
EXTENDINGNG LOGIC PROGRAMMING TO OBJECT PROGRAMMING :THESYSTEM LAP 

Herman ILINE & Henry KANOUI 

Institut International de Robotique et d'Intelligence Artificielle de Marseille 

13241 Marseille Cedex 1 France 

ABSTRACT 

Object oriented programming aims at code lisibility and 
conciseness via abstract data type declarations and takes 
advantage from setting the objects (ie data) in the center of the 
application, instead of procedures or demonstrations. 
Just as in Logic programming, where describing the properties of 
the solution of some problem is (theoreticaly) enough to allow the 
program to compute the solution, Object programming proceeds 
from the fact that purely declarative information leads to more 
procedural behaviour. 

It appears that Logic programming and Object programming 
are complementary in the sense that the first is very suitable for 
expressing subtle reasoning, but rather weak as a formalism for 
describing complex structures, and conversely for the second. 

These considerations led us, at the IIRIAM, to combine Logic 
and Object programming in order to use the advantages of both. 
Our research effort resulted In the system LAP, an extension of 
Prolog to object programming, giving a new dimension to the 
latter, through logic programming concepts: processing of 
partially known data and non determinism applied at the object 
level. 

The first part of this paper introduces the main 
characteristics of LAP, faced with the requirements of Al 
application development. The second part illustrates some of 
these capabilities through simple examples. 

IINTRQDUCTIQN 

Practical applications of Artificial Intelligence, and 
particularly Knowledge Based Systems (or Expert Systems) 
involve two key points: the representation of knowledge and 
reasoning modules; these will link together facts and expert rules 
to construct the solution of the problem in a dynamic process. 

In fact, faced with a concrete problem, at least two 
preliminary questions arise: 
- what is the nature of the domain to be examined, what are the 
entities which compose this domain, what type of relations link 
these entities? Answering this first series of questions will help 
us to decide which knowledge representation schema to adopt. 
- what kind of reasoning is to be performed on these entities? 
This will help to choose amongst inference engines and deduction 
methods. 

Moreover, considering these questions will allow us to 
determine where the expertise is located: do we have to perform 
very subtle reasoning on flat and independant facts or, on the 
contrary, are we in the presence of deeply interconnected 

entities, the expertise consisting in dealing with these 
interactions? In other words, is it the power of the reasoning 
modules or the ability to describe complex universes which 
determines the choice of the tools and techniques? 

In the second case, it is likely that object oriented 
programming will be a valuable tool to help in solving the 
problem. We can distinguish three levels of ambition of an object 
oriented programming language designer: 
- hierarchical modeling exploiting the inheritance mechanism. 
- communication between 'intelligent entities. 
- the construction of an abstract universe including specialized 
knowledge bases in order to reason on concrete objects. 

The first approach (almost purely technical), aims at code 
lisibility and conciseness via abstract data type declarations. The 
second one (more 'animated') takes advantage from setting the 
objects (ie data) in the center of the application, instead of 
procedures or demonstrations. The third approach (referred to as 
cognitive) considers abstract objects as nodes where pieces of 
knowledge are centralized. 
One could argue that the intelligence transmitted by this last 
approach proceeds from the fact that purely declarative 
information leads to more procedural behaviour, just as in logic 
programming where describing the properties of the solution of 
some problem is (theoreticaly) enough to allow the program to 
compute the solution. 

The execution of a program written in an object oriented 
language can be seen as a communication process between objects 
coming up from a hierarchical universe of abstract frames. 
During the life of an object, its dynamic image is kept consistent 
with the Image of every frame with which the object is 
concerned. 

Now, from a user's point of view, object oriented 
programming can be a valuable tool for: 
(a) Structuring (modeling) a domain; 
(b) Maintaining the consistency of the universe of frames; 
(c) Making some superficial deductions on this universe, using the 
inheritance mechanism; 
(d) Reasoning on this universe by activating more general 
inference mechanisms. 

Depending on the respective importance of these aspects, 
one can distinguish applications such as: 
(1) Structuring an abstract universe:, which invokes aspects 
(a,b) above; we are only interested in describing the universe. 
(2) Management of a domain of concrete objects; we are 
interested in exploiting the description of the universe by 
invoking aspects (a,b,c). 
(3) Expert systems which need, above all, reasoning capabilities 
taken from aspect (d). 

34 ARCHITECTURES AND LANGUAGES 



Applications of type (1,2) are most commonly achieved by 
object oriented programming. For applications of type (3) this 
approach eliminates from the knowledge bases all 'superficial' 
rules based on inheritance or directly derived from descriptive 
information attached to the objects. There only remain truly 
expert rules for which inference engines are still to be 
developed. To achieve this, object oriented environments based 
on algorithmic (C, Pascal) or even symbolic (Lisp) languages need 
a great deal of programming effort and are not well adapted to 
this purpose. Concerning the inference engines, those based on 
the production rules schema are very limited : the lack of 
semantics and the approximative modeling of reasoning are paid 
for an inflation of the number of rules and yet obtaining an 
uncertain (sometimes doubtful) result. 

On the contrary, since we aim to formalize reasoning, we 
must have recourse to the mathematical logic and theorem 
proving which led to the so-called 'logic programming' of which 
Prolog is the only effective implementation. This provides us 
with a powerful formalism based on the notion of relation, a very 
precise semantics, and deduction strategies allowing the 
manipulation, in a non deterministic way, of very general data 
structures (trees with variables). 
However, if Prolog is very suitable for expressing subtle 
reasoning, it is rather weak as a formalism to describe complex 
structures. This led us, at the IIRIAM, to combine logic and object 
programming in order to use the advantages of both. Our 
research effort resulted in the system LAP. 

LAP is an extension of Prolog to object programming, giving 
a new dimension to the latter, through logic programming 
concepts: processing of partially known data and non determinism 
applied at the abstract object level: 
• Objects and their slots are processed as true Prolog variables: 
definition of constraints on the values of object slots, processing 
of partially known objects. The non determinism of Prolog offers 
an elegant and efficient means for such an approach which allows 
a high degree of versatility compared with imperative 
implementation languages. 
• The query language of the objects data base is Horn-clause logic 
and is expressed in terms of relations to be satisfied (as in 
Prolog, ie without distinction between input and output 
arguments). 
• The deduction capabilities provided at the object level (facets 
and methods) are increased by the power of Prolog as an 
inference engine by itself, as well as a programming language. 

Thus, LAP reassembles concepts usually dispersed between: 
- relational data bases (relations between frames), 
- object oriented languages (parentship, inheritance, message 
passing), 
- inference engines (slot value deductions, facets and methods), 
- logic programming (non determinism, variables). 

In the second part of this paper, we will expand upon the 
main characteristics of LAP and show how they fit the 
considerations given above. This presentation is illustrated by 
examples given in Quintus-Prolog syntax. 

II THE MAIN CONCEPTS OF LAP 

LAP provides two distinct environments: the first one is for 
conceiving a universe of abstract frames, which we call models. 
In the context of this universe, the second environment controls 
the construction, evolution and reasoning of a realization, which 
is a set of concrete objects (or Instances) compatible with the 
universe's constraints. In the center of these two environments 
is the notion of a model and object image. 

To achieve this, LAP provides a set of library predicates 
for creating, modifying and maintaining the consistency of a 
universe of objects in which: 
- a concrete object is described by abstract models and inherits 
their generic properties. 
- An abstract model is part of a hierarchy ordered by the 
parentship link. 
- Consistency constraints, default reasoning, specific processing 
(methods) can be attached to a model and inherited by its 
instances. 
- An expert system application can be seen as a sequence of 
goals, formulated through a dialogue, and their demonstration. 

The image of a model results from: 
- its position in the graph of models which supports inheritance. 
- Its relationships with other models which is another means of 
structuring the abstract universe. 
- The declarative attachments: slots, their constraints and 
properties. 
- The procedural attachments: expert rules, facets, methods. 

The image of an instance is restricted to the relations with 
other objects, and values assigned to slots or deduced by expert 
rules or inherited from the models prototyping the instance. 

In LAP, the models, the slots and their properties, the 
facets, methods and relations are explicitly declared. Each 
declaration results in Prolog assertions. Facets and methods must 
be edited as Prolog clauses. 

A. Structural Concepts; the Graph of Models and the Relations 

A model is an abstract data structure corresponding to a 
class of objects in the modelized universe and defined by a set of 
common properties. A given model may have one or several 
father models (direct ancestors). Thus LAP allows multiple 
parentship at the model level. 

A parentship link between two models can be understood in 
two different ways: 
- Either this link indicates that the father-model is a super-class 
of the son-model. For example, the model 'motor-car vehicle* is 
a son of the model 'land vehicule'. 
- Or the father-model corresponds to a particuliar point of view 
of the son-model. For example, a 'motor-car' can be considered 
under two different points of view as 'transportation means' and 
'assembly of metal parts'. 
There is no fundamental difference between the two 
interpretations 'super-class' and 'point of view': in the two cases 
the son-model inherits all the characteristics attached to the 
father-model. However, the second interpretation will be 
preferred in those cases where we do not intend to create 
concrete instances of the model considered as 'point of view'. 

The universe is given a graph structure whose nodes are the 
abstract models (to which knowledge is attached) and the 
vertices, denoting the parentship links, are the only vehicles of 
inheritance. 

Iline and Kanoui 35 



In addition to parentship, two models can be linked in LAP by one 
or more binary relations (as classic relations in relational data 
bases).These relations are another way to structure the universe 
and give access to the linked objects. 

Let us now consider the example of a universe Including 
human beings, wild animals, and domestic ones. Here is a possble 
modelization of this universe with some 'natural' relations. 

The model and relation names are Prolog atoms. The models 
'human' and 'animal' are linked by the relation 
'has_favorite_anlmal\ the symmetric relation being 
'hasjnaster'. Equally the models 'man' and 'woman' are linked by 
the relations 'has_wife' and 'has_husband\ 
The model 'canary' has two father-models: 
- 'bird' interpreted as a super-class: every canary is a bird. 
- 'domestic.animal' will rather be interpreted as a point of view 
on 'canary'. 

In this example we do not intend to manipulate instances of 
'domestic_animar, but the associated point of view will be useful 
dealing with an instance of 'canary' or 'dog'. 
A similar remark can be made for the points of view 'male' and 
'female' for the models 'man' and "woman'. 

The data base can be constructed step by step by invoking 
LAP primitives. For example, 

| ?- deLmodel(canary,[bird,dome8tic_anlmal]). 

defines 'canary' as a descendant of the ordered set of models 
'bird' and 'domestic_anlma!\ Note that the order between 
ancestors is used in solving conflicts arising from multiple 
inheritance. 

The parentship links can now be interrogated by the 
primitive 'fat_son' which links a model to its direct descendants. 
For example: 

| ?- faLson(X.canary). 
X-bird ; 
X-domestic_animal ; 
no 

Now, if the model 'humanJbeing' is assumed, in order to 
define the binary relation 'has.jnaster' between 'humanJbeing' 
and 'animal*, we have to type: 

| ?- defjink(animal,[has_master,[0,1]], 
[hasjavorite_animal,[0,5]],human_being). 

yes 

which indicates that an animal has at most one master and 
introduces the symmetric relation 'hasjavorite': a human being 
has at most five favorite animals. 
Here, we just indicate the possibility that a relation can hold 
between humans and animals. The link will be effective at the 
instance level (in the concrete world) only. 

The primitive 'link' gives the relations which can link two 
models. For example: 

| ?- Hnk(animal,X,humanJ>eing). 
X-[animal,[ha8_ma8terf[0,1]],humanJ>eing] 

The term substituted for the variable X indicates the origin 
(through inheritance) of the link. If several links exist between 
'animal' and 'humanjbeing', they will all be printed. 

To know which models are directly linked (without passing 
through inheritance) by the relation 'has_master\ one could ask: 

| ?- faLson(dome8tic_animal,Y). 
Y-canary ; 
no 

| ?- faLson(X,Y). 
X-animal, Y-domestic_animal ; 
X-bird, Y-canary ; 
X-domestic_animalf Y-canary ; 

no 

It must be noticed that when invoking LAP primitives, as is 
usual in Prolog, there is no distinction between input and output 
arguments. All the substitutions for the free variables which 
satisfy the relation are enumerated by backtracking. This feature 
is not usual in other object oriented languages; it is directly 
inherited from the underlying Prolog system. 

One can also use the primitive 'anc.off which is a 
generalization of 'fat_son' and links a model to all its 
descendants, direct or not: 

| ?- anc_off(X,canary). 
X-bird ; 
X-living_creature ; 
X-modele_type ; 
X-domestic_animal ; 
X-animal ; 
no 

The order in which the results are given corresponds to a 
depth-first search strategy as in Prolog. This order is important: 
recall that the multiple inheritance schema can lead to a conflict 
when some Information Is searched for among the ancestors of a 
model. This conflict is solved by enumerating the ancestors by a 
depth-first strategy and retaining the first which provides the 
data searched for. 

36 ARCHITECTURES AND LANGUAGES 



I ?- link(X,[X,[has_ma8ter,AJ,Y],Y). 
X-anlmal, A«[0,1), Y-humanJ>eing ; 
no 

The existence of a relation between two models is 
transmitted to their respective descendants. So, to ask: "Which 
are the relations which link the model X, descendant of A, to the 
model Y, descendant of B?", one could use: 

| ?- link(X,[AtR,B),Y). 
X«animal,A-animal,R-[ha8_master,[0,1]], 
B-human__being,Y«human__being; 
X-domestic^animal.A-animal.R-Ihas^masterJO,!]], 
B«human_being,Y«human_being; 
X-canary,A-animal,R-[has_master,[0,1]], 
B-human_being,Y«human_being; 
X-dog,A-animal,R-[ha3_ma8ter,[0,1]], 
B-human_being,Y-human_being; 
X-wild_animal,A-animal,R-[has_master,[0,1]J, 
B«human__being,Y«human_being; 
X-animal,A-animal,R-[ha8_master,[0,1]], 
B-human_being,Y-man; 

X«wild_animalfA«animal,R-[has_master,[0,1]], 
B-human_being,Y»man; 

X«wild_animal,A«animal,R«[ha8_master,[0,1]], 
B-human_being,Y-woman ; 
no 

that is the complete set of combinations between 'animar and its 
descendants on one hand, and 'humanjbeing' and its descendants 
on the other hand, which is in complete accordance with the 
philosophy of Prolog. 

B. Descriptive Concepts: Slots and their Values 

The parentship links and the binary relations as shown in the 
graph of figure 1 reflect only the structure of the modelized 
domain. To each model, node of the graph, knowledge is attached 
by means of declarative and procedural characteristics which 
will express both the internal structure of the model itself, and 
its behaviour and relations with its environment. These 
characteristics will later be interpreted at the realization level 
by the instances of the model. 

The most elementary way of expressing the descriptive 
knowledge associated with a model consists in providing It with a 
collection of slots. A slot defined for a model is also implicitly 
defined for all the descendants of the model, via the inheritance 
mechanism. 
In LAP, a slot behaves like a Prolog variable and the values it can 
take are 'bound' terms (trees) in the Prolog sense. The set of 
possible values of a slot can be governed by a set of constraints 
and obey certain properties as decided by the programmer. 

The constraints associated with a slot at the model level 
make it possible to specify: 
• The type of the slot: integer, real, string, list, ... and more 
generally any reference to type testing available in the 
underlying Prolog system. 
• The set of legal values : the one that the slot can take at the 
instance level. 
• The slot cardinal i ty. In LAP, slots are in general 
multi-valued. The cardinality indicates the maximum number of 
values that the slot can take simultaneously for a given instance. 
As usual in Prolog, the set of solutions will be enumerated by 
backtracking. 

• The possibility of Inferring slot values via a binary relation. 

Apart from the constraints, one can define, at the model 
level, properties concerning the slot values. As for constraints, 
these properties will be effective at the instance level only. One 
can: 
• Allow the prompting of a slot value, if it has not been possible 
to infer It by other means. 
• Specify default values for a slot. These default values will be 
taken into account at the instance level only if all other attempts 
to compute the slot values failed to reach the slot cardinality. 

The properties and constraints above were attached at the 
model level. Some additional properties can be attached directly 
at the instance level; they make it possible: 
• To forbid certain values for a slot. 
• To fix a slot value (forbid further modification). 
• To declare unknown a slot value which forbids asking the user 
for It. 

Given a model already defined, we can provide it with a new 
slot with the primitive 'add_slot'. For example, we can define 
slots 'name* and 'home* for model 'humanJbeing' above by typing: 

| ?- add_8lot(name,humanJ>eing). 
yes 

| ?- add_8lot(home,humanJ>eing). 
yes 

These slots can then be forced to obey certain constraints: 

| ?- set_8lotj>roperty 
(type,[human_being,name,string]). 

yes 
| ?- set_slot_property 

(cardinal,[human__being,home,2]). 
yes 
| ?- 8et__slotj>roperty 

(type,[human_being,home,string]). 
yes 

which indicates that the values of 'name* and 'home' are strings; 
the name is single-valued (default cardinality-1) but not the 
home (two possible addresses). 

These slots can be prompted, which allows the system to 
question the user on their values. This is achieved by: 

| ?- 8et_slot_property 
(prompt,[humanJ>eing,name),defaulLprompt). 

yes 
| ?- seLslot_property 

(prompt,[human_being,home],ask_address). 
yes 

which indicates that name and home address can be computed by 
deleting (in the Prolog sense) the literals 'defaultjDrompr and 
•ask_address' respectively. 
'defaulLprompf and 'ask_address' refer to Prolog clauses. 
•defaulLprompf is provided by LAP as a library predicate, while 
'ask_address' is a user-defined predicate. 

Illne and Kanoui 37 



Now, the properties of a model slots can be interrogated by: 

I ?- get_slot_property(X,[human_being,A,V]). 
Xscardinal, A«name, V=1 ; 
Xatype, A=name, V=string ; 
X-prompt, A=name, V=default_prompt ; 
Xacardinal. A=home, V=2 ; 
X=type, A-home, V=string ; 
X»prompt, A=home, V=ask_address ; 
no 

c. Procedural Concepts; Facets and Methods 

Having specified the links and relations of a model and also 
described its descriptive features, we are now interested in 
expoiting this structure. In fact, apart from the usual inheritance 
mechanism, the use of slots and their values is governed by 
ad-hoc rules which constitute knowledge bases associated with 
the models. In LAP, there are three kinds of such rules: 
- rules associated to events, 
- rules for Inferring slot values or relations, 
- methods. 
The first two kinds of rules are implemented as facets. The last 
is the software support for message-passing and is nothing other 
than a generalization of the first two. 

The generic events addressed by the first kind of rules are: 
- creation or suppression of a model instance: facets 
if created and lf_suppressed. 
- assignment or suppression of a value to an instance slot : 
facets lf_added and if_removed. 
The second kind of rules, the deduction rules, correspond to the 
facet if_needed. 

At each attempt to provoke one of the events above, the 
corresponding facet - provided it has been defined for the model 
on which the considered instance depends - is fired. The event 
under consideration will effectively occur only if the Prolog goal 
corresponding to the facet can be satisfied. 

The role of the rules associated to the events is to preserve 
the integrity and consistency of the object data base when it is 
modified or updated. 
The facet lf_needed makes it possible to express how the 
values of an instance slot can be inferred from other information. 
The inferred values will then simulate the event if_added. So, a 
value deduced by the activation of rules, but not consistent with 
the aspect if_added will be rejected. 

Facets and methods are written in Prolog and it is important 
to recall that the conceptor of an application disposes of the full 
Prolog power to express a facet or a method. For example, the 
facet IMieeded defined for a given slot of an instance can not 
only invoke the value of other slots of the considered instance, 
but also refer to other objects (via LAP primitives), which 
makes it possible to chain rule activation. 

Ill REAtJZATTON:7HE CONCRETE UNIVERSE 

The concrete universe is a collection of instances. The 
image of an instance is essentially constituted by the set of 
known slot values. 

The life of an instance is nothing other than a succession of 
events including: 
- the creation or the destruction of the instance, 
- the setting of binary relations with other instances, 

- the modification of slot values, 
- the interrogation of slot values (by reading assigned values, 
rule inferences, deductions through relations, user inputs, or by 
returning default values). 
Taking these events into account is controlled by knowledge rules 
(ie facets, methods,...) embedded in the respective model images. 

LAP offers primitives to read or write, for the benefit of a 
given instance, the values of the slots known by the (possibly 
multiple) models on which the instance depends. As explained 
above, assigning and getting a value can be governed by 
programmer-defined procedures: the facets. 

To illustrate these points, we will again consider the 
example given in figure 1. We will describe a scenario where an 
instance of the model domestic_animal is created. 
(1) If, when creating a domestic animal, the name of its master 
is not specified, then the animal will send a message to every 
instance depending of an offspring of the model 'human^being'. 
(2) The content of this message is : "do you want me as your 
favorite animal?" 
(3) The addressees of the message will look at some slots (color, 
beauty,...) of the animal and will answer YES to the animal only if 
the corresponding values agree with their taste. 
(4) To the human being which is ready to take care of it, the 
animal will send a second message whose content is: "where will 
you accomodate me?" 
(5) The animal will accept as master the first human being who 
answers "inside the house". 

Assuming that methods corresponding to the messages have 
been defined for the model 'human_being', the implementation of 
this scenario requires: 
- the facet if_created for the model 'domestic_animar, 
- the facet ifjieeded for the relation 'has_master' in the model 
'domestic_animaP, 
- and the Prolog clauses corresponding to these facets. 

The facet declarations are achieved by: 

| ?- def_facet((if_created,domestic_animal], 
create_domestic_animal). 

yes 
| ?- def_facet([if_needed,domestic_animal, 

has_master],find_ master), 
yes 

The Prolog clauses 'create_domestic_animar and 
'find_maste*r could be written respectively as: 

create_domestic„animal([domestic_animal,A],H, 
[A,K,get_slot(A,beauty, b)]) :-

element([has_master, M],H), !, 
union(H,(beauty, b], K). 

create_domestic_animal([domestic_animal,A], 
H,[A,K, get_and„set_slot(A,has_master,M)]). 

find_master([domestic_animal,A],has_master,M):-
anc_pff(human__being, H), 
population(H.P), 
element(M,P), • 
send([A, M], do_you_want__me,_,yes), 

send([A,M],where_would_you_accomodate_me, 
[inside.outside],inside), ! . 

38 ARCHITECTURES AND LANGUAGES 



This simple example shows how: 
- the effective creation of an instance can be forbidden if certain 
conditions (formulated in the Prolog rules defining the facet 
if-created) are not satisfied. 
- As soon as an instance is created, some slots or relations can 
be assigned a value. 
- The chaining of rules is achieved by invoking, from facets and 
methods, LAP primitives such as interrogating the objects data 
base and sending/acknowledging messages. 

IV IMPLEMENTATION 

LAP is implemented as a library of about 150 predicates 
described in detail in the LAP Reference Manual. It is available 
under Prolog II and Quintus-Prolog and runs under Vax/Vms, and 
Sun/Unix. Versions for Macintosh and Bull-SPS9 are under 
development 

LAP gives full access to the underlying Prolog system and 
provides a windowing and menu interface which facilitate both 
knowledge acquisition and execution. 

LAP has been used in the development of several CAD 
systems in architecture, industrial simulation and medical 
consultation expert systems. 

REFERENCES 

1 Bobrow, D.G., and Stefik, M. "Object-Oriented 
Programming : Themes and Variations", 
Al Magazine 6. no, 4,1986 

2 Giannesini, F., Kanoui, H., Pasero, R., Van Caneghem, M. 
"PROLOG", Addison Wesley, 1986 

3 lline, H. "Un Environnement Oriente-Objets en Prolog : 
le Systeme LAP", Proceedings of Second CHAM. 
Marseilles, France, 1986 

4 lline, H. "LAP: Manuel de reference", Internal paper. 
UB1AM.1986. 

5 Shapiro, F., and Takeuchi, A. "Object-Oriented 
Programming in Concurrent PROLOG", 
New Generation Computingi 983. 

6 Stabler, P. "Object-Oriented Programming in PROLOG", 
Al Expert. 1986 


