and present several optimizations.

4.1 Overview

The key challenge in designing execution paths that can run concurrently with HTM is

efficiency: it is hard to provide a software-based path that executes concurrently with the

HTM path, while preserving correctness and speed. The main problem is that the protocol

must make the hardware aware of concurrent software memory reads and writes, which

requires to introduce expensive tracking mechanisms in the HTM path.

P8TM tackles this issue by exploiting two unique features of the IBM POWER8 architec-

ture:

(1) suspend/resume for hardware transactions, and

(2) ROTs.

P8TM combines these new hardware features with an RCU-like quiescence scheme in a way

that avoids the need to track reads in hardware. This can in particular reduce the likelihood

of capacity aborts that would otherwise affect transactions that perform a large number of

reads.

The key idea is to provide two novel execution paths alongside the HTM path:

(i) a, so called, ROT path, which executes write transactions that do not fit in HTM as

ROTs, and

(ii) a, so called, URO path, which executes read-only transactions without any instrumenta-

tion.

Transactions and ROTs exploit the speculative hardware supports to hide writes from

concurrent reads. This allows to cope with read-write conflicts that occur during ROTs/UROs,

but it does not cover read-write conflicts that occur after the commit of an update transaction.

For this purpose, before a write transaction commits, either as a transaction or a ROT, it

first suspends itself and then executes a quiescence mechanism that waits for the completion

of currently executing ROTs/URO transactions. In addition to that, in case of ROTs, it

further executes an original touch-based validation step, which is described next, before

DISC 2017
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begin(ROT) r(x) r(x)

begin(ROT) commitw(x)
Invalid read

T1

T2

(a) ROTs do not track reads and may observe

different values when reading the same variable

multiple times.

begin(ROT) r(x) w(y) v:r(x)

begin(ROT) abortw(x) r(y)
Conflict

T1

T2

(b) By re-reading x during rot-rset validation

at commit time (denoted by v:r), T1 forces an

abort of T2 that has updated x in the meantime.

Figure 1 Operation scenarios.

resuming and committing. This process of “suspending and waiting” ensures that the writes

of an update transaction will be committed only if they do not target/overwrite any memory

location that was previously read by any concurrent ROT/URO transaction.

4.2 Touch-based Validation

Touch-To-Validate (T2V) is a core mechanism of our algorithm that enables safe and

concurrent execution of ROTs. Indeed, ROTs do not track read accesses within the transaction,

therefore it is unsafe to execute them concurrently, as they are not serializable.

Consider the example shown in Figure 1a. Thread T1 starts a ROT and reads x. At this

time, thread T2 starts a concurrent ROT, writes a new value to x, and commits. As ROTs

do not track reads, the ROT of T1 does not get aborted and can read inconsistent values

(e.g., the new value of x), hence yielding non-serializable histories. To avoid such scenarios

T2V leverages two key mechanisms that couple:

(i) software-based tracking of read accesses; and

(ii) hardware- and software-based read-set validation during the commit phase.

For the sake of clarity, let us assume that threads only execute ROTs—we will consider

other execution modes later. A thread can be in one of three states: inactive, active, and

committing. A thread that executes non-transactional code is inactive. When the thread

starts a ROT, it enters the active phase and starts tracking, in software, each read access to

shared variables by logging the associated memory address in a special data structure called

rot-rset. Finally, when the thread finishes executing its transaction, it enters the committing

phase. At this point, it has to wait for concurrent threads that are in the active phase to

either enter the commit phase or become inactive (upon abort). Thereafter, the committing

thread traverses its rot-rset and re-reads each address before eventually committing.

The goal of this validation step is to “touch” each previously read memory location in

order to abort any concurrent ROT that might have written to the same address. For example,

in Figure 1b, T1 re-reads x during rot-rset validation. At that time, T2 has concurrently

updated x but has not yet committed, and it will therefore abort (remember that ROTs track

and detect conflicts for writes). This allows T1 to proceed without breaking consistency:

indeed, ROTs buffer their updates until commit and hence the new value of x written by

T2 is not visible to T1. Note that adding a simple quiescence phase before commit, without

performing the rot-rset validation, cannot solve the problem in this scenario.

The originality of the T2V mechanism is that the ROT does not use read-set validation

for verifying that its read-set is consistent, as many STM algorithms do, but to trigger

hardware conflicts detection mechanisms. This also means that the values read during

rot-rset validation are irrelevant and ignored by the algorithm.
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Algorithm 1 P8TM: ROT path only algorithm.

1: Shared variables:

2: status[N ]← {⊥,⊥, . . . ,⊥} ⊲ One per thread

3: Local variables:

4: tid ∈ [0..N ] ⊲ Identifier of current thread

5: rot-rset ← ∅ ⊲ Transaction’s read-set

6: function read(addr) ⊲ Read shared variable

7: rot-rset ← rot-rset ∪{addr} ⊲ Track ROT reads

8: function synchronize

9: s[N ]← status ⊲ Read and copy all status variables

10: for i← 0 to N−1 do ⊲ Wait until all threads...

11: if s[i] = ACTIVE then ⊲ ...that are active...

12: wait until status[i] 6= s[i] ⊲ ...cross barrier

13: function touch_validate

14: for addr ∈ rot-rset do ⊲ Re-read all elements...

15: read addr ⊲ ...from read-set

16: function begin_rot

17: repeat ⊲ Retry ROT forever

18: status[tid]← ACTIVE ⊲ Indicate we are active

19: mem_fence ⊲ Make sure others know

20: rot-rset ← ∅ ⊲ Clear read-set

21: tx← tx_begin_rot ⊲ HTM ROT begin

22: until tx = STARTED ⊲ Repeat until success...

23: function commit

24: tx_suspend ⊲ Suspend transaction

25: status[tid]← ROT-COMMITTING ⊲ Tell others...

26: mem_fence ⊲ ...we are committing

27: tx_resume ⊲ Resume transaction

28: synchronize ⊲ Quiescence inside ROT

29: touch_validate ⊲ Touch to validate

30: tx_commit ⊲ End transaction

31: status[tid]← ⊥

4.3 Basic Algorithm

We first present below the basic version of the P8TM algorithm (Algorithm 1) assuming we

only have ROTs and we blindly retry to execute failed ROTs irrespective of the abort cause.

To start a transaction, a thread first lets others know that it is active and initializes its

data structures before actually starting a ROT (Lines 18–21). Then, during ROT execution,

it just keeps track of reads to shared data by adding them to the thread-local rot-rset

(Line 7). To complete the ROT, the thread first announces that it is committing by setting its

shared status variable. Note that this is performed while the ROT is suspended (Lines 24–27)

because otherwise the write would be buffered and invisible to other threads.

Next, the algorithm quiesces by waiting for all threads that are in a ROT to at least reach

their commit phase (Lines 8–12). It then executes the touch-based validation mechanism,

which simply consists in re-reading all address in the rot-rset (Lines 13–15), before finally

committing the ROT (Line 30) and resetting the status.

DISC 2017
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4.4 Complete Algorithm

The naive approach of the basic algorithm to only use ROTs is unfortunately not practical

nor efficient in real-world settings for two main reasons: (1) ROTs only provide “best effort”

properties and thus a fallback is needed to guarantee liveness; and (2) using ROTs for short

critical sections set that fit in a regular transaction is inefficient, because of the overhead of

software-hardware read-set tracking and validation upon commit. Therefore, we extend the

previous algorithm so that it first tries to use regular transactions, then switches to ROTs,

and finally falls back to a global lock (GL) in order to guarantee progress. The pseudo-code

of the complete algorithm is available in the extended version [18].

For transactions and ROTs to execute concurrently, the former must delay their commit

until completion of all active ROTs. This is implemented using an RCU-like quiescence

mechanism as in the basic algorithm. Transactions try to run in HTM and ROT modes

a limited number of times, switching immediately if the cause of the failure is a capacity

abort. The GL fallback uses a basic spin lock, which is acquired upon transaction begin

and released upon commit. Note that the quiescence mechanism must also be called after

acquiring the lock to wait for completion of ROTs that are in progress and might otherwise

see inconsistent updates. Further, the GL fallback must also wait for ROTs to fully complete.

Read-only transactions. We finally describe the URO path, i.e., the execution mode

optimized for read-only (RO) transactions in which reads are not tracked, hence significantly

decreasing runtime overheads. This would also allow to execute large RO transactions that

do not fit in hardware, and would otherwise be doomed to execute in the GL path.

To understand the intuition behind the URO path, note that whenever a URO develops

a read-after-write with any concurrent transaction/ROT T , T is immediately aborted by the

hardware. As for write-after-read conflicts, since transactions and ROTs buffer their writes and

quiesce before committing, they cannot propagate inconsistent updates to RO transactions:

this feature allows P8TM to achieve concurrency between UROs and transactions/ROTs,

even when they encounter write-after-read conflicts (by serializing the URO before the T ).

Finally, GL and RO transactions cannot conflict with each other as long as they do not

run concurrently. This is ensured by performing a quiescence phase after acquiring the global

lock, and executing RO transactions only when the lock is free. Note that, if the lock is

taken, RO transactions defer to the writer by resetting their status before waiting for the

lock to be free and retrying the whole procedure; otherwise we could run into a deadlock.

Correctness argument. When the GL path is active, concurrency is disabled. This is

guaranteed since:

(i) transactions in HTM path subscribe eagerly to the GL, and are thus aborted upon the

activation of this path;

(ii) after the GL is acquired, a quiescence phase is performed to wait for active ROTs or

UROs.

Atomicity of a transaction in the HTM path is provided by the hardware against concurrent

transactions/ROTs and by GL subscription.

As for the UROs, the quiescence mechanism guarantees two properties:

UROs activated after the start of an update transaction T , and before the start of T ’s

quiescence phase, can be safely serialized before T because they are guaranteed not to

see any of T ’s updates, which are only made atomically visible when the corresponding

transaction/ROT commits;
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UROs activated after the start of the quiescence phase of an update transaction T can be

safely serialized after T because they are guaranteed to either abort T , in case they read

a value written by T before T commits, or see all the updates produced by T ’s commit.

It is worth noting here though that this is only relevant when UROs may conflict with T ,

in case of disjoint operation both serialization orders are equivalent.

Now we are only left with transactions running on the ROT path. The same properties

of quiescence for UROs apply here and avoid ROTs reading inconsistent states produced by

concurrent HTM transactions. Nevertheless, since ROTs do modify the shared state, they

can still produce non-serializable histories; such as the scenario in Figure 2. Assume a ROT,

say T1, issued a read on X, developing a read-write conflict, with some concurrently active

ROT, say T2. There are two cases to consider: T1 commits before T2, or vice-versa.

If T1 commits first, then if it reads X after T2 (which is still active) wrote to it, then

T2 is aborted by the hardware conflict detection mechanism. Else, we are in presence of a

write-after-read conflict. T1 finds status[T2] := ACTIV E (because T2 issues a fence before

starting) and waits for T2 to enter its commit phase (or abort). Then T1 executes its T2V,

during which, by re-reading X, would cause T2 to abort.

Consider now the case in which T2 commits before T1. If T1 reads X, as well as any

other memory position updated by T2, before T2 writes to it, then T1 can be safely serialized

before T2 (as T1 observed none of T2’s updates). If T1 reads X, or any other memory position

updated by T2, after T2 writes to it and before T2 commits, then T2 is aborted by the

hardware conflict detection mechanism; a contradiction. Finally, it is impossible for T1 to

read X after T2 commits: in fact, during T2’s commit phase, T2 must wait for T1 to complete

its execution; hence, T1 must read X after T2 writes to it and before T2 commits, falling in

the above case and yielding another contradiction.

Self-tuning. In workloads where transactions fit the HTM’s capacity restrictions, P8TM

forces HTM transactions to incur the overhead of suspend/resume, in order to synchronize

them with possible concurrent ROTs. In these workloads, the ideal decision would be to just

disable the ROT path, so to spare the HTM path from any overhead. However, it is not

trivial to determine when it is beneficial to do so; this choice is workload dependent and is

not trivial to determine via static code analysis techniques.

We address this issue by integrating into P8TM a self-tuning mechanism based on a

lightweight reinforcement learning technique, UCB [21]. UCB determines, in an automatic

fashion, which of the following modes to use:

(M1) HTM falling back to ROT, and then to GL;

(M2) HTM falling back directly to the GL;

(M3) starting directly in ROT before falling back to the GL.

Note that UROs and ROTs impose analogous overheads to HTM transactions. Thus, in

order to reduce the search space to be explored by the self-tuning mechanism, whenever we

disable ROTs (i.e., case (M2)), we also disable UROs (and treat RO transactions as update

ones).

5 Read-set Tracking

The T2V mechanism requires to track the read-sets of ROTs for later replaying them

at commit time. The implementation of the read-set tracking scheme is crucial for the

performance of P8TM. In fact, as discussed in Section 3, ROTs do not track loads at the

TMCAM level, but they do track stores and the read-set tracking mechanism must issue
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stores in order to log the addresses read by a ROT. The challenge, hence, lies in designing a

software mechanism that can exploit the TMCAM’s capacity in a more efficient way than

the hardware would do. In the following we describe two alternative mechanisms that tackle

this challenge by exploring different trade-offs between computational and space efficiency.

Time-efficient implementation uses a thread local, cache aligned array, where each

entry is used to track a 64-bit address. Since the cache lines of the POWER8 CPU are 128

bytes long, this means that 16 consecutive entries of the array, each storing an arbitrary

address, will be mapped to the same cache line and occupy a single TMCAM entry. Therefore,

this approach allows for fitting up to 16× larger read-sets within the TMCAM as compared

to the case of HTM transactions. Given that they track 64 cache lines, each thread-local

array is statically sized to store exactly 1024 addresses. It is worth noting here that since

conflicts are detected at the cache line level granularity, it is not necessary to store the 7 least

significant bits, as addresses point to the same cache line. However, we omit this optimization

as this will add extra computational overhead, yielding a space saving of less than 10%.

Space-efficient implementation seeks to exploit the spatial data locality in the ap-

plication’s memory access patterns to compress the amount of information stored by the

read-set tracking mechanism. This is achieved by detecting a common prefix between the

previously tracked address and the current one, and by storing only the differing suffix and

the size (in bytes) of the common prefix. The latter can be conveniently stored using the 7

least significant bits of the suffix, which, as discussed, are unnecessary. With applications

that exhibit high spatial locality (e.g., that sequentially scan memory), this approach can

achieve significant compression factors with respect to the time-efficient implementation.

However, it introduces additional computational costs, both during the logging phase (to

identify the common prefix) and in the replay phase (as addresses need to be reconstructed).

6 Evaluation

In this section we evaluate P8TM against state-of-the-art TM systems using a set of synthetic

micro-benchmarks and complex, real-life applications. First, we start by evaluating both

variants of read-set tracking to show how they are affected by the size of transactions and

degree of contention. Then we conduct a sensitivity analysis aimed to investigate various

factors that affect the performance of P8TM. To this end, we used a micro-benchmark

that emulates a hashmap via lookup, insert, and delete transactions that accesses locations

uniformly at random. This is a synthetic data structure composed of b buckets, where each

bucket points to a linked-list, with an average length of l. By varying b and l we can control

the degree of contention and probability of triggering capacity aborts respectively, which

allows us to precisely stress different design aspects. Finally, we test P8TM using the popular

STAMP benchmark suite [7].

We compare our solution with the following baselines:

(i) plain HTM with a global lock fallback (HTM-SGL),

(ii) NoRec with write back configuration,

(iii) the Hy-NoRec algorithm with three variables to synchronize transactions and NoRec

fallback, and, finally,

(iv) the reduced hardware read-write lock elision algorithm HERWL (in this case, update

transactions acquire the write lock while read-only transactions acquire the read lock).

Regarding the retry policy, we execute the HTM path 10 times and the ROT path 5

times before falling back to the next path, except upon a capacity abort when the next

path is directly activated. These values and strategies were chosen after an extensive offline
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Figure 2 Micro-benchmarks (H=high, L=low, Cap=capacity, Con=contention).

experimentation and selecting the best configuration on average, regarding the number

of retries and policies for capacity aborts (e.g., fallback immediately vs treating it as a

conflict-induced abort). All results presented in this section represent the mean value of at

least 5 runs. The experiments were conducted on a machine equipped with an IBM Power8

8284-22A processor that has 10 physical cores, with 8 hardware threads each, summing up to

a total of 80 hardware threads. The source code, which is publicly available [1], was compiled

with GCC 6.2.1 using -O2 flag on top of Fedora 24 with Linux 4.5.5. Thread pinning was

use to pin a thread per core at the beginning of each run for all the solutions, and threads

were distributed evenly across the cores.

6.1 Read-set Tracking

The goal of this section is to understand the trade-off between the time-efficient and the

space-efficient implementations of read-set tracking that were explained earlier in Section 5.

We compare three variants of P8TM: i) a version using the time-efficient read-set tracking

(TE), ii) a variant of space-efficient read-set tracking that only checks for prefixes of length 4

bytes, and otherwise stores the whole address (SE), and, finally, iii) a more aggressive variant

of space-efficient read-set tracking that looks for prefixes of either 6 or 4 bytes (SE++).
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Throughout this section, we fixed the number of threads to 10 (number of physical cores)

and the percentage of update transactions at 100%, disabled the self-tuning module, and

varied the buckets’ lengths(l) across orders of magnitude to stress the ROT-path. First,

we start with an almost contention-free workload (using b = 10k) to highlight the effect

of capacity aborts alone. The speedup with respect to HTM-SGL, breakdown of abort

rate (calculated as the aborts divided by the sum of aborted and committed transactions)

and commits for this workload are shown in the left column of Figure 2a. As we can

notice, the three variants of P8TM achieve almost the same performance as HTM-SGL

with small transaction sizes that fit inside regular HTM transactions, as seen from the

commits breakdown (l =∼20–50). However, when moving to larger transactions, the three

variants start outperforming HTM-SGL achieving up to 5.5× higher throughput due to their

ability to fit transactions within ROTs. By looking at the aborts breakdown in this region

(l =∼100–266), we see that all P8TM variants suffer from almost 50% capacity aborts when

first executing in HTM, and almost no capacity aborts when using the ROT path. This

shows the clear advantage of the T2V mechanism and how it can fit more than 10× larger

transactions in hardware.

Comparing TE with SE and SE++, we see that both space-efficient variants are able

to execute larger transactions as ROTs: they do not suffer ROT capacity up to buckets

of length ∼1333 items. Nevertheless, they incur an extra overhead, which is reflected as

a slightly lower speedup than TE, before TE starts to experience ROT capacity aborts;

only then their ability to further compress the rot-rset pays off. Again, by looking at the

commits and aborts breakdown, we see that both space-efficient variants manage to commit

all transactions as ROTs when TE is already using the GL (l =∼800–1333). Finally, when

comparing SE and SE++, we notice that trying harder to find longer prefixes is not useful,

due to the much lower probability of addresses sharing longer prefixes.

The right column of Figure 2a shows the results for a workload that exhibits a higher

degree of contention (b = 1k). In this case, with transactions that fit inside regular HTM

transactions, we see that HTM-SGL can outperform both SE and SE++ by up to 2× and

TE by up to ∼30%. Since P8TM tries to execute transactions as ROTs after failing 10 times

with HTM due to conflicts, the ROT path may be activated even in absence of capacity

aborts; hence, the overhead of synchronizing ROTs and transaction becomes relevant also

with small transactions. With larger transactions, we notice that the computational costs of

SE and SE++ are more noticeable in this workload where they are always outperformed by

TE, as long as this is able to fit at least 50% of transactions inside ROTs (up to l =∼800

items). Furthermore, the gains of SE and SE++ w.r.t. TE are much lower when compared

to the contention-free workload. From this, we deduce that TE is more robust to contention.

This was also confirmed with the other workloads that we will discuss next.

6.2 Sensitivity analysis

We now report the results of a sensitivity analysis that aimed to assess the impact of the

following factors on P8TM’s performance:

(i) the size of transactions,

(ii) the degree of contention, and

(iii) the percentage of read-only transactions.

We explored these three dimensions using the following configurations:

(i) high capacity, low contention, (b = 1k and l = 800),

(ii) high capacity, high contention, (b = 10 and l = 800), and

(iii) low capacity, low contention (b = 1k and l = 40).
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We omitted showing the results for low capacity, high contention workload due to space

restrictions, especially since they do not convey any extra information with respect to the

low capacity, low contention scenario (which is actually even more favourable for HTM).

In these experiments we show two variants of P8TM, both equipped with the TE read-set

tracking: with (P8TMucb) and without (P8TM) the self-tuning module enabled.

High capacity, low contention. The left most column of Figure 2b shows the throughput,

abort rate and commits breakdown for the high capacity, low contention configuration with

50% update transactions.. We observe that, both variants of P8TM are able to outperform

all the other TM solutions by up to 2×. This can be easily explained by looking at the

commits breakdown, where both P8TM and P8TMucb commit 50% of their transactions as

UROs while the other 50% are committed mainly as ROTs up to 8 threads. On the contrary,

HTM-SGL commits only 10% of the transactions in hardware and falls back to GL in the

rest, due to the high capacity aborts it incurs. It is worth noting that the decrease in the

percentage of capacity aborts, along with the increase of number of threads, is due to the

activation of the fallback path, which forces other concurrent transactions to abort.

Although HERWL benefits from the URO path, P8TM was able to achieve ∼2× higher

throughput, thanks to its ability of executing ROTs concurrently. Another interesting point

is that P8TMucb can outperform P8TM due to its ability to decrease the abort rate, as shown

in the aborts breakdown. This is achieved by deactivating the HTM path, which spares from

the cost of trying once in HTM before falling back to ROT (upon a capacity abort).

High capacity, high contention. The middle column of Figure 2b reports the results for the

high capacity, high contention configuration with 50% update transactions. We can notice

that although this workload is not scalable due to the high conflict rate, P8TM manages to

achieve the highest throughput. Again this is due to P8TM’s ability to fit large transactions

into ROTs, almost all update transactions are executed in hardware up to 8 threads as can

be seen from the commits breakdown. P8TMucb also achieves higher throughput than P8TM

after it disables the HTM path, which decreases the abort rate.

Low capacity, low-contention. In workloads where transactions fit inside HTM, it is

expected that HTM-SGL will outperform all other TM solutions and that the overheads

of P8TM will prevail. The results in the right most column of Figure 2b confirm this

expectation: HTM-SGL outperforms all other solutions, achieving up to ∼1.75× higher

throughput than P8TM. However, P8TMucb, thanks to its self-tuning ability, is the, overall,

best performing solution, achieving performance comparable to HTM-SGL at low thread

count, and outperforming it at high thread count. By inspecting the commits breakdown

plots we see that P8TMucb does not commit any transaction using ROTs up to 8 threads,

avoiding the synchronization overheads that, instead, affect P8TM.

We note that, even though Hy-NoRec commits the same or higher percentage of HTM

transactions than HTM-SGL, it is consistently outperformed by P8TM. This can be explained

by looking at the performance of NoRec, which fails to scale due to the high instrumentation

overheads it incurs with such short transactions. As for Hy-NoRec, its poor performance is a

consequence of the inefficiency inherited by its NoRec fallback.

6.3 STAMP benchmark suite

STAMP is a popular benchmark suite that encompasses applications with different charac-

teristics that share a common trait: they do not have any read-only transactions. Therefore,

P8TM will not utilize the URO path and any gain it can achieve stems solely from executing
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Figure 3 Throughput and breakdown of commits for the STAMP benchmarks.

ROTs in parallel. For space constraints we can only report the results for a subset of the

STAMP benchmarks. The remaining benchmarks exhibit analogous trends and are available

in an extended technical report [18].

Vacation is an application with medium sized transactions and low contention; hence, it

behaves similarly to the previously analyzed high capacity, low contention workload. When

looking at Figure 3, we can see trends very similar to the left most column of Figure 2b.

P8TM is capable of achieving the highest throughput and outperforming HTM-SGL by up

to ∼3.2× in this case. When looking at the breakdown of commits, we notice also the ability

of P8TM to execute most of transactions as ROT up to 8 threads, while HTM-SGL never

manages to commit transactions in hardware.

At high thread count we notice that NoRec and Hy-NoRec start to outperform both

P8TM and P8TMucb. his can be explained by two reasons:

with larger numbers of threads there is higher contention on hardware resources (note

that starting from 32 threads ROT capacity aborts start to become frequent) and

the cost of quiescence becomes more significant as threads have to wait longer.

Nevertheless, it is worth noting that the maximum throughput achieved by P8TM (at 8

threads) is ∼2× higher than NoRec (at 32 threads). This is due to the instrumentation

overheads of these solutions. These overheads are completely eliminated in case of write

accesses within P8TM and are much lower for read accesses—recall we only need to log the

addresses and read them during validation.

SSCA2 generates transactions with small read/write sets and low contention. These are

HTM friendly characteristics, and by looking at the throughput results in Figure 3 we see

that HTM-SGL is able to outperform all the other baselines and scale up to 80 threads. This

is also reflected in its ability to commit almost all transactions in hardware as shown in the

commits breakdown. Although Hy-NoRec is able to achieve performance similar to HTM up

to 32 threads, it is then outperformed due to the extra overheads it incurs to synchronize

with the NoRec fallback.

Although P8TM commits almost all transactions using HTM up to 64 threads, it performed

worse than both HTM-SGL and Hy-NoRec due to the costs of synchronization. An interesting

observation is that the overhead is almost constant up to 32 threads. In fact, up to 64 threads

there are no ROTs running and the overhead is is dominated by the cost of suspending and

resuming the transaction. At 64 and 80 threads P8TM started to suffer also from capacity

aborts similarly to Hy-NoRec. This led to a degradation of performance, with HTM-SGL

achieving 7× higher throughput at 80 threads. This is a workload where P8TMucb comes in

handy as it manages to disable the ROT path and thus tends to employ HTM-SGL.

Yada has long transactions, large read/write set and medium contention. This is an

example of a workload that is not hardware friendly and where hardware solutions are

expected to be outperformed by software based ones. Figure 3 shows the clear advantage
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of NoRec over any other solution, achieving up to 3× higher throughput than hardware

based solutions. When looking at the commits and abort break down, one can see that

up to 8 threads P8TM commits ∼80% of the transactions as either HTM or ROTs. Yet,

despite P8TM manages to reduce the frequency of acquisition of the GL path with respect

to HTM-SGL, it incurs overheads that end up outweighing the benefits provided by P8TM

in terms of increased concurrency.

7 Conclusion

We presented P8TM, a TM system that tackles what is, arguably, the key limitation of existing

HTM systems: the inability to execute transactions whose working sets exceed the capacity

of CPU caches. This is achieved by novel techniques that exploit hardware capabilities

available in POWER8 processors. Via an extensive experimental evaluation, we have shown

that P8TM provides robust performance across a wide range of benchmarks, ranging from

simple data structures to complex applications, and achieves remarkable speedups.

The importance of P8TM stems from the consideration that the best-effort nature of

current HTM implementations is not expected to change in the near future. Therefore,

techniques that mitigate the intrinsic limitations of HTM can broaden its applicability to a

wider range of real-life workloads. We conclude by arguing that the performance benefits

achievable by P8TM thanks to the use of the ROT and suspend/resume mechanisms represent

a relevant motivation for integrating these features in future generations of HTM-enabled

processors (like Intel’s ones).

References

1 https://github.com/shadyalaa/POWER8TM, 2017.

2 A. Adl-Tabatabai, , T. Shpeisman, and J. Gottschlich. “draft specification of transactional

language constructs for c++. Intel, 2012.

3 Y. Afek, A. Levy, and A. Morrison. Programming with hardware lock elision. In Proceedings

of the 18th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming

(PPoPP’13), pages 295–296, 2013. doi:10.1145/2442516.2442552.

4 H. Boehm, J. Gottschlich, V. Luchangco, M. Michael, M. Moir, C. Nelson, T. Riegel,

T. Shpeisman, and M. Wong. Transactional language constructs for c++. ISO/IEC

JTC1/SC22 WG21 (C++), 2012.

5 H. W. Cain, M. M. Michael, B. Frey, C. May, D. Williams, and H. Le. Robust architectural

support for transactional memory in the power architecture. SIGARCH Comput. Archit.

News, 41(3), 2013.

6 I. Calciu, T. Shpeisman, G. Pokam, and M. Herlihy. Improved single global lock fallback for

best-effort hardware transactional memory. 9th ACM SIGPLAN Wkshp. on Transactional

Computing, 2014.

7 Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, and Kunle Olukotun. STAMP:

Stanford transactional applications for multi-processing. In IISWC’08, 2008.

8 L. Dalessandro, F. Carouge, S. White, Y. Lev, M. Moir, M. L. Scott, and M. F. Spear. Hy-

brid norec: A case study in the effectiveness of best effort hardware transactional memory.

In ASPLOS’11, 2011.

9 P. Damron, A. Fedorova, Y. Lev, V. Luchangco, M. Moir, and D. Nussbaum. Hybrid

transactional memory. In ASPLOS’06, 2006.

10 D. Dice, T. L. Harris, A. Kogan, Y. Lev, and M. Moir. Hardware extensions to make lazy

subscription safe. CoRR, abs/1407.6968, 2014.

DISC 2017

https://github.com/shadyalaa/POWER8TM
http://dx.doi.org/10.1145/2442516.2442552


28:16 Extending Hardware Transactional Memory Capacity

11 D. Dice, Y. Lev, M. Moir, and D. Nussbaum. Early experience with a commercial hardware

transactional memory implementation. In ASPLOS’09, 2009.

12 D. Dice and N. Shavit. Understanding tradeoffs in software transactional memory. In

CGO’07, 2007.

13 N. Diegues and P. Romano. Self-tuning intel transactional synchronization extensions. In

ICAC’14, 2014.

14 N. Diegues, P. Romano, and S. Garbatov. Seer: Probabilistic scheduling for hardware

transactional memory. In SPAA’15, 2015.

15 N. Diegues, P. Romano, and L. Rodrigues. Virtues and limitations of commodity hardware

transactional memory. In PACT’14, 2014.

16 P. Felber, S. Issa, A. Matveev, and P. Romano. Hardware read-write lock elision. In

EuroSys’16, 2016.

17 B. Goel, R. Titos-Gil, A. Negi, S. A. McKee, and P. Stenstrom. Performance and energy

analysis of the restricted transactional memory implementation on haswell. In IPDPS’14,

2014.

18 S. Issa, P. Felber, A. Matveev, and P. Romano. Extending hardware transactional memory

capacity via rollback-only transactions and suspend/resume. Technical report, INESC-

ID’17, 2017.

19 C.C Jacobi, T. Slegel, and D. Greiner. Transactional memory architecture and implement-

ation for ibm system z. In MICRO-45, 2012.

20 S. Kumar, M. Chu, C. J. Hughes, P. Kundu, and A. Nguyen. Hybrid transactional memory.

In PPoPP’06, 2006.

21 T. Lai and H. Robbins. Asymptotically efficient adaptive allocation rules. Advances in

Applied Mathematics, 1985.

22 H.Q. Le, G.L. Guthrie, D.E. Williams, M.M. Michael, B.G. Frey, W.J. Starke, C. May,

R. Odaira, and T. Nakaike. Transactional memory support in the ibm power8 processor.

IBM Journal of Research and Development, 59(1), 2015.

23 A. Matveev and N. Shavit. Reduced hardware norec: A safe and scalable hybrid transac-

tional memory. In ASPLOS’15, 2015.

24 T. Nakaike, R. Odaira, M. Gaudet, M. M. Michael, and H. Tomari. Quantitative compar-

ison of hardware transactional memory for blue gene/q, zenterprise ec12, intel core, and

power8. In ISCA’15, 2015.

25 R. M. Yoo, C. J. Hughes, K. Lai, and R. Rajwar. Performance evaluation of intel transac-

tional synchronization extensions for high-performance computing. In SC’13, 2013.


	Introduction
	Related Work
	Background on POWER8's HTM
	The P8TM Algorithm
	Overview
	Touch-based Validation
	Basic Algorithm
	Complete Algorithm

	Read-set Tracking
	Evaluation
	Read-set Tracking
	Sensitivity analysis
	STAMP benchmark suite

	Conclusion

