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In this work, a method is described to extend the iterative Hirshfeld-I method, generally used for
molecules, to periodic systems. The implementation makes use of precalculated pseudo-potential
based electron density distributions, and it is shown that high quality results are obtained for both
molecules and solids, such as ceria, diamond, and graphite. The use of grids containing (precal-
culated) electron densities makes the implementation independent of the solid state or quantum
chemical code used for studying the system. The extension described here allows for easy calcu-
lation of atomic charges and charge transfer in periodic and bulk systems. The conceptual issue
of obtaining reference densities for anions is discussed and the delocalization problem for anionic
reference densities originating from the use of a plane wave basis set is identified and handled.

PACS numbers:

I. INTRODUCTION

One of the most successful concepts in chemistry is
that of “atoms in molecules” (AIM). It states that the
properties of a molecule can be seen as simple sums of
the properties of its constituent atoms. An impressive
amount of insights has been obtained from such a view-
point, although a precise definition of an AIM remains
elusive.1–3 All AIM methods have the common purpose
of trying to improve our understanding of chemical
concepts such as molecular similarity and transferability
between molecules.4 Since the concept of AIM is basi-
cally about how one should divide the electrons, more
specifically the electron density distribution (EDD)
ρ(r) in the molecule between the different “atoms”,
this leads to two obvious categories of approaches in
which most of the methods used for defining AIM can
be divided. The first category of approaches is based
on the wave-function/states of the system, and most
of the work is performed in the Hilbert space of the
basis functions used. One of the most famous examples
here is the Mulliken approach.5,6 The second category
of approaches is based on the division of the EDD as it
exists in real-space. In these real-space approaches the
molecule is split into atomic basins, that can overlap
such as in the Hirshfeld7 and derived methods,8–12 or
that are non-overlapping such as in Bader’s approach.13

The concept of AIM is strongly linked to the concept
of transferability. Because both are central in chemistry,
and chemists mainly focus on molecules, they are mostly
used for molecules.14,15 There is, however, no reason
why these concepts should not be applicable for periodic
systems such as bulk materials. Even more, if these
concepts are truly valid, they should hold equally well
for solids as for molecules, and should provide additional
insight in the chemical properties of defects, such as
dopants, interfaces and adsorption of molecules on
surfaces.

To this date we are aware of few implementations
for periodic systems of the Hirshfeld and Hirshfeld-I
approach, but their number is steadily rising. Mart́ın
Pendás et al.16 investigated Hirshfeld surfaces as ap-
proximations for interatomic surfaces for LiF and CS2

crystals. The Cut3D plugin of the ABINIT code
can be used to calculate Hirshfeld charges,17–20 and
recently Leenaerts et al. implemented a “subsystem”
based Hirshfeld-I method to study graphane, graphene
fluoride and paramagnetic adsorbates on graphene.21–23

Similarly, Spackman and collaborators presented
subsystem-based Hirshfeld surfaces for molecular
solids and implemented this in their Crystal-Explorer
code.24–28 In a recent publication Watanabe et al.29

presented Hirshfeld results for metal–organic frameworks
using the DDEC-code of Manz and Sholl.12 The same
code was probably also used in the investigation of
charge injection in graphene layers by Rogers and Liu.30

These authors present Hirshfeld-I charges, though they
do not mention explicitly how these were obtained. In
this DDEC code the function which is minimized is a
linear combination of the function minimized in the
Hirshfeld-I method, the one minimized in the iterative
stockholder approach, and an additional term enforcing
the constraint that all electron density is accounted
for.8–12 At the time of writing Verstraelen et al. showed
that an excellent reproduction of the electrostatic
potential (ESP) in silicates is possible using Hirshfeld-I
charges.31

In this work, we have implemented an extension of the
iterative Hirshfeld-I approach9 to periodic systems, as a
module in our HIVE-code.32 The implementation makes
use of grid stored EDDs, which can easily be generated
by standard solid state and quantum chemical codes.

In Sec. II a short review of the parameters used in the
solid state and quantum chemical codes is given. After-
wards the basic theory behind the Hirshfeld-I method
is presented and extended to periodic systems. In
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addition, the spatial integration grid, pseudo-potentials
and stored EDDs are discussed in view of the Hirshfeld-I
method for periodic systems. In Sec. III the influence
of the different grids on the accuracy is discussed. We
also identify a delocalization problem in the radial
EDDs which originates from the plane wave approach
and periodic boundary conditions (PBC) used in the
solid state code. This delocalization problem shows
an inherent conceptual problem exists when reference
densities need to be generated for anions. We shortly
discuss this conceptual issue in Sec. III C and indicate
if and how it is handled in other implementations.
We present two effective solutions ourselves, and show
how these improve the obtained results. In Sec. III D
the influence of the inclusion of core electrons in the
reference densities is presented. As a last point, the
atomic charges in some simple periodic systems are
calculated, showing that the algorithm works correctly.
Finally, in Sec. IV some conclusions are given.

II. METHODS

A. Atomic and molecular calculations

Hirshfeld-I calculations require EDDs as input. These
can be obtained from electronic structure calculations
using standard solid state or quantum chemical codes.
In this work we have chosen to perform these calcu-
lations within the DFT framework using the projector
augmented wave (PAW) approach for the core-valence
interaction and the local density approximation (LDA)
for the exchange-correlation functional as implemented
in the VASP code.33,34 The kinetic energy cut-off is set
at 500 eV and the k-point set is reduced to the Γ-point for
molecular and atomic calculations. For the bulk materi-
als sufficiently converged k-point sets were used. To opti-
mize the geometry of the molecules and periodic materi-
als a conjugate gradient algorithm is applied. For molec-
ular calculations only the atom positions are optimized,
for bulk materials the cell parameters are optimized si-
multaneously. All molecules are placed in periodic cells
of 20.0×21.0×20.5Å3, which provide a sufficiently large
vacuum region between periodic copies of the molecules,
to prevent interaction.

Hirshfeld-I data computed using the approach detailed
in the present study, are compared to those obtained us-
ing more common molecular calculations of AIM prop-
erties. For the set of 168 neutral molecules previously
studied by Bultinck et al.,9,35 geometry optimization
and Hirshfeld-I charge calculations are performed at the
Local Spin Density Approximation36,37 level with the
Slater exchange functional38 and the VWN5 correlation
functional39 as implemented in Gaussian-03.40 Numerical
integrations are carried out using Becke’s integration grid
with 170 angular points in the Lebedev-Laikov grid.41,42

The Hirshfeld-I charges are considered converged if the

largest change in charge of any atom is below 0.0005e.

B. Hirshfeld methods

The basic idea behind the Hirshfeld method,7 also
known as the stockholder method, is that the AIM share
the electron density in each point of space. This means
that the AIM EDD becomes a weighted partition of the
molecular EDD. Formally this can be written as:

ρmol(r) =
∑

A

ρAIM
A (r)

ρAIM
A (r) = wH

A (r)ρmol(r) ∀r (1)

with
∑

A

wH
A (r) ≡ 1,

with ρmol(r) and ρAIM
A (r) the EDDs for the molecule and

the AIM. All sums are taken over the entire set of AIM,
and wH

A (r) is the Hirshfeld weight function for atom A.
From these equations the Hirshfeld weight can be written
as:

wH
A (r) =

ρAIM
A (r)

∑

B ρAIM
B (r)

. (2)

Since the ρAIM (r) are the EDDs sought, they cannot be
used as input. The Hirshfeld method circumvents this
problem by using spherically averaged reference state
atomic EDDs ρ◦X(r). In the original paper by Hirsh-
feld the neutral atomic ground state is used as reference
state.7 When summing these isolated atomic EDDs over
all AIM, one gets the so-called ‘promolecular ’ EDD in-
stead of the actual molecular EDD:

ρpromol(r) =
∑

B

ρ◦B(r). (3)

It is then assumed that the difference between this pro-
molecular EDD and the actual molecular EDD has only
little influence on the Hirshfeld weight wH

A (r). As a result
one can write the EDD of an AIM A as:

ρAIM
A (r) =

ρ◦A(n◦

A, r)

ρpromol(r)
ρmol(r), (4)

where the population of the atom A is given by n◦

A. In the
original Hirshfeld approach, neutral atoms were used as
reference. This, however, has been identified by several
authors to be a major weakness of the method as chang-
ing the choice of the promolecular atom charges can have
a highly significant effect on the resulting AIM2,3,9,43,44

From eq.(4) it is easy to understand that the result-
ing ρAIM

A (r) will tend to be as similar to ρ◦A(n◦

A, r) as
possible1,9,45, explaining why the Hirshfeld populations
strongly depend on the choice of reference atomic EDDs.
Fortunately, this problem can be resolved by using the
iterative Hirshfeld-I scheme.8,9 For each iteration i, the
obtained ρAIM

A (r) are used to calculate the population
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ni
A of each atom A. The (spherically symmetric) EDD

ρi
A(ni

A, r) of a free atom A with population ni
A is then

used as atomic EDD in wH
A (r). For each iteration the

new promolecular density ρi
promol(r) is obtained by sum-

ming the density distributions ρi
A(ni

A, r) for all atoms of
the molecule. This setup is independent of the initial
choice of atomic EDDs and the convergence of the it-
erative scheme is determined by the convergence of the
populations of the AIM.46,47 Note that the first step in
this scheme usually corresponds to the standard Hirsh-
feld method with n◦

X = ZX . At this point it is impor-
tant to note that the EDDs ρAIM

A (r) and ρi
A(ni

A, r) will
generally be different, despite having the same popula-
tion. ρi

A(ni
A, r) is constructed as a spherically symmetric

EDD, whereas ρAIM
A (r) is a weighted part of the molecu-

lar EDD. The resulting EDD will generally be not spher-
ically symmetric but show protrusions along the direc-
tions bonds are formed.

The extension of the Hirshfeld and Hirshfeld-I meth-
ods from molecules to bulk and other periodic materials
is quite trivial from the formal perspective. The main
problem is located in the fact that a bulk system is con-
sidered to consist of an infinite number of “atoms in the

system”(AIS). Calculating the atomic electron densities
for all AIS can, for a periodic system, be reduced to only
the atoms in a single unit cell since all periodic copies
should yield the same results.

In addition to this, also the summation limits in
Eqs. (2), (3) and (4) change. Where for molecules the
sum over B is a finite sum over all AIM, it becomes an
infinite sum over all AIS. Because atomic EDDs drop ex-
ponentially, the density contribution to the “prosystem”

EDD ρprosys(r) =
∑AIS

B ρ◦B(n◦

B , r) of atoms at larger
distances becomes negligible. This allows us to truncate
the infinite sum to include only the atoms within a cer-
tain ‘sphere of influence’ (SoI), i.e. all atoms of which
the contribution to the prosystem EDD is not negligible.
Within the iterative Hirshfeld-I scheme we then get:

w
H,i
A (r) =

ρi−1
A (ni−1

A , r)
∑SoI

B ρi−1
B (ni−1

B , r)
∀A ǫ unit cell (5)

where

SoI
∑

A

w
H,i
A (r) ≤

AIS
∑

A

w
H,i
A (r) ≡ 1 ∀r, (6)

with i indicating the iteration step, and ρi
A(ni

A, r) the
atomic EDD for an atom A with a population ni

A given
by

ni
A =

∫

w
H,i
A (r)ρsystem(r)dr, (7)

where ρsystem(r) is the EDD of the periodic system.

C. Spatial integration of the population

In chemistry, due to the exponential decay of the elec-
tron density of atoms and molecules, and due to the sharp
cusps present in EDDs at the atomic nuclei, atom cen-
tered grids are widely and successfully used. This makes
them ideally suited for integrations such as given in Eq.
(7). The multicenter integration scheme proposed by
Becke splits up the full space integration into a set of
overlapping atom centered spherical integrations.41 To
solve the problem of double counting in the overlapping
regions a weight hA(r) is given to each point in space for
every atom A in the system, such that

AIS
∑

A

hA(r) ≡ 1 ∀r. (8)

This weight function indicates how much a point ‘be-
longs’ to a certain atom A. The weight function can be
binary, when the space is split up in Voronoi or Wigner
Seitz cells,48,49 or smoothly varying, as is the case in the
Becke scheme.41 As a result, an integrand F (r) can be

decomposed as F (r) =
∑AIS

A hA(r)FA(r) and the full
integration becomes

I =

∫

F (r)dr =
AIS
∑

A

∫

hA(r)FA(r)dr, (9)

where the sum over all AIS is again an infinite sum. How-
ever, in numerical implementations for periodic systems,
the exponential decay of the atomic EDD allows us to
truncate both the infinite sum and integration region
of Eq.(9), without significant loss of numerical accuracy.
The sum can be reduced to contain only the atoms in-
cluded in the SoI of atom A (orange circles in Fig. 1),
because only these atoms contribute significantly to the
density in the integration region around atom A. In ad-
dition, the integration region for all atoms in the SoI can
be reduced even further, without loss of accuracy, to only
the region that overlaps with the spherical integration re-
gion of atom A (blue shaded disc in Fig. 1).

D. Grid stored electron densities and frozen core

pseudo-potentials.

In periodic systems, the use of PBC allows one to re-
duce the system size dramatically. For bulk materials this
even allows simple systems, such as face-centered cubic
Cu or Ni, to be represented using single atom unit cells.
A useful side effect of such reduced cells is that it is easily
possible and relatively cheap to store the EDD ρsystem(r)
on a three dimensional grid covering the unit cell, and
thus fully describing the entire infinite system. The use
of such precalculated electron density grids speeds up
the Hirshfeld method significantly, since there is no more
need to calculate the electron density at any given grid
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FIG. 1: (color online) Schematic representation of the integra-
tion scheme used for a linear periodic system of atoms (green
discs). The black rectangle indicates the unit cell, and the
circles indicate the boundaries of the spherical integration re-
gions. The spherical integration regions for the atoms in the
sphere of influence (SoI) of atom A are shown in orange, those
outside are shown in grey. All integrations can be limited to
the blue region (or sections thereof) around atom A (see text).

point starting from the wave function of the system. This
also makes the implementation independent of the code
used to generate the electron density.50 The drawback,
however, is a slightly reduced accuracy. Since the elec-
tron density grid has a finite resolution, interpolation be-
tween the stored grid points is needed. This effect is dis-
cussed in the following section.

In chemistry, it is usually sufficient to consider only
the valence electrons to describe the interactions between
atoms. The core electrons are often considered inert as
a result, and are kept frozen during calculations, greatly
reducing the computational cost for heavy atoms. In the
PAW approach an all electron frozen core contribution
is used. This has two small but interesting side effects
on the calculated radial charge distributions. Firstly, the
integrated charge equals the number of valence electrons
only, since the core electrons are not explicitly treated.
Secondly, the resulting radial profile is not necessarily
monotonically decreasing, showing a minimum or even
negative values at the core of the atom (e.g. Fig. 4).
The origin of this behavior lies in the practical implemen-
tation of the PAW pseudo-potentials.33,34 By using the
same pseudo-potentials for generating the atomic EDDs
and the EDD of the system under study, however, no er-
rors are introduced since both systems contain the same
frozen core contribution. Furthermore, it is known that
for inorganic compounds, such as oxides, the oxygen
atoms artificially absorb core electron density of (tran-
sition) metals. For this reason recent other Hirshfeld-I
work in solids focused on valence densities only.31

Because the EDDs used in our implementation of the
Hirshfeld-I method for periodic systems are valence only,
and as a result the core electrons are not accounted for
during the integration of the AIM densities, we implic-
itly add the core electrons exclusively to their respective
atoms. On the one hand, this is fully in line with an
atomic model where only the valence electrons are as-
sumed to be involved in chemical interactions, such as
bond formation. On the other hand, this can also be
derived from the Hirshfeld weights defined in Eqn. (2).
Consider the atomic EDD as the sum of the core and the

valence densities, then Eqn. (2) can be written as:

wH
A,cv(r) =

ρAIM
A,core(r) + ρAIM

A,val(r)
∑

B

(

ρAIM
B,core(r) + ρAIM

B,val(r)
) . (10)

For these atomic densities it is reasonable to assume that
for a given atom A the core electrons are contained within
a certain core region rA,core. For any r > rA,core this
means ρAIM

A,core(r) is practically zero, and for r < rA,core

it is reasonable to assume ρAIM
A,core(r) ≫ ρAIM

A,val(r) >

ρAIM
B,val(r). As a result, Eqn. (10) can in both regions

be reduced. If r < rA,core:

wH
A,cv(r) =

ρAIM
A,core(r) + ρAIM

A,val(r)

ρAIM
A,core(r) +

∑

B ρAIM
B,val(r)

∼=
ρAIM

A,core(r)

ρAIM
A,core(r)

= 1 , (11)

showing that within the core region the entire density is
fully claimed by the respective atom. Outside the core
region for r > rA,core one finds:

wH
A,cv(r) =

ρAIM
A,val(r)

∑

B ρAIM
B,val(r)

, (12)

which is the valence only version of the Hirshfeld weight
as it was defined in Eqn. 2. In Sec. III D, we will test
the validity of this assumption by comparing results of
valence only EDDs with those of all electron EDDs.

III. RESULTS AND DISCUSSION

It is clear that there is a growing interest in codes that
can provide atomic populations, however, only few true
bulk systems have been investigated using a purely atom
based Hirshfeld-I method (cf. sec. I).12,16–31 For this rea-
son most numerical tests in this work are performed on
molecules, though we will investigate the behavior of pe-
riodic systems at the end of this section. As a first test
system we have chosen the CO molecule. Its small size
makes it easily suitable for quick test calculations, and
its heteronuclear structure should result in a non-zero
charge transfer, at least at equilibrium distance.

Before proceeding, the different grids used in our cur-
rent setup of the Hirshfeld-I scheme for periodic sys-
tems are introduced. In this setup there are two ‘types’
of EDDs: that of the system and that of the free
atoms/ions, which are indicated in the following as the
subscripts ‘sys’ and ‘atom’, respectively. In this, ‘sys-
tem’ refers to the object of which we want to obtain
the atomic charges, and can thus refer to bulk materials,
wires, molecules or even single ions. The free atoms/ions
on the other hand refer to the single atoms which are
used for the generation of the reference radial EDD ρi

X

of eqn.(5). For both types there are two kinds of 3D grids
involved:
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1. Linear grids: Instead of using the analytical expres-
sion for the underlying wave function, we use the
EDDs stored by VASP on a finite numerical grid.
These grids span a single unit cell and use uni-
formly spaced grid points in direct coordinates.51

(cf. Sec.IIIA) In the remainder, the following no-
tation is used:

• Vatom : The linear grid for the reference
atom density distributions as obtained from
the atomic calculations.

• Vsys : The linear grid for the (poly)atomic
system under study

2. Spherical grids: These are atom centered grids
which are not limited to a single unit cell. The
spherical grids decompose into a radial and a shell
grid. In our current setup, a logarithmic grid is
used as radial grid, such that closer to the core
the grid is sufficiently dense to describe this re-
gion accurately. The number of radial points was
chosen to equal the numbers suggested by Becke.41

At each point in this radial grid, a shell is located
on which grid points are distributed according to
a Lebedev-Laikov grid.42 (cf. Sec. III B) The total
number of grid points S equals the sum over all
atoms of the number of radial points (RA) used
for that atom times the number of points on each
shell (σ): S =

∑

A RA · σ. In the remainder only σ
is varied to study the stability of the integrations.
Two three-dimensional spherical grids are distin-
guished:

• Satom : Total spherical grid used to generate
the reference spherically averaged radial den-
sity distribution for the atoms.

• Ssys : The multi-center spherical grid for the
system under study.

Note that the results of the Hirshfeld-I AIM analysis de-
pend directly on Ssys but also indirectly on Satom as this
determines the quality of the isolated atomic EDDs.

A. Electron density grids Vsys and Vatom

As was mentioned in the previous section, the use of
precalculated grid-based EDDs introduces small inaccu-
racies due to the need for interpolation between the ex-
isting grid points. The charge of the C atom in a CO
molecule as a function of the grid spacing used in the
Vsys grid is shown in Fig. 2. The different curves are
for different grid spacings used in the Vatom grids, from
which the atomic radial EDD ρi

C(ni
C , r) and ρi

O(ni
O, r)

are generated. It clearly shows the influence of both grids
to be independent, since all curves have the same shape.
Looking in detail at the exact numbers reveals that for
both grids the same accuracy is obtained (cf. Table I).
This means that the same change in population of the

FIG. 2: The Hirshfeld-I charge for the C atom in a CO
molecule as function of the Vsys grid resolution. The dif-
ferent curves show the results for the use of different resolu-
tions in the Vatom grids, used for generating the atomic radial
densities. In all molecular calculations we used spherical in-
tegration grids of 1202 grid points per shell.

TABLE I: Differences in the Hirshfeld-I populations shown in
Fig. 2. The presented change in population is the difference
in population going from Vsys/Vatom grids with I grid points
per Å, to grids with J grid points per Å. The respective grid
changes are indicated as ∆I

J .
Top table: Differences along the curves shown in Fig. 2.
Bottom table: Differences between the curves shown in Fig. 2.

Vsys Vatom (grid points/Å)
10 20 30

∆10

20 0.00738 0.00743 0.00744

∆20

30 0.00126 0.00128 0.00128

∆30

40 0.00049 0.00048 0.00049

Vsys Vatom

(grid points/Å) ∆10

20 ∆20

30

10 -0.00617 -0.00112

20 -0.00612 -0.00111

30 -0.00610 -0.00111

40 -0.00611 -0.00110

C atom in CO is observed when either the Vatom or the
Vsys grid is changed in an identical way; i.e. the change
in the population (in absolute value) of the C atom is
comparable when going from the black to the red curve
and when going from a point at 10 grid points per Å to a
point at 20 grid points per Å on the same curve in Fig. 2.
Figure 2 and Table I also show that quite a dense mesh
is needed to obtain very accurate results. Though this is
not a big problem for periodic systems with small unit
cells, it could become problematic for molecules which re-
quire big unit cells to accommodate the vacuum required
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FIG. 3: (a) Convergence behavior of the population/charge
as function of the number of grid points per spherical inte-
gration shell. For the C(black line) and O(red line) atom of
the CO molecule the value shown is the absolute value of the
difference between the calculated population and the calcu-
lated population using the most dense grid. In case of the C
atom in the diamond system (green line) the charge should
be zero, so the absolute value of the calculated charge is pre-
sented. (b) The total number of grid points as function of the
number of Lebedev-Laikov grid points per spherical shell.42

The large number of grid points for the diamond system, is
due to its large SoI (see text).

to prevent interaction between the periodic copies. The
same is true for high accuracy Vatom grids, which are
required for generating high accuracy atomic radial den-
sities. Fortunately, these must only be calculated once,
and the resulting high resolution radial densities can then
be stored in a small size library containing only r depen-
dent densities. In sec. III C the atomic radial EDDs are
discussed in more detail.

B. Spherical integration grids Ssys and Satom

Because the populations and charges in the Hirshfeld(-
I) approach are obtained by integration of the EDD of the
system, attention needs to be paid to the integration grid
used. The current implementation uses a multi-centered
grid, as was noted in Sec. II C. In this setup we used

Lebedev-Laikov grids on the spherical shells of the inte-
gration grids.42 Figure 3a shows the influence of the num-
ber of grid points per spherical shell on the accuracy; note
the log-log scale used. In general, a denser grid results
in a more accurate value for the population. However,
different atoms in the same system, and the same calcu-
lation can show different convergence, as is shown by the
curves of the C and O atoms of a CO molecule. To have
the population of the system atoms converged to within
0.001 electron a few hundred grid points per shell are re-
quired. For a molecular calculation the multi-center grid,
Ssys, only requires a few tens of thousands of grid points,
as is seen in Fig. 3b. However, a Hirshfeld-I calculation
for a bulk material such as diamond, which also has only
two atoms in its unit cell, requires a multi-center grid
Ssys with several tens of millions of grid points. This
difference by a factor thousand originates from the fact
that the SoI for the diamond unit cell contains a few
thousand atoms, which all contribute to the total num-
ber of grid points that need to be evaluated. This makes
it very important to reduce the SoI as much as possible
size without significant loss of accuracy.

C. Atomic radial EDDs

The atomic EDDs are calculated in a periodic cell
under PBC, and stored on 3D electron density grids
Vatom (cf. Sec. IIIA). The atomic radial EDDs are
obtained from these through spherical averaging of the
density distributions. Spherical averaging is done using
the Satom grid, with spherical shells containing Lebedev-
Laikov grids of 5810 grid points.42 The resulting distri-
butions for different C ions are shown in Fig. 4a. The
populations obtained by spherical integration over these
distributions shows that the correct populations are ob-
tained for the neutral and the positively charged ions. In
contrast, the negatively charged ions show a population
which is too small. Moreover, the curves in Fig. 4a in-
crease again for longer ranges. At first glance, one might
attribute this behavior entirely to the overlapping tails
of periodic copies in neighboring cells. However, a rough
extrapolation of the decreasing part of the curve (multi-
plied with the number of neighboring cells) shows a much
lower electron density at a distance of 10Å than is cur-
rently the case. The actual origin of the increase lies in
the fact that the plane wave approach used for the atom
calculations can only bind a limited amount of extra elec-
trons to a given atom. This amount varies from atom to
atom. As a result, it tries to place the excess electrons as
far from the atom as possible. Due to strong delocaliza-
tion inherent to plane waves these electrons are spread
out over the vacuum between the atoms, with the highest
electron density at the center of the unit cell; i.e. as far
from the atoms as possible.

It is interesting to note that this artifact is purely due
to the use of plane waves, which try to smear out the
unbound electrons over the entire (empty) space. If one
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FIG. 4: Atomic radial electron densities ρA(r) calculated from grid stored atomic charge distributions. (a) Radial electron
densities for different carbon ions obtained from charge distributions in a cubic periodic unit cell of 20.5 × 20.5 × 20.5Å3.
The populations (pop) given of each ion are calculated by spherical integration of this radial distribution. (b) Radial charge
distributions for two negative carbon ions obtained from the same size periodic unit cell as (a), but with different grid spacings:
210, 420, and 630 grid points per 20.5Å. (c) Radial EDDs for different hydrogen ions. For the H− and H2− ions the results for
different unit cell sizes are compared: 20 × 20 × 20Å3, 30 × 30 × 30Å3, and 40 × 40 × 40Å3.

uses a (finite) Gaussian basis set instead, the additional
electrons are ‘bound’ by definition through the basis set
used, even if these electrons should not be bound to the
atom anymore. In addition there looms also a concep-
tual dilemma: should one use such ‘artifacts’ as reference
states or should one avoid them and restrict oneself only
to reference systems that can exist. For example, take
the O2− anion. In the gas phase, the second electron
is unbound by over 8 eV and one may suggest to use
the O – electron density instead. However, the computa-
tional repercussion of this would be that the Hirshfeld-
I method would become unstable for systems where a
higher charge is found than is available as ground state
free anion. This behavior and conceptual dilemma is not
unique to Hirshfeld-I. Other approaches using external
reference atomic densities suffer it too, since it is inherent
to the generation of external atomic reference densities
(e.g. DDEC-code,12 although this is not investigated by
those authors). Some other approaches, like the iterative
stockholder approach (ISA) of Lillestolen and Wheatley,
appear to sidestep this dilemma by generating reference
atomic densities as part of the iterative process.10,11 The
drawback, in comparison to Hirshfeld-I, of such an ap-
proach is that the transferability of the reference atoms
is lost. Also, the physical meaning of the reference atom
in ISA becomes unclear. On the other hand, the ISA
approach shows that the reference atomic densities are
to be considered first and foremost ‘tools’. This should
alleviate the pressure on our conceptual conscience a lit-
tle. Returning to the atomic reference densities used in

Hirshfeld-I, it is possible to define them as the density of
free ions in the gas phase. This definition is then softened
such that also useful densities can be obtained beyond
the range of ground state ions in the gas phase. This can
be done in several ways: using meta-stable anion densi-
ties, binding the additional electrons through the basis
set (Gaussian approach), or keeping the shape-function
of the first anion and scaling it in an appropriate way
such that the required number of electrons is found on
integration. These last two methods correspond to the
approaches presented at the beginning of this section.

From the modeling point of view one might prefer this
latter type of pragmatism over the former, since we are
interested in the EDD of the electrons for ‘free ions’, ir-
respective of their bound or unbound nature. Later in
this section we will show how this delocalization problem
can be solved in a simple way.

Fig. 4b shows that this artifact is independent of the
resolution used for the Vatom grid, as the different curves
nicely overlap. Fig. 4c shows the influence of the periodic
cell size on this artefact. In case of the presented hydro-
gen ions, it shows that using a cubic periodic cell with a
side of 20Å, the curves for H− and H2− coincide in the
short range region. Moreover, they don’t show the ex-
pected exponential decay, and increase sharply at longer
range. Using a larger unit cell appears to solve these
problems: firstly, the radial distributions for the two an-
ions become distinguishable, and show the expected ex-
ponential decay. Secondly, the point where the excess
electrons start to interfere noticeably is pushed back to
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FIG. 5: Correlation plots of the charges obtained using the
periodic Hirshfeld-I implementation and the standard all elec-
tron molecular implementation: (a) using the atomic radial
density distributions of set R2 with the corrected tails, (b)
using the R3 set with the corrected tails and normalized dis-
tributions assuming correct shape functions, and (c) using
the R4 set with corrected tails and anion distributions nor-
malized assuming piecewise linear interpolation of fractional
densities (see text). In each case the VASP optimized geom-
etry was used for the VASP based Hirshfeld-I calculations,
while Gaussian optimized geometries were used for the refer-
ence calculations.

a larger distance. At this point it is interesting to note
that for the DDEC-code this problem is not mentioned,
although the references densities in the c1 method appear

to be obtained in the same fashion as presented here.12

Furthermore, from Fig. 4 it is clear that large unit cells
are required for calculating correct radial reference densi-
ties for anions. For both C and H anions it is shown that
a significant charge density is still present at a distance of
7–10Å from the nucleus making unit cells of 20× 20× 20
Å3 necessary to prevent additional overlap errors.

This type of behavior is seen for all atom types investi-
gated, positive up to neutral ions give the expected radial
distributions, while the negative ions seem hampered by
the fact that only a fraction of the additional electrons
can be attached to the atom. Fluorine and chlorine are
in this respect exceptional since for these atoms also the
F− and Cl− ions give good distributions and populations.
This could be considered a result of the high electron
affinity of these elements.

We find that for most negatively charged ions the
populations are too small.52 As a result, the calculated
Hirshfeld weight wH

A (r) for a negatively charged AIM
A is underestimated. The easiest way to compensate
for this discrepancy is by scaling these specific distri-
butions such that the correct population is found after
integration. This way the shape function of the curve
is maintained,53,54 but the resulting weights wH

A (r) in-
crease. Another possible approach is based on the as-
sumption that the fractional density is piecewise linear
between integer charges.9,55,56 This gives rise to an al-
ternative way of normalizing the anion radial densities
to present the correct integer charges. To investigate the
effects of such a normalization and the erroneous tails
shown in Fig. 4, we compare the results of four types
of atomic radial density distributions. To that end, the
reference set of molecules previously used in Hirshfeld-I
studies by Bultinck et al.9,35 is used. This set consists
of 168 neutral molecules containing only H, C, N, O, F,
and Cl.

The first set of atomic radial EDDs, called R1, con-
tains the density distributions as shown in 4a, where
the radial distribution is obtained from a periodic cell
of 20 × 20 × 20Å3.

For the second set, which is referred to as R2, we have
combined these results with the results from a periodic
cell of 40 × 40 × 40Å3 but with a lower grid resolution.
In this case, the central part of the radial distribution is
taken from the 20 × 20 × 20Å3 unit cell with the high
resolution grid and connected to the tail part obtained
from the 40 × 40 × 40Å3 unit cell. As a result, the high
accuracy for the center part of the distribution is main-
tained, and the tail is corrected through the removal of
the delocalized electron contribution. Note that for these
distributions, the curves are limited to a distance of 10Å
from the core, i.e. the same maximum radius as is avail-
able from the 20 × 20 × 20Å3 periodic cells. Because
the excess tail electrons are not included anymore, the
spherically integrated populations of the negative ions
are slightly smaller than they are for the R1 set.

For the third set, R3, the same procedure as for R2
is used, but this time the curves are normalized for the
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negative ions such that the correct population is given on
spherical integration of these radial EDDs while retain-
ing the original shape function.

The fourth set, R4, is obtained using the same pro-
cedure as for R2, fixing the tail part, and like R3 the
resulting curves are then normalized for the anions. In
this case, however, the starting assumption for this last
step is that the fractional density is given by:

ρ(n + x, r) = (1− x)ρ(n, r) + xρ(n + 1, r) nǫN, xǫ[0..1],
(13)

where n+x gives the fractional population. In the present
situation, ρ(n, r) represents the density distribution of
the neutral atom, and ρ(n + x, r) the obtained density
distribution for the anion. Note that for the ρ(n + x, r)
distribution the spurious tail has already been fixed at
this point, resulting in the expected exponentially de-
creasing tail. Rewriting Eqn. 14 gives:

ρ(n + 1, r) =
ρ(n + x, r) − (1 − x)ρ(n, r)

x
nǫN, xǫ]0..1].

(14)
The resulting ρ(n + 1, r) yields the full anion charge of
n + 1 upon spherical integration.

To test the accuracy of the results obtained in our peri-
odic implementation using these four different atomic ra-
dial density distribution sets, we compare the results for
a large benchmark set of molecules with those obtained
by a Hirshfeld-I implementation based on a molecular
program (cf. Sec. II A).

First, two sets of calculations are performed to check
the influence of the geometry on the results. The first
set used the optimized geometries obtained from Gaus-
sian calculations, and the second set used optimized ge-
ometries obtained through VASP calculations. For both
sets the R1 atomic radial distributions are used. Table
II shows that the resulting correlations are nearly iden-
tical, despite the small differences in geometries for the
two sets. Although the correlation coefficients r can be
considered reasonable, the spread on the C and N data
points is quite large. Furthermore, the slope of the linear
fit of the C and N data is much too big. In both cases
the intercepts are acceptably small.

Looking at the effect of fixing the tail of the atomic dis-
tributions, through the use of the R2 set of atomic radial
density distributions, we see a slight increase in the slope
for the C and N data, but in general the obtained values
for the correlation, intercept and slope remain compara-
ble to the previous sets of calculations. For the results
obtained with the R2 radial distributions, Table II also
shows the standard deviation of the difference between
our calculated results and those of the reference data.
The values of these standard deviations are similar for
the first two sets, which are therefore not shown. Ta-
ble II shows the deviation for the C and N data sets to
be one order of magnitude larger than for the other ele-
ments. It is unclear to the authors why specifically these
two elements show such a bad behavior. Looking at the
underestimation of the atomic population for the mono-

FIG. 6: Comparison of Hirshfeld-I charges for a set of 168
molecules using pseudo valence densities (method R4) and all
electron (AE) valence+core densities.

valent anions we find an error of roughly 0.5e for H and
N, and 0.3e for C and O. On the other hand for F and
Cl an underestimation of 0.1 and 0.0e, respectively, is
found. The only aspect in which C and N differ from the
other elements is that both can show large positive and

negative charges.
The correlation results of the R3 atomic radial den-

sity distributions show a clear improvement over the pre-
vious results. For each data set the slope is closer to
unity, though the intercepts remain as before. Especially
the C and N results show a large improvement. Their
standard deviation gets halved which is clearly visible in
the correlation plots in Fig. 5a and b. This immediately
shows that the simple scaling used for fixing the under-
estimated population due to the delocalization problem
does not introduce large artifacts. In contrast, it actu-
ally suggests that the shape function of the radial EDD
of the negatively charged ions contains roughly the same
information as the Gaussian all electron EDD.

The results obtained with the R4 set show even better
results. The correlation plot in Fig. 5c shows improved
slopes for the C and N data. The slopes presented in
Table II are closer to unity for nearly all elements, while
small values for the intercepts are retained. The corre-
lation and the standard deviation, however, have stayed
roughly the same in comparison to the results of the R3
set. This shows that the R4 set can be used as a good
approximation for the gaussian all electron EDDs.

D. Inclusion of core electrons

From Eqs. (10)–(12) it was deduced that the atomic
core density can be exclusively added to the atom it orig-
inates from. Furthermore, it was show that only the va-
lence electrons are shared between different atoms, giving
rise to the obtained atomic charges, in line with chemi-
cal intuition. To test the validity of this deduction, we
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TABLE II: The fitting and correlation results for the different sets of radial EDDs used in Hirshfeld-I calculations for a set of
168 molecules. The molecular geometries are either optimized with Gaussian or VASP. The radial distributions R1 are the
default distributions obtained from VASP atomic density distributions. The radial distributions R2 contain a fix for the tail
of the distribution, and the radial distributions R3 contain a fix for the tail of the distributions and in addition the resulting
distributions are normalized to give the correct number of electrons (see text). The radial distributions R4 contain the same tail
fix as R2 and R3, but the normalization makes use of the assumption that fractional densities show a piecewise linear behavior
(see text). a and b are the slope and the intercept of the linear fit. r is the correlation with Gaussian molecular results, and σ

gives the standard deviation.

Gaussian geometry VASP geometry
R1 R1 R2

a b r a b r a b r σ

H 1.187 −0.014 0.940 1.208 −0.019 0.944 1.185 −0.008 0.933 0.026
C 1.353 0.020 0.966 1.344 0.026 0.970 1.439 0.020 0.963 0.181
N 1.454 0.026 0.978 1.455 0.018 0.979 1.483 0.025 0.975 0.154
O 1.131 0.066 0.992 1.123 0.057 0.991 1.152 0.064 0.992 0.031
F 1.110 0.064 0.982 1.150 0.072 0.977 1.197 0.070 0.981 0.011
Cl 1.117 −0.009 0.979 1.124 −0.018 0.980 1.110 −0.013 0.966 0.015

VASP geometry
R3 R4

a b r σ a b r σ

H 1.109 −0.021 0.979 0.016 0.997 −0.016 0.980 0.014
C 1.131 0.014 0.989 0.086 1.027 0.003 0.991 0.057
N 1.161 0.033 0.995 0.072 0.967 0.052 0.995 0.031
O 1.025 0.048 0.993 0.019 0.947 0.042 0.984 0.027
F 1.162 0.071 0.987 0.009 1.131 0.064 0.974 0.013
Cl 1.072 −0.018 0.993 0.007 1.024 −0.032 0.979 0.011

have calculated the atomic charges for the set of bench-
mark molecules using the total all electron densities, and
compared the results to those obtained with the R4 ref-
erence densities. Reference all electron core and valence
densities are obtained in a similar way as before, and are
summed to provide full all electron reference densities.57

The same is done for the system EDDs, i.e. all elec-
tron core and valence densities are added to result in full
all electron EDDs. As can be seen in Fig. 6, the ob-
tained Hirshfeld-I charges for the valence calculations of
the previous section, show excellent agreement with the
full all electron results. The differences in the obtained
atomic charges are generally below 0.01 e, and always
smaller than the differences due to the use of a too coarse
Vsys grids. This clearly shows the assumption based on
Eqs. (10)–(12) is a valid one to make.

E. Periodic systems

In this final section some actual periodic systems are
considered. The choice of the example systems is such
that they can be used to verify that the obtained results
are reasonable. As such these systems are in essence
quite trivial. If they were not, then any results presented
would be meaningless numbers, unless reference values
are available in literature, of which there are at the
time of writing very few. One might be tempted to
use indirect ways of trying to verify the results (e.g.
ESP fitting), but this generally complicates matters and

FIG. 7: Ball-and-stick representations of (a) the cubic dia-
mond super cell, (b) the graphene sheet (unit cell indicated
with black parallelogram), (c) graphite (unit cell indicated) in
black, (d) the cubic CeO2 super cell, and (e) the Ce2O3 unit
cell. The black, red and yellow spheres indicate the positions
of the carbon, oxygen and cerium atoms,respectively. The in-
equivalent C atoms in the graphite structure are indicated as
A and B. The B atoms are always located at the center of
the hexagons of the neighboring sheets. The inequivalent O
positions in Ce2O3 are indicated as 1 and 2.
The ball-and-stick representations are generated using the
VESTA visualization tool.58

obfuscates the validity of the results. In addition, small
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simple systems also keep the obtained results clear. For
these reasons we have chosen the systems presented
below. Their structures are presented in Fig. 7: the
systems of choice are diamond, graphene, graphite,
CeO2, and Ce2O3. The diamond and graphene systems,
have the property that all C atoms are equivalent, which
should result in zero charges on all atoms. Graphite is
quite similar to graphene, however, two inequivalent C
positions are present (cf. Fig. 7c). The ceria systems on
the other hand are chosen for the presence of Ce atoms
with different valency; tetravalent Ce in CeO2 and triva-
lent Ce in Ce2O3. Note that for both systems the same
Ce pseudo-potential is used. Furthermore, in CeO2, the
O ions are all equivalent, while in Ce2O3 the Ce ions
are equivalent but the O ions are not, only two of them
are equivalent. Furthermore, for Ce2O3 we consider
both the ferromagnetic (FM) and anti-ferromagnetic
(AF) configurations, allowing us to check how strongly
different spin-configurations influence the results in this
system.

For all these systems we use the radial atomic EDDs
of the R3 set, with the Satom spherical integration grids
containing 5810 grid points per shell. Table III shows the
k-point sets used for the periodic systems, the number
of atoms per unit cell and the number of atoms included
in the SoI. The grid point separation for the Vsys grid

for each of these systems was set to ≤ 0.01Å. The
Hirshfeld(-I) populations are calculated using spherical
integration grids Ssys with 1202 Lebedev-Laikov grid
points per shell.

The large number of atoms in the SoI with regard
to the small unit cell sizes might make one wonder if
this method can efficiently be used for larger (more
interesting) systems. Due to the very nature of the SoI
it are the small unit cells which have the highest cost
per system cell atom. As the system cell grows, the
relative weight of the SoI decreases and as a result it
becomes relatively cheap to handle large supercells. This
is clearly demonstrated in Fig. 8 where the scaling of the
CPU time and the SoI is presented for a set of diamond
system cells of varying size. The smallest cell is the unit
cell containing 2 atoms, while the largest cell is a super
cell of 128 atoms. Because our implementation does not
make use of symmetry, a system containing 100 equiva-
lent atoms is treated the same way as one containing 100
inequivalent atoms. This allows us to use the diamond
system to test the scaling of the implementation. In
addition, since all supercells present ‘the same system’,
an equal number of Hirshfeld iteration are performed
for all supercells to obtain convergence, making them
ideally suited to check the scaling behavior. As can be
seen in Fig. 8, going from the unit cell to the largest
super cell the SoI roughly doubles, while the system
cell has become 64× larger. On the other hand, the
CPU time required for the Hirshfeld-I calculation is only
increased roughly tenfold, again showing the beneficial
trend for larger systems. From this it may be clear that
this method is well suited for large systems, and we

FIG. 8: Scaling behavior of the implemented Hirshfeld-I
method. Black discs show the SoI in function of the system
cell size (left axis), while the green squares show the required
CPU time normalized with regard to the unit cell calculation
(right axis).

TABLE III: k-point sets and the number of atoms in the unit
cell and SoI for the periodic systems under investigation. In
addition, also the total number of grid points used for the
spherical integration grid are given.

k-point set atoms per atoms in grid points
unit cell the SoI (×106)

diamond 21× 21× 21 2 6374 128
graphene 21× 21× 1 2 1276 22
graphite 21× 21× 11 4 4618 104
CeO2 8× 8× 8 3 3063 69
Ce2O3 FM 10× 10× 5 5 3009 77
Ce2O3 AF 10× 10× 5 5 3025 78

expect it could easily handle systems containing a few
thousand atoms in the system cell. (Although this might
not be the case for the solid state or quantum chemistry
code used to provide the required EDDs.)

However, to investigate the obtained results we opted
for small systems. The resulting Hirshfeld and Hirshfeld-
I charges for the inequivalent atoms are shown in Table
IV. It clearly shows the Hirshfeld values are closer to
zero (i.e. the charge at which the atoms are initialized)
than the Hirshfeld-I ones. This is the expected behav-
ior and its origin was discussed earlier by Ayers1 and
Bultinck et al.9 The diamond and graphene charges are
(nearly) zero as one would expect based on symmetry
arguments. This shows there are no significant artifacts
which introduce spurious charges due to the PBC. The
results for graphite are somewhat remarkable. Table IV
shows there is a small charge transfer going from the A
to the B sites. This could be understood as a conse-
quence of the very weak bonding between the A sites in
different sheets. For each C atom, three electrons are
placed in hybridized sp2 orbitals, where the fourth elec-
tron delocalizes in distributed π bonds. For the A site
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TABLE IV: Hirshfeld and Hirshfeld-I charges calculated us-
ing LDA generated EDDs. The geometries of the periodic
systems are shown in Fig. 7 where the labels for the inequiv-
alent atoms are given.

Hirshfeld Hirshfeld-I
(e) (e)

diamond C −0.00007 −0.00007

graphene C 0.00000 0.00000

graphite
CA 0.00113 0.00705
CB −0.00115 −0.00707

CeO2

Ce 0.59463 2.79393
O −0.30091 −1.40056

Ce2O3 FM
Ce 0.49081 2.32119
O1 −0.31318 −1.61119
O2 −0.33576 −1.51663

Ce2O3 AF
Ce 0.48575 2.32755
O1 −0.30825 −1.63062
O2 −0.33317 −1.51378

C atoms, the contribution to the AIS charge of these π
bond electrons is shared between the A sites of neighbor-
ing sheets. Since the C atom at the B site has no direct
neighbor on the neighboring sheet the contribution goes
entirely to this atom, resulting in the slightly negatively
charged C atom. Charge neutrality results in a slightly
positively charged C atom at the A site. Similar behavior
was observed by Baranov and Kohout59 using the Bader
approach. These authors, however, find a larger and op-
posite charge transfer, resulting in a charge of +0.08e and
−0.08e on the CA and CB atoms respectively. This dif-
ference could originate from the different methods used.

The ceria compounds show the behavior expected with
regard to equivalent/inequivalent atoms. The Hirshfeld-I
values presented in Table IV are comparable with Bader
charges presented in literature. Castleton et al. found
for CeO2 Bader charges of +2.3e and −1.15e for Ce and
O, respectively.60 The Mulliken atomic charges for Ce in
Ce2O3 presented in literature appear strongly dependent
on the functional used, varying from +1.29e for PBE up
to +2.157e for Hartree-Fock.61,62 The lack of Hirshfeld-I
values in the literature makes it difficult to make a true
qualitative assessment of our obtained results. However,
our results appear to show an overall qualitative agree-
ment with the results obtained from other AIM methods.
Table IV also shows there is a clear difference between
the tri-and tetra-valent Ce ions, also the different config-
urations for the O ions show distinctly different charges.
Looking at the relative atomic charges of the Ce and O
atoms in CeO2 and Ce2O3 we find the same relative order
as was found by Hay et al.61 and a difference in atomic
charge for the Ce ions of comparable size. The different
charges for the tri-and tetra-valent Ce ions might tempt
one to consider these charges as indicators of the oxida-
tion state if not the actual oxidation state of the atoms in-
volved. As a result one could then assume that the same

charge in a different configuration would be the result of
the same oxidation state (cf. concept of transferability).
Looking at the charges of the O atoms in both CeO2 and
Ce2O3 shows this is clearly not the case, since all O atoms
formally have the same oxidation state, while the calcu-
lated Hirshfeld-I charges vary 0.2 electron. The Hirshfeld
charges on the other hand show a much smaller variation
of only 0.03 electron. At this point, it is important to
stress that atomic charges do not, as opposed to what
is often assumed, directly reveal the oxidation state, nor
the valence of an atom. A Hirshfeld(-I) analysis, just like
a Bader analysis, can only reveal atomic domains. The
actual valence of an atom can be derived from the local-
ization indices, which correspond in the simplest form to
integrating twice the exchange-correlation density over
the same atomic domain.63,64 Delocalization indices are
obtained from double integration of the exchange corre-
lation density over two different atomic domains.65 Such
matrices have been less thoroughly explored in solid state
calculations.59

Another interesting point to note is that different spin-
configurations have little to no influence on the obtained
charges. This is seen when comparing the FM and AF
configurations of Ce2O3. This means that for generat-
ing the required system EDDs for Ce2O3 a non-spin-
polarized calculation suffices for the study of the system.
Note, however, that the single atom calculations used to
generate the reference radial densities are spin-polarized.

IV. CONCLUSION

We have presented an implementation of the Hirshfeld-
I method specifically aimed at periodic systems, such
as wires, surfaces, and bulk materials. Instead of
calculating the electron densities at each point in space
on the fly using the precalculated wave function of
the system, we interpolate the electron density from a
precalculated EDD on a dense spatial grid, speeding
up the calculation of the density significantly. The use
of such grids is possible because PBC allow for the use
of a relatively small grid to describe the entire system
accurately.

Unlike total energy calculations, the number of atoms
involved can not be fully reduced to only those in the
unit cell. Although, the populations only need to be
calculated for the atoms in the unit cell, the Hirshfeld-I
calculations require a large ‘sphere of influence’ contain-
ing a few thousand of atoms. By selecting only the grid
points which contribute significantly to the calculations,
the computational cost of the used multi-center integra-
tion grids can be substantially reduced.

We have shown that the uniform grids used to store
both the atom and the system EDDs have an equal in-
fluence on the accuracy of the final Hirshfeld-I calculated
populations, leading to the suggestion of building the
library of atomic radial EDDs using as dense as possible
grids. In addition, we have shown that both different
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atomic types and different chemical environments give
rise to a different convergence behavior as function of
the spherical integration grid.

The problems observed for the atomic radial EDDs
of negatively charged ions are solved in a simple way,
and we show that the introduced scaling of the dis-
tributions significantly improves the obtained results
for the Hirshfeld-I charges. The resulting values for
a benchmark set of 168 neutral molecules show very
good agreement with the values obtained by a previous
implementation of the Hirshfeld-I method aimed solely
at molecular systems.

In the final section we have investigated some periodic
systems to show the validity of our implementation.
For each of these systems the expected behavior of the

charges is observed. Because of their simplicity these
systems are ideal test cases for Hirshfeld-I implementa-
tions for periodic systems.
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