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Abstract
Due to its simplicity, the theory of KUBELKA -MUNK [1]
has found a wide acceptance for modeling the optical prop-
erties of light scattering materials. However, the concept
is not explicitly adapted to predict halftone prints on pa-
per. In this respect, a recent improvement was given by
BERG [2]. Our approach is an extension of BERG’s model
in order to reduce the gap between the mathematical de-
scription of the paper’s point spread function and the ex-
perimental results of simple reflectance measurements.

1. Introduction

Lateral light scattering is often modeled by a point spread
function (PSF). In the literature, several approaches of the
point spread function for paper are known. Most of them
were determined empirically, see for instance [3], or as-
sume a specific type of function [4, 5] but others are based
on numerical simulations [6, 7], microscopic reflectance
measurements [8], image processing [9], multi-flux the-
ory [10] or radiative diffusion [11].

The original theory of KUBELKA and MUNK [1] was
developed for light diffusing and absorbing infinitely wide
colorant layers. Due to its simple use and to its acceptable
prediction accuracy, this model is very popular in indus-
trial applications. The concept is based on the simplified
picture of two diffuse light fluxes through the layer, one
proceeding downward and the other simultaneously up-
ward. Instead of applying the KM-model on a colorant
layer, we adopt this theory for analyzing the light scatter-
ing inside paper printed with a halftone.

Halftone ink or toner prints consists of microscopically
varying transmittances and cannot be regarded as an in-
finitely wide layer. Incident photons being scattered into
the lateral direction can be re-scattered again in the original
perpendicular direction after traveling a period along the
extension of the paper. Consequently, the entrance point of
incident light differs form its exit point in general which is
well known as the YULE-NIELSEN [3] effect. Because of
the negligence of lateral light streams, the original concept
of KUBELKA -MUNK is not adequate for modeling optical
properties of halftone prints. To overcome this drawback,

BERG [2] has introduced isotropic light scattering into a
KM oriented approach. However, his model remains re-
stricted to two dimensions and disregards the influences of
brightened papers or surface reflections.

In this article we extend BERG’s differential equation
system to three dimensions. Especially, we analyze the
spectral absorption and internal reflections within the ink
or coating layers on both sides of a paper sheet. This is
done by an appropriate enhancement of the boundary con-
ditions of the differential equation system. Finally, we
adapt the model to brightened papers by considering the
fluorescence of the paper’s bulk.

The solution is given by an analytical, fourier trans-
formed description of the reflectance and transmittance
factors as a function of different, optically relevant con-
stants, in particular, the internal reflections, the transmit-
tance variations of the printed ink layer and the specific
scattering and absorbing factors.

2. Brightened papers

Basically, the point spread function of brightened papers is
affected by the included fluorescent additives. The sup-
plied brighteners absorb a certain energy of the radia-
tions invisible upper frequency band,the excitation spec-
trum [12]. A specific amount of that energy, defined by
thequantum yield, is then released by radiative relaxation
in a visible band,the fluorescence spectrum. This tech-
nique compensates the yellowish appearance of natural
non-brightened papers. But, as the emission of the fluo-
rescence spectrum happens in all space directions in the
paper’s body, it acts like a diffuse partial light source or
converter. By consequence, the brightening effect ampli-
fies the point spread function of the paper in the bluish
range of the visible light and must be taken into account
when analyzing the PSF. This is done in the analysis of the
following section.

3. Three Dimensional Scattering Analysis

First note that a circular illumination source together with a
circular detection sensor results in circular symmetric mea-
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surements. For that reason, the efforts can be reduced by
choosing polar coordinates for the problem formulation,
see Fig. 1. Letr andz be the radial and the vertical coor-
dinates, the azimuth is neglected due to symmetry.
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Figure 1: Considered optical fluxes in a cylindrical paper sec-
tion.

Considering a cylindrical ring of a paper sheet of total
thicknessD, we apply a spectral analysis of the up- and
downward oriented light fluxes (Mλ andEλ) as well as of
the lateral ones (Spλ andSmλ). Any light flux that enters
the infinitesimal volume element2πr dr dz from a specific
direction, loses a fractional amountσ ·2πr dr dz by scat-
tering andα ·2πr dr dz by absorption and by brighteners
excitation. At the same time, it gains an according amount
by scattering and by fluorescing from the other fluxes. As
it exits the volume element we can write for the case of
Eλ(r, z)

2πr · Eλ(r, z) dr = 2πr·Eλ(r, z+dz) dr−
2πr·(σdp+σdm+σdu+α)·Eλ(r, z+dz) dr dz +
2πr·(σpd+φf )·Spλ(r, z) dr dz +
2πr·(σmd+φf )·Smλ(r+dr, z) dr dz +
2πr·(σud+φf )·Mλ(r, z) dr dz ,

(1)

with the spectral paper parameters:

α specific extinction coefficient of the paper and of the
fluorescent additives according to [12, eq. 1],

σ1 2 specific scattering coefficient for a light beam
coming from direction1 and being scattered to
direction 2, used direction acronyms:down, up,
minus,plus,

φf normalized fluorescent spectrum, weighted by the
quantum yield [12, eq. 2].

For the remaining fluxesMλ, Spλ andSmλ similar bal-
ances can be derived according to Fig. 1 and Eq. (1). The

factor2πr can be canceled out of all of them. Note that in
a strong mathematical sense, the introduced optical con-
stants retain their validity only in the applied polar coordi-
nates. A verifying comparison of these parameters to es-
tablished ones from a cartesian system is therefore subject
to an appropriate parameter transformation. From a more
practical point of view, the physical relevance of these pa-
rameters is given by their correspondence with the empiri-
cal data.

Analog to KM and BERG, we assume a linear vari-
ation of the fluxes alongdr and dz which allows us to
ignore terms of higher order. Hence, applying a Taylor se-
ries expansion, we obtain a system of coupled linear partial
differential equations

∂Eλ(r, z)
∂z

= (σdp+σdm+σdu+α)·Eλ(r, z)−

(σpd+φf )·Spλ(r, z) − (σmd+φf )·Smλ(r, z)−
(σud+φf )·Mλ(r, z) ,

∂Mλ(r, z)
∂z

= −(σup+σum+σud+α)·Mλ(r, z) +

(σpu+φf )·Spλ(r, z) + (σmu+φf )·Smλ(r, z) +
(σdu+φf )·Eλ(r, z) ,

∂Spλ(r, z)
∂r

= −(σpd+σpu+σpm+α)·Spλ(r, z) +

(σdp+φf )·Eλ(r, z) + (σup+φf )·Mλ(r, z)+
(σmp+φf )·Smλ(r, z) ,

∂Smλ(r, z)
∂r

= (σmd+σmu+σmp+α)·Smλ(r, z)−

(σdm+φf )·Eλ(r, z) − (σum+φf )·Mλ(r, z)−
(σpm+φf )·Spλ(r, z) .

(2)

4. Boundary Conditions

Choosing adequate boundary conditions is a crucial task.
On one hand, they strongly affect the accuracy and the
complexity of the model. On the other hand, they build the
connecting link between pure mathematics and observed
physics.

We assume a circularly illuminated printed paper sheet
placed on a backing that has a spectral reflectance fac-
tor Rbλ

. Since the paper is a translucent media, the op-
tical conditions at the paper’s top and bottom boundaries
must be considered. In the proposed concept, whereas both
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faces can be covered by a coated or printed ink layer1 (see
Fig. 2), only top-facehalftoneprints are allowed. At these
interfaces, any light flux that passes through the piled lay-
ers are subject to multiple reflections [13]. To consider
this, we adopt the SAUNDERSONcorrection [14] which de-
termines the fraction of light being transmitted or reflected
by the paper’s interfaces2. At the bottom-face of the pa-
per’s bulk, we approximate the spectral fraction of light
reflected from the bottom coating and backing interface by
ρpb. In the case of transmittance measurements, the frac-
tion of light transmitted through the backing plate and the
bottom coating layer is approximated byτbp

ρpb = (ρi + τi ·τs ·
Rbλ

1− ρs ·Rbλ

)·T 2
bλ

, (3)

τbp =
τs ·Tbλ

1− ρi ·σud ·T 2
bλ

, (4)

with the spectral parameters:

ρs, τs Fresnel reflectance and transmittance of the coating-
air or ink-air interfaces,

ρi, τi corresponding internal Fresnel reflectance and trans-
mittance factors,

Tbλ
internal transmittance of the bottom-face coating or
inked layer.

Similarly, the top surface transmits into the paper a
fraction approximated byτap and a fraction out of the pa-
per approximated byτpa

τap(r) =
τs(r)·Ttλ

(r)
1− ρi(r)·σdu ·Ttλ

(r)2
, (5)

τpa(r) = τi(r)·Ttλ
(r) , (6)

with Ttλ
(r) the point transmittance of the top-face coating

or inked layer which could be a halftone print. SAUN-
DERSON applied his fractions to correct the “reflectance
R, which the sample would have if measured in a trans-
parent medium having the same index of refraction as the
sample”. Since we impose these corrections inherently on
the boundary condition, the ”reflectanceR” is replaced by
the ”reflecting” scattering coefficientsσud andσdu.

Further, in order to obtain an accurate fit of reflectance
measurements, a ”specular reflectance”ρap must be taken
into account. According to our experience, best results are
achieved by assuming:

ρap(r) = ρs ·Ttλ
(r)2. (7)

1In this article, only non-fluorescent and weekly scattering inks are
assumed.

2Generally, these optical layers are much thinner than the paper’s
body. Therefore, when analyzing the paper’s PSF, we neglect the lat-
eral spreading of the optical fluxes within these layers, which occurs due
to multiple internal reflections.
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Figure 2: Scheme of the considered boundary conditions.

Applying these corrections, the boundary conditions
for the reflectance factor of a paper sheet of thicknessD
are given by:

Mλ(r, 0) = ρpb ∗ Eλ(r, 0) , (8)

Eλ(r, D) = τap ·E0λ
, (9)

where∗ indicates a two dimensional convolution. Accord-
ingly, the boundary conditions for the transmittance factor
can be written as:

Mλ(r, 0) = ρpb ∗ Eλ(r, 0) + τbp ·M0λ
, (10)

Eλ(r, D) = 0 . (11)

Finally, the model for the measured reflectance and
transmittance factor can be obtained by solving the cor-
responding boundary condition problem and applying the
appropriate corrections:

Rλ(r) = ρap(r) + τpa(r) ∗Mλ(r, z)
∣∣
z=D

, (12)

Tλ(r) = τpa(r) ∗Mλ(r, z)
∣∣
z=D

. (13)

5. Paper Modulation Transfer Function

The type of the obtained partial differential equation sys-
tem Eq. (2) is the same as in BERG’s thesis. The sys-
tem can be simplified by a one dimensional Fourier trans-
form [15] along the radiusr. This permits to cancel the
third and fourth partial part of the transformed equation
system. Unfortunately, we have observed a difference to
BERG’s simplifying trace [2, Eq. 9.13–16] which makes it
difficult to compare the results directly.

E0λ
andM0λ

from Eq. (9 and 10) are set to1. For
solving the boundary condition problem Eq. (12 and 13),
only a semi-isotropic case is considered where all distract-
ing and all reflecting scattering coefficients are identical
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respectively:

σx = σs for x ∈ {dp, pd, dm, md, up, pu, um, mu} ,

σx = σr for x ∈ {ud, du, pm,mp} ,

For the semi-isotropic case we obtain the point reflectance
factor

Rλ(r) = ρap(r) + τap(r)·F−1
[
F

[
τpa(r)

]
· (14)

(e
2 D

√
c1ρ
c2ρ +1) ρpb c1ρ−(e

2 D

√
c1ρ
c2ρ −1) (c3ρ +ρpb c4ρ)

(e
2 D

√
c1ρ
c2ρ +1) c1ρ +(e

2 D

√
c1ρ
c2ρ −1) (ρpb c3ρ +c4ρ)

]
,

and the point transmittance factor

Tλ(r) = τbp ·F−1
[
F

[
τpa(r)

]
· (15)

2 c1ρ
e
D

√
c1ρ
c2ρ

(e
2 D

√
c1ρ
c2ρ +1) c1ρ

+(e
2 D

√
c1ρ
c2ρ −1) (ρpb c3ρ

+c4ρ
)

]
,

with:

ρ spatial frequency,

F the Fourier transform andF−1 its inverse.

and

c1ρ
= (α+2 σr+2 σs+φf )·[
(α+2 σr+2 σs+φf ) (α−3 φf ) (α+4 σs+φf )+

ρ2 (α+2 σs−φf )
]
,

c2ρ = ρ2+(α+2 σs−φf ) (α+2 σr+2 σs+φf ) ,

c3ρ
= −2·

[
ρ2 (σr+φf )+(α+2 σr+2 σs+φf )·[

2 σ2
s +σr (α+2 σs−φf )+(α+6 σs) φf +φ2

f

]]
,

c4ρ
= 2 ρ2 (α+σr+2 σs)+2 (α+2 σr+2 σs+φf )·[
2 σ2

s +σs (4 α−6 φf )+σr (α+2σs−φf )+

(α−2 φf )(α+φf )
]
.

(16)

As printed color layers behave like spectral light filters,
they can reduce the energy of the fluorescence spectrum of
the paper by absorbing a part of the excitation spectrum of
the fluorescent additives. In this case,φf must be multi-
plied by a factorδφf in order to diminish the fluorescent
spectrum.

Until now, it was impossible to find a closed inverse
transformation back into the original spatial domain. How-
ever, Eq. (14 and 15) are well suited for fast numerical
transformation by an inversefft routine. Actually, the ker-
nel of these equations can be interpreted as a Modulation
Transfer Function of paper.

6. Conclusion

For an accurate reflectance prediction of a halftone print,
we propose an extended method which is based on the con-
cepts of KUBELKA -MUNK and the thesis of BERG. By
taking the dominant optical scattering properties of com-
mon papers into account, it is possible to fit the model
for non-uniform color transmittances of the print. In the
present article, we introduce a mathematical description of
the paper’s point spread function, which can be fitted to re-
flectance and transmittance measurements of simple solid
patches.

In particular, we have estimated the numerical values
of the introduced coefficients for different papers and suc-
ceeded to fit numerical results of spectral measurements
with an accuracy of1% and less. This was performed by
applying a numerical transformation of the model and op-
timizing the coefficients in order to fit measurements of the
bare paper and of several prints of solid patches simultane-
ously.
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