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Abstra
t

\It is my thesis that worthwhile improvements 
an be made to

lossless image 
ompression s
hemes, by 
onsidering the 
orrela-

tions between the spe
tral, temporal and interview aspe
ts of im-

age data, in extension to the spatial 
orrelations that are tradi-

tionally exploited."

Images are an important part of today's digital world. However, due to the large

quantity of data needed to represent modern imagery the storage of su
h data 
an be

expensive. Thus, work on eÆ
ient image storage (image 
ompression) has the potential to

redu
e storage 
osts and enable new appli
ations.

Many image 
ompression s
hemes are lossy; that is they sa
ri�
e image information

to a
hieve very 
ompa
t storage. Although this is a

eptable for many appli
ations, some

environments require that 
ompression not alter the image data. This lossless image


ompression has uses in medi
al, s
ienti�
 and professional video pro
essing appli
ations.

Most of the work on lossless image 
ompression has fo
used on mono
hrome images

and has made use of the spatial smoothness of image data. Only re
ently have resear
hers

begun to look spe
i�
ally at the lossless 
ompression of 
olour images and video. By

extending 
ompression s
hemes for 
olour images and video, the storage requirements for

these important 
lasses of image data 
an be further redu
ed.

Mu
h of the previous resear
h into lossless 
olour image and video 
ompression has been

exploratory. This dissertation studies the problem in a stru
tured way. Spatial, spe
tral

and temporal 
orrelations are all 
onsidered to fa
ilitate improved 
ompression. This has

lead to a greater data redu
tion than many existing s
hemes for lossless 
olour image and


olour video 
ompression.

Furthermore, this work has 
onsidered the appli
ation of extended lossless image 
oding

to more re
ent image types, su
h as multiview imagery. Thus, systems that use multiple

views of the same s
ene to provide 3D viewing, have been provided with a 
ompletely novel

solution for the 
ompression of multiview 
olour video.
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Chapter 1

Introdu
tion

Pi
tures have been with us sin
e the dawn of time. However, the way that pi
tures have

been represented and displayed has 
hanged greatly. Originally every pi
ture was unique,

being both represented and displayed in a physi
al way, su
h as paint on a 
ave wall or

et
hings in stone. However, in re
ent times pi
tures have been dealt with ele
troni
ally.

One 
onsequen
e of this is that the representation used for transmission or storage of the

image 
an be separated from the means of display. One example of this is traditional

broad
ast 
olour television, where the representation that is transmitted does not relate

dire
tly to the intensities of the red, green and blue ele
tron guns in a television set.

By storing images in digital form, the possibilities for image representation in
rease

dramati
ally. An image 
an be stored in any representation, provided there is an algo-

rithm that 
an 
onvert it to a form usable by a display. This pro
ess of 
hanging the

representation of an image is 
alled image 
oding and if the result uses less storage spa
e

than the original it is 
alled image 
ompression.

1.1 The Nature of Digital Images

A real image 
an be 
hara
terised as a 
ontinuous two-dimensional (2D) fun
tion f(x; y).

To be
ome a digital image, this fun
tion must be digitised. This is a
hieved by measuring

the value of the fun
tion at a �xed number of lo
ations (spatial sampling) and limiting the

result to a �xed set of values (amplitude quantisation). The relationship between pixels

values and an image is illustrated in Figure 1.1. A full 
overage of these topi
s 
an be

found in any good image pro
essing book[GW92, SHB93℄.

The number of samples taken determines the resolution of the image. For example,

using a re
tangular grid of equally spa
ed sampling points, with 1024 sampling points per

row and 768 per 
olumn, yields an image with a resolution that is written 1024 � 768.

Ea
h sample is generally thought of as representing the intensity of a pi
ture element or

pixel.

The size of the set of values that 
an be taken by a pixel is almost always a power of

2. If a pixel 
an have 2n values, then it requires n bits of storage. Thus, a two-tone image

1
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Figure 1.1: Alternative views of image data.

(e.g. a fax) would have a binary value for ea
h pixel, and is often referred to as a 1 bit

image. Continuous-tone greys
ale images generally use 8 bits per pixel (bpp) and 
olour

images use 24 bits per pixel (8 ea
h for red, green and blue). Medi
al and s
ienti�
 images

typi
ally use more bits per pixel, sometimes up to 16 bpp for greys
ale.

Taken together, the values of all the pixels in an image 
onstitute the raw data repre-

sentation of the image. The amount of storage required by this raw data 
an be 
al
ulated

as the produ
t of the number of pixels and the bits used per pixel. As an example, 
on-

sider a 
ontinuous-tone 
olour image of dimensions 1024x768 using 24 bpp. The storage

requirements for the raw data of su
h an image would be:

1024 x 768 x 24 = 18874368 bits = 2359296 Bytes = 2:25 MB

This may not seem like a great deal of storage spa
e, but as the number of images that

need to be stored in
reases, the total storage requirements soon be
ome overwhelming.

For example, it is estimated that NASA re
eives over a terabyte of digital imagery, every

day, from Earth orbiting satellites alone[Tat94℄. Therefore, an eÆ
ient representation for

image storage (and transmission) is important.

1.1.1 The Eye of the Beholder

Data 
an only be 
ompressed if it 
ontains some form of redundan
y. Images 
ontain

two forms of redundan
y: sour
e and psy
hovisual. Sour
e redundan
y is found in the
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orrelations between pixel values; that is, the sour
e data. For example, a given pixel

value is often 
lose to the value of neighbouring pixels. Therefore, by representing a pixel

value relative to its neighbours, sour
e redundan
y 
an be exploited and more eÆ
ient

storage 
an be a

omplished.

Psy
hovisual redundan
y exists when an image is to be viewed by a human observer,

be
ause some small 
hanges in an image have no e�e
t on the viewer's per
eption of

the image. This means that two slightly di�erent images may give the same subje
tive

impression as ea
h other. However, if one image is more 
ompressible than the original

it resembles, a greater storage saving 
an be made by storing the near mat
hing image

rather than the original. This is known as lossy 
ompression, whereas lossless 
ompression,

making 
areful use of only sour
e redundan
y, guarantees that the de
oded image will be

exa
tly the same as the original.

The use of lossy 
ompression for appli
ations where the imagery is only intended to

be viewed by a human observer is both sensible and wide-spread. Prominent examples

of this in
lude pi
tures on the world wide web, image storage in digital 
ameras, and

the emerging digital broad
ast television. However, some appli
ations still bene�t from,

or require, lossless 
ompression. Su
h appli
ations in
lude s
ienti�
 and medi
al image

storage and high quality video produ
tion te
hniques.

1.2 Ba
kground to Lossless Image Compression

The foundation of image 
ompression is information theory, as laid down by the likes of

Shannon in the late 1940s[Sha48, Ver98℄. Information theory tells us that the information

of an event is:

log2
1

p(e)
bits (1.1)

where p(e) is the probability of the event o

urring. Thus, the information 
ontent of an

event is dire
tly proportional to our surprise at the event happening. A very unlikely event


arries a lot of information, while an event that is very probable 
arries little information.

En
oding an image 
an be thought of as re
ording a sequen
e of events, where ea
h

event is the o

urren
e of a pixel value. If we have no model for an image, we might assume

that all pixel values are equally likely. Thus, for a greys
ale image with 256 grey levels,

we would assume p(e) = 1=256 for all possible pixel values. The apparent information

required to re
ord ea
h pixel value is then log2 256 = 8 bits. Clearly, this is no better than

the raw data representation mentioned above.

However, due to the spatial smoothness 
ommon in images, we expe
t a given pixel

to be mu
h like the one before it. If the given pixel value 
onforms to our expe
tation of

being 
lose to the previous value, then little information is gained by the event of learning

the 
urrent pixel's value. Consequentially, only a little information need be re
orded, so

that the de
oding pro
ess 
an re
onstru
t the pixel value.
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This idea of using previous pixel values to lower the information 
ontent of the 
ur-

rent pixel's en
oding has gone under several names: Di�erential Pulse Code Modulation

(DPCM), di�eren
e mapping and more generally predi
tive 
oding. From early work in

the 50s and 60s on television signal 
oding[O'N66, Oli52, Har52℄, to modern lossless image


ompression s
hemes, predi
tive 
oding has been widely used. The 
ommon theme has

always been to use previous data to predi
t the 
urrent pixel and then only the predi
tion

error (or predi
tion residual) need be en
oded.

Predi
tive 
oding requires the notion of a 
urrent pixel and past pixels and this implies

a one-dimensional (1D) sequen
e of pixels. However, image data is two-dimensional. To


orre
t for this mis-mat
h a 1D path is needed that visits every pixel in the 2D image. By

far the most 
ommon path is raster-s
an ordering, whi
h starts at the top left of an image

and works left to right, top to bottom, over the whole image.

1.2.1 Entropy and Symbol Coding

One way to get a quantitative measure of the bene�ts of predi
tion is to use entropy. This


ommonly used measure of information 
ontent, again provided by Shannon, says that for

a 
olle
tion of independent, identi
ally distributed (i.i.d.) symbols x0; x1; : : : ; xi, ea
h with

a value in the range 0 � j � (N � 1), the average information 
ontent per symbol is:

(N�1)X
j=0

p(xi = j) log2
1

p(xi = j)
bits (1.2)

where p(xi = j) is the probability of a given symbol having value j. The i.i.d. assump-

tion implies a memoryless sour
e model for the data. That is, it does not use information

based on pre
eding symbols (memory) to model the value of the 
urrent symbol. Note

that this assumption is almost never true at any stage in image 
oding, however it is a

useful simplifying model at this stage.

Equation 1.2 shows that it is the distribution of pixel values, the p(xi = j), that is im-

portant. It 
an be inferred that distributions that are nearly 
at (all symbols nearly

equiprobable) have average information measures approa
hing log2N , whereas sharply

peaked distributions have mu
h lower entropies. Figure 1.2 gives an example of this and

shows that simple predi
tive 
oding produ
es a residual image with a sharply peaked dis-

tribution.

Having 
hanged the distribution of symbols so that their entropy is redu
ed, it remains

to store them eÆ
iently. An e�e
tive way to do this involves Variable Length Codes

(VLCs), where short 
odes are given to frequent symbols and longer 
odes are given to

infrequent symbols. In 1952 Hu�man[Huf52℄ des
ribed his algorithm for produ
ing optimal


odes of integer length. However, in the late 1970s, resear
hers at IBM su

eeded in

implementing Arithmeti
 
oding, whi
h by removing the integer length 
onstraint allows

more eÆ
ient symbol 
oding.

Image 
ompression s
hemes tend to be innovative in the stages leading up to symbol


oding. The �nal symbol 
oding stage is generally implemented using traditional algo-
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a) Without Predi
tion:

Pixel Distribution:

7.53 bits

per pixel

b) With Predi
tion:

Residual Distribution:

5.10 bits

per pixel

Figure 1.2: The bene�t of predi
tion. In a) the entropy of the pixel values is 
lose to the

raw data size of 8 bpp. In b) Using the previous pixel value as a predi
tor, the predi
tion

errors (adjusted for display) have a mu
h lower entropy.

rithms. Su
h s
hemes are do
umented in any good book on data 
ompression[BCW90,

Nel91℄ and for 
ompleteness some of the most 
ommon approa
hes are brie
y do
umented

in Appendix A.

1.3 Covering New Ground

Traditional lossless image 
ompression uses only spatial 
orrelations to model image data.

While this is all that 
an be done for greys
ale images, modern imagery is often more


omplex than a still greys
ale image. Colour images and video are now 
ommon and have


orrelations beyond just the spatial domain. Colour images have spe
tral 
orrelations

between the 
olour bands and video has temporal 
orrelations between su

essive frames.

Another type of imagery that is be
oming more popular is multiview stereo. Two or

more views of a s
ene are stored and then displayed with suitable hardware. The viewer


an then see the s
ene in 3D or a ma
hine vision algorithm 
an attempt to 
al
ulate the

distan
e to obje
ts in the s
ene. There is 
orrelation between the multiple viewpoints that


ould be exploited for 
ompression.
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By 
onsidering all the forms of 
orrelation present in modern imagery, lossless image


ompression 
an progress beyond traditional methods. Methods that are improved in this

way, whi
h will be referred to as extended lossless image 
ompression s
hemes, should

be 
apable of improved 
ompression when applied to advan
ed types of imagery, su
h as


olour images, video and multiview sequen
es.

Extended image 
ompression s
hemes have been investigated before, but most of the

work is either for lossy 
ompression, appli
ation spe
i�
 
oding or 
onsiders only one or

two of the 
orrelation types. The question of how best to 
ombine information from some

or all of these 
orrelations, to improve lossless image 
ompression, remains unanswered.

The purpose of this work is to examine ways in whi
h the full range of 
orrelations 
an be

exploited to produ
e extended lossless image 
ompression methods, that are appli
able to a

wide 
lass of images. It is expe
ted that this will lead to superior 
ompression performan
e

for advan
ed image types.

1.3.1 A Considered Approa
h

It qui
kly be
omes apparent that by 
onsidering four main types of image 
orrelation, ea
h

of whi
h having been the subje
t of numerous works of resear
h, the s
ope of this work

is quite broad. To give fo
us to the goal of integrating te
hniques to provide extended

lossless image 
ompression, a number of guiding prin
iples were used during the 
ourse of

this work.

� Generi
 Simpli
ity

The way in whi
h multiple 
orrelation types are integrated should be independent

of the 
orrelation types available. That is, the integration method should be generi


and suÆ
iently simple that it 
an easily handle multiple types of 
orrelation.

� Adaptability

The resultant 
ompression s
hemes should adapt to o�er good performan
e for a

range of image types. En
odings that are tuned to a spe
i�
 image 
lass will not be

investigated.

� Solid Foundations

Many established algorithms exist for many of the problems in extended image 
om-

pression. Where appropriate, existing approa
hes will be used. Innovation will be

saved for those areas where it is needed.

� Usability

The intended in
rease in 
ompression should not 
ome at the 
ost of una

eptable

running times for the 
ompression software. Thus, s
hemes that require extensive

analysis prior to 
ompression will not be used.
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1.4 Dissertation Outline

Image 
ompression is a well established �eld and the literature available is too numerous to


over exhaustively. However, as per the third guiding prin
iple above, algorithms from the

literature will be an important part of the following work. In order to 
learly di�erentiate

those approa
hes that 
ome from the literature and those that are novel 
ontributions,

the relevant literature will be surveyed separately. To this end, the literature regarding

lossless greys
ale image 
ompression and the 
ompression of more advan
ed image types

(e.g. 
olour images and 
olour video) are surveyed in Chapters 2 and 3 respe
tively.

Chapter 4 shows how adaptive sele
tion of predi
tor models 
an be used as a framework

for integrating multiple types of 
orrelation in imagery. In Chapter 5, the use of higher

order 
orrelations and their impa
t on entropy 
oding are examined. Chapter 6 introdu
es


ertain pra
ti
al 
onsiderations and quanti�es the performan
e of the 
ompression s
heme

resulting from this work. In Chapter 7, ideas for further work are aired, in
luding the


on
ept of error resilient lossless image 
oding. The main 
on
lusions that 
an be drawn

from this work appear in Chapter 8.
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Chapter 2

Lossless Greys
ale Image

Compression

This 
hapter presents a survey of the literature relating to lossless greys
ale image 
ompres-

sion. The literature in this �eld is quite extensive and it is impossible to 
over exhaustively

due to spa
e 
onstraints. However, to ensure a reasonably thorough 
overage, what are


onsidered to be good examples of all the major te
hniques are dis
ussed. In parti
ular

both the old and new JPEG standards for lossless image 
ompression are 
overed in some

detail.

Before the literature itself is 
overed, a simple model of lossless 
ompression is pre-

sented in Se
tion 2.1. This model will help simplify the dis
ussion of the following image


ompression s
hemes.

A good review of lossless greys
ale image 
ompression was published in [MS95
℄. From

this, and other parts of the literature, it is apparent that most modern lossless image


ompression s
hemes are based on some form of predi
tive 
oding. As su
h, the origins

of predi
tive 
oding are presented in Se
tion 2.2 and the re�nements used in many re
ent

predi
tive 
oding s
hemes are detailed in Se
tions 2.3 and 2.4.

Having dis
ussed the main 
on
epts behind su

essful lossless image 
ompression meth-

ods, three 
omplete s
hemes are des
ribed in Se
tion 2.5.

Although the material presented up to Se
tion 2.5 
overs many mainstream ideas, other

noteworthy 
ontributions exist and some of these are detailed in Se
tion 2.6.

The literature relating to 
olour images, video and multiview stereo imagery is 
overed

in Chapter 3.

2.1 A Model for Lossless Image Compression

Lossless image 
ompression 
an be de
omposed into three main stages: Mapping, Modelling

and Coding, as shown in Figure 2.1. Fitting 
ompression s
hemes to this model is often

useful for 
omparing the similarities and di�eren
es between two s
hemes and thus 
an help

9
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Transmission
or

Storage

Mapping Modelling Coding

ModellingCodingMapping

Encoder

Decoder

Figure 2.1: Basi
 model for lossless image 
ompression.

simplify the dis
ussion of 
omplex 
ompression s
hemes. Note the asymmetry between the

en
oder and the de
oder, 
aused by the 
oding stage's dependen
e on the modelling stage.

The mapping stage provides a reversible mapping of the image data, su
h that the

result is less 
orrelated than the original data. The mapping 
an be as simple as repla
ing

ea
h pixel with the di�eren
e between the 
urrent and previous pixel (di�eren
e mapping),

although more 
omplex mappings often yield better results.

As previously dis
ussed in Se
tion 1.2 and illustrated in Figure 1.2, by de
orrelating

the image data, the mapping stage 
hanges the statisti
al properties of the pixel data.

This makes the data to be en
oded 
loser to being i.i.d. and therefore 
loser to the kind

of data that 
an be eÆ
iently 
oded by traditional symbol 
oding te
hniques.

The modelling stage attempts to 
hara
terise the statisti
al properties of the mapped

image data. It attempts to provide a

urate probability estimates to the 
oding stage, and

may even slightly alter the mapped data. By being mindful of higher order 
orrelations,

the modelling stage 
an go beyond the memoryless sour
e model and 
an provide better


ompression than would be apparent from measuring the entropy of the mapped image

data using Equation 1.2.

The symbol 
oding stage aims to store the mapped pixel data eÆ
iently, making use of

probability estimates from the modelling stage. Symbol 
oders are also sometimes 
alled

statisti
al 
oders (be
ause they use sour
e statisti
s for eÆ
ient representation) and en-

tropy 
oders (be
ause they aim to represent data using no more storage than allowed by

the entropy of the data). Coding s
hemes take a sequen
e of symbols from an input al-

phabet and produ
e 
odewords using an output alphabet. They aim to produ
e a 
ode

with the minimum average 
odeword length. The reader who is unfamiliar with the stan-

dard symbol 
oding s
hemes (Hu�man 
oding, Arithmeti
 
oding and Lempel-Ziv based

methods) should 
onsult Appendix A.

2.1.1 Requirements for Lossless De
oding

In order for an image 
ompression s
heme to be lossless, a de
oder must be able to pro-

du
e the original image from the data transmitted by the en
oder. To ensure this, the
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Future pixels
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Figure 2.2: Lo
ations relative to the 
urrent pixel, X.

en
oder must only make predi
tions on the basis of pixels whose value the de
oder will

already know. Therefore, if all past pixels have been losslessly de
oded, the de
oder's next

predi
tion will the same as that made by the en
oder.

Also of importan
e, is that the en
oder and de
oder agree to the nature of the variable

length 
oding s
heme to be used. This is easy when a �xed 
oding s
heme is used, but if an

adaptive s
heme is used, where the meaning of 
odes 
hange over time, then the de
oder

must make the same adaptations. This 
an be a
hieved either by the en
oder making

a de
ision based on future pixels and transmitted that 
hange to the de
oder (forward

adaptation) or by the en
oder and de
oder both making 
hanges, in a prede�ned way,

based on the values of previous pixels (ba
kward adaptation).

2.2 The Origins of Predi
tive Coding

Cutler is 
ommonly given as the �rst to do work on image 
ompression by predi
tive


oding[Cut52℄. Also in 1952, resear
hers at Bell Telephone labs published work on the use

of predi
tive systems to redu
e the bandwidth requirements for television signals[Oli52,

Har52℄. In 1966, frustrated by the fa
t that TV signals were still being transmitted without

eÆ
ient 
oding, O'Neal[O'N66℄ re-examined the problem.

O'Neal 
onsidered not just the previous pixel in the TV signal, but a neighbourhood

around the 
urrent pi
ture element. Su
h neighbourhoods are 
ommon in the literature,

although the labelling of the pixel positions varies. For 
onsisten
y, all neighbourhoods

des
ribed from here on will be assumed to use the labelling given in Figure 2.2.

By 
onsidering pixels in the previous s
an line, as well as those to the left in the 
urrent

s
an line, the predi
tion be
omes 2 dimensional. This is a signi�
ant advan
e on the 1

dimensional di�eren
e mapping model des
ribed in Se
tion 1.2.

O'Neal used a linear predi
tor formulated as:

X̂ = w1W + w2N + w3NW + : : : (2.1)

where X̂ is the predi
ted value of X and the wi are weights. The optimal weights for

a given s
ene were found in advan
e, and not 
hanged during the en
oding of a s
ene. It
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should be noted that for O'Neal's work, the predi
tion error e = X � X̂ was not symbol


oded but quantised and hen
e the resultant 
ompression s
heme was lossy.

In a limited study, using three low resolution stills digitised from sample TV signals,

O'Neal found that there was little utility in using samples beyond W and N for predi
tion,

given the model in Equation 2.1. He also noted that the distribution of predi
tion errors

was Lapla
ian (i.e. a two-sided exponential distribution) as eviden
ed in Figure 1.2.

O'Neal 
ommented on the penalty of DPCM 
oding over PCM 
oding. That is, by

removing the redundan
y inherent in the signal one also removes some prote
tion against

the e�e
ts of transmission noise. However, the opinion was given that quantisation noise

was the main 
ause for loss of quality and that therefore DPCM 
oding was in general

desirable.

2.2.1 The Lossless JPEG Standard

The �rst major predi
tive image 
oding standard 
ame from the Joint Photographi
 Ex-

perts Group (JPEG)[Wal91℄. This standardisation e�ort is best known for its lossy 
oder

(based on the quantisation of DCT 
oeÆ
ients), however the standard did 
ontain a lossless


omponent (LJPEG)1.

LJPEG 
an use any of 8 predi
tors, as shown in Table 2.1. For 
omputational 
onve-

nien
e, the pixel weights used in the predi
tion are either 0, 1=2 or 1. From the results in

[MS95b℄ we see that JPEG7 appears to be the best predi
tor on average.

The en
oder must 
hoose one predi
tor for an image, and store that 
hoi
e with the


ompressed output data. This is an example of global forward adaptation of the predi
tor;

global be
ause the 
hoi
e is �xed for the whole image and forward be
ause the en
oder


an s
an the image in advan
e to determine the best predi
tor. Although this allows

some 
exibility, it is ineÆ
ient as di�erent regions in an image may bene�t from di�erent

predi
tors. For example, in a region of strong verti
al 
orrelation (e.g. tree trunks in

a forest) predi
tor 2 may be best, while in a noisy region (e.g. foreground grass) the

averaging e�e
t of predi
tor 7 may yield better results.

The predi
tion residuals 
an be stored with variations of either Hu�man 
oding or

Arithmeti
 
oding. These two versions of LJPEG not only use di�erent symbol 
oders,

they also employ radi
ally di�erent error modelling.

The Hu�man 
avour of LJPEG requires the en
oder to determine the best 
oding for

the predi
tion residuals in advan
e and transmit the en
oding as part of the message. This

is another example of global forward adaptation.

By 
ontrast when LJPEG uses Arithmeti
 
oding, it employs a more advan
ed error

modelling s
heme that is 
apable of altering the way predi
tion errors are 
oded on a pixel-

by-pixel basis. It does so by making use of information from the en
oding of previous pixels

and is therefore an example of lo
al ba
kward adaptation. The exa
t method is des
ribed

in [LGS92℄ and more details are given in Se
tion 2.4.

1It should be noted that the lossless part of the standard was not the result of a 
ompetitive evaluation

programme like that used for the lossy JPEG methods.
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Predi
tor X̂ = Performan
e

JPEG0 0 19.37

JPEG1 W 14.41

JPEG2 N 14.61

JPEG3 NW 15.64

JPEG4 W+N-NW 14.32

JPEG5 W+((N-NW)/2) 13.95

JPEG6 N+((W-NW)/2) 14.01

JPEG7 (W+N)/2 13.83

Table 2.1: The predi
tors spe
i�ed by LJPEG. The performan
e �gures are from [MS95b℄

and show the entropy of the predi
tion errors, averaged over six 24 bpp 
olour images.

The three 
olour planes in these images were ea
h predi
ted separately.

Although o�ering reasonable lossless 
ompression, LJPEG was never widely used out-

side the resear
h 
ommunity. A version of the Hu�man 
avour of LJPEG is available2

and has been used as a means of 
omparison in many papers. However, a freely available

implementation of the Arithmeti
 
oding 
avour does not seem to exist.

The main lesson to be learnt from LJPEG is that global adaptations are insuÆ
ient

for good 
ompression performan
e. This fa
t has spurred most resear
hers to look at more

adaptive methods.

To advan
e upon simple s
hemes like LJPEG, alternative methods for predi
tion and

error modelling are needed. The next two se
tions will look at how adaptation has been

used to approa
h these issues.

2.3 Adaptive Predi
tion

All of the predi
tors mentioned so far are linear fun
tions. However, images typi
ally


ontain non-linear stru
tures (e.g. edges). This has lead to e�orts to �nd good non-linear

predi
tors. Methods involving ve
tor quantisation[SN94℄ and neural networks[RD93℄ have

been tried. Although the results in [RD93℄ look promising, the multi-layer per
eptron

network used required 6000 passes over the image data to train it, and the overhead for

sending this training data does not seem to be fa
tored into the results. Also, the paper

only studied the performan
e of the s
heme for one image.

Another way to model the non-linearity of image stru
ture is to swit
h between linear

predi
tors based on image 
hara
teristi
s. Although the a
tual predi
tors are still linear

fun
tions, the swit
hing me
hanism 
an attempt to deal with non-linear features su
h as

edges. Swit
hing s
hemes 
an be ba
kward or forward adaptive, depending on whether

they make their de
ision on the basis of past or future data respe
tively.

2ftp://ftp.
s.
ornell.edu/pub/multimed/
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2.3.1 Ba
kward Adaptive Te
hniques

Ba
kward adaptive s
hemes use previously transmitted pixels to 
hose a predi
tor. This

means that the en
oder and de
oder 
an make the same de
ision without any expli
it


ommuni
ation.

Zhang

An early s
heme is given by Zhang[Zha82℄ and summarised in [MPG85℄. Zhang de�nes

four predi
tors, one for ea
h of four di�erent image 
hara
teristi
s. The di�erent predi
tors

are designed to 
ope with 
at regions, horizontal edges, non-horizontal edges and regions

of texture. Heuristi
s, based on a small number of pixel pair di�eren
es, are given for

determining the 
hara
teristi
 of the 
urrent image region. Although detailed and 
omplex,

Zhang's s
heme does not perform as well as more simple predi
tors[MS95
℄.

Median Adaptive Predi
tor

One of the most widely reported [Mar90, MS95
, WSS96, MWSM97℄ swit
hing s
hemes

is the Median Adaptive Predi
tor (MAP). In 1990 Martu

i[Mar90℄ suggested using the

median value of a set of predi
tive fun
tions as the a
tual predi
tion. Three suitable

predi
tive fun
tions are W , N , and W +N �NW .

However, in [WSS96℄ the predi
tive s
heme is given as:

X̂ =

8><
>:

min(W;N) if NW � max(W;N)

max(W;N) if NW � min(W;N)

N +W �NW otherwise

(2.2)

Simple arithmeti
 reasoning will show that the above formulation is the same as 
hoos-

ing the median of W , N , and W + N � NW . However, as noted in [WSS96℄ this way of

looking at MAP gives an alternative reasoning for the way the s
heme fun
tions. Suppose,

NW is the brightest pixel (highest value) then we assume an edge feature. The maximum

of W and N then partners NW on the bright side of the edge, while the minimum of

W and N joins X on the dark side. Thus, min(W;N) forms a good predi
tion for X.

Similar reasoning holds for the 
ase when NW is the darkest of the three pixels. In the


ase where NW is not an extreme value, W + N � NW is used, whi
h models the lo
al

pixel values as a plane and predi
ts X a

ordingly. This des
ription of MAP as a s
heme

for adapting to edge features, lead to it being 
alled the Median Edge Dete
tion (MED)

predi
tor in [WSS96℄.

In order to avoid 
onfusion, MED will be used to des
ribe the spe
i�
 predi
tor de-

s
ribed above, whereas MAP will be used for the 
on
ept of using the median value from

a set of predi
tors.
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Gradient Adjusted Predi
tion

This idea of expli
itly looking for edges in the image data was also used by Wu in [Wu96℄.

He uses the lo
al horizontal and verti
al image gradients, given by:

dh = jW �WW j+ jN �NW j+ jNE �N j
dv = jW �NW j+ jN �NN j + jNE �NNEj (2.3)

to help predi
t X:

if(dv � dh > 80) //sharp horizontal edge

X̂ = W

else if(dv � dh < �80) //sharp verti
al edge

X̂ = N

else

f
X̂ = (W +N)=2 + (NE �NW )=4 //assume smoothness �rst

if(dv � dh > 32) //horizontal edge

X̂ = (X̂ +W )=2

else if(dv � dh > 8) //weak horizontal edge

X̂ = (3X̂ +W )=4

else if(dv � dh < �32) //verti
al edge

X̂ = (X̂ +N)=2

else if(dv � dh < �8) //weak verti
al edge

X̂ = (3X̂ +N)=4

g

(2.4)

By 
lassifying edges as either strong, normal or weak, GAP does more modelling than

MED. This extra modelling gives GAP better performan
e than MED, although typi
ally

not by a large margin. The extra work also makes GAP more 
omputationally expensive.

The use of MED in JPEG-LS indi
ates that in terms of a joint 
omplexity-performan
e

judgment, MED has the upper hand.

History Based Blending

An idea presented in [STM97℄ is to blend the predi
tions of several predi
tors to form an

overall predi
tion. This approa
h 
an be seen as asking the advi
e of several experts and

then 
ombining their advi
e. The �nal predi
tion (X̂) is a linear 
ombination of the results

of the individual predi
tive fun
tions (X̂i), i.e.:

X̂ =
X

ai � X̂i (2.5)

The ve
tor of weights a = (a1; a2; : : :) 
an be 
al
ulated by solving a linear system of

the form P � a = Q where P is the matrix of past predi
tions and Q is the matrix of past
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pixel values. In [STM97℄ the authors des
ribe how to avoid 
omputing P and Q in their

entirety, for every pixel. Instead these matri
es are approximated by a number of 
ounts.

These 
ounts are updated in su
h a way that past information is slowly depre
iated. That

the past information is used at all, gives the history element of the s
heme.

The 
ost of 
omputing the weights a is given as O(n3) when there are n predi
tors.

To keep 
omputational 
osts down and yet permit a larger number of predi
tors, the

HBB 
on
ept is 
as
aded. Three units, ea
h with predi
tors designed for a spe
i�
 image


hara
teristi
, produ
e a predi
tion via history based blending. The output of these three

units is again blended in the same way to produ
e the �nal predi
tion value. The three

units are:

Unit Predi
tors

Noise unit (W +N)=2 (2W +N +NE)=4 (W +N +NW +NE)=4

Smooth unit W +N �NW 2W �WW 2N �NN

Edge unit W N NE

The 
ompleted s
heme given in [STM97℄ is shown to be superior in terms of 
ompression

performan
e to other presented results in whi
h MED and GAP were used. This indi
ates

that HBB may be more e�e
tive than either MED or GAP, but obviously at the 
ost of a

great deal of 
omputation.

2.3.2 Forward Adaptive Swit
hing

In LJPEG the 
hoi
e of predi
tor for an image is 
hosen by the en
oder (forward adap-

tation) and transmitted as overhead to the de
oder. If we allow the en
oder to adapt its


hoi
e of predi
tor to the lo
al 
hara
teristi
s of the image data, better predi
tion may re-

sult. However, the overhead 
aused by transmitting these predi
tor 
hoi
es to the de
oder

will in
rease.

Blo
k Based Adaptation

One simple s
heme, mentioned in [MS95
℄, is to split the image into 8 x 8 pixel blo
ks

and 
hose the best of the LJPEG predi
tors to use for the blo
k. In [MS95
℄ the trivial

predi
tor LJPEG0 is repla
ed byW+(NE�NW )=2. This predi
tor 
hoi
e is then en
oded

as 3 bits of overhead (3=(8� 8) = 0:047 bpp overhead). In [MS95
℄ the best predi
tor is

determined to be the one that gives the least sum of absolute predi
tion errors for the

blo
k3. This method has been shown to give results that are better than MAP [MS95
℄.

In [Lee95℄ a similar s
heme is given, ex
ept 16 predi
tors are available. Furthermore,

the overhead of sending the predi
tor index for ea
h blo
k is itself 
oded by an adaptive

Arithmeti
 
ode, hen
e lowering the overhead.

3Note, the fa
t that a given predi
tor has the least sum of absolute predi
tion errors, does not ne
essarily

imply that the same predi
tor gives the least 
ontribution to the total entropy of the predi
tion residuals.
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Predi
tion Patterns

Still better results were reported in [MS95
℄ for a s
heme based on predi
tion patterns

[MS95a℄. This s
heme again divides the image into blo
ks, but instead of a single predi
tor

ea
h blo
k is assigned a predi
tion pattern index. A predi
tion pattern spe
i�es how

multiple predi
tors should be used to best predi
t pixel values in a blo
k of pixels.

The 
omplex parts of the s
heme, 
hoosing a 
odebook of predi
tion patterns and


hoosing the best predi
tion pattern for a given blo
k, are familiar problems in the domain

of ve
tor quantisation[Cla95℄. In [MS95a℄, the LBG algorithm is used for 
odebook design

and exhaustive sear
h is used to sele
t the best predi
tion pattern for a given blo
k.

2.3.3 Adaptive Predi
tion Summary

Ba
kward adaptation naturally seems to have many advantages over forward adaptation.

Ba
kward adaptation 
arries no overhead, allows an individual predi
tor sele
tion to be

made for ea
h pixel and permits a single-pass image 
oder. However ba
kward adaptation

has its problems as well.

This is espe
ially eviden
ed in Zhang's s
heme, whi
h although well reasoned shows

poor performan
e. The predi
tors and predi
tor sele
tion heuristi
s also appear well-

designed, but the predi
tors are made very spe
i�
 to the expe
ted image properties of a

given type of region, as reported by the heuristi
s. Thus, when the heuristi
s fail, very

poor predi
tion is likely.

In 
ontrast MED uses more general purpose predi
tors that fare well in most 
onditions.

Thus, a poor predi
tor sele
tion de
ision will result in very poor predi
tion less frequently

that Zhang's s
heme. This is taken further by HBB, whi
h blends predi
tors in an attempt

to mitigate the e�e
ts of unsuitable predi
tions.

Forward adaptation 
an prevent the worst predi
tion errors by looking ahead at the

data to 
ome. However, forward adaptation must always balan
e its a

ura
y against the

overhead in
urred.

2.4 Advan
ed Error Modelling

To work eÆ
iently, symbol 
oders su
h as Hu�man and Arithmeti
 
oding require a

urate

estimates of the distributions of predi
tion errors. However, this distribution is rarely


onstant over all regions in an image. For example, in a smooth area of an image (where

most predi
tors work well) the predi
tion error " = X�X̂ is highly likely to be 0. Whereas

in a textured or noisy region (where most predi
tors have diÆ
ulty) " is non-zero with a

high probability. Given these 
hanging distributions, adaptive error modelling is required

for good 
ompression performan
e.

By using adaptive error modelling to take a

ount of 
hanging predi
tion error distri-

butions, we no longer assume predi
tion errors to be identi
ally distributed. Thus, we are

now going beyond the i.i.d. assumption of zero-order entropy (see Se
tion 1.2.1) and 
an
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expe
t 
ompression performan
e that improves on the entropy of the predi
tion errors as

given by Equation 1.2.

One simple solution would be to assume that the predi
tion errors 
ome from a single

sour
e whose statisti
s 
hange over time. Frequen
y 
ounts of errors 
ould be kept and a

model of the distribution built a

ordingly. However, this assumes that the distribution

of predi
tion errors 
hanges gradually along the s
an path used. This is very unlikely to

o

ur in most images.

A better solution is to assume that the predi
tion errors 
ome from multiple sour
es.

Ea
h sour
e has its own distribution and relates to di�erent regions in the image. Con-

stru
ting su
h a model requires two main problems to be solved; determining whi
h sour
e

to use for a given pixel and adapting the individual sour
es to the image 
hara
teristi
s.

Most s
hemes solve the �rst problem by using some 
hara
teristi
 of the lo
al pixel

values (or the lo
al predi
tion errors) in a way not unlike the swit
hing predi
tion s
hemes

of the previous se
tion. Thus the pixel's relation to its neighbours - its 
ontext - is im-

portant. Be
ause the probabilities p(" = i) are 
onditioned in this 
ontext, these are

often 
alled 
onditioning 
ontexts. Algorithms for solving this issue 
an be termed 
ontext

determination algorithms and some examples are given in Se
tion 2.4.1.

The solution to the se
ond problem, 
onditioning the error probabilities based on the


ontext, generally uses some form of frequen
y 
ounting on a per 
ontext basis. The exa
t

details tend to vary with the a
tual 
ompression s
heme used.

One problem that must be over
ome by all 
ontext 
oding s
hemes, is that of 
ontext

dilution. This o

urs when the 
ombination of 
ontexts and frequen
y 
ounts be
omes

too large. In this 
ase, 
ontexts are entered infrequently and a

urate statisti
s 
annot be

a
quired. This leads to poor error modelling.

This problem 
an be avoided by limiting either the number of 
ontexts or the number

of frequen
y 
ounts. However, if too few 
ontexts are available, the error modelling will

also be ineÆ
ient.

It was mentioned earlier that predi
tion errors have traditionally been assumed to

be distributed as a two sided Lapla
ian 
entred at zero. However, many authors have

found that something di�erent happens when errors are 
ontext modelled. Contexts that

represent a
tive regions in the image often have error distributions whi
h have a 
entre that

is non-zero. Su
h distributions show eviden
e of bias and a measure of this bias is given

by the mean predi
tion error in a given 
ontext. The pro
ess of bias 
an
ellation adjusts

predi
tion residuals to 
ountera
t the 
ontextual bias, hen
e providing a more a

urate

error model.

The issue of 
ontext modelling is given a good theoreti
al 
overage in [WRA96℄. The

use of tree models4 for lossless image 
ompression is suggested. Their approa
h builds

a tree, based on the image data re
eived, thus keeping the number of 
ontexts down to

the level required. The results presented in [WRA96℄ were at the time the best available.

However, the use of more heuristi
 
ontext modelling s
hemes, for example [Wu96℄ that

have shown better 
ompression performan
e, indi
ates that the full rigor of the methods

4Tree models 
ontain Markov Models as a spe
ial 
ase.
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in [WRA96℄ are unne
essary for good performan
e.

2.4.1 Examples of Context Determination Algorithms

The purpose of a 
ontext determination algorithm is to assign the 
urrent pixel to one

of a �xed set of 
ontexts, based on the 
urrent neighbourhood. This should be done in

su
h a way that pixels in a
tive regions get put into a
tive 
ontexts and likewise pixels in

smooth regions get put into smooth 
ontexts. In this way, we expe
t all predi
tion errors

in a given 
ontext to resemble the output of a single sour
e. Hen
e, modelling all errors in

a given 
ontext as 
oming from a single distribution permits eÆ
ient 
oding.

Error Bu
kets

Examining the predi
tion errors experien
ed at neighbouring pixels is one way to as
ertain

the lo
al image a
tivity. Su
h a s
heme was �rst presented in [TLR85℄, and makes use

of error bu
kets. The full range of errors �255 � " � 255 (for 8 bpp images) is divided

into 5 error bu
kets (a 
rude form of quantisation). The 
ontext of the 
urrent pixel is


al
ulated as the 
ross-produ
t of the error bu
kets of the 
losest three pixels (W , N and

NW ). Thus, there are 5� 5� 5 = 625 
ontexts. Better results are reported when 11 error

bu
kets are used.

The use of error bu
kets for modelling also appeared in the SUNSET 
oder[Lan91,

Lan88℄ and the Arithmeti
 
oding version of LJPEG[LGS92℄. Both these approa
hes use

the bit position of the most signi�
ant bit in the absolute predi
tion error as the error

bu
ket index.

Lo
al Gradients

The purpose of 
ontext determination is to identify smooth regions in the image from a
tive

regions. This 
an be done by 
onsidering the lo
al image gradients. LOCO-I[WSS96℄ uses

4 gradients, g1 = NE�N , g2 = N�NW , g3 = NW �W and g4 = W �WW . Cal
ulating

a 
ontext based on the 
ross-produ
t of these gradients would result in having just under

7 � 1010 
ontexts! This is far more than 
an be pra
ti
ally handled and would 
ertainly


ause problems with 
ontext dilution.

To over
ome this, the 4 gradients were quantised into a number of roughly equiprobable

bu
kets. g1, g2 and g3 were ea
h quantised into 9 regions, while g4, being further from X,

is quantised into 3 regions. This results in 93 � 3 = 2187 
ontexts.

This was still deemed to be too many, so 
ontext merging was used to 
ut the number

pra
ti
ally in half. By assuming,

p(" = djC = [q1; q2; q3; q4℄) = p(" = �djC = [�q1;�q2;�q3;�q4℄) (2.6)

where C is the 
urrent 
ontext and the qi are the quantised gi, 
ontexts that are sym-

metri
 around zero 
an be merged. This merging pro
ess redu
es the number of 
ontexts

to 1094.
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Lo
al Texture and Error Energy

In [Wu96℄ Wu suggests generating 
ontexts based on a 
ombination of lo
al texturing and

error energy. Moreover, the s
heme presented used su
h hybrid 
ontexts only for bias


an
ellation, error distribution modelling is based on the lo
al error energy metri
 alone.

To 
hara
terise lo
al texture, Wu 
onsiders a set of eight lo
al events:

S = fN;W;NW;NE;NN;WW; 2N �NN; 2W �WWg (2.7)

An 8 bit binary number Qt = b7b6b5 : : : b0, is then formed by:

bk =

(
0 if Sk � X̂

1 if Sk < X̂
(2.8)

In [Wu96℄ GAP is used to determine X̂. By using X̂ as a threshold, Qt is �rmly

linked to the predi
tion and therefore the predi
tion error. The lo
al error energy (�) is

determined by:

� = amin(dh; dv) + bmax(j"W j; j"N j) (2.9)

where dh and dv are as given in Equation 2.3 and "W and "N are the predi
tion errors

from W and N respe
tively. The 
oeÆ
ients a and b are determined by an o�ine optimi-

sation pro
ess. � is then quantised into 8 levels to form Qd; the quantisation levels again

being determined by o�ine optimisation with a training set. Wu based his 
hoi
e of dh, dv,

j"W j and j"N j as the basis for Qd, be
ause of a high average 
orrelation 
oeÆ
ient (> 0:3)

between these values and j"j.
This s
heme uses 256� 8 = 2048 
ontexts for bias 
an
ellation, but only 8 
ontexts for

error distribution modelling.

2.5 Some Examples of Complete S
hemes

The building blo
ks of many lossless image 
ompression s
hemes have now been detailed,

but no 
omplete s
hemes have been des
ribed. For reasons of spa
e, and to avoid ex
essive

repli
ation of material, a sample of three 
omplete s
hemes is given below.

JPEG-LS[ITU96℄ is the new lossless image 
oding standard from the JPEG group and

repla
es LJPEG. JPEG-LS (heavily based on LOCO-I[WSS96℄) is an example of an image


oder built from a simple swit
hing predi
tor with 
ontext based error modelling. Many

other examples of 
oding s
hemes built along similar lines exist[WM97, STM97, LGS92,

Lan91, Wal91℄.

Although JPEG-LS was designed to o�er good 
ompression performan
e at a reasonable

level of 
omputational 
omplexity, it still has more 
omputational requirements than some

s
hemes. FELICS[HV93℄ is an example of a lossless image 
ompression s
heme that makes

use of some interesting insights to provide a

eptable 
ompression at great speed. It is

detailed in Se
tion 2.5.2 .
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Input Symbol for k = 0 for k = 1 for k = 2

0 0 00 000

1 10 10 010

2 110 010 100

3 1110 110 110

4 11110 0110 0010

5 111110 1110 0110

6 1111110 01110 1010

Table 2.2: Example Golomb-Ri
e 
odes for three values of k. Note, bits 
onstituting the

unary se
tion of the 
ode are shown in itali
s.

On the other end of the 
omplexity s
ale is a s
heme named TMW[MT97℄ after its


reators. This 
onsiders image 
oding as a two part pro
ess and is brie
y dis
ussed in

Se
tion 2.5.3.

2.5.1 The New JPEG Standard - JPEG-LS

Due to the per
eived inadequa
y of the LJPEG standard, the JPEG 
ommittee put out

a 
all for proposals for a new lossless image 
ompression standard. LOCO-I5[WSS96℄ was

put forward as one of the 
ontenders and the new standard JPEG-LS[ITU96℄ is heavily

based on it.

JPEG-LS uses the MED predi
tor and a gradient based 
ontext determination s
heme.

The main di�eren
e between the 
ontext determination of JPEG-LS 
ompared to LOCO-I

is that JPEG-LS does not use the g4 gradient.

In order to help keep 
omplexity low and redu
e model 
ost, JPEG-LS uses a symbol


oder that requires only a single parameter to des
ribe an adaptive 
ode. The s
heme

used is Golomb-Ri
e (GR) 
oding (often known only as Ri
e 
oding) and the parameter

required is k. GR 
odes are a subset of the Hu�man 
odes and have been shown to be the

optimal Hu�man 
odes for symbols from a geometri
 distribution.

Golomb-Ri
e 
odes are generated as two parts; the �rst is made from the k least

signi�
ant bits of the input symbol and the latter is the remainder of the input symbol in

unary format. Some example 
odes are given in Table 2.2. Sele
ting the 
orre
t k to use

when 
oding a predi
tion error is very important. The ideal value for k is strongly related

to the logarithm of the expe
ted predi
tion error magnitude[WSS96℄.

In JPEG-LS four 
ounts are kept for every 
ontext. The variable N 
ounts the number

of times a 
ontext is visited and A a

umulates the absolute value of the predi
tion errors

in the 
ontext. The expe
tation for the predi
tion error magnitude is given by A=N and

k is thus:

5LOw COmplexity LOssless COmpression for Images.
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min(kj2kN � A) (2.10)

In [WSS96℄ it is noted that this 
an be 
onveniently written in C as:

for(k=0; (N<<k)<A; k++);

As for the other two per-
ontext 
ounts; B a

umulates the predi
tion errors in the


ontext (a
tual values, not magnitudes) and C tra
ks the predi
tion error bias. C is

updated when B rea
hes a threshold. Whenever C is updated, A and B are also updated

to take a

ount of the now 
an
elled bias.

Although, JPEG-LS is already highly adaptive, it has the potential for ineÆ
ien
y due

to 
ontextual error statisti
s 
hanging as image 
oding progresses. To 
ounter this, the


ontextual 
ounts are reset after the 
ontext has been visited a predetermined number of

times. This resetting pro
edure halves all the 
ounts for the 
ontext, thus redu
ing the

importan
e of past data and allowing new statisti
al information to play a greater role.

One limitation of GR 
odes is that, like general Hu�man 
odes, they are limited to a

minimum 
ode length of one bit per symbol. In very highly redundant regions of an image

this 
an represent a serious penalty. This e�e
t is limited by the introdu
tion of a run

mode. The run mode is entered when a spe
ial 
ontext is entered. This run-
ontext is the


ontext for whi
h the lo
al (quantised) image gradients are all zero. On
e in run-mode the

next symbol is a GR 
oded run-length that determines how many identi
al symbols follow.

As the run mode 
an be entered even when no run is present, runs 
an be of zero length.

Weinberger et al. 
ompared LOCO-I to many other lossless s
hemes, in
luding the

LJPEG standard. LOCO-I was found to 
ompress better than all the other methods

ex
ept CALICS [Wu96℄. Weinberger et al. 
laim that the slightly better performan
e of

CALICS is at the 
ost of an extra order of magnitude in 
omputational 
omplexity. Its

good performan
e 
oupled with a relatively simple implementation appears to have been

persuasive, as the new standard for lossless JPEG [197℄ is strongly based on LOCO-I.

2.5.2 The Fast and EÆ
ient Image Compression System

In [HV93℄ Howard presents his Fast, EÆ
ient, Lossless Image Compression System.

FELICS is built around the simple observation that the probability distribution of the


urrent pixel value X, is roughly 
at within the range formed by the two nearest pixel's

values (W and N) and de
ays exponentially outside that range.

For typi
al images, Howard �nds that the value X is in range (i.e. between the values

of W and N) about 50% of the time. A single bit is thus used for ea
h pixel to determine

whether X is in range or not. As the in range probability distribution is roughly 
at, a

binary 
ode is both theoreti
ally suitable and 
omputationally simple. Howard uses an

adjusted binary 
ode that gives a slight bias to values in the 
entre of the range (where a

slight hump in the probability distribution is found).

If X is not in range, a further bit is sent to indi
ate whether X falls below the bottom of

the range or above the top of the range. The distribution ofX was found to be symmetri
al
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outside the range, therefore the use of a single bit is again justi�ed. As the distribution

for values of X falls exponentially beyond the given range, Ri
e 
odes give an eÆ
ient way

to 
ode the value of X, with respe
t to either the lower or upper boundary of the range.

The parameter for the Ri
e 
ode is determined by 
ontextual adaptation; the 
ontext for

a given pixel is determined by Æ , where Æ = max(W;N) � min(W;N). Note, Æ is not

quantised.

Results given in [HV93℄ indi
ate that FELICS has roughly the same 
ompression perfor-

man
e as the original lossless JPEG s
heme but has about �ve times the data throughput

on a given ma
hine. It is notable that for images that are highly 
ompressible by LJPEG,

FELICS's relative 
ompression performan
e deteriorates. This is in part due to the as-

sumption that for typi
al images the in range probability is about 1=2. An atypi
al image

(i.e. one that is highly 
ompressible) is likely to have an in range probability that is

distin
tly di�erent from 1=2 and therefore the use of one bit to 
ode it is ineÆ
ient. In

[HV93℄, Howard ignores these images on the argument that they are rare. Also, to model

the in range probability would add 
onsiderably to the 
omputational 
omplexity of the

s
heme.

In [HV93℄ Howard notes that by dire
tly modelling the probability distribution for X,

FELICS neatly 
ombines the predi
tion and error modelling steps of lossless 
ompression.

However, an alternative view of FELICS presents itself, if we 
onsider it to be a predi
tor

swit
hing s
heme. In essen
e FELICS uses three predi
tors W , N and (W + N)=2 (the

latter is eviden
ed by the bias given towards values in the 
entre of the range). Forward

adaptation is used to determine whether or not to use (W +N)=2 for predi
tion. If X is

in range (W +N)=2 is used, although it is not ne
essarily the best predi
tor. As well as

indi
ating a predi
tor sele
tion that one bit also limits the predi
tion error and indi
ates

a 
at model for the predi
tion error distribution.

If X is out of range, forward adaptation is again used to make a predi
tor sele
tion

de
ision, this time 
hoosing between W and N . This extra bit, along with the out of

range knowledge, e�e
tively determine the sign of the predi
tion error, leaving only its

magnitude to be 
oded by Ri
e 
oding. Thus, the eÆ
ien
y of FELICS 
omes largely from

the multiple inferen
es that 
an made for ea
h bit of overhead information.

2.5.3 Two Part Coding

The ultimate produ
t of forward adaptation is the two part 
oding s
heme. The en
oder

does image analysis on the input and attempts to 
apture the essen
e of the image (its

global 
hara
teristi
s). This model of the image is then transmitted to the de
oder. Fol-

lowing this, the image is 
ompressed a

ording to the model built for it. Su
h a s
heme is

presented in [MT97℄.

A set of linear predi
tors are used, the weights for whi
h are 
omputed by the en
oder.

Instead of predi
ting a single value for ea
h pixel, the predi
tors 
al
ulate a probability dis-

tribution. Ea
h predi
tor produ
es a predi
tion distribution 
entred on a value 
al
ulated

by linear predi
tion. The distribution formed is a variant of the t-distribution. The width
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of the distribution is determined by a weighted 
ombination of lo
al predi
tion errors; the

weights involved being part of the image model.

These distributions are blended together, yielding a 
omposite distribution. Note, this

takes predi
tor blending one step further than HBB[STM97℄. However, di�erent predi
tors

will best apply to di�erent areas, so a notion of predi
tor eÆ
ien
y is built into the system.

The predi
tion distributions are then blended by a linear fun
tion, whi
h depends partly

on a weight 
al
ulated during the analysis phase (for global eÆ
ien
y) and partly on the

re
ent image past (for lo
al eÆ
ien
y).

It is not ne
essary to 
ompute the 
omposite predi
tion distribution for all potential

values of the 
urrent pixel. Instead it is 
al
ulated for various ranges, thus allowing the

determination of ea
h a
tual pixel to be de
omposed into a sequen
e of binary events.

These binary events are en
oded with an arithmeti
 
oder.

All the weights used by TMW are 
ontinuous and this aids the image analysis phase.

A variety of optimisation te
hniques are used to �ne tune these weights. Note, that some

parameters that appear in the image model, su
h as the number of predi
tors to use, are

not optimised and must be provided by the user.

The 
ompression results of TMW surpassed those of the previously best known image


ompression s
heme CALIC, for all the images tested in [MT97℄. Although not 
learly

stated in [MT97℄, personal 
omments from the author suggest that the image analysis

phase of the s
heme is 
omputationally very intensive. This makes the 
urrent in
arnation

of TMW unsuitable for many widespread appli
ations.

2.5.4 Considering Extensions

When 
onsidering the three s
hemes just des
ribed, with a view to extending them to


olour images, video, et
., some issues be
ome apparent. It is hard to see how FELICS


ould maintain its simpli
ity and eÆ
ien
y if extra dimensions were added to the input

data. Although highly adaptive, TMW is already highly 
omplex. An extended version

would exhibit very high 
omputational 
omplexity. Both s
hemes, though su

essful for

greys
ale images, seem inappropriate as a foundation for extended lossless image 
oding.

However, JPEG-LS, and similar s
hemes su
h as CALICS and SUNSET, seem a better

starting point. By adding spe
tral, temporal and interview 
onsiderations to predi
tion,

predi
tor sele
tion and error modelling, extended lossless image 
ompression should be

attainable.

2.6 Mis
ellaneous Te
hniques

Although many mainstream ideas have already been 
overed in this 
hapter, there are still

other te
hniques whi
h should be in
luded to give a 
omprehensive review. Su
h te
hniques

and s
hemes are detailed in this se
tion.

Probably the most widely used standard lossless image 
ompression s
heme is the

Graphi
s Inter
hange Format. Although mu
h used, it is not a good example of a state-
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of-the-art lossless 
ompression s
heme, as detailed in Se
tion 2.6.1. Hierar
hi
al de
ompo-

sition is a powerful tool in any form of image pro
essing. Although not frequently used in

lossless 
ompression, some examples of hierar
hi
al methods are given in Se
tion 2.6.2. An-

other form of de
omposition is bit plane de
omposition. This and asso
iated 
ompression

s
hemes are mentioned in Se
tion 2.6.3.

Finally, in Se
tion 2.6.4 we examine the interesting but rarely used 
on
ept of s
an

path optimisation.

2.6.1 The Graphi
s Inter
hange Format (GIF)

The �rst widely used standard for lossless image 
ompression was the Graphi
s Inter
hange

Format (GIF) standard invented by Compuserve[Rim92℄. It is based on Wel
h's popular

extension of the LZ78 
oding s
heme. GIF uses a 
olour palette, that 
ontains a maximum

of 256 entries. Ea
h entry spe
i�es one 
olour using a maximum of 8 bits for ea
h of red,

green and blue. The 
olour palette must be built prior to 
oding and is sent along with

the 
ompressed data. Note that images with more than 256 
olours 
annot be losslessly


oded with GIF. The LZW 
oding is applied dire
tly to the pixel data, therefore there

is no mapping stage. Due to the inherently adaptive nature of LZW, it 
an be seen as


ombining the modelling and 
oding stages into one.

LZW (and hen
e GIF) works well for 
omputer generated images (espe
ially i
ons)

whi
h have a lot of pixel sequen
es repeated exa
tly. However, for real pi
tures it performs

less well. This is due to the noise, inherent in any form of image 
apture, breaking the

repeating sequen
es of pixels that LZW depends on. Also, the limitation of 256 di�erent

pixel values be
ame a problem as 
heaper memory made 24 bit (16777216 
olours) images

more popular.

2.6.2 Hierar
hi
al Methods

Hierar
hi
al forms of image 
ompression have not been very popular for lossless appli
a-

tions. This is be
ause they generally have inferior performan
e to sequential s
hemes of

similar 
omplexity. The one main advantage of hierar
hi
al s
hemes is that of progressive

de
oding[Qiu99℄. That is, a 
oarse representation of the image 
an qui
kly be built up,

allowing a user to determine if the rest of the image should be de
oded in full. This 
an

be very useful if data is 
oming over a slow link or if the image in question is very large.

One simple hierar
hi
al method is quadtree 
oding. An image region (typi
ally square)

is either represented as a single value, or if that is not satisfa
tory, it is split into four

regions. If present, the four 
hildren of the original region are then pro
essed re
ursively.

This te
hnique has appli
ation in some areas, but is generally unsuitable for lossless image


ompression be
ause real images will require almost all nodes to be split. This 
auses the

overhead of representing the quadtree to ex
eed any advantage in representing 
at regions

of the image with a single value.



26 CHAPTER 2. LOSSLESS GREYSCALE IMAGE COMPRESSION

L H1 H3 H1 L

H1 H2 H1 H2 H1

H3 H1 H4 H1 H3

H1 H2 H1 H2 H1

L H1 H3 H1 L

Figure 2.3: A small example of hierar
hi
al interpolative de
omposition. The L pixels

remain after four passes. The H pixels are repla
ed by their predi
tion error; the sub-

s
ript determines in whi
h passes the pixel is removed.

A B A

H D H B

D C C

Figure 2.4: Neighbours in a hierar
hi
al s
heme.

Interpolative Coding

Another way to form a 
oarse representation of an image is to simply remove pixels from

the image and use the remaining pixels to form a lower resolution image. The removed

pixels 
an then be predi
ted by some interpolating method, based on the pixels remaining.

We 
all the pixels remaining after one pass, the L band and the predi
tion errors that

repla
e the removed pixels the H band. By using multiple passes a truly hierar
hi
al

s
heme emerges.

One s
heme that has been mentioned in several papers[Rob97, HV91℄ removes every

even pixel on every odd row and every odd pixel on every even row. An example of this

de
omposition is shown in Figure 2.3. It should be noted that the sampling latti
e must

be rotated by 45o after ea
h pass.

The de
oder is sent the remaining L pixels �rst (usually DPCM 
oded) and then H

pixels; from H4 to H1 in the 
urrent example. Note, every H pixel (ex
luded edge e�e
ts)

is surrounded by 4 pixels at a higher level, either as a square or as a diamond. These

four (see Figure 2.4) 
an be used to interpolate (predi
t) the H pixel and hen
e only the

predi
tion error need be sent. In [Rob97℄ Robinson introdu
es some other predi
tors, in

parti
ular it is noted that:

Ĥ =

(
(A+ C)=2 if jA� Cj < jB �Dj
(B +D)=2 if jB �Dj < jA� Cj (2.11)

is mu
h better than the linear 
ombination Ĥ = (A +B + C +D)=4.

One drawba
k of interpolative s
hemes is that their intermediate resolution images
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su�er from aliasing. This is due to the la
k of �ltering in the sub-sampling pro
ess.

The S-Transform

The S-Transform, whi
h has similarities to the multiresolution Haar representation, 
an be

used for hierar
hi
al methods. Consider a sequen
e of 2N symbols s[n℄; s = 1; : : : ; 2N . s[n℄


an be represented as two sequen
es of symbols, one that represents the low frequen
y 
om-

ponent (averaging) of s and one that holds the high frequen
y 
omponent (di�eren
ing).

These sequen
es are de�ned as:

l[n℄ =

$
s[2n℄ + s[2n+ 1℄

2

%
(2.12)

h[n℄ = s[2n℄� s[2n + 1℄ (2.13)

and the reverse transform is:

s[2n℄ = l[n℄ +

$
h[n℄ + 1

2

%

s[2n+ 1℄ = s[2n℄� h[n℄ (2.14)

Although the S-Transform is inherently 1-dimensional, by transforming �rst the rows

and then the 
olumns a 2-dimensional transform is a
hieved. After the rows and 
olumns

have both been transformed, one quarter of the image is entirely low frequen
y 
omponents.

This band 
an be transformed re
ursively to form a multiresolution image pyramid. An

example is given in Figure 2.5.

Although potentially useful for lossless image 
ompression, the use of the S-Transform

as a mapping stage is generally inferior to simple DPCM methods. However, the perfor-

man
e was improved by Said and Pearlman [SP96℄ who introdu
ed the S+P-Transform.

The P is added to indi
ate the presen
e of predi
tion that is used to lower the entropy of

the representation. High frequen
y 
omponents (h[n℄) are predi
ted from previously seen


oeÆ
ients of both high and low frequen
y.

2.6.3 Bit Plane De
omposition

One of the major problems in modelling image data is the relatively large alphabet of

possible pixels values (typi
ally 28). One way to avoid this problem is to de
ompose a k

bpp image into k di�erent bit planes. The k 1 bpp images that now represent the original


an then be 
ompressed using run-length or 
ontext based 
oding. If the pixel values are


oded with a Gray 
ode, rather than the standard binary 
ode, the resultant bit planes

are spatially more uniform and better 
ompression is seen[GW92℄.

One problem with bit-plane de
omposition is that the entropy of the resultant k planes

is generally larger than that of the original image. In [Yu95℄ it is given that de
omposing a
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Figure 2.5: Result of a multiresolution S-Transform.

k bpp image into 2k� 1 planes 
an over
ome any penalty normally asso
iated with binary

de
omposition te
hniques.

An interesting hybrid of bit plane de
omposition and predi
tive 
oding is presented

in [SA92℄. Every pixel is 
oded as a pre�x and a suÆx. The pre�x represents the number

of 
ontiguous bits, going from the most signi�
ant to the least, that the 
urrent pixel has

in 
ommon with a referen
e pixel. The suÆx is then all but one of the lower order bits; if

the �rst n bits of the 
urrent pixel mat
h the referen
e, then the n+1th bit of the 
urrent

pixel is impli
itly not the n+ 1th bit of the referen
e. For example, if we had:
referen
e pixel = 10110010


urrent pixel = 10111010

the pre�x would be 4 and the suÆx would be 010. In [SA92℄ the pre�x is Hu�man


oding and the referen
e pixel 
an be 
hosen as either W or N . One s
heme presented

in [SA92℄ alternates between potential referen
e pixels when the value of the pre�x falls

below a preset threshold.

2.6.4 S
an Path Optimisation

Almost all the 
ompression s
hemes mentioned previously have used the raster s
an order-

ing; one ex
eption being HBB[STM97℄. Theoreti
al work suggests that an optimal pixel

ordering would be related to a Hilbert spa
e �lling 
urve. However, su
h a method is


onsidered impra
ti
al for the 
ompression of greys
ale image data[MS95
℄.

Instead of trying to �nd a universally optimal s
an ordering, Memon et. al. have tried

optimising the s
an path to take a

ount of a given image and its features. The problem

of �nding an optimal path 
an be atta
ked with graph theory. Ea
h pixel is 
onsidered a
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vertex and a weighted edge joins every pixel to its four 
losest neighbours (above, below,

left and right). The weight on ea
h edge is the di�eren
e between the two relevant pixel

values. This weight 
an also be seen as the predi
tion error from simple DPCM when using

a s
an model that traverses the edge.

It is useful to �nd a s
an model that minimises the absolute weight of predi
tion

residuals. A minimum absolute weight model 
an be found by 
omputing a minimum

weight spanning tree of the graph des
ribed above. Fortunately, eÆ
ient algorithms are

known for this [Sed92℄.

The drawba
k of this s
an based method, when en
oding single images, is that the 
ost

of re
ording the s
an path outweighs most of the performan
e gained by using it. However,

Memon et. al. have applied their s
an method to 
olour images with su

essful results

(see Se
tion 3.1.3).

2.7 Summary

In this 
hapter we have seen some of the very many te
hniques used to ta
kle the problem

of lossless greys
ale image 
ompression. Many su

essful s
hemes were seen to use adaptive

predi
tion, followed by advan
ed error modelling through 
ontext based 
onditioning. By

extending the predi
tive fun
tions and 
ontext models to in
lude spe
tral, temporal and

interview elements, we might reasonably hope to a
hieve the goal of extended lossless image


oding.
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Chapter 3

Beyond Greys
ale Image

Compression

This 
hapter 
overs the literature underlying the 
ompression of 
olour images, video and

multiview imagery. Compared to the work on greys
ale image 
ompression, the literature

on lossless 
olour image 
ompression, dis
ussed in Se
tion 3.1, is very sparse. It is mostly

re
ent and mu
h of it is related to the spe
i�
 
ase of 
ompressing multiband satellite data.

While the literature on lossless video 
ompression is pra
ti
ally non-existent, a huge

amount exists on lossy video 
ompression, in
luding Clarke's ex
ellent book \Digital Com-

pression of Still Images and Video" [Cla95℄. This is 
overed brie
y in Se
tion 3.2, with

parti
ular emphasis being pla
ed on te
hniques that may help extend lossless methods to

video. The nature of multiview stereo imagery, whi
h 
an be seen as a spe
ial 
ase of video

data, is introdu
ed in Se
tion 3.3.

Finally, a summary of the literature 
overed is given in Se
tion 3.4.

3.1 Extensions for Colour

Any form of 
olour (or multiband) image 
an be thought of as fun
tion f(b; x; y) where b

ranges over the 
olour bands (0 � b � B�1) and x and y range over the width and height

respe
tively. Most lossless image 
ompression s
hemes, as dis
ussed in previous 
hapters,

are designed to deal with fun
tions of the form f(x; y) and so 
onsider a 
olour image as B

fun
tions fb(x; y). However, by utilising the interband 
orrelation additional 
ompression


an be gained. This pro
ess 
an also be thought of as using interband relationships to

better de
orrelate the data prior to entropy 
oding.

3.1.1 Colour Spa
e Transforms

To have physi
al meaning, the values of the B pixels at a �xed spatial lo
ation should

represent a point in some 
olour spa
e[FvDFH93℄. We shall 
onsider the default 
olour

spa
e to be the Red, Green and Blue (RGB) spa
e. This is often represented as a 
ube,

31
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with three orthogonal axis giving the amount of red, green and blue. The 
ube is usually

s
aled to have sides of unit length, (0; 0; 0) being bla
k and (1; 1; 1) being white. For image

storage it is often the 
ase that 8 bits are used for ea
h 
olour 
omponent (24 bpp in total)

and therefore we 
an 
onsider the standard RGB 
ube to be quantised and s
aled by a

fa
tor of 255.

The RGB 
olour spa
e is related to our physi
al per
eption of 
olour and is used

by display devi
es su
h as CRTs and LCDs. However, other 
olour representations are

needed for other tasks. For example, when printing, the RGB s
heme (an additive 
olour

s
heme) is unusable. Instead, a subtra
tive s
heme (so 
alled be
ause 
olour 
omponents

are removed from the white of the paper) based on 
yan, magenta and yellow is used. To

improve printing results, a fourth 
omponent is added that represents bla
k. This gives

the CMYK (Cyan-Magenta-Yellow-bla
K) 
olour s
heme.

Pixel values are often transformed into 
olour spa
es that aim to separate luminan
e and


hrominan
e information. Conversion to YIQ and YUV have been popular for television

broad
ast appli
ations, where Y presents luminan
e and I,Q,U and V are 
hrominan
e


omponents. Y 
an be 
al
ulated from RGB by:

Y = 0:299R+ 0:587G+ 0:114B (3.1)

For the YUV system, the 
omponents U and V are des
ribed by 
olour di�eren
es:

U = B � Y

V = R� Y (3.2)

However, this formulation allows U and V to be negative. The YCrCb formulation gets

around this by s
aling and zero-shifting the 
omponents:

Cr = (V=1:6) + 0:5

Cb = (U=2) + 0:5 (3.3)

Note, the 0.5 shift assumes a 
olour spa
e of unit dimension; using 8 bit imagery requires

a shift of 128.

By 
onverting to a 
olour spa
e su
h as YCrCb, the luminan
e and 
hrominan
e 
om-

ponents are de
orrelated. This allows the 
hrominan
e 
omponents to be handled at a

di�erent resolution to the luminan
e 
omponents. This is advantageous for lossy 
oding

s
hemes as the per
eptual quality of an image is related more strongly to the luminan
e

than the 
hrominan
e part of the signal. Hen
e, the Cr and Cb bands are often sub-

sampled to half the horizontal and verti
al resolution of the luminan
e band. This gives

great advan
es in 
ompression but is not appli
able for lossless 
oding.

Although, 
olour spa
e 
onversion is often seen as a de
orrelating te
hnique, the entropy

of the resultant image 
an be greater than that of the original[Tur94℄. Furthermore as the
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Y, Cr and Cb bands have little 
orrelation, subsequent interband methods are unlikely to

prove e�e
tive. As a 
onsequen
e, traditional 
olour spa
e 
onversions seem ine�e
tive for

lossless 
ompression purposes.

Optimal Transforms

Theoreti
ally, the transform best able to de
orrelate the various 
olour bands in an image,

would be the Karhunen-Lo�eve Transform (KLT). In [APL98℄ a reversible approximation

to the KLT is given and its usefulness in lossless image 
ompression is assessed.

In [APL98℄ the en
oder 
omputes the matrix for the lossless KLT for every region in

the image (regions are either generated by simple blo
k division or 
olour segmentation)

and transmits an approximation of the matrix to the de
oder. This s
heme takes into

a

ount the possibility that 
olour statisti
s will vary over the extent of an image.

The results of several experiments are reported in [APL98℄, mostly using a CMYK (32

bpp) image musi
ians. It was found that the lossless KLT, followed by Arithmeti
 
oding,

did 
ompress the data but was inferior to the use of the JPEG7 predi
tor applied to ea
h

band separately. The lossless KLT was then used in 
on
ert with spatial de
orrelation

(JPEG7). It was found that the best results were obtained by using the KLT after the

spatial predi
tion step. In this way, the KLT is used to assist error modelling.

The 
on
lusions drawn in the paper were that spatial (intraband) 
orrelations are more

important than spe
tral (interband) 
orrelations and that their lossless KLT aided 
om-

pression if it followed a spatial de
orrelation step. However, in the results provided it is


lear that a purely intraband version of CALIC was often able to surpass the KLT enhan
ed


oder presented.

The results of [APL98℄ are somewhat 
ounter-intuitive. It seems likely that spe
tral

de
orrelation should have a greater utility than to be used to de
orrelate spatial predi
tion

residuals. It also suggests, that global appli
ation of spe
tral modelling may not be the

best alternative for advan
ed 
oding s
hemes.

3.1.2 Interband Predi
tion

In order to use spe
tral 
oheren
e to dire
tly de
orrelate pixel values, a predi
tive fun
tion

is required. To des
ribe su
h a fun
tion, we shall use the same lo
ation naming 
onventions

as in the last 
hapter (see Figure 2.2). X, W , N , et
. are assumed to be in the 
urrent

band and Xr, Wr, Nr, et
. are pixel values at the same lo
ations but in a referen
e band.

All pixels up to and in
luding the 
urrent, in the referen
e band, must be known by the

de
oder.

An interband extension of JPEG-LS, presented in [MWSM97℄, de�nes an interband

predi
tor:

X̂ =
W + (Xr �Wr) +N + (Xr �Nr)

2
(3.4)
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This 
an be seen as using the average of the horizontal and verti
al intensity gradients

in the referen
e band, to model the same gradients in the 
urrent band. In [MWSM97℄ it

is noted that despite its simpli
ity, the predi
tor de�ned by Equation 3.4 performs better

than some more 
omplex alternatives they 
onsidered.

In a more re
ent paper [WMC98℄ an interband version of CALIC is presented. This ex-

tension of CALIC utilises a more 
ompli
ated interband predi
tor, whi
h starts by de�ning

two potential predi
tive estimates:

X̂h = W + �(Xr �Wr)

X̂v = N + �(Xr �Nr) (3.5)

where � is related to the 
orrelation between the 
olour bands. In the presen
e of a

strong edge, one of these two values is 
hosen, otherwise the values are 
ombined. This is


omputed by:

if(jXr �Nrj � jXr �Wrj > T ) //sharp horizontal edge

X̂ = X̂h

else if(jXr �Nrj � jXr �Wrj < �T ) //sharp verti
al edge

X̂ = X̂v

else

X̂ = (X̂v + X̂h)=2

(3.6)

where T is a threshold whose value is not given. This use of lo
al gradients in predi
tion

is strongly reminis
ent of GAP.

It is worth noting that under the simplifying assumptions that � = 1 and given a degree

of image smoothness, the predi
tor of interband CALIC is equivalent to the one used in

interband JPEG-LS.

3.1.3 Interband Swit
hing Methods

In both [MWSM97℄ and [WMC98℄ it was determined that sele
tive use of interband pre-

di
tion is superior to its un
onditional use. Indeed, it was found that un
onditional use of

interband predi
tion 
an lead to a redu
tion in 
ompression performan
e, as 
ompared to

the use of intraband predi
tion. Therefore, we shall now 
onsider some methods to swit
h

between inter- and intraband predi
tors.

In [MWSM97℄ two methods are 
ompared for swit
hing purposes. Firstly, the 
orre-

lation 
oeÆ
ient between the 
urrent and referen
e bands, 
onsidering 10 pixel lo
ations


lose to the 
urrent pixel, is 
al
ulated. If this 
orrelation 
oeÆ
ient is greater than some

threshold, the interband predi
tor is used, otherwise intraband predi
tion is performed.

The se
ond method given in [MWSM97℄ requires the storage of the absolute predi
tion

errors for both intra- and interband predi
tors, for the 
urrent and previous rows. The

errors fromW , N , NW andNE are summed and the predi
tor with the lowest total is used.
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This was found to give roughly equivalent results to the 
orrelation based swit
hing s
heme.

The use of lo
al error requires less 
omputation but more storage than the 
orrelation

method.

In [WMC98℄ lo
al 
orrelation is again used to swit
h between predi
tion s
hemes. How-

ever, the lo
al neighbourhood is redu
ed from 10 to 8 pixels for the 
orrelation 
oeÆ
ient


omputation and the threshold value is given as 1=2.

Interband Methods for Improved Intraband Predi
tion

Interband 
orrelations 
an be used purely for predi
tor swit
hing. An example is given

in [MS95b℄, in whi
h the Previous Best Predi
tor (PBP) te
hnique is introdu
ed. PBP

�rst uses JPEG7 to predi
t a referen
e band. For subsequent bands, a set of predi
tors

is used on the 
urrent pixel lo
ation in the referen
e band. The predi
tor whi
h gives the

minimum predi
tor error in the referen
e band is used for the 
urrent band. In [MS95b℄,

the LJPEG predi
tors (see Table 2.1) were used[Wal91℄. It is noted that using other sets

of predi
tors lead to no appre
iable improvement in performan
e

Also in [MS95b℄ a method based on s
an models is proposed, in a fashion similar to that

mentioned for greys
ale images (see Se
tion 2.6.4). Firstly, JPEG7 was used to predi
t

a referen
e band. Using this referen
e band an optimal s
an path for simple DPCM

is generated. This s
an path is then used, with DPCM, to predi
t the 
urrent band.

In [MS95b℄ the s
an model approa
h was found to outperform PBP.

Both the s
hemes mentioned in [MS95b℄, PBP and the interband s
an model, rely on

the idea that what worked well for the referen
e band will work well for the 
urrent band.

Although good 
ompression savings are shown, both the methods make un
onditional use

of the interband information. This 
ould lead to poor results in 
ases where the image

bands have poor 
orrelation.

3.1.4 Satellite Imagery

The 
ompression of satellite images has often been 
ited as an appli
ation that requires

lossless 
oding, although resear
h employing lossy te
hniques for su
h 
ompression has been

published[AMH97, Abo95℄. One example of a lossless study is in given in [RC96℄, whi
h


onsiders the 
ompression of AVIRIS (Airborne Visible/Infrared Imaging Spe
trometer)

data. This data 
ontains 224 bands and is hen
e 
alled hyperspe
tral.

Although the aim of the work in [RC96℄ is very spe
i�
 (that is, to 
ompression AVIRIS

data) the approa
h taken is quite general. Predi
tion is followed by adaptive error 
oding,

in mu
h the same way as previous s
hemes.

Five predi
tors were 
onsidered independently. These in
luded predi
tors that were

purely spatial (JPEG7), purely spe
tral and predi
tors that used both forms of 
orrelation.

Of the �ve linear predi
tors, two had 
onstant weights applied to the previous pixels used

in the predi
tion. The other three had the potential to optimise their weights. The optimal

value of these weights was found via least-squares minimisation, on a row-by-row basis.
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The best weights were then quantised and transmitted as overhead. Hen
e, this 
an be

seen as forward adaptation.

The best performing predi
tor had the form:

X̂ = a+ bW + 
Xr + dWr (3.7)

As the weights 
an be optimised for ea
h line, varying amounts of spatial and spe
tral


orrelation 
ould be used as required. Hen
e, this use of adaptive weights in a single linear

predi
tor, represents an alternative means of sele
tion between spatial, spe
tral and hybrid

predi
tion.

3.1.5 Band Ordering

The problem of band ordering 
an be seen as determining whi
h band to use as a referen
e

for whi
h other band, when spe
tral predi
tion is to be used. Of the work referen
ed so

far, stati
 (pre-determined) band orderings have been used. For example, in [MS95b℄ the

red band is used as a referen
e for the green band and the green band is then used as a

referen
e for blue. Whereas, in [MWSM97℄, the green band is used as a referen
e for both

the red and blue bands.

If we have B bands there are B! possible band orders. The most obvious solution to

the band order problem is to use all possible band orderings and 
hose the one that works

best. The de
oder will also need to be told whi
h 
hoi
e was made. This approa
h 
arries

the 
ost of running the en
oding algorithm B! times. While this may be a

eptable for

RGB image (3! = 6) or CMYK images (4! = 12) some satellite images have over 200 bands

(hyperspe
tral images) and so alternative s
hemes are required.

In [Tat94℄ the 
ompressed size of every band is 
onsidered, allowing for every other band

to be the referen
e band. The problem is then stru
tured as a weighted graph problem

for whi
h eÆ
ient solutions exist. As there are roughly O(B2) band pairs, the method of

[Tat94℄ redu
es the band ordering problem from one that is O(B!) to O(B2).

When de
ompressing an image stored in RGB or CMYK format it is likely that all


olour bands will require de
oding. However for hyperspe
tral imagery, if a single band

is required, problems 
ould arise from band ordering. For example it may be that the

required band depends on the de
ompression of over a hundred previous bands. This is


learly undesirable. One solution, given in [Tat94℄, is to divide the image into partitions of

a �xed number of bands. This problem turns out to be NP-hard if more than 2 bands are

allowed in ea
h partition. Hen
e, a s
heme based on band pairing is suggested for when

extra
tion of single bands is likely to be a major issue.

3.2 Moving Pi
tures

The idea of using information from previous frames in a video sequen
e was mentioned at

least as far ba
k as O'Neal's work in 1966[O'N66℄. However, la
king statisti
s on interframe
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orrelations, he did not study the idea in detail. Another barrier to the use of interframe

methods at that time, was the 
ost of storing the previous video frame.

For interframe predi
tion, the obvious 
hoi
e for a predi
tor is the pixel value at the

same lo
ation as the 
urrent pixel, but from the previous frame. We 
an write this as

X̂ = Xt�1, where the t�1 indi
ates a value from the previous frame in the time sequen
e. A

problem with this predi
tor is that it fails in areas of motion. Any image region 
ontaining

a moving obje
t will result in poor predi
tion, be
ause the predi
tor has assumed the


urrent frame looks like the previous frame. Worse still, if there is global motion 
aused

by 
amera movement (panning), X̂ = Xt�1 will be likely to fail in all regions of the image.

To solve this problem and make eÆ
ient use of interframe 
orrelations, it is ne
essary to

have a model for the motion in a s
ene. This idea underlies the topi
s of motion estimation

and 
ompensation.

3.2.1 Motion Estimation and Compensation

In order to make use of interframe 
orrelations despite the presen
e of motion, said motion

must be modelled. The pro
ess of modelling the motion is 
alled motion estimation. Given

the previous frame and the motion model, the de
oder 
an 
ompensate for the motion and

produ
e a motion 
ompensated interframe predi
tion.

Motion estimation was 
onsidered to be \one of the main re
ent developments in image


oding" in a review published in 1985[MPG85℄. A good tutorial 
overage is also given in

[Cla95℄. Resear
h in motion estimation took o� in the mid-70s and is still the subje
t of

many publi
ations today, indi
ating that it is still an important problem without an ideal

solution.

To model the motion for a given pixel or image region, motion estimation generally

assumes knowledge of the relevant pixel values in the 
urrent frame. Therefore, motion

estimation must normally be 
arried out by the en
oder (hen
e this is a forward adaptive

method). Motion estimation 
an be 
omputationally very 
omplex and therefore a simple

model of motion is generally used. This model limits motion to 2D translational motion

of solid obje
ts. Other forms of obje
t motion, for example rotation, translation along

the 
amera axis and non-rigid movements, all result in redu
ed a

ura
y of the motion


ompensated predi
tion. Although no details will be given here, some re
ent work has


onsidered aÆne motion models that over
ome most of these limitations[Csi97, WSG99℄.

If motion is modelled only as 2D translation, then a full des
ription of the motion

between two frames is provided by having a motion ve
tor for ea
h pixel in the 
urrent

frame. Ea
h motion ve
tor (a.k.a. displa
ement ve
tor) gives a horizontal and verti
al

distan
e from the 
urrent lo
ation of an image feature, to its lo
ation in the previous

frame. Note, it is important that the motion ve
tors point ba
kwards in time. Otherwise,

if they showed how ea
h element in the previous frame had moved in the time up to the


urrent frame, gaps would appear in the motion 
ompensated frame.

Early work on motion estimation aimed to minimize the motion 
ompensated residual

for a given pixel by a re
ursive te
hnique based on gradient des
ent. Although popular
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for a while, pra
ti
al implementations of this method seem to have been limited by the


omputing power of the late-70's. So when a simpler method named blo
k based motion

estimation, was introdu
ed by Jain and Jain in 1981[JJ81℄, it soon be
ame the mainstream

approa
h for ta
kling motion estimation.

Blo
k Based Motion Estimation

In [JJ81℄ the 
urrent frame is divided into re
tangular blo
ks of M � N pixels. Ea
h

blo
k is then mat
hed against blo
ks from the previous frame and a distortion measure

is 
al
ulated. The blo
ks from the previous frame used for mat
hing, 
orrespond to the

lo
ation of the 
urrent blo
k in the 
urrent frame, displa
ed by i pixels horizontally and j

pixels verti
ally. The shift that gives the minimum distortion, mini;jD(i; j), is sele
ted as

the motion ve
tor for the blo
k.

Jain and Jain used mean square error (MSE) as their distortion metri
. Hen
e, using

a M �N blo
k size and a motion ve
tor range of (�k;�l), the distortion D(i; j) is given

by:

D(i; j) =
1

M �N

MX
m=1

NX
n=1

(It(m;n)� It�1(m+ i; n+ j))2 � k < i < k;�l < j < l (3.8)

where It(x; y) and It�1(x; y) range over the 
urrent and previous frames respe
tively,

relative to the position of the 
urrent blo
k. The squaring operation is often repla
ed

by an absolute operation, to give mean absolute di�eren
e (MAD) as a distortion metri
.

By keeping the shift (i; j) bounded, the sear
h is limited to a re
tangular region of the

previous frame. Bounding the sear
h limits 
omputational requirements, but it for
es an

assumption to be made about the maximum likely motion of an obje
t in a s
ene.

Blo
k based mat
hing is 
learly an optimisation te
hnique. As it has been des
ribed

thus far, the method 
onstitutes a full sear
h approa
h. Many alternative sear
hing strate-

gies have been suggested to lessen the sear
hing e�ort[JJ81, LL97℄. We will 
onsider two

su
h s
hemes here.

In [JJ81℄, the logarithmi
 sear
h is introdu
ed. It is based on the assumption that

the distortion D(i; j) in
reases monotoni
ally as the shift (i; j) moves away from the true

motion ve
tor. The sear
h is iterative and starts with the (0; 0) shift as the best estimate of

the true motion ve
tor. At ea
h iteration in the sear
h, �ve possible shifts are 
onsidered;

the 
urrent best estimate of the true motion ve
tor and four lo
ations around it as shown

in Figure 3.1. If the minimum D(i; j) 
omes from the 
urrent best estimate, or from a

lo
ation at the edge of the sear
h range, the step size is redu
ed. Otherwise, the shift

giving the minimum D(i; j) is 
hosen as the best estimate for the next iteration. The

algorithm terminates when the best estimate for the motion ve
tor is found to give the

least D(i; j) and the step size has rea
hed a minimum threshold.

There are many other fast motion estimation algorithms given in the literature[LF96,

OA97℄. On example is the three-step sear
h. It is very similar in prin
iple to the logarithmi




3.2. MOVING PICTURES 39

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
����
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

Stage 2

Stage 3 Stage 4

0 1 2 3 4 5 6 7

i

-7 -6 -5 -4 -3 -2 -1

j

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7
0 1 2 3 4 5 6 7

i

-7 -6 -5 -4 -3 -2 -1

j

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

i

-7 -6 -5 -4 -3 -2 -1

j

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7
0 1 2 3 4 5 6 7

i

-7 -6 -5 -4 -3 -2 -1

j

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

Stage 1

Figure 3.1: An example of the logarithmi
 sear
hing strategy for blo
k based motion


ompensation. An initial step size of 4 is used, along with a minimum step size of 1. The

displa
ement that yields the lowest distortion at ea
h stage is shown in red. The algorithm

terminates on the fourth stage be
ause the step size has rea
hed the minimum and the


urrent best estimate has the lowest asso
iated distortion. The �nal motion ve
tor is (-2,0).
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sear
h. The di�eren
es are that eight neighbours, rather than four, are used around the

best estimate and that the step size is redu
ed at ea
h iteration regardless of where the

minimum D(i; j) was found.

Although these heuristi
 sear
hing methods redu
e the 
omputational burden of motion

estimation, they do not guarantee to �nd the optimum motion ve
tor 1. Given modern


omputation power and the potential for parallelising the sear
h with suitable hardware,

full sear
h is often the preferred optimisation strategy.

Another speed up that is frequently used is to perform a simple zero motion test. The

distortion D(0; 0) is 
al
ulated and if it is found to be below some threshold, it is assumed

that there is no motion in the blo
k. However, this may 
ause problems if there is very

gradual motion in a s
ene.

In theory there is no reason why the shifts (i; j) have to be integer shifts. Greater

a

ura
y is obtained by allowing non-integer shifts, although interpolation of the referen
e

frame is needed. A 
ompromise that is sometimes used is to allow half pixel resolution,

thus limiting the set of 
ases that an interpolation algorithm must deal with.

Blo
k based motion estimation is often 
riti
ised as being \brute for
e and ignoran
e".

However, an alternative view is that it is founded on sound prin
iples, but sa
ri�
es some

intelle
tual ni
eties for performan
e. It is often noted that obje
ts in motion tend to have

uniform motion over their extent. E.g. All pixels in a 
ar traversing the s
ene will have the

same motion ve
tor. Therefore, it makes sense to estimate motion of regions of the image.

Dividing the image into re
tangular blo
ks is a 
rude segmentation, but allows simple

implementation. Re
ent work on region based motion estimation, employing sophisti
ated

segmentation te
hniques, will not be 
overed here but 
an be found in [BM97, Csi97, DD99℄.

A more problemati
 limitation of blo
k based mat
hing is that the motion ve
tor found

is bound by the limits of the sear
h and only represents the optimum ve
tor a

ording to

the distortion metri
; that is, it may not represent the true motion of the blo
k. A 
lassi


example of this last point is a large moving obje
t with a uniform interior. Be
ause the

interior of the obje
t is uniform, blo
k based mat
hing will not dete
t motion there. Only

the motion at the edges will be found. These fa
tors 
an be alleviated by hierar
hi
al

methods.

Hierar
hi
al Motion Estimation

By starting with a large blo
k size and a 
oarse motion ve
tor resolution, hierar
hi
al blo
k

mat
hing for motion estimation 
an model large s
ale motion[Bie88℄. This is a
hieved

without the massive burden of using a large sear
h spa
e at a �xed resolution. The blo
k

size and motion ve
tor resolution are progressively redu
ed until 1 pixel (or half pixel)

resolution motion estimates are available for blo
ks of a small size. At ea
h stage, the

motion estimates from the previous level are used as a starting point for further estimation.

A more sophisti
ated te
hnique that uses a multilevel image pyramid, is presented

1Note, even the motion ve
tor found by full sear
h is only optimum with respe
t to the distortion

metri
 used.
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in [WC90℄. A three level pyramid is 
onstru
ted, where the bottom level is the original

image. The bottom level is split into 4 by 4 pixel blo
ks. Ea
h pixel in the next level up

represents the average of the 
orresponding blo
k in the bottom level. The top level is


onstru
ted from the middle level in the same fashion as the middle level is 
onstru
ted

from the bottom level.

The 
urrent and referen
e frames are ea
h 
onverted to this pyramid representation.

Initial estimates for the motion ve
tors at the top level are found by dire
t mat
hing of

elements. The mat
hing 
riteria is the mat
h with the least absolute di�eren
e. A range

of �1 is used for both horizontal and verti
al 
omponents. This range 
orresponds to a

range of �16 in the original image.

For the middle level, the motion estimates from the top level are used as starting

estimates. These estimates are again re�ned by dire
t mat
hing, but this time the range

is �2. This pro
ess is repeated for the lowest level, giving motion ve
tors for every pixel.

The results presented in [WC90℄ show that the entropy of the motion 
ompensated

residuals generated with the pyramid based motion estimates were far lower than those

using a pel-re
ursive motion estimation s
heme.

However, as the authors note, it is impra
ti
al to transmit su
h a dense motion �eld to

the de
oder. They present a pra
ti
al video 
oder based on their pyramid representation.

The di�eren
es between the top levels of the 
urrent and previous frame pyramids are sent.

This allows the de
oder to perform top level motion estimation. Using the motion ve
tors


al
ulated, the de
oder 
an perform motion 
ompensation to predi
t the middle pyramid

level. This allows only the motion 
ompensated residuals for the middle level to be sent.

Motion estimation is 
arried out based on the middle level and those motion estimates

are used to motion 
ompensate the lowest level. One more set of motion 
ompensated

residuals is then sent. Note, motion ve
tors need never be sent to the de
oder.

Although the pyramid based s
heme seems useful for motion estimation, the test re-

sults for the 
ompression s
heme mentioned above showed almost no improvement over a

hierar
hi
al blo
k mat
hing based s
heme.

Transmission of Motion Ve
tors

As motion estimation is generally a forward adaptive te
hnique, the en
oder must transmit

the motion ve
tors found by motion estimation to the de
oder. This leads to various


ompromises. It might seem ideal to have an a

urate motion ve
tor available for every

pixel. However, the data requirement for the motion ve
tors would easily outweigh the

bene�ts of the a

urate motion ve
tors. Thus 
hoosing a motion �eld density (blo
k size) is

important. Also, the a

ura
y of motion ve
tors must be taken into a

ount. For example,

half-pixel a

ura
y motion ve
tors allow better motion 
ompensation, but enlarge storage

requirements for the motion ve
tors.

On
e blo
k size and motion ve
tor a

ura
y have been de
ided, the raw data rate for

the motion ve
tors is easily 
al
ulated. However, we expe
t a

urate motion estimates to

show some 
orrelation over the frame. Consequentially, di�erential (or predi
tive) 
oding of
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the horizontal and verti
al 
omponents of the motion ve
tors seems appropriate. However,

the literature seems divided on the issue. A study in [CP89℄, reported in [Cla95℄, suggests

that two-dimensional 
oding of single motion ve
tors is better than di�erential 
oding.

However, more re
ent work suggests an alternative 
on
lusion. For example, in [HP99℄ a

multi-s
ale motion �eld is eÆ
iently en
oded via predi
tion and 
ontext based modelling.

3.2.2 Pra
ti
al Video Coding S
hemes

Although all major video 
ompression standards are lossy, it is useful to observe how

they operate. We shall brie
y 
onsider the Moving Pi
ture Experts Group (MPEG)

standard[MPFD96℄.

MPEG has three primary types of frame, Independent, Predi
ted and Bi-dire
tionally

predi
ted frames. The basi
 features of these frame types are:

� I frames: Intraframe 
oding is used for all blo
ks. Lossy 
oding, via quanitsed DCT,

is used.

� P frames: Frame is predi
ted by motion 
ompensation, using the previous I or P

frame as a referen
e.

� B frames: Frame is predi
ted by motion 
ompensation, using both the previous and

following I or P frames as referen
e. B frames are never used as a referen
e for motion


ompensation.

Motion estimation and 
ompensation are performed on ma
roblo
ks of 16 by 16 pixels

(of luminan
e information). As motion 
ompensation 
an sometimes be ine�e
tive, for

example if an obje
t moves into the s
ene, or some ba
kground is exposed by a moving

obje
t, intra 
oding may be preferable to interframe 
oding. Thus, ea
h ma
roblo
k of an

P or B frame 
an be intra or interframe 
oded. The de
ision of whi
h to use, is made by

the en
oder and passed on as part of a ma
roblo
k header.

The allowed range for the motion ve
tors and their a

ura
y (whole or half pixel) is

en
oded into a per frame header for P and B frames. Motion ve
tors are 
oded di�erentially

using the ve
tor from the previous ma
roblo
k if available.

An MPEG sequen
e is 
omposed of one or more group of pi
tures (GOPs). A typi
al

GOP (in display order) would be: I-B-B-B-P-B-B-B-P-B-B-B-P. However, the B frames

require a P frame that is forward in time, hen
e the order in whi
h the frames are 
oded

must be: I-P-B-B-B-P-B-B-B-P-B-B-B. Clearly, the di�eren
e in 
oding and display order

requires an MPEG de
oder (and en
oder) to be able to bu�er several frames of video.

The use of I frames at regular intervals in a 
oded video might seem ineÆ
ient, as these

frames do not use any interframe 
orrelations. However, using regular I frames provides

multiple a

ess points into the video stream. This removes the requirement that all previous
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frames be de
oded to a

ess a given frame2. Fast forward and rewind 
apabilities are thus

enabled by the use of regular I frames.

3.2.3 Lossless Video Coding

There are surprisingly few papers in the literature regarding lossless video 
oding. One in

parti
ular that does approa
h the subje
t is [MS96℄, whi
h 
onsiders the 
ompression of


olour video. This makes the paper parti
ularly interesting as it 
overs spatial, spe
tral and

temporal 
orrelations and thus is the most extended of the lossless 
ompression s
hemes

en
ountered so far.

[MS96℄ �rst 
ompares intraband, interband and interframe predi
tion s
hemes indepen-

dently. They introdu
e 3D linear predi
tors, whi
h are generated from the original JPEG

set of predi
tors.

They also apply the Previous Best Predi
tor (PBP) te
hnique, introdu
ed by the same

authors in [MS95b℄, to video data. This means that the JPEG set of predi
tors are used

on the 
urrent pixel lo
ation in the previous video frame. The predi
tor with the least

predi
tion error is used for the 
urrent pixel in the 
urrent frame. They 
all this PBPTEMP

as they also use the PBP te
hnique for spe
tral de
orrelation (PBPSPEC).

Memon and Sayood note that all the temporal predi
tors given above fail to work well

in regions of high motion, hen
e they also in
orporate motion 
ompensated predi
tion

(using simple blo
k mat
hing estimation) into their study.

The �rst major result given is that when spe
tral predi
tion is used independently, it

is by far better than either spatial or temporal predi
tion, even for s
enes of low motion.

In fa
t from one set of results3 it 
ould be 
on
luded that spatial predi
tion was better

than simple temporal predi
tion (i.e. ex
luding motion 
ompensation). If other resear
hers

en
ountered similar results at an early stage, it may a

ount for the low number of papers

on the subje
t of lossless video 
ompression.

To get better performan
e, a hybrid s
heme is used. Motion 
ompensation is used in

tandem with PBPSPEC, a single bit being set to indi
ate whi
h was used. JPEG7 is used

in the 
ase that neither of the aforementioned predi
tors is appli
able. The hybrid s
heme

is found to have the predi
tion errors with the lowest entropy. The di�eren
e between the

hybrid s
heme and the best of the non-swit
hing s
hemes was typi
ally 1bpp.

After determining the predi
tion s
heme, error modelling was 
onsidered. The methods

used 
an be seen as a simple 
ontext model with eight 
ontexts. A variety of 
ontext deter-

mination algorithms were 
onsidered. The one that performed best, averaged predi
tion

errors from a k � k blo
k in the referen
e 
olour band and then thresholded the result.

Memon and Sayood note that this method has again used spe
tral 
orrelations to great

e�e
t and that of all the methods in the paper, they feel the greatest room for improvement

lies with the error modelling step.

2The situation for MPEG is a
tually a little di�erent, as a GOP is not ne
essarily independent of all

previous GOPs.
3Note, results are only given for two video sequen
es.
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Figure 3.2: Camera setup for a multiview system.

3.3 Multiview Imagery

So far we have 
onsidered imagery that 
ontains spatial, spe
tral and temporal variation.

This 
overs nearly the full range of human visual experien
e. The only element missing is

stereo; the use of multiple images to add a feeling of depth to a displayed s
ene. Although

only two images are ne
essary to produ
e a stereo e�e
t, more images are sometimes used

to allow greater 
exibility, e.g. to allow multiple viewers to use a single display.

We will use the term multiview sequen
e for a set of images that are all views of the

same still s
ene, but taken from slightly displa
ed viewpoints. Su
h a sequen
e would

be 
olle
ted by the 
ameras in Figure 3.2. When 
onsidering a time sequen
e, the term

multiview video will be used. If the number of views, whi
h will generally be arbitrary,

is just two, the terms stereo image and stereo video will be used instead of multiview

sequen
e and multiview video respe
tively.

A multiview sequen
e 
an be thought of as a time sequen
e, in whi
h the 
amera has

moved, with 
onstant velo
ity, in front of a still s
ene. However, a multiview video 
learly

has an extra dimension as 
ompared to standard video. Although multiview imagery has

similarity to video, it has an important di�eren
e. Video aims to present small move-

ments to fool the eye into seeing smooth motion over several frames. Whereas stereos
opi


imagery presents a disparity large enough to enable the viewer to per
eive depth.

The movement of an obje
t due to a 
hange in viewing position, is 
alled disparity

and is related to the distan
e from the viewpoints to the obje
t. Disparity estimation and


ompensation are the analogues of motion estimation and 
ompensation. Approa
hes to

disparity estimation are given in Se
tion 3.3.2. In order to get the most out of multiview


orrelations, we must 
onsider the stru
ture of multiview imagery. This is best a
hieved

by 
onsidering a 
ombination of 
apture devi
es and display devi
es.
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3.3.1 Stereos
opi
 Display Methods and Camera Geometry

A 3D display system presents ea
h of the viewer's two eyes with a slightly di�erent image.

If these images represent two suitably displa
ed views of a s
ene, the observer should be

able to fuse the image pair and per
eive depth within the s
ene. This use of separate

views for ea
h eye provides what is 
alled the bino
ular depth 
ue. Even though a single

image 
an 
ontain many depth 
ues (o

lusion, perspe
tive, et
.), the bino
ular depth


ue is known to be one of the stronger 
ues and 
an help disambiguate 
onfusing depth

information.

There are many approa
hes to displaying stereo imagery. A 
lassi
 s
heme uses spe
tral

multiplexing of a single display surfa
e. That is, one image is shown in red and the other

in green. A viewer with red-green �lter glasses then re
eives a di�erent mono
hrome image

in ea
h eye. Other solutions use temporal multiplexing[MDTL96℄ of a single display or use

multiple displays to present multiple images.

When 
onsidering multiview imagery, it is worth thinking about the image sour
e; be

it 
apture by 
amera or generation by 
omputer graphi
s.

Given a linear set of laterally displa
ed 
ameras, there are two prin
ipal geometries

available; 
onverging or parallel 
amera axes. Many authors [M+93, DML97℄ have noted

the potential problems of the 
onverging axes 
ase:

� A display method utilising a single display 
an show distortions that must either be


orre
ted or su�ered by the viewer.

� The disparity of a s
ene feature, between adja
ent views, may have a slight verti
al


omponent. In 
ontrast, disparity is purely horizontal in the parallel axes 
ase.

This suggests that the parallel axes 
ase is generally more appropriate. However, this is

not always realised; for example all of the widely used DISTIMA test imagery was 
aptured

with a 
onverging 
amera pair. The 
onfusion surrounding this issue is evident in two

referen
es from the DISTIMA group [Fra96, TGS97℄. In [Fra96℄ the verti
al 
omponent of

disparity is said to be less than half a pixel and therefore negligible; however, in [TGS97℄

the verti
al 
omponent is assumed to be in the range �2.
Even when the parallel axes setup is used, there is the question of whether to use on-axis

or o�-axis proje
tion. All the test imagery used by Harashima's group [FH94a, FH94b,

NKH96b, NH94, NKH96a℄ appears to use on-axis proje
tion, however o�-axis proje
tion

is required for display systems that share a single display s
reen.

It seems likely that until a single display te
hnology dominates the �eld, mu
h of this


onfusion will remain. In parti
ular, the 
onfusion will manifest itself as assumptions and

assertions that only hold if a parti
ular 
amera geometry is used. However, with everyone

using a di�erent geometry, referen
es must be very 
arefully read.
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3.3.2 Disparity Estimation and Compensation

Disparity estimation has re
eived a good deal of study [Fra96, RH97, MH96℄. In parti
ular

Frani
h's thesis [Fra96℄ presents mu
h interesting material. He gives a good review of

blo
k based disparity estimation te
hniques. This is 
on
luded by saying that disparity

maps generated by su
h te
hniques are not suÆ
iently a

urate, due to in
orre
t (spurious)

mat
hes, for use with advan
ed te
hniques su
h as view interpolation4.

A geneti
 algorithm is then proposed for disparity estimation. A 
lever hybridisation

of the usual reprodu
tion, 
ross-over and mutation operations is employed to aid perfor-

man
e. The resultant disparity maps are shown to be superior to those generated by blo
k

mat
hing.

The disparity spa
e image is also introdu
ed in [Fra96℄, as a representation of the 
orre-

lations between horizontal lines from multiple viewpoints, with identi
al verti
al position-

ing. Disparity and o

lusion information is relatively easily visualised by and extra
ted

from disparity spa
e images. A number of algorithms are presented for the extra
tion of

said information. Of these, the best disparity maps 
ome from an algorithm that again

uses geneti
 algorithm te
hniques.

3.3.3 Two View Stereo

Two view stereo 
ompression has been more widely resear
hed than the arbitrary view


ase. Most of the methods are lossy and in
orporate some form of dispartiy 
ompensation

[SSMJ97, WO97, �OS93℄.

Perkins' Thesis

Of the relatively small body of work published on the 
ompression of stereo pairs, one of

the most fundamental referen
es is due to Perkins [Per92℄. He introdu
es the CONCOD

(CONditional CODer) stru
ture to des
ribe a s
heme that �rst 
odes one image of the

stereo pair and then 
odes the other based on the �rst. An information theoreti
 argument

is then given, whi
h shows that although the CONCOD stru
ture allows optimal 
oding in

the lossless 
ase, it is inherently sub-optimal when a degree of distortion is allowed. Perkins

follows this statement with the 
on
ession that although mostly sub-optimal, 
ompression

s
hemes based on the CONCOD stru
ture are of pra
ti
al importan
e; largely due to their

relatively simple implementations.

Perkins presents two te
hniques for the 
ompression of stereo pairs. The �rst uses a

simple blo
k mat
hing te
hnique to estimate disparities between the two images. One of

the images is then 
ompressed, by quantisation of transform 
oeÆ
ients following a DCT,

and stored together with the disparity estimates. The other image is predi
ted, in the

transform domain, from the �rst using the disparity map (i.e. it is disparity 
ompensated)

and only the errors are 
oded and stored.

4A te
hnique that uses available images to 
onstru
t views from intermediate viewpoints, that were

not available in the original data.
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The se
ond te
hnique involves mixed-resolution 
oding and makes use of a 
urious

feature of the human visual system. It is stated that if one image from a stereo pair is

displayed at low resolution, the brain 
an still fuse the pair. Furthermore, the observer

will per
eive the result as being 
loser to the high resolution image than the low resolution

partner. This motivates a s
heme that derives substantial 
ompression by simply sub-

sampling one image from the stereo pair, although this is obviously not appli
able for

lossless 
oding.

Using the Worldline

A paper by Siegel et al. [SGSJ94℄ gives a fairly general introdu
tion to the 
ompression

of stereo pairs and thus 
overs mu
h the same ground as Perkins' work. However, they do

introdu
e the Worldline5 
orrelation. This 
onsiders a moving obje
t, in time displa
ed

left and right images. The 
on
ept being, if the horizontal motion of the obje
t suitably


ompensates perspe
tive, then the view of the obje
t in one image will be very similar to

the view of the obje
t in the other image at a future time. Unfortunately, they give no

pra
ti
al method for utilising this interesting 
orrelation.

3.3.4 Multiview Stereo Compression

A major study of multiview sequen
e 
ompression has been undertaken at the University

of Tokyo, under the dire
tion of Harashima [FH94a, FH94b, NKH96b, NH94, NKH96a℄. In

[FH94a, FH94b℄ a method is presented that redu
es a multiview sequen
e to a stru
ture and

a texture map. The mesh stru
ture is generated by pla
ing verti
es at points of minimum

varian
e in a so 
alled normalised obje
t spa
e. Coordinates are normalised using geometri


equations, although disparity estimation is required for the depth 
omponent.

With this s
heme, de
ompression is a simple rendering operation. Furthermore, inter-

mediate views 
an easily be generated by rendering the data from a point between two

original viewpoints. However, as their own results show, the nature of the triangular mesh

used to represent s
ene stru
ture is unable to 
apture 
omplex o

lusions.

Later papers [NKH96b, NH94℄ present a similar, but more sophisti
ated, method that

over
omes some earlier problems. Firstly, a multiview sequen
e is subje
ted to a 3D

segmentation. This is performed by giving an attribute ve
tor to all image points and

then partitioning the attribute spa
e using the K-means algorithm6. On
e again, the

image data is represented by a mesh stru
ture and texture data. However, to deal with

o

lusions the surfa
es determined by the segmentation are grouped into layers, whi
h are

mesh segments at parti
ular depths.

Although the work presented in [NKH96b, NH94℄ is very interesting, some unfortunate

details remain. Not least the fa
t that the grouping of segmented regions is done by hand.

Also, as in [FH94a, FH94b℄ a redu
tion in data rate is a
hieved purely by means of an

5A term that they admit to having stolen from General Relativity.
6A 
ommon optimisation te
hnique from the pattern mat
hing and ma
hine learning literature.
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alternative representation; no 
omplete 
oding system appears to be developed. The work


arried out by Harashima's group seems to have been done in anti
ipation of its usefulness,

but without a

ess to a multiview autostereos
opi
 display. This is eviden
ed by a 
omplete

la
k of human observer test results to evaluate their lossy methods.

3.4 Summary

In this 
hapter we have seen that predi
tive 
oding is still the preferred method for lossless


ompression of 
olour images, videos and multiview sequen
es. Although interband pre-

di
tors resemble the intraband predi
tors of the previous 
hapter, the most 
ommon means

of utilising interframe and interview 
orrelation are very di�erent. Motion and disparity


ompensation are forward predi
tive s
hemes, requiring more work for the en
oder and the

transmission of extra information (motion ve
tors and disparity estimates).

Observing the publi
ation dates of many of the papers referen
ed, indi
ates a re
ent

surge in interest for the lossless 
ompression of 
olour images. However, work on video

and multiview sequen
es is less 
ommon. Indeed, while papers exist that 
onsider lossless


ompression for 
olour video[MS96℄ and lossy 
ompression for stereo video[SGSJ94℄, none

are apparent for lossless multiview 
olour video 
ompression.



Chapter 4

Approa
hes to Predi
tor Sele
tion

As predi
tor sele
tion me
hanisms have been used to good e�e
t, in previous 
ompression

s
hemes (see Chapters 2 and 3) for both greys
ale and more advan
ed image types, it

makes good sense to further 
onsider their use here. In Se
tion 4.1 the use of predi
tor

sele
tion, for extended lossless image 
oding, is validated and a 
ommentary on the design

of predi
tor sele
tion s
hemes is given Se
tion 4.2.

In Se
tion 4.3 some novel sele
tion s
hemes using ba
kward adaptation are detailed

and 
ompared to existing methods. Se
tion 4.4 presents the same dis
ussion for forward

adaptive methods. Hybridised methods are presented in Se
tion 4.5 and are followed by

the 
hapter summary in Se
tion 4.6.

This 
hapter 
ontains results produ
ed by the author using purpose built software. To

have relevan
e, the tests were 
arried out using a set of imagery whi
h is used throughout

this dissertation and in
ludes images used elsewhere in the �eld. A 
ommentary on the

test imagery used is given in Appendix B.

4.1 Predi
tor Sele
tion as a Solution for Extended

Coding

The two previous 
hapters have shown a numbers of ways for predi
ting the value of the


urrent pixel based on spatial, spe
tral, temporal and interview relationships. For most

pixels two or more of these predi
tive options will be available and the problem be
omes

de
iding whi
h predi
tor to use.

Although the literature makes it quite 
lear that predi
tor sele
tion is bene�
ial for

both greys
ale and 
olour image 
ompression, the 
ase is not well made for video and

multiview imagery. Thus it is prudent to test this basi
 assumption early on and to

determine whether predi
tor sele
tion has some bene�t over other more obvious ways of

pro
eeding.

A �xed order of preferen
e might na��vely be assigned to the predi
tors, using the most

advan
ed type of 
orrelation available. For example, we might 
hose to use interview

49
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orrelations (disparity estimated predi
tion), dropping ba
k to temporal (motion 
ompen-

sated predi
tion) when neighbouring views are not present. When temporal predi
tion

is unavailable (i.e. an I frame is being 
oded) spe
tral predi
tion would be used. Only

for the referen
e band in an I frame would spatial predi
tion be needed. The result of

implementing su
h a s
heme, let us 
all it Na��ve1, will be 
onsidered shortly.

Given the results of [MS95b℄ as dis
ussed in Se
tion 3.2.3, a less na��ve s
heme would

use spe
tral predi
tion in preferen
e to temporal predi
tion. Furthermore, as we expe
t

there to be more disparity between two views than there is motion between two su

essive

frames, the use of temporal predi
tion in preferen
e to interview methods seems preferable.

This new wisdom leads to a s
heme that shall be referred to as Na��ve2.

To allow the required 
omparison, the two na��ve s
hemes above are 
ompared to a very

simple sele
tive s
heme. Blo
k Based Sele
tion (BBS) 
onsiders the sum of the magnitude

of errors from ea
h appli
able predi
tor, over an 8 by 8 blo
k. The predi
tor with the

minimum absolute error is 
hosen for the blo
k. The un
oded overhead of dlog2ne bits,

where n is the number of possible predi
tors, is in
luded in the results shown in Table 4.1.

Note, further details regarding BBS are given in Se
tion 4.4.

The two na��ve s
hemes and BBS all have a

ess to a small set of predi
tors. The a
tual

predi
tors used and the reasons for 
hoosing them are des
ribed in Se
tion 4.2. The results

for the three s
hemes are shown in Table 4.1. The results given show the entropy of the

predi
tion residuals, averaged over all bands, frames and views present in the imagery.

This means that these results should be 
onsidered against a raw data size of 8 bpp. This

is so even for the 
olour imagery that, having red, green and blue bands, might otherwise

be 
onsidered as 24 bpp in raw data terms.

The results in Table 4.1 
learly show that even the na��ve use of extended predi
tion

gives superior average 
ompression, 
ompared to the use of only spatial predi
tion. The

fa
t that Na��ve2 generally outperformed Na��ve1, supports the 
omments made in [MS96℄

that spe
tral 
orrelation is stronger than temporal. However, there are ex
eptions to this

generalisation. For example the 
olour granny video, whi
h is 
omputer generated and has

parti
ularly high temporal 
orrelation, performs better with Na��ve1 than Na��ve2.

The result most relevant to the 
urrent dis
ussion however, is that BBS, despite its

simpli
ity, yields a lower average entropy of predi
tion residuals than either of the na��ve

s
hemes. This is a 
lear indi
ation that adaptive predi
tor sele
tion is preferable to a �xed

assignment of predi
tors.

However, there are examples where BBS is slightly bettered by a na��ve s
heme (the


ats image and the 
t
esh sequen
e). This implies that the slight overhead involved with

BBS may lead to ineÆ
ien
y in some 
ases and still better predi
tor sele
tion me
hanisms

should be sought.

4.2 A Design Philosophy for Predi
tor Sele
tion

Having shown that even simple predi
tor sele
tion is worthwhile, it is now appropriate to


onsider one of the most important elements of a predi
tion sele
tion s
heme; that is, the
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Image Raw MED Na��ve1 Na��ve2 BBS

Colour Images

air2 6.05 4.44 4.49 4.49 4.30

baboon 7.64 6.43 6.14 6.14 6.09


ats 4.59 3.54 2.59 2.59 2.60


mpnd2 2.90 2.07 1.63 1.63 1.58

house 6.41 4.45 4.45 4.45 4.28

lena 7.27 4.80 4.58 4.58 4.56

Average 5.81 4.29 3.98 3.98 3.90

Greys
ale Video


laire 6.22 2.73 2.28 2.28 2.28

granny 7.20 3.53 2.64 2.64 2.40

mall 7.15 3.67 5.50 5.50 3.68

mobile 7.12 4.95 4.42 4.42 4.33

salesman 6.81 4.68 3.94 3.94 3.88

Average 6.90 3.91 3.76 3.76 3.31

Colour Video


laire 6.10 2.86 2.73 2.71 2.49

football 7.12 5.05 5.58 4.88 4.52

granny 7.27 3.52 2.57 2.98 2.18

mobile 7.02 4.98 4.47 4.20 4.06

susie 6.82 4.02 4.14 3.46 3.32

Average 6.87 4.09 3.90 3.65 3.31

Multiview


t
esh 2.67 1.55 0.56 1.55 0.58

granny 7.29 3.55 3.35 3.31 2.74

skull 6.08 3.63 3.90 2.83 2.82

Average 5.35 2.91 2.60 2.56 2.05

Colour Multiview Video

granny 7.26 3.53 3.27 2.98 2.08

Table 4.1: A 
omparison of the entropies of predi
tion residuals, following �xed and adap-

tive predi
tor usage.
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Image MED PP IF1 MC MED + PP MED + IF1 MED + MC

Greys
ale Video


laire 2.73 2.43 2.48 2.46 2.34 2.40 2.28

granny 3.53 2.88 2.83 2.79 2.46 2.65 2.39

mall 3.67 5.79 4.21 5.55 3.68 3.68 3.67

mobile 4.95 5.38 5.30 4.53 4.91 4.95 4.33

salesman 4.68 4.15 4.59 4.08 4.05 4.36 3.89

Average 3.91 4.13 3.88 3.88 3.49 3.61 3.31

Table 4.2: A 
omparison of the entropies of predi
tion residuals, following various predi
tor

usage.

set of predi
tors that 
an be sele
ted from. It is important not to have too many predi
tors.

In a ba
kward adaptive setting, too many predi
tors would 
ompli
ate heuristi
s and/or

greatly in
rease the number of 
ounts that need to be kept. If forward adaptation is used,

too many predi
tors would lead to in
reased overhead for signalling the predi
tor sele
tion

made by the en
oder.

Given that we wish to keep the number of predi
tors under 
onsideration low, it makes

sense to determine the best predi
tors available and use them with sele
tion s
hemes.

However, this pro
edure has its pitfalls. As an example of this, we shall 
onsider the 
ase

of greys
ale video. Three interframe predi
tors are 
ompared: the Previous Pixel (PP)

X̂ = Xt�1, a predi
tor we shall 
all InterFrame 1 (IF1):

X̂ =
W + (Xt�1 �Wt�1) +N + (Xt�1 �Nt�1)

2
(4.1)

and Motion Compensated predi
tion (MC).

IF1 
an be seen as taking the 
losest horizontal and verti
al gradients in the previous

frame and applying them to the 
urrent frame1. This models stati
 regions and allows

for small s
ale 
hanges in lighting. Also, due to the averaging e�e
ts of the predi
tor, we

expe
t it to perform better than PP in regions of very slight motion.

Table 4.2 shows the results of applying ea
h of these three predi
tors to greys
ale video.

MED is also used as a referen
e. Finally, ea
h of the three interframe predi
tors are used

in 
onjun
tion with MED, using BBS for swit
hing. Note, the �rst frame of ea
h sequen
e

is de
orrelated with MED only.

The results show that IF1 performs better than PP. This would imply that IF1 would

be preferable to PP in a predi
tion sele
tion s
heme. Contrary to expe
tation however,

when used in 
onjun
tion with spatial predi
tion, the 
ombination of MED+PP is superior

to MED+IF1. This 
an be explained by 
onsidering the strong points of ea
h predi
tor.

PP does well in areas un
hanged from frame to frame. Whereas in areas of motion, PP

1IF1 is a
tually the same as the interband predi
tor used in [MWSM97℄, but with the referen
e imagery

being the previous frame, rather than a referen
e 
olour band.
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will perform poorly and MED will be 
hosen instead. IF1 (due to its inherent averaging)

will do less well than PP in un
hanged areas and be
ause it does not model motion, it

will perform less well than MED in areas of motion. Thus, despite the better individual

performan
e of IF1, the 
ombination of MED+PP is superior to MED+IF1.

This result implies that it is better to have predi
tors that model one type of image

region well, rather than a predi
tor with good average performan
e over all regions. This

for
es us to re-evaluate many of the predi
tors in the literature, as these have often been


onstru
ted to provide good general performan
e rather than to model one type of region

well.

For example, when 
onsidering spatial predi
tion we might think of JPEG7, whi
h

has been re
koned to be the best of the JPEG set[MS95b℄. The averaging property leads

to good overall performan
e, but makes the predi
tor less suitable for use in a predi
tor

sele
tion s
heme.

A se
ond interesting result from Table 4.2 is given by 
onsidering the results of using

MED+PP and MC. As 
an be seen, the use of two simple predi
tors and a simple sele
tion

s
heme gives predi
tion performan
e that is superior to the 
omputationally more expen-

sive motion 
ompensation (although MED+MC provides still better predi
tion). This

implies that extended lossless image 
ompression holds the potential to yield either mu
h

better 
ompression, or 
omparable levels of 
ompression with lower 
omputation require-

ments.

4.2.1 The Final Predi
tor Set

To help 
ompare predi
tor sele
tion s
hemes, it was de
ided to 
hose a �xed set of predi
tors

and use this set for all the following tests. This helps indi
ate whi
h predi
tor sele
tion

s
heme is best and removes the need to jointly optimise predi
tor sele
tion alongside the

predi
tor set used.

For spatial predi
tion, MED was 
hosen. Although MED has good general performan
e,

the predi
tors it uses are all very simple. W , N and W + N � NW are good models for

horizontal, verti
al and plane-like smoothness respe
tively.

When using spe
tral predi
tion, the predi
tor introdu
ed in [MWSM97℄, as given in

Equation 3.4 was used. From here on, this predi
tor shall be referred to as InterBand 1

(IB1).

For temporal and interview predi
tion, motion and disparity 
ompensated predi
tion

were used respe
tively. As 
an be inferred from Chapter 3, these s
hemes are still the

subje
t of a
tive resear
h. It is not the intention here to further the art in motion or

disparity estimation and thus fairly standard estimation/
ompensation pro
edures were

used. For motion estimation, full sear
h blo
k mat
hing with an 8 � 8 blo
k was used.

Half-pixel resolution was employed and the resultant motion ve
tors were in the range

(�32;�32). For disparity estimation, the same basi
 approa
h was used, but 
onsidering

only horizontal shifts. As disparity 
ompensation 
arries less overhead per blo
k than

motion 
ompensation, a smaller blo
k size (6� 6) was found to be a

eptable.
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It is also worth 
onsidering use of the previous pixel (PP) as a predi
tor for temporal

sequen
es. Although simple, it does model stati
 s
enes very well and 
arries none of the

overhead of motion 
ompensation.

In the subsequent tests, all available predi
tors were used. All the predi
tor sele
tion

s
hemes that follow employ an order of pre
eden
e, that will be
ome important when

predi
tors give equally good predi
tions. This order is: MED, IB1, PP, MC, DC. One


onsequen
e of this is that PP will be sele
ted over MC in areas of zero motion in a video

sequen
e.

4.2.2 A Standard S
an Order

Just as in standard predi
tive 
oding, the order in whi
h pixels are pro
essed is an issue

for predi
tor sele
tion s
hemes. However, in the extended s
ope now being 
onsidered, a

one dimensional path must be found through the spatial, spe
tral, temporal and inter-

view dimensions of the input imagery. This 
learly leads to a multitude of possible s
an

orderings.

A simple solution to this problem is a logi
al extension of the raster-s
an ordering

mentioned in Chapter 1. Ea
h band in a 
olour image is pro
essed from the top left 
orner,

moving left to right, top to bottom, until the bottom right 
orner is rea
hed. For a 
olour

image, the bands are pro
essed in the order red, green and blue; ea
h band being entirely

pro
essed before the next is started. For temporal sequen
es every frame is pro
essed from

the �rst to the last and for multiview sequen
es every view is pro
essed from the left to

the right. For multiview video sequen
es, all views at a given time step must be pro
essed

before moving to the next time step, otherwise interview 
orrelation would be lost.

Su
h a simple solution is unlikely to provide an optimal ordering, however it has many

advantages. It provides previous values for MED based predi
tions and guarantees that the

entire previous band, frame or view is available as a referen
e for the relevant predi
tion

operation. Also the s
heme is general to all imagery types, without requiring any spe
ial


ases.

Given these advantages, the simple s
an ordering mentioned above was used for all the

tests in this work. This has the e�e
t of removing another variable from 
onsideration

and thus helping the following tests fo
us on the nature of various predi
tor sele
tive

me
hanisms.

4.3 Past Eviden
e

Predi
tive 
oding is based on the ideal of using information, re
eived up to a given point,

to model future pixels and hen
e redu
e the information required to re
onstru
t future

portions of the image. The appli
ation of this ideal to predi
tor sele
tion yields ba
kward

adaptive methods and is dis
ussed below.
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Figure 4.1: The pixel lo
ations used for various regions with lo
al error based predi
tor

swit
hing. A region of size n 
omprises all pixels that are numbered � n. For example,

the region of size three, uses W , N and NW .

4.3.1 Lo
al Predi
tor Error

A simple ba
kward adaptive method that was shown to work well in [MWSM97℄, makes

use of the absolute predi
tion error in the lo
ale of the 
urrent pixel. In [MWSM97℄

the predi
tion error in the region fW;N;NW;NEg was 
onsidered for both MED and

IB1. The predi
tor with the minimum absolute predi
tion error in the region was 
hosen

for the 
urrent pixel. It was shown that this te
hnique slightly outperformed a more


omputationally expensive te
hnique based on 
orrelation. This latter method used the


orrelation between the 
urrent and referen
e 
olour bands as the swit
hing 
riteria.

Given its simpli
ity and good performan
e, it seems useful to further explore this

te
hnique for predi
tor swit
hing. We will thus 
onsider the extension of lo
al error based

swit
hing to video and multiview imagery.

One issue that remains open is the best size for the region over whi
h to sum the

predi
tion errors. It is noted in [MWSM97℄ that a region larger than four showed no

appre
iable bene�t. Whether this will remain true when the te
hnique is extended beyond


olour images is not 
lear.

To determine the best region size, a Lo
al Error Predi
tion Sele
tion (LEPS) s
heme

was implemented with varying sizes of error a

umulating region. Ea
h region is built

in
rementally, by adding one pixel onto the last. Figure 4.1 shows the pixels used; the

numbers show the size of the region in whi
h the pixel is �rst used.

The average redu
tion in the entropy of predi
tion residuals, for ea
h 
ategory of image

data, is shown in Figure 4.2. The results for 
olour images, whi
h bene�t the least from

in
reasing the region size, show no signi�
ant bene�t in a region size greater than four.

This is in agreement with the �ndings of [MWSM97℄.

The other types of imagery do show the bene�ts of larger region sizes. The fa
t that

more 
omplex imagery gains a greater bene�t as the region size in
reases 
an be explained

by 
onsidering the number of predi
tors that are under 
onsideration. For example, 
olour

images 
an only make use of two predi
tors and an information gathering region of four
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Figure 4.2: The improvement of using ever larger regions for lo
al error based predi
tor

swit
hing.

pixels seems adequate for this. However, multiview video2 
an make use of more predi
tors.

This implies that more information is needed for the predi
tor sele
tion de
ision and hen
e

a larger region is required.

However for very large region sizes, virtually no bene�t is seen by adding to the region.

Indeed, for 
olour video sequen
es a drop in performan
e is seen. This la
k of 
ontinuing

improvement is due to the redu
ed lo
ality enfor
ed on the predi
tor sele
tor by using

a larger region to gather error averages. An obvious solution to this is to weight the

predi
tion errors by distan
e from the 
urrent pixel. However, a s
heme that weighted

ea
h error, based on the Eu
lidean distan
e between the error lo
ation and the 
urrent

pixel, did not perform as well as the unweighted lo
al error predi
tor sele
tion s
heme.

Determining the best value for the region size involves a trade o� between performan
e

and 
omputation time. As the region size grows, so to does the 
omputation required to


al
ulate the best predi
tor a

ording to the LEPS approa
h. The 
ompromise used for

the following tests was a region size of twelve. At this size, the results for 
olour images

and 
olour video have 
attened o� and little extra gains are evident from using a larger

region with other types of imagery.

2The parti
ularly good results for multiview video are based on just one sequen
e (granny). Hen
e,

they may not be truly representative of the performan
e of a LEPS system.
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Further Extending the Lo
ale

As well as extending the area used for error a

umulation, we 
an also extend the 
urrent

pixel's lo
ale to the previous band or frame. By adding in a given predi
tor's error from

Xr or Xt�1 (or both) we gather more information about the lo
al performan
e of the given

predi
tor. This should help make a better predi
tor sele
tion de
ision.

Although this approa
h would seem to o�er great promise for 
olour images and video,

two main 
on
erns arise. Firstly, in the 
ase of 
olour images, the interband predi
tor


an only draw on meaningful predi
tion residuals from the previous band, from the third

band onwards. As 
olour images often 
onsist of only three bands this is something of

a limitation. However intraband, interframe and interview predi
tors 
an make use of

residuals from the previous band in all but the �rst band of a 
olour image.

The se
ond major 
on
ern relates to video. The use of residuals from the 
urrent

lo
ation in the previous frame, only o�ers bene�t under the assumption of very low motion.

The information gained from su
h residuals in the presen
e of motion maybe misleading

and lead to poor sele
tion de
isions. Furthermore, in a similar situation to that above,

interframe predi
tors 
an not make use of interframe predi
tion errors until the third frame

of video (the se
ond being the �rst for whi
h interframe predi
tion is possible).

As the zero motion assumption is always false for multiview images, use of the predi
tion

errors from the 
urrent lo
ation in the previous view will not be 
onsidered.

The results of using lo
al error predi
tor sele
tion (LEPS) and extended LEPS (ELEPS)

are shown in Table 4.3. Both s
hemes use a spatial region size of 12, and ELEPS also uses

the error at the 
urrent lo
ation in the previous band and/or frame if available. Before

dis
ussing these results, we shall 
onsider a se
ond 
lass of ba
kward adaptive sele
tion

s
hemes.

4.3.2 Context Based Predi
tor Sele
tion

The s
heme dis
ussed in the previous se
tion, determines the 
ontext of the 
urrent pixel

in a simple way (average predi
tion error for ea
h predi
tor) and then on that basis, makes

a �xed de
ision (use predi
tor with least average error). However, as seen in Chapters 2

and 3, there are more sophisti
ated ways to determine a 
ontext and more 
exible ways of

using the 
ontextual information.

One way to implement a 
ontext based predi
tor sele
tion (CBPS) s
heme is to keep

tra
k of predi
tion errors in a given 
ontext, for a set of di�erent predi
tors. For ex-

ample, 
onsider using an error bu
keting 
ontext determination s
heme, as dis
ussed in

Se
tion 2.4.1. The 
ontext is determined for ea
h predi
tor as before and the predi
tor


hosen is that with the least mean absolute error in its 
urrent 
ontext.

By 
olle
ting predi
tion error magnitudes in a given 
ontext, a CBPS s
heme makes

more sele
tive use of past information than a LEPS approa
h. However, this is done at the

expense of lo
ality; the error a

umulated and used for predi
tor sele
tion may be spatially

distant from the 
urrent pixel.
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Image LEPS ELEPS CBPS

Colour Images

air2 4.30 4.30 4.31

baboon 6.10 6.10 6.13


ats 2.59 2.59 2.59


mpnd2 1.59 1.57 1.58

house 4.29 4.29 4.32

lena 4.57 4.57 4.59

Average 3.91 3.90 3.92

Greys
ale Video


laire 2.32 2.31 2.34

granny 2.42 2.41 2.40

mall 3.82 3.81 3.82

mobile 4.39 4.39 4.44

salesman 3.90 3.88 3.90

Average 3.37 3.36 3.38

Colour Video


laire 2.48 2.42 2.44

football 4.54 4.51 4.58

granny 2.19 2.15 2.17

mobile 4.07 4.03 4.06

susie 3.36 3.34 3.37

Average 3.33 3.29 3.32

Multiview


t
esh 0.61 0.61 0.59

granny 2.75 2.72 2.75

skull 2.86 2.84 2.87

Average 2.07 2.06 2.07

Colour Multiview Video

granny 2.11 2.08 2.11

Table 4.3: A 
omparison of the entropies of predi
tion residuals, following di�erent ba
k-

ward adaptive predi
tor sele
tion me
hanisms.
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In order to determine the potential bene�ts of CBPS over LEPS, a CBPS s
heme was

implemented and the results are shown in Table 4.3. Context determination was via error

bu
keting and the predi
tion errors at W , N and NW were quantised into 11 bu
kets as

suggested in [TLR85℄. As [TLR85℄ does not give a
tual quantisation thresholds for the error

bu
keting, the approa
h dis
ussed in [LGS92℄ was used. This approa
h is to use exponents

of 2 as the thresholds. The justi�
ation for this is that predi
tion errors, generally having

a Lapla
ian distribution (negative exponential) would be expe
ted to equally populate

error bu
kets of exponentially in
reasing size. The bu
kets used were:f�255; : : : ;�16g,
f�15; : : : ;�8g, f�7; : : : ;�4g, f�3;�2g, f�1g, f0g, f1g, f2; 3g, f4; : : : ; 7g, f8; : : : ; 15g,
f16; : : : ; 255g.

This idea of using 
ontexts for predi
tor sele
tion is independent of the 
ontext de-

termination used. Indeed, the use of the JPEG-LS 
ontext determination s
heme[ITU96℄

along with Wu's method[Wu96℄ were also tried. However, these methods failed to o�er

any apparent advantage over error bu
keting in a CBPS system 3.

4.3.3 Comparing Ba
kward Adaptive Methods

From the results shown in Table 4.3, we 
an see that ELEPS produ
es predi
tion residuals

with slightly less entropy than LEPS. This indi
ates that the extra information from the

predi
tion error at the same lo
ation in the previous band and/or frame is useful. The

fa
t that the improvement is slight might have been expe
ted, as the extra error or two

that ELEPS uses, are additional to the 12 predi
tion errors LEPS makes use of. Hen
e,

the in
uen
e of the extra predi
tion errors will be small. This may suggest that in
luding

extra predi
tion errors from the previous band/frame into the a

umulator might be useful.

However, this is unlikely to be the 
ase, as experien
e suggests that the predi
tion error

at W is better 
orrelated to X � X̂ than the predi
tion error at Wr or Wt�1.

When 
omparing ELEPS to CBPS, we see that CBPS is unable to mat
h the average

performan
e of ELEPS. Clearly, the more lo
al data 
olle
ted by ELEPS is more appro-

priate than the 
ontextual information a
quired by CBPS.

In summary, extended lo
al error predi
tor sele
tion is the best performing ba
kward

adaptive method, out of the three methods dis
ussed. ELEPS will be further built on in

Se
tion 4.5, when hybrid methods will be investigated.

4.4 Predi
tor Map Compression

If we determine the best predi
tor for ea
h pixel in an image, we 
an 
onstru
t a predi
tor

map. If we store this predi
tor map during en
oding, the best possible predi
tion (given

the available predi
tors) is guaranteed for every pixel. This represents the ideal forward

adaptive predi
tor sele
tion s
heme.

3It should be noted that all of these 
ontext determination s
hemes were designed for error modelling

and not predi
tor sele
tion.



60 CHAPTER 4. APPROACHES TO PREDICTOR SELECTION

MED

IB1

PP

MC

Figure 4.3: Left: A frame from the Claire sequen
e. Middle: The predi
tor errors for

optimal forward adaptive predi
tor sele
tion (entropy is 1.38 bpp). Right: A map of

optimal predi
tors (entropy is 1.41 bpp). Although the predi
tor residuals have very low

entropy (lower than that required to store the map!) the sum of the residuals and the

predi
tor map (2.79 bpp) is greater than using interband predi
tion (2.52 bpp) in this

example.

Unfortunately, problems arise with this simplisti
 notion of a predi
tor map. For ex-

ample, as shown in Figure 4.3, the entropy of the predi
tor map is suÆ
ient that when

added to the predi
tion residuals, the total is not 
ompetitive with s
hemes already seen.

However, it is not ne
essary to store the predi
tion map losslessly. In fa
t, it is not wise

to do so. Unlike the pixel values in an image, the values of elements in the predi
tion map

are not ne
essarily unambiguous. Two predi
tors may be equally good in some instan
es.

As a further example, 
onsider the 
ase where predi
tor A has been the best predi
tor for

several pixels in a row. Suppose that for the 
urrent pixel, predi
tor B is slightly superior

to predi
tor A. The 
ost of signalling the use of predi
tor B (rather than 
ontinuing the

run of predi
tor A usage) may well outweigh the bene�t of 
oding the slightly smaller

predi
tion error generated by predi
tor B.

Clearly, s
hemes are needed that eÆ
iently store a useful representation of the predi
tor

map. Unfortunately, as is seen in Figure 4.3, the predi
tor map does not have the spatial

smoothness of an image and therefore predi
tive de
orrelation is not an option.

4.4.1 Blo
k Based Sele
tion

By �nding the best predi
tor for a blo
k of pixels, we 
an form a very 
rude, sub-sampled

representation of the predi
tor map. This version of the predi
tor map has a storage

requirement that 
an be made arbitrarily low, simply by in
reasing the blo
k size. Though

simple, Blo
k Based Sele
tion (BBS) has already be shown to outperform more na��ve

approa
hes to extended lossless image 
ompression (see Se
tion 4.1).

Blo
ks of 8 by 8 pixels were used, as they were found to work well. The best predi
tor

was determined to be the one that gave the least absolute error over the blo
k. For ea
h

blo
k the overhead of dlog2ne bits, where n is the number of possible predi
tors, is added

to the entropy of the predi
tion errors to get the �nal out
ome. Even with four predi
tors,
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the overhead is only 2 bits per blo
k (2=64 = 0:03 bpp) although this 
ould be redu
ed

slightly by 
oding the overhead bits depending on the statisti
s of predi
tor usage. Also,

overhead is further redu
ed when using any form of forward adaptive predi
tor sele
tion,

as motion ve
tors and disparity estimates are only required for regions that use a motion

or disparity 
ompensating predi
tor. For regions where this overhead is not required, it is

not sent.

The main problem with BBS is that there is never a 
orre
t blo
k size. In plain regions

a large blo
k size would lower the overhead of forward adaptation. Whereas, in an a
tive

region, the extra overhead of using a smaller blo
k size 
ould be justi�ed by the improved

a

ura
y of the predi
tor map. These joint goals 
an be a
hieved using quadtree methods.

4.4.2 Quadtree Predi
tor Map Coding

Quadtree based 
oding starts in the same way as BBS, only with a larger blo
k size. In

su

essive iterations of the algorithm the blo
k size is halved. At a given stage, one blo
k

in the previous iteration 
overs the same area as a four blo
ks in the 
urrent iteration.

The predi
tion error from the one blo
k (using one predi
tor) 
an then be 
ompared with

those of the four smaller blo
ks (using up to four predi
tors).

On
e again the least absolute error is used as the 
riterion for 
hoosing the best predi
-

tor for a given blo
k. However, the de
ision to split a larger blo
k into its four 
hild blo
ks

is more 
ompli
ated, as extra overhead must be 
onsidered. If a parent blo
k is split into

four 
hildren, four predi
tor sele
tion de
isions need to be en
oded, rather than just one.

Also, splitting a parent blo
k requires that an extra four split/no split events are en
oded.

This is unless the parent blo
k is twi
e the minimum blo
k size (
hosen to be 2 � 2). If

this is so, the 
hild blo
ks 
annot be split and therefore those events need not be en
oded.

To minimise the overhead asso
iated with the quadtree, the probability of the split

de
ision 
an easily be estimated by 
ounting the frequen
y of splits. Hen
e, the overhead

for a given split de
ision 
an be 
al
ulated as � log2 p(split) bits and likewise for the

alternative 
ase. As we expe
t splits to be more 
ommon at the top of the tree and less


ommon lower down, the frequen
y 
ounts are reset at ea
h level.

To in
rease the likelihood of a net gain, a larger blo
k is only split if the mean absolute

error of predi
tion, of the four small blo
ks, is less than their parent by more than a


ertain threshold. This threshold is 
hosen so as to a

ount for the in
rease in overhead,

per pixel. Negle
ting the overhead for the quadtree itself, the per blo
k overhead required

to indi
ate predi
tor sele
tion information is independent of blo
k size. Therefore, the per

pixel overhead is inversely related to the area of the blo
k. As we wish to 
ompare mean

absolute errors, rather than the number of bits of information ea
h would require, some


onstant will be needed to relate the predi
tor error to in
reasing average overhead. That

is, to split a larger blo
k, the 
hild blo
ks must have a mean absolute error whi
h is less

than their parent by at least C=(area of a 
hild blo
k). Empiri
ally, C = 2 was found to

work well.

The results of using this heuristi
 and a starting blo
k size of 32 x 32 pixels to 
onstru
t
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Figure 4.4: Maps of optimal predi
tors for ea
h pixel (left), blo
k size of 8� 8 as used by

BBS (middle) and variable blo
k size as used by QTBS (right).

a quadtree based predi
tor sele
tor (QTBS) are detailed next.

4.4.3 Forward Comparison

The results for BBS and QTBS, along with hybrid s
hemes to be dis
ussed in the next

se
tion, are given in Table 4.4. The ability of QTBS to sele
t appropriate blo
k sizes for

predi
tor sele
tion, relevant to the image properties, gives it only a slight advantage over

BBS. This is evident from the redu
ed entropy of the predi
tion residuals.

By looking at the predi
tor sele
tions made, we 
an gain a better understanding of

how QTBS beats BBS. Maps of the predi
tors sele
ted by both s
hemes are shown in

Figure 4.4. What is 
lear, is that QTBS used mu
h smaller blo
k sizes around the fa
e

area in the 
laire sequen
e; that is the area in whi
h the most motion o

urs. QTBS was

thus better able to determine whi
h areas would bene�t from motion 
ompensation.

However, Figure 4.4 also shows that QTBS often uses the same blo
k size as BBS. This

implies that 8� 8 is a good size for BBS to use by default, at least for the 
laire sequen
e.

4.5 Hybrid S
hemes

Hybrid s
hemes, utilising both forward and ba
kward adaptation, give us the tantalizing

possibility of providing the best of both approa
hes. That is, �ne grain de
isions and a


ertain element of foresight.

In fa
t hybrid predi
tor sele
tion s
hemes have already been 
onsidered in this 
hapter.

Although BBS is a simple forward adaptive predi
tor sele
tion s
heme, by using MED for

spatial predi
tion it be
omes something else. BBS with MED is a multi-layered hybrid

predi
tor. The �rst layer uses forward adaptation to determine whi
h type of 
orrelation to

exploit and if spatial predi
tion is used, the ba
kward adaptive nature of MED is utilised.

Another good example of a hybrid s
heme is given in [MS96℄ (see Se
tion 3.2.3) where

forward adaptation is used to swit
h between motion 
ompensation and PBPSPEC. An

obvious extension of this, is to ex
hange motion 
ompensation for disparity 
ompensation,

allowing for multiview sequen
es to be 
oded. For multiview video, a two step forward
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Forward Hybrid

Image BBS QTBS PBP+ Ora
le

Colour Images

air2 4.30 4.29 4.39 4.29

baboon 6.09 6.08 6.25 6.08


ats 2.60 2.59 3.11 2.59


mpnd2 1.58 1.55 1.84 1.57

house 4.28 4.27 4.53 4.29

lena 4.56 4.55 4.76 4.56

Average 3.90 3.89 4.15 3.90

Greys
ale Video


laire 2.28 2.27 2.27 2.31

granny 2.40 2.37 2.45 2.42

mall 3.68 3.67 3.77 3.82

mobile 4.33 4.36 4.32 4.38

salesman 3.88 3.88 3.87 3.87

Average 3.31 3.31 3.34 3.36

Colour Video


laire 2.49 2.47 2.44 2.45

football 4.52 4.51 4.72 4.52

granny 2.18 2.15 2.24 2.18

mobile 4.06 4.06 4.26 4.05

susie 3.32 3.31 3.55 3.35

Average 3.31 3.30 3.44 3.31

Multiview


t
esh 0.58 0.57 1.87 0.61

granny 2.74 2.72 3.30 2.75

skull 2.82 2.80 3.15 2.85

Average 2.05 2.03 2.77 2.07

Colour Multiview Video

granny 2.08 2.04 2.24 2.10

Table 4.4: A 
omparison of the entropies of predi
tion residuals, following di�erent forward

adaptive and hybrid predi
tor sele
tion me
hanisms.
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adaptation pro
ess is required. The �rst stage swit
hes between PBPSPEC and a 
om-

pensated predi
tor. In the latter 
ase, a further stage must determine whether motion or

disparity 
ompensated predi
tion should be used. For the purposes of 
omparison, this

s
heme was implemented and the results are shown in Table 4.4, under the heading of

PBP+.

4.5.1 Consulting the Ora
le

We 
an 
onsider ba
kward adaptation to be like a wise man, using past knowledge and

heuristi
s to guess the future. However, if the wise man is unsure of the future, he might


onsult an ora
le. The Ora
le has perfe
t knowledge of the future (i.e. it is a forward

adaptive pro
ess), but only gives simple answers to spe
i�
 questions, e.g. \Whi
h of these

two predi
tors should I use?" Consulting the Ora
le is expensive (in terms of overhead)

and our wise man would only do so if he was parti
ularly unsure about the best way

forward.

What makes this s
enario di�erent from what has already been investigated in this


hapter, is that heuristi
s for the 
on�den
e the system has in a predi
tor sele
tion de
ision,

are now required. Also, we must determine how the system 
an make good use of an ora
le.

The ba
kward adaptive s
hemes seen so far all 
onsider the mean absolute error of

the available predi
tors, although the methods for 
al
ulating this average vary. Although

the predi
tor with the minimum MAE is 
learly the best 
andidate, that with the next

lowest MAE may also be a strong 
ontender. The 
on�den
e heuristi
s 
an be based on

the di�eren
e between the predi
tions of the top two predi
tors. If the two predi
tions

are 
lose, the de
ision is less important, however if they are greatly di�erent then a wrong

de
ision will more notably a�e
t 
ompression.

To implement the s
heme, ELEPS (see Se
tion 4.3.1) is used for ba
kward adaptive

predi
tor sele
tion. If the di�eren
e between the top two predi
tors is greater than a

threshold T , the Ora
le is 
onsulted. The Ora
le uses forward adaptation to determine

whi
h of the two top predi
tors, as determined by ELEPS, should be used. The 
ost of

this binary de
ision is weighed up against the bene�t of a lower predi
tor error and T is


hanged a

ordingly. This aims to ensure that the ora
le is 
onsulted only as often as is

prudent.

Spe
i�
ally, whenever the Ora
le is 
onsulted, the 
ost of doing so is 
al
ulated as the

information 
ontained in the Ora
le's answer, that is � log2 p(answer) bits. This is based

on the previously observed probabilities that the Ora
le will re
ommend staying with the

�rst predi
tor or swit
hing to the se
ond 
hoi
e predi
tor. If the �rst 
hoi
e predi
tor is

re
ommended, then no bene�t is gained. However, there is a bene�t if the se
ond favourite

predi
tor is 
hosen. The improvement gained in this 
ase is that the lower predi
tion error

of the se
ond predi
tor will now be 
oded. As predi
tion errors are generally distributed

as a Lapla
ian (negative exponential) distribution, a good estimate for the magnitude of

the advantage gained is the di�eren
e between the logarithms of the predi
tion errors for

ea
h predi
tor. If the 
ost asso
iated with visiting the Ora
le is greater than the bene�t
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gained, the un
ertainty threshold T is raised, to make visits to the Ora
le less frequent.

Similarly, after the 
urrent pixel is pro
essed, if the Ora
le was not visited, the de
oder


an 
al
ulate the 
ost and bene�t that would have been asso
iated with going to the Ora
le.

If the bene�t is found to outweigh the 
ost, then T is lowered. This aims to make visits

to the Ora
le more frequent in future.

It was empiri
ally observed that a good starting value for T is 48. To avoid overly

rapid 
hanges in the un
ertainty threshold, the in
rements and de
rements to the T are

both made in 0.1 steps.

4.5.2 Results of Hybridisation

The performan
e of PBP+ was very disappointing, as it was 
learly outperformed by

other te
hniques. As the only extension applied in this work to PBP+ was the addition of

disparity estimation, the results for 
olour images and video parallel the results in [MS95b℄

and [MS96℄ respe
tively. As PBP+ is shown to be inferior to some of the other te
hniques

developed here for predi
tor swit
hing, we 
an expe
t the 
ompression s
hemes so derived

to outperform those presented in [MS95b, MS96℄.

When 
omparing the Ora
le method against ELEPS (see Table 4.3), we �nd that the

Ora
le performs favourably for 
olour images, saving 0.02 bpp on the baboon image for

example. However the Ora
le's performan
e on both greys
ale and 
olour video is less

impressive. It a
tually in
reases the entropy by 0.03 bpp for the 
olour versions of both

the 
laire and granny video sequen
es. Su
h losses are also seen on most of the multiview

sequen
es.

It is interesting to note that the Ora
le shows its bene�t for 
olour images, where only

two predi
tors are employed. Therefore, if the �rst pla
e predi
tor is 
hosen against by the

Ora
le, the se
ond pla
e predi
tor is ne
essarily the best 
hoi
e. However, the other forms

of imagery utilise more predi
tors and hen
e the best predi
tor may be neither the �rst nor

se
ond pla
e predi
tors, as determined by ELEPS. Further work might produ
tively look

for improved methods for determined the se
ond, alternative predi
tor to be 
onsidered by

the Ora
le.

Hybrid predi
tor sele
tion s
hemes, as explored here, 
learly fail to bridge the per-

forman
e gap with the forward adaptive methods. Consequentially, as we 
ontinue to

build towards extended lossless 
ompression s
hemes, QTBS should be seen as the best

performing predi
tor sele
tor.

4.6 Summary

In this 
hapter we have demonstrated that predi
tor sele
tion is an appropriate method

for de
orrelating image data, whether it be greys
ale, 
olour, video or multiview imagery.

A number of sele
tion approa
hes have been examined. S
hemes using both ba
kward

and forward adaptation have been developed, as have hybrid methods using both forms of

adaptation.
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The end result, although 
lose, suggests that forward adaptation via a quadtree stru
-

ture is the best method. This quadtree based sele
tion (QTBS) is parti
ularly able to

exploit the predi
tor sele
tion paradigm when employed against more advan
ed imagery

types su
h as video and multiview data.

However, the fa
t that the performan
e of QTBS is nearly mat
hed by many of the

other s
hemes 
onsidered, suggests that these methods are approa
hing the limit of what

is possible with relatively simple s
hemes.



Chapter 5

Extending Error Modelling

The ne
essary next step in extended lossless image 
ompression is error modelling. Se
-

tion 5.1 shows how a simple error model 
an be built for predi
tion residuals. This is ap-

plied both globally and with 
ontext 
onditioning. To improve 
ompression performan
e,

extended 
ontext models are dis
ussed in Se
tion 5.2.

In Se
tion 5.3 other te
hniques often used in error modelling are explored. The nature

of bias in the residuals from a predi
tor sele
tive me
hanism is 
ompared to that from

a standard predi
tive s
heme. The e�e
t of bias 
an
ellation for extended image 
om-

pression is 
onsidered. Me
hanisms for 
apturing extreme redundan
y and improving the

adaptability of 
ontext modelling are also dis
ussed.

Finally, in Se
tion 5.4 we 
onsider the use of forward adaptive methods for error mod-

elling, using the s
hemes developed in the last 
hapter for predi
tor sele
tion as a referen
e

point. In parti
ular the idea of joint predi
tor-error model sele
tion s
hemes is investigated.

5.1 Modelling the Distribution

All the results presented so far have been in terms of entropy. The entropy has been


al
ulated at the end of ea
h band and averaged over all bands. These results assume

perfe
t knowledge of the distribution of errors over the band. Therefore they represent the

best possible performan
e, given the assumption of a �xed distribution for the predi
tion

errors.

However, real image 
ompression s
hemes need to model the distribution of the predi
-

tion errors at all times. These models are generated from statisti
al 
ounts of past errors.

The models are generally kept relatively simple and utilise as few 
ounts as possible. In

parti
ular for 
ontext 
onditioned s
hemes keeping down the number of 
ounts kept per


ontext is important, if 
ontext dilution is to be avoided (see Se
tion 2.4).

This need to keep 
ounts low, makes maintaining a perfe
t model of the error distribu-

tion infeasible. As a 
onsequen
e we might well expe
t real 
oding s
hemes to give results

slightly inferior to those entropy based results seen previously. However, highly adaptive

error models have the ability to adapt to 
hanging statisti
s and over
ome the �xed distri-

67
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bution assumption made by entropy measures. As su
h, real 
ompression s
hemes 
ould

improve on the entropy based results in some 
ases.

5.1.1 Lapla
e Distributions

When 
onsidered globally, predi
tion errors are generally found to be distributed as a

Lapla
e distribution (two-sided negative exponential) with zero mean[O'N66, HV91℄. Su
h

a distribution has a probability density fun
tion of[HV91℄:

f�2(x) =
1p
2�2

exp

0
��
s

2

�2
jxj
1
A (5.1)

where x is a random variable (i.e. the predi
tion error) and �2 is the varian
e of the

distribution. �2 depends on the a
tivity in the image and for e�e
tive 
ompression must

be well estimated.

The above distribution is 
ontinuous and in�nite. However, predi
tion errors are dis-


rete and �nite. To over
ome this dis
repan
y, we shall estimate the probability of dis
rete

predi
tion errors, p(") to be:

p�2(") = P�2 exp

0
��
s

2

�2
j"j
1
A (5.2)

where P�2 is a normalising 
onstant given by:

1=P�2 =
�X

"=��

exp

0
��
s

2

�2
j"j
1
A (5.3)

where the range of predi
tion errors is �� � " � �. Figure 5.1 shows a 
omparison of

the 
ontinuous and dis
rete distributions given by Equations 5.1 and 5.2 respe
tively.

To get a distribution for the 
urrent pixel's predi
tion error, we must estimate �2. An

obvious estimate is �̂2 = E["2℄�E["℄2 = �"2� �"2. However, the Lapla
ian model impli
itly

assumes that �" = 0, so the estimate �̂2 = �"2 will be used. The �"2 term in the equation is

brought ba
k in to provide bias 
an
ellation in Se
tion 5.3.2.

In order to 
al
ulate �̂2 it is suÆ
ient to keep two a

umulators per 
ontext. Namely,

N
ontext the number of times the 
ontext has been visited and E2

ontext

the sum of all errors

squared.

Armed with an estimate for �2 and Equation 5.2, the error model 
an be used to

generate a probability distribution prior to the en
oding of ea
h predi
tion error. Using

the information theory law, that the information needed to 
ommuni
ate an event with

probability p is � log2(p) bits, the size of an optimum 
oding of the predi
tion errors

(assuming the two-sided Lapla
ian model) 
an be 
al
ulated.

However, due to the ne
essity of 
al
ulating P�2 it is not pra
ti
al to let �2 vary

arbitrarily. A re
urring idea, seen in many other works[MS95b, WSS96℄, is to use a set
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Figure 5.1: Continuous and dis
rete plots of the probability distribution for predi
tion

errors, given the Lapla
ian model. � = 6 in both 
ases and the horizontal s
ale has been

trun
ated for display.

of �xed distributions. To this end, distributions with � = 0:5; 1; 2 : : : ; 255 were used and

the asso
iated values for P�2 were pre-
al
ulated. A distribution with � = 0 was not used

as this 
ase gives p(" = 0) = 1 and p(" 6= 0) = 0. Clearly this assumes more than 
an

ne
essarily be learned from the data!

The results of applying the error model under dis
ussion are shown in Table 5.1. The

appli
ation of the model is split into two 
ases. Global appli
ation is 
onsidered on the left

of the table. For the purposes of 
omparison, the global entropy of the predi
tion residuals

is given under the heading of Entropy. These results generally show a slight in
rease in the

information 
ontent, indi
ating that the model is not a perfe
t �t to the data. Signi�
ant

deviations will be dis
ussed shortly.

Context 
onditioned appli
ation of the model is on the right of the table. This is the


ase generally used for lossless 
ompression s
hemes. The 
ontext determination s
heme

used is the same error bu
keting s
heme used for predi
tor sele
tion in Se
tion 4.3.2. These

results show a signi�
ant gain over the global error modelling and reinfor
e the utility of

separating predi
tion residuals by 
ontext.

It is interesting to note that in most 
ases, the less than perfe
t �t of the 
urrent

model would not have been noti
ed if the se
ond 
olumn of results had not been given.

That is, the bene�ts of 
ontext 
onditioned error modelling generally outweigh the loss of

performan
e due to a slightly ina

urate model.
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Global Context Conditioned

Image Entropy Modelled Modelled Model-B

Colour Images

air2 4.29 4.68 3.90 3.90

baboon 6.08 6.08 6.00 6.00


ats 2.59 3.05 2.03 2.03


mpnd2 1.55 3.07 2.56 1.12

house 4.27 4.28 4.15 4.15

lena 4.55 4.58 4.48 4.48

Average 3.89 4.29 3.85 3.61

Greys
ale Video


laire 2.27 2.42 2.17 2.17

granny 2.37 2.62 2.20 2.20

mall 3.67 3.72 3.70 3.70

mobile 4.36 4.43 4.36 4.36

salesman 3.88 3.89 3.77 3.77

Average 3.31 3.42 3.24 3.24

Colour Video


laire 2.47 2.59 2.34 2.34

football 4.51 4.59 4.33 4.33

granny 2.15 2.36 2.03 2.03

mobile 4.06 4.10 3.97 3.97

susie 3.31 3.35 3.27 3.27

Average 3.30 3.40 3.19 3.19

Multiview


t
esh 0.57 2.08 1.51 1.51

granny 2.72 2.84 2.53 2.53

skull 2.80 2.88 2.58 2.58

Average 2.03 2.60 2.21 2.21

Colour Multiview Video

granny 2.04 2.18 1.96 1.96

Table 5.1: The information 
ontent of the images in the test set, following QTBS predi
tion.

Several models are 
onsidered, in
luding both global and 
ontext 
onditioned approa
hes.
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5.1.2 Bostelmann's Te
hnique

One parti
ular example of where the 
urrent model breaks down is the 
mpnd2 image.

This 
ompound image 
ontains a signi�
ant region of bla
k text (pixel value 0) on a white

ba
kground (pixel value 255). This leads to great many predi
tion errors of -255 and 255.

Clearly this is not well modelled by the zero 
entred Lapla
ian!

One approa
h to address this problem is a simple te
hnique, sometimes attributed to

Bostelmann[LGS92℄. This te
hnique makes use of the fa
t that pixel values have a limited

range, say 0 to �. Predi
tion errors therefore have a nearly doubled range �� � " � �.

However, this is redundant as a small example will show.

In the 
ase of 
mpnd2, where � is 255, it is a

eptable to remap the predi
tion errors

with:

"0 =

8><
>:
"+ 256 if " < �128
"� 256 if " > 127

" otherwise

(5.4)

Consequentially, if a bla
k pixel is predi
ted to be white, the residual is " = �255
but "0 = 1. Having 
oded "0, when the de
oder adds "0 to the predi
ted value (255) the

result (256) will be out of range. The de
oder now takes this value modulo the number of

allowable values (256) and gets 0 - the value for bla
k. This amounts to folding the tails

of the residual distribution ba
k into the 
entral region.

The results of using Bostelmann's te
hnique prior to error modelling is shown under

the Model-B heading in Table 5.1. This shows a de�nite improvement in the 
ase of the


mpnd2 image, although all other images are una�e
ted. This is be
ause most images have

very few 
ases of predi
tion errors that would be remapped by the Bostelmann te
hnique.

One result that still shows a problem with the error modelling s
heme used is that

of 
t
esh. This 
omputer generated image is somewhat awkward. It 
ontains regions of

near 
onstant intensity that are demar
ated by sudden boundaries. As a 
onsequen
e,

although the predi
tor errors for this image are mainly 
entred around zero, there are

se
ondary peaks around the levels related to these steps in the image. Su
h multi-modal

distributions are not well 
aptured by the Lapla
ian model. However, as we shall see in

subsequent se
tions, some additions to the basi
 error modelling des
ribed so far do work

to improve on the 
ompression performan
e for the 
t
esh sequen
e.

5.2 Context Determination for Advan
ed Image Types

The 
ontext determination s
hemes presented in Chapter 2, use a 
ombination of predi
tion

errors, lo
al image gradients and spatial texture to determine an error modelling 
ontext.

In these prior examples, the metri
s are 
al
ulated using only intraband information. The

same 
ontext determination s
hemes 
ould be used for 
olour images, video et
. However,

at �rst glan
e this would seem to make no use of any interband, interframe or interview

information.
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Before further 
onsidering 
ontext determination for advan
ed image types, it is worth

reminding ourselves about the purpose of 
ontext determination. The assumption is made

that predi
tion errors in a similar 
ontext, will have the same distribution. Hen
e, by

determining a 
ontext that partitions predi
tion residuals into groups, su
h that ea
h group

is well modelled by a single distribution, we 
an better model the errors. Better modelling

yields better probability estimates for error 
oding and hen
e allows better 
ompression.

So how 
an we gain additional information about a pixel's 
ontext from interband,

interframe and interview relationships? As we are using predi
tors that utilise 
orrelations

beyond just spatial relationships, we 
an gain information impli
itly from lo
al predi
tion

errors. This is be
ause a predi
tor only works well when the 
orrelation it is designed to

exploit is high. Thus, a predi
tor's error is inversely proportional to the lo
al 
orrelation it

is suited to exploit. For example, if there are high predi
tion errors for a spe
tral predi
tor,

in lo
ations lo
al to a given pixel in the 
urrent band, this implies a low spe
tral 
orrelation.

These 
orrelation measures 
an be very useful for 
ontext determination.

The 
urrent argument suggests that a standard 
ontext determination s
heme like error

bu
keting (see Se
tion 2.4.1) would give extended 
ontext determination e�e
tively for free.

It is worth noting that the 
ontext of a given pixel would then depend on whi
h predi
tor

was being used for that pixel.

Alternatively, we may prefer a more expli
it means of extending 
ontext determination.

The gradient based metri
 might seem promising, but it entails 
ompli
ations. A large

lo
al intraband gradient (e.g. W � NW ) in a greys
ale image would imply a relatively

high likelihood of a large predi
tion error for the 
urrent pixel. However, a large interband

gradient (e.g. W � Wr) does not ne
essarily imply the same thing. The waveform of

the referen
e band might have the same shape as the 
urrent band (high 
orrelation)

but a di�erent amplitude. Hen
e, the important metri
 would be variation in interband

gradients, su
h as (W �Wr)� (N �Nr).

For video the notion of gradient be
omes less useful still. In areas of low motion we

expe
t a low temporal gradient, but in areas of motion the metri
 would take on arbitrary

values.

Instead of 
on
erning ourselves with the 
omplexities of adapting lo
al gradient meth-

ods, we shall instead fo
us on methods utilising predi
tion errors. Thus, we 
onsider

extended error bu
keting.

5.2.1 Extended Error Bu
keting

When 
onsidering extending error bu
keting, the main worry is 
ontext dilution. Standard

error bu
keting (SEB), as used in Se
tion 4.3.2, uses 11 bu
kets for ea
h of the three

lo
ations (W , N and NW ) used in the 
ontext determination. That generates 113 = 1331


ontexts. If as part of an extension, a bu
ket is added to the standard s
heme, 114 = 14641


ontexts would be generated. This large in
rease in the number of 
ontexts would be likely

to result in 
ontext dilution and therefore poor performan
e.

To over
ome this problem, the number of error bu
kets per lo
ation 
an be redu
ed.
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If 7 bu
kets are used instead of 11, the number of 
ontexts generated when 4 lo
ations

are 
onsidered is 74 = 2401. Although this is still more 
ontexts than the 113 
ase, it is a

signi�
ant improvement over the 114 alternative.

The quantisation thresholds used for the 7 bu
ket 
ase, also used the exponential ar-

gument dis
ussed in Se
tion 4.3.2. However, due to the more 
rude quantisation, expo-

nents of 4 were used. Therefore, the a
tual bu
kets are:f�255; : : : ;�16g, f�15; : : : ;�4g,
f�3;�2;�1g,f0g, f1; 2; 3g, f4; : : : ; 15g, f16; : : : ; 255g.

It was de
ided to keep the three spatial lo
ations (W , N and NW ) used by SEB in

Se
tion 4.3.2. In a manner similar to ELEPS (see Se
tion 4.3.1) the fourth lo
ation was


hosen to be the 
urrent pixel lo
ation in the previous band and if that was not available

the same lo
ation in the previous frame. In the event that neither were available (i.e. the

�rst band in the �rst frame of a sequen
e) an extra spatial lo
ation was used (NE).

This results in the same 
ompli
ations as experien
ed by ELEPS. Namely, interband

and interview predi
tors 
annot a

ess their own predi
tion errors from the previous

band/frame until the third band or frame respe
tively.

A new 
ompli
ation that now arises, is related to the limited presen
e of motion ve
tors

and disparity estimates. As mentioned in Chapter 4, QTBS allows su
h overhead to be

transmitted only when it will be used. As a 
onsequen
e, if motion 
ompensation is being

used for the 
urrent pixel, there is no guarantee that motion data will be available for any

of its spatial neighbours. To allow en
oding without any extra overhead, this issue is solved

by using the motion information at the 
urrent pixel to get motion 
ompensated predi
tion

errors for 
ontext determination. The same pro
ess is used for disparity 
ompensation.

If predi
tion errors are required from Xr, there is no problem. This is be
ause both

motion ve
tors and disparity estimates are shared over all bands of the 
urrent image.

The �nal instan
e of this problem relates to using the motion 
ompensated residual

from Xt�1. Again, there is no guarantee that motion information is present for the 
urrent

pixel lo
ation in the previous frame. However, in the 
ase that motion 
ompensation is

being used, the motion 
ompensated error fromXt�1 is unlikely to be useful information, as

the feature in question must have moved (otherwise a di�erent predi
tor would be in use).

Hen
e, the predi
tion error atXt�1 is 
onsidered as unavailable when motion 
ompensation

is being used.

An extended error bu
keting (EEB) s
heme was 
onstru
ted as dis
ussed above and

the results of this s
heme are 
ompared to SEB in the next se
tion.

5.2.2 Comparing Context Determination S
hemes

The utility of a given 
ontext determination s
heme 
an be measured by the 
ompres-

sion performan
e obtained by an image 
oder, where the 
ontext determination s
heme is

used to 
ondition the errors1. Using the two-sided Lapla
ian model, with Bostelmann's

1It is worth noting here that the use of 
ontext based entropy measures is not a good idea. This 
an

be done by 
al
ulating the entropy of predi
tion errors in individual 
ontexts and then averaging these


ontextual entropies, weighted by 
ontext o

urren
e. However, this pre-supposes perfe
t knowledge of as
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Image SEB EEB GRAD

113 74

Colour Images

air2 3.90 3.86 3.84 3.88

baboon 6.00 6.00 6.00 5.98


ats 2.03 2.02 2.02 2.03


mpnd2 1.12 1.11 1.11 1.22

house 4.15 4.14 4.15 4.12

lena 4.48 4.47 4.47 4.46

Average 3.61 3.60 3.60 3.62

Greys
ale Video


laire 2.17 2.13 2.11 2.15

granny 2.20 2.21 2.21 2.41

mall 3.70 3.70 3.70 3.70

mobile 4.36 4.36 4.36 4.37

salesman 3.77 3.78 3.78 3.87

Average 3.24 3.24 3.23 3.30

Colour Video


laire 2.34 2.34 2.24 2.28

football 4.33 4.34 4.31 4.39

granny 2.03 2.02 2.02 2.19

mobile 3.97 3.98 3.96 4.03

susie 3.27 3.27 3.26 3.30

Average 3.19 3.19 3.16 3.24

Multiview


t
esh 1.51 1.26 1.26 1.66

granny 2.53 2.56 2.53 2.61

skull 2.58 2.61 2.59 2.64

Average 2.21 2.14 2.13 2.30

Colour Multiview Video

granny 1.96 1.96 1.95 2.07

Table 5.2: A 
omparison of several 
ontext determination s
hemes is a
hieved by 
onsid-

ering the information 
ontent of predi
tion residuals, following 
ontext 
onditioned error

modelling. All 
ontext 
oding is based on predi
tion residuals from QTBS.



5.3. FURTHER CONTEXTUAL CONSIDERATIONS 75

te
hnique, as dis
ussed in the previous se
tion, SEB and EEB were 
ompared.

The results in Table 5.2 in
lude SEB-113 as used in the previous se
tion. SEB-74 (where

the fourth bu
ket always uses the error from NE) is also in
luded to determine whether

any 
ontext dilution e�e
ts are evident when the number of 
ontexts in
reases from 1331

to 2401. Results for EEB are presented and to further the 
omparison, the gradient based


ontext determination s
heme from JPEG-LS is also in
luded under the heading GRAD.

The results from SEB-74 are very similar to those from SEB-113. Many images a
tually

show slight gains from the extra spe
i�
ity gained by adding the fourth error bu
ket. Only

a few images show signs of performan
e loss. Where performan
e is lost, it is not 
lear

whether this results from 
ontext dilution or the more 
oarse quantisation of the errors into

bu
kets. Whatever the reason, the use of a 74 bu
keting s
heme seems quite a

eptable.

Comparing the results from SEB-74 and EEB, we see that EEB is generally as good

as or better than SEB-74. The most noti
eable improvement is for 
olour video, where

predi
tion residuals from the previous band or frame will almost always be available.

The 
ontext determination s
heme from JPEG-LS, whi
h was also used in an interband

extension of the new standard[MWSM97℄, was unable to mat
h the average performan
e of

EEB. One example of an ex
eption to this generalisation is the house image, for whi
h pre-

di
tion residuals are better modelled by the JPEG-LS s
heme than by EEB. In fa
t SEB-74

performs better on house than EEB. This shows that purely spatial 
ontext determination


an still be the best of the available options, in some 
ases.

5.3 Further Contextual Considerations

In this se
tion we will 
onsider three other aspe
ts of 
ontext based error 
oding. Namely

bias, runs and the resetting of 
ontextual data for addition adaptation.

5.3.1 A Di�erent Bias

Contextual bias in predi
tion errors is the result of a systemati
 failure of the predi
tor to


orre
tly model some aspe
t of the image. In most work, a single predi
tor is used and

bias 
an be seen as a slight de�
ien
y in that predi
tor. In the 
urrent work, the predi
tion

for a given pixel is the output of many predi
tors and a predi
tor sele
tion s
heme. To

further the dis
ussion of the 
urrent work, we should understand how the use of predi
tor

sele
tion a�e
ts 
ontextual bias in predi
tion errors.

As predi
tor sele
tion s
hemes try to �nd the best predi
tor in a given 
ir
umstan
e,

we might expe
t the predi
tion used to be superior to a non-sele
tive me
hanism. As a


onsequen
e, if the predi
tor is better mat
hed to the 
urrent image 
hara
teristi
s, we

would expe
t the average absolute bias to be less for swit
hing predi
tor s
hemes.

many distributions as there are 
ontexts; a 
onsiderable amount of assumed information. Hen
e, 
ontext

based entropy measures 
an be wildly optimisti
 about the potential 
ompression performan
e of a given

method.
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Image JPEG7 MED QTBS

Colour Images

air2 7.13 6.25 3.16

baboon 5.97 6.05 3.56


ats 8.22 7.46 1.81


mpnd2 9.92 6.80 3.29

house 4.44 2.80 1.32

lena 5.70 5.21 2.62

Average 6.90 5.76 2.63

Greys
ale Video


laire 3.27 2.86 0.59

granny 5.72 4.99 2.48

mall 1.72 0.85 0.84

mobile 4.95 2.58 2.67

salesman 4.40 3.94 0.84

Average 4.01 3.04 1.48

Colour Video


laire 3.70 3.03 0.62

football 6.82 6.49 3.74

granny 6.12 5.83 2.13

mobile 6.28 5.69 2.43

susie 3.42 3.18 0.72

Average 5.27 4.84 1.93

Multiview


t
esh 3.21 1.19 0.76

granny 6.22 5.25 2.30

skull 2.19 2.21 0.56

Average 3.87 2.88 1.20

Colour Multiview Video

granny 6.21 5.08 1.51

Table 5.3: The average absolute 
ontextual bias following various predi
tion s
hemes. EEB

is used for 
ontext determination in all 
ases.
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To test this assumption, the average absolute2 
ontextual bias is determined for a

number of predi
tion s
hemes. JPEG7 will be used as an example of a simple, non-

swit
hing s
heme. MED and QTBS will be used as examples of simple and 
omplex

swit
hing s
hemes respe
tively. Context determination is 
arried out by the EEB s
heme

developed in the previous se
tion.

The results of this test are presented in Table 5.3. Ea
h result represents the average

absolute 
ontextual bias, averaged over all bands/frames in the image/sequen
e. These

results 
learly show that the 
ontextual bias of predi
tion errors is greatly redu
ed by using

more adaptive predi
tors, as argued above. MED shows a slight improvement over JPEG7

and QTBS redu
es the 
ontextual bias still further. The superior performan
e of QTBS

in this regard 
an be put down to its a
tive sele
tion of predi
tors via forward adaptation

and its greater 
hoi
e of predi
tors as 
ompared to MED.

5.3.2 The E�e
t of Bias Can
ellation

Although the use of QTBS has been shown to redu
e the 
ontextual bias in predi
tion

residuals, it has not eliminated it. Hen
e, it may still be worthwhile to use bias 
an
ellation

to further improve 
ompression.

A fairly standard approa
h was taken to this problem. A 
ount of the sum of all

predi
tion errors was kept for ea
h 
ontext. This a

umulator, averaged over the number

of instan
es of the 
ontext en
ountered up to a given point, gives the 
ontextual bias.

This bias is then subtra
ted from the predi
tion error before 
oding. It is also used, to

o�set the 
al
ulation of �̂2. Bias 
an
ellation provides the �"2 that enables the estimation

of �̂2 = �"2 � �"2 as dis
ussed in Se
tion 5.1.

The results from applying this a
tively re-
entred distribution model are given in Ta-

ble 5.4. From these results, bias 
an
ellation 
an be seen to be worthwhile. With just

one ex
eption the test images showed improvement. It is interesting to 
ompare these im-

provements with the average absolute 
ontextual bias �gures in Table 5.3. The sequen
e

with the largest bias after QTBS is football and this same sequen
e shows the greatest

improvement after bias 
an
ellation (0.14 bpp). However, there is no simple trend to the

data when taken as a whole. 
mpnd2 also shows a large bias following QTBS, but shows

only slight improvement (0.02 bpp) after bias 
an
ellation. Alternatively, salesman has

very low 
ontextual bias but shows a large improvement (0.12 bpp) in Table 5.4.

From this analysis we 
an 
on
lude that simple bias 
an
ellation should be in
luded in

the 
urrent 
ompression approa
h. However, it is 
lear that the method used is unable to

deliver savings in proportion to the amount of bias present. Hen
e, further work may yet

yield improved bias 
an
ellation.

2To have meaning the absolute bias must be used. If the raw bias was averaged, positive and negative

biases would 
an
el to leave the global, not 
ontextual, deviation from a zero mean distribution.
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Image EEB After Bias With Context

Can
ellation Run Mode Resets

Colour Images

air2 3.84 3.79 3.80 3.80

baboon 6.00 5.95 5.95 5.92


ats 2.02 1.98 1.90 1.89


mpnd2 1.11 1.09 0.99 0.99

house 4.15 4.13 4.13 4.12

lena 4.47 4.42 4.42 4.42

Average 3.60 3.56 3.53 3.52

Greys
ale Video


laire 2.11 2.10 2.08 2.06

granny 2.21 2.20 2.20 2.18

mall 3.70 3.69 3.69 3.70

mobile 4.36 4.34 4.34 4.34

salesman 3.78 3.66 3.66 3.65

Average 3.23 3.20 3.19 3.19

Colour Video


laire 2.24 2.22 2.22 2.20

football 4.31 4.17 4.17 4.15

granny 2.02 2.01 2.01 2.01

mobile 3.96 3.84 3.84 3.86

susie 3.26 3.16 3.16 3.16

Average 3.16 3.08 3.08 3.08

Multiview


t
esh 1.26 1.27 1.24 0.88

granny 2.53 2.52 2.52 2.49

skull 2.59 2.53 2.54 2.51

Average 2.13 2.11 2.10 1.96

Colour Multiview Video

granny 1.95 1.94 1.95 1.94

Table 5.4: Results of bias 
an
ellation, run mode and 
ontextual resets.
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5.3.3 A Case of the Runs

The error model that emerges from the previous dis
ussion is highly adaptive and 
aters

for a wide range of image a
tivity. However in some 
ases, for example the 
mpnd2 image,

more 
ould be done. This image in parti
ular 
ontains many areas where there is no image

a
tivity. That is, it 
ontains quite a lot of blank spa
e. To be 
oded e�e
tively, a model

that is parameterised to give a p(" = 0) of nearly 1 is required. However, this is very

dangerous, as when the region ends and the predi
tor error is non-zero the 
ost to 
ode

this transition 
ould be very high indeed.

In su
h 
ases of extreme redundan
y, other approa
hes are needed. One su
h approa
h

is to use a run mode. Su
h a method is used in JPEG-LS[ITU96℄ and brie
y des
ribed in

Se
tion 2.5.1. When entering a spe
ial 
ontext JPEG-LS assumes a run of pixels with the

same value and 
odes the run length. This use of forward adaptation allows the eÆ
ient


oding of extreme redundan
y without the potential pitfall of en
oding a large predi
tion

error using a distribution in whi
h it is very unlikely.

As an alternative, we might 
onsider that a run is likely in any 
ontext for whi
h �̂2 is


lose to zero. For the purpose of pra
ti
ality, �̂2 < 0:5 is deemed to be 
lose to zero.

We must also 
onsider what sort of run to expe
t. JPEG-LS uses a spatial run of

identi
al pixel values. However in the 
urrent work, we might 
onsider an interband run,

for whi
h spe
tral predi
tion yields zero error. Su
h a run requires di�erent handling to

those of JPEG-LS. To make this di�eren
e, a run is here de�ned as a sequen
e of zero

predi
tion errors, rather than identi
al pixel values.

If the 
urrent pixel is in a 
ontext where �̂2 < 0:5, a run 
an only start if " = 0.

So, instead of entering the run mode on entry to the 
ontext, the predi
tion error is �rst

en
oded and the run mode is only entered if " is indeed equal to zero.

If a run is present it is just as likely to extend down as it is to extend a
ross from the


urrent lo
ation. Hen
e, it seems more appropriate to 
onsider a run not as a sequen
e

starting at the 
urrent pixel but as a region with the 
urrent pixel at the top left 
orner.

For the sake of 
onvenien
e the run region was 
hosen to be a square.

To summarise the implementation, the run mode is entered when the 
urrent pixel is

in a 
ontext for whi
h �̂2 < 0:5 and following bias 
an
ellation, " = 0. On
e in run mode,

the en
oder sear
hes for the largest allowable n� n square, with the 
urrent pixel as the

top left 
orner, su
h that all predi
tion errors are zero in the region so de�ned. To enable

eÆ
ient 
oding of the run length (whi
h must be at least 1), an upper limit is put on n

(32). Furthermore, 
ounts of the frequen
y of o

urren
e of given run lengths are kept to

allow entropy 
oding of this overhead.

The 
onsequen
e of adding this run mode 
apability to the 
urrent modelling s
hemes,

is show in Table 5.4. As might be expe
ted, images with 
onsiderable 
at regions (
ats and


mpnd2 ) show 
onsiderable improvement, while most of the other test data is una�e
ted.

The relatively small redu
tion in bit rate for 
t
esh was quite surprising as the sequen
e

appears to be very amenable to run 
oding. However, 
lose examination of the sour
e

images shows that apparently 
at regions are a�e
ted by noise. An apparently random


olle
tion of pixels are one grey level brighter than the majority of the surrounding region.
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These pixels will break the runs and hen
e redu
e the e�e
tiveness of the run 
oding

s
heme.

Further Extension of the Run Mode

The runs that have just been 
onsidered are partially extended, in that they 
an be runs

of zero error from an interband, interframe or interview predi
tor. However, we might


onsider further extensions. The most obvious is to 
ombine runs in di�erent bands. With

this s
heme a run mode would be entered if the predi
tion errors at one lo
ation, in all

bands, were zero

Su
h a s
heme would be expe
ted to o�er superior performan
e for images su
h as 
ats

and 
mpnd2, where the 
at regions of bla
k and white have very high spe
tral 
orrelation.

However, the fa
t that this s
heme assumes total spe
tral 
orrelation in 
at regions of the

image may well 
ause a drop in performan
e for other images.

The results in [MWSM97℄ support just su
h a 
on
lusion. When 
onsidering an inter-

band version of JPEG-LS, the standard JPEG-LS run mode is syn
hronised a
ross all the

bands in the image. 
ats and 
mpnd2 do indeed show modest improvements in bit-rate.

However, overall the e�e
t a
ross the entire test set used in [MWSM97℄ suggests that su
h a

run mode is inferior to the original s
heme used in JPEG-LS, as dis
ussed in Se
tion 2.5.1.

5.3.4 Resetting of Contextual Data

One danger of the 
ount based statisti
s a

umulated by the 
ontextual s
heme 
urrently

in use, is that old data is always present. This long memory 
ould be harmful if the


ontextual statisti
s were to 
hange over time. One popular way to alleviate this is to

halve the 
ounts kept in a given 
ontext, when the o

urren
es of that 
ontext rea
h a


ertain threshold. In this way the e�e
t of old statisti
s is lessened and subsequent 
ounts

will have a greater e�e
t.

This additional pie
e of adaptivity, also used in [ITU96℄, was added to the 
urrent


ompression s
heme. A 
ontext o

urren
e threshold of 64 was used.

The results of using these 
ontextual resets are given in Table 5.4. In almost every 
ase

a slight bene�t is seen from the extra ability to adapt. Only for a 
ouple of sequen
es is

the loss of the extra long term memory found to be negative.

5.3.5 Contextual Summary

We have seen how 
ontextual modelling of predi
tion residuals 
an be a

omplished in

the new environment of extended lossless image 
ompression. For 
ontext determination

a slight bene�t is seen by 
onsidering information from the previous band or frame. By

modelling runs of zero predi
tion error, further advantage is made of extended 
orrelation.

This is be
ause runs 
an o

ur in areas of extreme spe
tral or temporal 
orrelation as well

as areas that are spatially 
at.
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Although no obvious use of extended information has been made in bias 
an
ellation

or 
ontextual resetting, these te
hniques were still found to be of bene�t in the 
urrently

proposed model.

5.4 Forward Methods for Error Modelling

Although ba
kward adaptive methods for error modelling are dominant in the literature,

having seen how well forward adaptive methods fared at predi
tor sele
tion, it makes sense

to test the appli
ation of forward methods to the 
urrent problem. The basi
 method is

the same as that seen in the previous 
hapter. That is, for ea
h region of the image the

best parameters (for an error model in this 
ase) are 
al
ulated and transmited to the

de
oder.

Obviously, with su
h s
hemes the nature of the error model is important. As the model

parameters must be sent to the de
oder, a model that requires only one parameter is

favourable. Fortunately, the 2SL-B model used previously is just su
h a s
heme and is now

used with forward adaptation.

Previously, the ba
kward adaptive approa
hes had a

ess to distributions with � =

0:5; 1; 2 : : : ; 255. This is not appropriate for forward adaptation, as su
h a �ne quantisation

of � would generate a large overhead for indi
ating the 
hoi
e of error modelling parameters

to the de
oder. Instead, only eight values of � used, 
orresponding to the powers of two

1; 2; : : : ; 128.

Initial tests showed that the largest value of � was almost never used. Given this,

the meaning of the event � = 7 was 
hanged to indi
ate a run mode. If a run mode is

indi
ated, it implies that the predi
tion errors are zero for all pixels in the region. Therefore

no further de
oding is ne
essary for the relevant pixels.

Previously, when a quadtree stru
ture was employed for predi
tor sele
tion, the de
ision

of whether to split a parent blo
k into its four 
hildren was governed by a simple heuristi
.

That is, if the average di�eren
e in predi
tion errors from the parent and the 
hildren was

less than a threshold, a split o

urred. With error modelling the a
tual bits required to

en
ode the predi
tion residuals are known. Hen
e the splitting de
ision 
an be made in a

way related to the a
tual 
ost of the additional overhead required if a split takes pla
e.

If a split takes pla
e, four extra split de
isions will need to be en
oded (unless the


hild blo
k size is the minimum allowed). The error model parameter will also be needed

for ea
h of the four 
hildren, but not for the parent. Estimating the 
ost of the model

parameter at 3 bits (8 possible values) and the 
ost of the split de
isions at 1 bit ea
h, the

splitting threshold be
omes 13 bits.

In order to test forward error modelling the results of QTBS followed by QuadTree

Base Modelling (QTBS-QTBM) are given in Table 5.5.
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Image QTBS-QTBM Joint QTM

Colour Images

air2 3.91 3.91

baboon 5.95 5.96


ats 1.94 1.94


mpnd2 1.06 1.06

house 4.13 4.13

lena 4.50 4.50

Average 3.58 3.58

Greys
ale Video


laire 2.16 2.15

granny 2.20 2.18

mall 3.71 3.71

mobile 4.35 4.34

salesman 3.87 3.87

Average 3.26 3.25

Colour Video


laire 2.34 2.32

football 4.35 4.34

granny 2.04 2.02

mobile 4.02 4.02

susie 3.30 3.30

Average 3.21 3.20

Multiview


t
esh 1.11 1.11

granny 2.62 2.60

skull 2.63 2.63

Average 2.12 2.11

Colour Multiview Video

granny 1.98 1.96

Table 5.5: The results of forward error modelling.
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5.4.1 Joint Adaptation

Using separate forward adaptation me
hanisms for predi
tor sele
tion and error modelling

may be somewhat wasteful. It is quite possible that regions that are well servi
ed by

a parti
ular predi
tor would often produ
e residuals that �t a given error model. The

potential for gain is even greater with a quadtree based s
heme, as the overhead for one of

the quadtrees 
an be saved if joint predi
tor sele
tion and error modelling is performed.

In essen
e the joint s
heme works in a very similar way to before. However, for ea
h

region, every 
ombination of available predi
tor and error model is 
onsidered with the best


hoi
e being in
luded in the output. The other di�eren
e is that the 
ost of en
oding three

additional predi
tor sele
tion de
isions must be taken into a

ount when determining the

split threshold. The exa
t 
ost of these de
isions is determined by the number of predi
tors

available at a given time. The results from joint QuadTree Modelling (Joint QTM) are

also shown in Table 5.5.

5.4.2 Results for Forward Error Modelling

The results in Table 5.5 show that Joint QTM is slightly better on average than QTBS-

QTBM. However, the di�eren
e is slight and for the baboon image, the redu
ed 
exibility

of having to spe
ify predi
tor and error modelling parameter together for ea
h blo
k, has

had a negative e�e
t.

Considering the results of forward error modelling against those for ba
kward modelling,

as given in Table 5.4, we see that the latter is superior. Although the results for Joint

QTM are 
omparable to those for modelling with EEB 
ontext 
oding, the ba
kward

s
hemes gain a signi�
ant advantage when bias 
an
ellation, run mode and 
ontextual

resets are added. Joint QTM already 
ontains a run mode and it is diÆ
ult to see how

forward bias 
an
ellation 
ould be added without in
urring intolerable overhead. A hybrid

s
heme utilising 
ontextual bias 
an
ellation and forward adaptation of the error modelling

parameter would be interesting, but it is not 
lear that it would bridge the gap to the

ba
kward adaptive s
hemes seen earlier.

5.5 Summary

In this 
hapter we have seen that the standard two-sided Lapla
ian model, with the addition

of Bostelmann's te
hnique, is an a

eptable way to model the predi
tion residuals from

QTBS.

The problems of extending 
ontext 
oding were dis
ussed. A solution, Extended Error

Bu
keting was found to produ
e slight bene�ts over the standard approa
h. The nature

of 
ontextual bias in the predi
tion residuals for swit
hed predi
tors (parti
ularly QTBS)

were analysed and found to be lower than for standard predi
tion s
hemes. However, it

was also shown that bias 
an
ellation is still a ne
essary te
hnique for top performan
e.

Run modes and 
ontextual resets were also added to the dis
ussion.
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Forward error modelling approa
hes were brie
y 
onsidered and found to be inferior

to the ba
kward adaptive method based on 
ontext 
oding. Hen
e, it is 
on
luded that

the best available method for extended error modelling uses the 2SL-B model, with EEB


ontext determination and also in
ludes bias 
an
ellation, run mode 
oding and 
ontextual

resets as des
ribed in Se
tion 5.3.



Chapter 6

Pra
ti
al Results

Now that all the relevant te
hniques have been advan
ed, it is ne
essary to generate full


ompression s
hemes and therefore real 
ompression results.

Se
tion 6.1 dis
usses the pra
ti
alities involved in produ
ing a 
omplete 
ompression

s
heme from the tools previously dis
ussed. Having introdu
ed 
ertain pra
ti
alities, the

real 
ompression results are 
ompared against the theoreti
al results from the previous


hapter.

In Se
tion 6.2 several aspe
ts of the developed 
ompression s
heme are analysed. Pri-

marily this analysis 
onsiders the predi
tor usage and the overhead present in the output.

Finally, in order to have external relevan
e, the results presented must be 
ompared to

other 
ompression s
hemes from the literature. This is a

omplished in Se
tion 6.3.

6.1 Towards a Pra
ti
al Coding S
heme

The results of the previous 
hapter were based on a theoreti
al information measure,

utilising the probability of events given by a parti
ular model. A pra
ti
al 
ompression

s
heme needs an en
oder as a �nal step. Of the many available 
oding s
hemes (see

Appendix A for an overview) the one that will allow the best mat
h to the theoreti
al

result of the previous 
hapter is Arithmeti
 
oding. This 
oding s
heme is able to 
ode

symbols using a fra
tional number of bits and is well known to approa
h the optimum


oding limit.

To avoid unne
essary e�ort, an existing pa
kage was used for Arithmeti
 
oding. The

pa
kage used was produ
ed by John Danskin and is based on a Bell, Cleary, and Witten

style Arithmeti
 Coder[BCW90℄. It makes use of frequen
y based histograms and provides


oding of symbols from alphabets of arbitrary size. The probability distributions generated

by the models of the last 
hapter were 
onverted into the required frequen
y histograms

simply by multiplying all the probabilities by a large 
onstant (10000).

The impa
t of moving to a pra
ti
al en
oding of the data is shown in Table 6.1. For


omparison the theoreti
al results from the last 
hapter are shown. To re
ap, these results

are based on QTBS followed by EEB 
ontext modelling, using 2SL-B. Bias 
an
ellation,

85
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Image Theory With Arithmeti
 In
luding Regular

Coding I-frames

Colour Images

air2 3.80 3.82 3.82

baboon 5.92 5.93 5.93


ats 1.89 1.91 1.91


mpnd2 0.99 0.99 0.99

house 4.12 4.15 4.15

lena 4.42 4.45 4.45

Average 3.52 3.54 3.54

Greys
ale Video


laire 2.06 2.09 2.12

granny 2.18 2.21 2.29

mall 3.70 3.73 3.73

mobile 4.34 4.32 4.35

salesman 3.65 3.68 3.75

Average 3.19 3.21 3.25

Colour Video


laire 2.20 2.22 2.24

football 4.15 4.17 4.17

granny 2.01 2.03 2.09

mobile 3.86 3.87 3.88

susie 3.16 3.19 3.19

Average 3.08 3.10 3.11

Multiview


t
esh 0.88 0.85 0.85

granny 2.49 2.55 2.55

skull 2.51 2.54 2.54

Average 1.96 1.98 1.98

Colour Multiview Video

granny 1.94 1.98 2.02

Table 6.1: A 
omparison of theoreti
al results from the previous 
hapter against real results

using Arithmeti
 
oding. The 
olumn on the right also in
ludes I-frame 
oding at regular

intervals, whi
h is a requirement for pra
ti
al video 
oding.
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run mode and 
ontextual resets are also used.

Generally the impa
t of using a pra
ti
al en
oding method is very small; generally

around 0.03 bpp. This is as expe
ted given the near ideal nature of Arithmeti
 
oding.

Analysis of Table 6.1 does present some anomalous results. Namely, mobile (greys
ale)

and 
t
esh whi
h a
tually improve under pra
ti
al 
oding. The reason for this is the way

overhead is pro
essed. The theoreti
al results from the previous 
hapter used entropy

based measures to a

ount for the size of the motion ve
tors and disparity estimates. In

the pra
ti
al 
oding 
ase, the 
oding of these types of overhead is based on frequen
y


ounts that are updated as progress is made through the image. As mobile (greys
ale) and


t
esh make heavy use of motion 
ompensation and disparity 
ompensation respe
tively

(see Se
tion 6.2.1) this e�e
t is most pronoun
ed for these two 
ases.

6.1.1 The Need for Regular I-frames in Video

In this work so far, there has been a 
ons
ious attempt to avoid making spe
ial allowan
es

for one type of imagery over another. However, video must be seen as being a slightly

spe
ial 
ase. When a single image is de
oded, the whole image is generally required.

Likewise multiview sequen
es; two or more images[MDTL96℄ must be displayed at on
e to

gain a stereos
opi
 e�e
t. Video however, 
an be meaningfully viewed in segments, rather

than requiring the whole.

As a 
on
ession to this di�eren
e, multiple a

ess points will be allowed to a 
oded

video sequen
e. To enable this, the Group of Pi
tures (GOP) stru
ture of 
onventional

lossy video 
oders will be borrowed (see Se
tion 3.2.2). The GOP size will be the same as

MPEG's default GOP size (12). However, as lossless bi-dire
tional 
oding of video frames

has not been 
onsidered, the GOPs will 
onsist of one I frame followed by 11 P frames.

As 
an be seen from the results in Table 6.1, the 
ost of regular I-frames is not generally

ex
essive. Indeed, given the bene�t that is gained from multiple entry points into video

data, it seems a pri
e worth paying.

6.2 Analysis

In this se
tion we shall see how QTBS a
tually makes use of the �ve predi
tors available

to it. This is followed by a study of the overhead 
arried by the 
urrent s
heme. That is,

how many bits are there that do not dire
tly en
ode predi
tion errors.

6.2.1 Predi
tor Usage Analysis

We saw in Chapter 4 that QTBS is 
apable of produ
ing predi
tion errors with relatively

low entropy. Now, as an integral part of the presented 
ompression s
heme, it is appropriate

to investigate how it uses the predi
tors that is has a

ess to.
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Table 6.2 shows the usage of the available predi
tors for the whole image test set.

The �gures shown give the per
entage predi
tor usage, average over all bands, frames and

views. Note, the �gures are rounded and may not sum to exa
tly 100%.

For 
olour images we see that intraband predi
tion is on average used more than in-

terband predi
tion. However, it is important to note that these �gures are biased towards

intraband predi
tion, be
ause that is the only predi
tion available for the �rst band in the

image. The �rst band represents one third of the whole image data for these RGB images,

so the maximum possible usage of interband predi
tion is 66:7%. With an average usage

of 40:7%, interband predi
tion is used by QTBS for slightly over half of the pixels in the

blue and green bands of the 
olour images used for the test.

For greys
ale video, temporal predi
tion is used twi
e as mu
h as intraframe predi
tion

on average. The notable ex
eption to this is the mall sequen
e. This sequen
e 
ontains

whole s
ene movement and therefore PP would be inappropriate as a predi
tor. That MC

is not used for mall indi
ates that there is either a lot of interframe noise or that the motion

estimation used was unable to 
apture the movement in the sequen
e. It is possible that

a more sophisti
ated motion estimation s
heme would 
hange this result.

Also of note for the greys
ale sequen
es, is that PP and MC are on average used in

equal proportion. As mentioned in Chapter 4, QTBS will 
hoose PP in preferen
e to MC

if their predi
tion residuals are equally small. However, PP 
arries no overhead and is well

used. This shows the importan
e of in
luding it alongside MC.

Moving onto the 
olour video sequen
es, it 
an be seen that the preferen
e for interframe

predi
tors is repla
ed by a tenden
y to use interband predi
tion. The ex
eption to this

generalisation is the granny sequen
e. granny is 
omputer generated and therefore has no


amera noise. It also has no global motion (i.e. 
amera movement). These two fa
tors

taken together, give a high probability that a given pixel will be identi
al to the same

lo
ation in the previous frame. This ensures that PP is the preferred predi
tor, even over

IB1. This is not the 
ase though for all the other sequen
es (even those with no 
amera

movement) that are 
aptured by 
onventional means. However, this is not to say that the

other sequen
es gain no bene�t from interframe predi
tion. Indeed, mobile uses MC more

than MED.

The 
omputer generated versus 
amera 
aptured di
hotomy is again present when mul-

tiview sequen
es are 
onsidered. The 
omputer generated multiview sequen
es, having

perfe
t alignment and no 
amera noise, are able to make good use of disparity 
ompensa-

tion. However, the 
amera 
aptured sequen
e skull barely uses disparity estimation at all.

Camera alignment is the most likely 
ause of this result.

It is interesting to note that 
t
esh makes su
h heavy use of disparity 
ompensation.

As has been mentioned previously, this image set 
ontains many strong edges in ea
h view.

These edges are the sort of feature that intraband predi
tors (even MED) �nd hard to deal

with. However, disparity 
ompensation is able to tra
k these features a
ross the sequen
e

and hen
e is generally the best predi
tor for 
t
esh.

The results for the 
olour multiview video sequen
e granny is quite similar to the 
olour

video version of the same. However, disparity estimation is used and therefore shows that
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Image MED IB1 PP MC DC

Colour Images

air2 62.0 38.0 - - -

baboon 52.6 47.4 - - -


ats 66.4 33.6 - - -


mpnd2 64.8 35.2 - - -

house 64.3 35.7 - - -

lena 46.0 54.0 - - -

Average 59.4 40.7 - - -

Greys
ale Video


laire 18.9 - 68.3 12.9 -

granny 18.8 - 70.1 11.1 -

mall 99.2 - 0.1 0.7 -

mobile 14.8 - 3.6 81.7 -

salesman 13.4 - 24.6 62.0 -

Average 33.0 - 33.3 33.7 -

Colour Video


laire 38.5 33.2 22.5 5.7 -

football 23.0 51.1 5.7 20.2 -

granny 10.9 17.5 64.9 6.8 -

mobile 7.0 54.7 1.8 36.5 -

susie 20.4 64.3 7.1 8.2 -

Average 20.0 44.2 20.4 14.3 -

Multiview


t
esh 19.3 0.0 - - 80.7

granny 19.7 25.6 - - 54.7

skull 29.8 66.1 - - 4.0

Average 22.9 30.6 - - 46.5

Colour Multiview Video

granny 4.0 13.4 62.7 3.7 16.2

Table 6.2: Average per
entage of predi
tor usage for QTBS.
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is has some advantage over the other predi
tors in some 
ases.

In summary, all of the �ve predi
tors in
luded are used in varying proportions by

QTBS, on the test data. That the predi
tors are used in di�erent proportions for di�erent

images shows the power of predi
tor sele
tion in allowing an adaptive, extended lossless

images 
ompression s
heme with good general performan
e.

6.2.2 Analysis of In
urred Overhead

The presented 
ompression s
heme has many elements that use forward adaptation. All

su
h elements generate overhead that must be in
luded in the output of the en
oder. So

far, relatively little attention has been paid to this 
omponent of the output bit-stream.

In order to gauge the penalty of 
arrying this overhead, its 
ontribution to the output has

been determined.

Of the forward adaptive elements, QTBS is probably the most obvious and must trans-

mit both its quadtree stru
ture and predi
tor sele
tions as overhead. Also two of the

predi
tors used require additional information to fun
tion. Motion Compensation and

Disparity Compensation require motion ve
tors (MVs) and disparity estimates (DEs) re-

spe
tively. Thanks to the nature of QTBS, this overhead need only be transmitted when

the relevant predi
tor is a
tually used. Finally the run mode introdu
ed in Se
tion 5.3.3

also makes use of forward adaptation to gauge the size of the run region. The 
ontribu-

tion, in terms of bpp, to the output bit-stream of all these forms of overhead is re
orded

in Table 6.3.

For QTBS, the overhead of the quadtree stru
ture, whi
h is modelled on the basis of

the observed frequen
y of splits at a given level, is quite small. The overhead for signalling

the predi
tor sele
tion de
ision, whi
h is done without any probabilisti
 modelling, is also

generally small. However, for 
olour video sequen
es it does be
ome the largest single form

of overhead. A redu
tion in the 
ost of this overhead 
ould be had by modelling based on

frequen
y 
ounts. This would lead to an average improvement of around one hundredth of

a bit per pixel for 
olour video sequen
es.

The overhead requirements for motion ve
tors and disparity estimates are related to

the usage of MC and DC seen in Table 6.2. These forms of overhead are already modelled

by frequen
y 
ounts, but more sophisti
ated modelling s
hemes 
ould further redu
e the

overhead. One su
h s
heme, to use predi
tive 
oding for the MVs and DEs, is 
ompli
ated

by the fa
t that the information is only present when it is used. Therefore, the full set of

neighbouring values may not be present, making predi
tion diÆ
ult.

Another possibility is to not send the motion ve
tors/disparity estimates at all. The

de
oder 
ould use neighbouring pixel values to 
ompute the relevant estimation and use

the result as an estimate for the 
urrent pixel. However, it is not 
lear that the savings

this would 
reate would balan
e against the potential loss that 
ould be made due to

less a

urate motion and disparity estimations. This s
heme would also have the undesir-

able 
onsequen
e that the de
oder would have to expend a great deal of 
omputation on

estimation routines, every time the image was to be de
ompressed.
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Image Quadtree Predi
tor MVs DEs Run Mode Total

Colour Images

air2 0.0047 0.0072 - - 0.0278 0.0397

baboon 0.0059 0.0108 - - 0.0000 0.0167


ats 0.0002 0.0008 - - 0.0038 0.0048


mpnd2 0.0006 0.0011 - - 0.0248 0.0265

house 0.0065 0.0085 - - 0.0000 0.0150

lena 0.0058 0.0076 - - 0.0013 0.0147

Average 0.0040 0.0060 - - 0.0096 0.0196

Greys
ale Video


laire 0.0021 0.0054 0.0087 - 0.0194 0.0356

granny 0.0042 0.0110 0.0114 - 0.0039 0.0305

mall 0.0005 0.0027 0.0011 - 0.0000 0.0043

mobile 0.0066 0.0171 0.0631 - 0.0000 0.0868

salesman 0.0031 0.0078 0.0368 - 0.0006 0.0483

Average 0.0033 0.0088 0.0242 - 0.0048 0.0411

Colour Video


laire 0.0090 0.0211 0.0026 - 0.0332 0.0659

football 0.0124 0.0381 0.0141 - 0.0027 0.0673

granny 0.0057 0.0136 0.0043 - 0.0412 0.0648

mobile 0.0124 0.0343 0.0209 - 0.0000 0.0676

susie 0.0042 0.0113 0.0074 - 0.0012 0.0241

Average 0.0087 0.0237 0.0099 - 0.0157 0.0580

Multiview


t
esh 0.0003 0.0011 - 0.0439 0.1140 0.1593

granny 0.0080 0.0167 - 0.0292 0.0225 0.0764

skull 0.0038 0.0062 - 0.0070 0.0420 0.0590

Average 0.0040 0.0080 - 0.0267 0.0595 0.0982

Colour Multiview Video

granny 0.0064 0.0200 0.0027 0.0108 0.0401 0.0800

Table 6.3: An analysis of the overhead in
urred by the presented 
ompression s
heme.
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As expe
ted, the overhead asso
iated with the use of the run mode is dire
tly related to

the presen
e of 
at regions in the image. Frequen
y 
ounts are already employed to model

this overhead and it is not 
lear that substantial bene�t 
ould be gained by an alternative

modelling s
heme. Probably the best way to redu
e overhead in this 
ase is to put more

stringent limits on when the run mode is entered. This would 
ut down the number of

overly small runs that were en
oded.

In summary, although the overhead from forward adaptive elements of the proposed


ompression method 
an never be wholly eliminated, redu
tions 
ould be made by further

modelling. Given the level of modelling already employed, it is not obvious that substantial

gains 
ould be made; any gains would most likely be
ome apparent for the more 
omplex

imagery types, whi
h 
urrently 
arry more overhead than the simpler types.

6.3 External Comparisons

The 
ulmination of the work des
ribed so far, is a Generalised, Extended Lossless Image

Compression s
heme, whi
h shall now be referred to as GELIC. In order to put this into

a useful 
ontext, it is ne
essary to 
ompare the results presented with other s
hemes from

the literature.

An obvious ben
hmark is JPEG-LS, the new JPEG standard for lossless image 
om-

pression. The 
ompression results for JPEG-LS, given in Table 6.4, were generated with

the LOCO-I/JPEG-LS software (v1.00) provided by Hewlett-Pa
kard labs1. The default

parameters were used in all 
ases.

Comparing the results from GELIC and JPEG-LS, we see that the latter is beaten on

every test, ex
ept mall. The poor performan
e of GELIC on mall 
an be related to the

negligible use of extended predi
tion used for this sequen
e (99.2% MED usage, 0.8% PP

and MC).

In general GELIC shows superior results to JPEG-LS. This is espe
ially true for the


olour video and multiview sequen
es. For 
t
esh the �le size generated by GELIC is less

than half that required by JPEG-LS.

Taking 
olour video as an example, the 0.66 bpp improvement that GELIC provides

may not seem a revolutionary amount. However, with many millions of pixels in even a

short 
olour video sequen
e, this bene�t soon be
omes large in real terms.

6.3.1 Other Extended S
hemes

As the 
urrent work makes use of extra 
orrelations, that are not 
onsidered in JPEG-LS,

the previous 
omparison may seem unfair. To ensure a fair 
omparison, GELIC should also

be weighed up against s
hemes whi
h have purposely been extended to 
onsider more than

just intraband relationships. As the majority of su
h s
hemes have only been developed

for 
olour images, only this part of the test set will be used in the 
omparison.

1Available at http://www.hpl.hp.
om/lo
o/lo
odown.htm.
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Image GELIC JPEG-LS

Colour Images

air2 3.82 4.11

baboon 5.93 6.17


ats 1.91 2.61


mpnd2 0.99 1.32

house 4.15 4.19

lena 4.45 4.54

Average 3.54 3.82

Greys
ale Video


laire 2.12 2.32

granny 2.29 3.18

mall 3.73 3.61

mobile 4.35 4.66

salesman 3.75 4.39

Average 3.25 3.63

Colour Video


laire 2.24 2.46

football 4.17 4.80

granny 2.09 3.11

mobile 3.88 4.69

susie 3.19 3.77

Average 3.11 3.77

Multiview


t
esh 0.85 2.05

granny 2.55 3.14

skull 2.54 3.17

Average 1.98 2.79

Colour Multiview Video

granny 2.02 3.12

Table 6.4: A 
omparison of the presented s
heme versus the JPEG-LS standard for lossless

image 
ompression.
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Image GELIC I-JPEG-LS I-CALIC S
an

Colour Images

air2 3.82 3.90 - -

baboon 5.93 - - -


ats 1.91 1.92 1.81 -


mpnd2 0.99 1.05 0.92 -

house 4.15 - - 4.35

lena 4.45 - - -

Table 6.5: Comparison of the presented method with several 
ompression s
hemes in the

literature.

The extended version of JPEG-LS and CALIC are good 
ontenders. These s
hemes

are referred to as I-JPEG-LS and I-CALIC respe
tively in Table 6.5. As exe
utables for

these methods are not publi
ly available, the results presented have been taken from the

relevant papers (I-JPEG-LS[MWSM97℄, I-CALIC[WMC98℄). These papers, being pub-

lished during the 
ourse of the 
urrent investigation, are 
ertainly 
ontemporary with the

presented results in this work. Also in
luded in Table 6.5 is a result from the s
an-based

method[MS95b℄ des
ribed in Se
tion 3.1.3.

All of the methods used for 
omparison have been developed with the intention of


ompressing 3 or 4 band 
olour images; primarily RGB and CMYK. However, the driving

for
e behind the 
urrent work has been to a

ommodate all natures of imagery with an

uni�ed 
ompression s
heme. As su
h, the other methods might be expe
ted to have a

slight advantage for 
olour images.

However, the results in Table 6.5 show that GELIC is able to produ
e superior 
om-

pression to some of the s
hemes aimed spe
i�
ally at 
olour images; although I-CALIC

is not beaten. In parti
ular, the superior performan
e of I-CALIC on the 
mpnd2 image


ould be due to a spe
ial binary mode in I-CALIC, aimed spe
i�
ally at su
h images.

Results for 
olour video 
ompression are presented in [MS96℄, using the susie and

football sequen
es. However, a 
omparison is made diÆ
ult as these results are presented

as a graph of bit-rate against frame number. However, it is worth noting that the results

for GELIC presented in Table 6.4, whi
h are averaged over all frames in
luded in the

sequen
e, are less than the minimum bit rate reported in [MS96℄.

6.4 Summary

Based on the te
hniques dis
ussed in the previous 
hapters, a 
on
rete 
ompression s
heme

named GELIC has been generated for the lossless 
ompression of all forms of imagery in

the test set. Analysis of the s
heme shows that the �ve predi
tors in
luded, are all well

used by di�erent items of test imagery. Furthermore, the amount of overhead present in the

s
heme was determined. Although not generally ex
essive, this overhead 
ould be further
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atta
ked, by more sophisti
ated modelling, to yield better 
ompression performan
e.

A 
omparison with the new lossless standard JPEG-LS showed that GELIC o�ers 
lear

improvements over standard lossless s
hemes. A 
omparison with approa
hes designed

spe
i�
ally to handle 
olour images showed GELIC to be 
omparable, but not the best, of

these re
ent developments. However, when 
ompared to the only known s
heme for 
olour

video 
ompression, the results from GELIC were found to be superior.
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Chapter 7

Further Work

In the previous 
hapters of this dissertation, we have seen a thorough study of how lossless

image 
ompression 
an be extended. Extra 
ompression has been obtained by making use

of the additional 
orrelations present in 
olour images, video and multiview imagery. The

novel methods presented have been shown to have advantages over existing approa
hes.

However, it would be unreasonable to suggest that no further improvements 
an be made

in the �eld of extended lossless image 
ompression.

Se
tion 7.1 details some extensions to the work presented so far. Se
tion 7.2 
arefully


onsiders an orthogonal step in extending lossless image 
ompression; the use of error

resilient 
oding methods.

7.1 General Improvements

Many possible improvements to the 
urrent work are apparent. Indeed, some have already

been mentioned, su
h as ways to redu
e overhead in Se
tion 6.2.2. The following three

ideas are interesting avenues for subsequent work.

7.1.1 In the Same Context

QTBS was 
hosen as the preferred predi
tor sele
tion me
hanism, as it was the best of

those 
onsidered in Chapter 4. However, in Chapter 5 
ontext based methods were found to

be superior to the use of quadtree based error modelling. Therefore the s
heme presented

in Chapter 6 requires the handling of both a quadtree stru
ture and a 
ontext model.

Given the results in Chapters 4 and 5, it is 
lear that the advantage of 
ontext 
oding

over quadtree based error modelling, is larger than the bene�t of using quadtree based

predi
tor sele
tion instead of 
ontextual methods. Hen
e, a uni�ed s
heme based on 
on-

textual predi
tor sele
tion and error modelling would yield an e�e
tive en
oding s
heme

with a more simple implementation than the s
heme presented in Chapter 6.

When 
onsidering su
h a s
heme, it seems likely that it would have performan
e at

least 
omparable to that given in Chapter 6. It might perform slightly worse, as it uses a

97
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predi
tor sele
tion s
heme that is generally inferior to QTBS. However, some bene�t may

be gained by using the same 
ontext for predi
tion sele
tion and error modelling.

Another modi�
ation that 
ould be made is to keep separate 
ontextual 
ounts for

ea
h predi
tor. This te
hnique was shown to give a small improvement in the interband

extension of JPEG-LS[MWSM97℄. However, this e�e
tively multiplies the number of 
on-

texts by the number of predi
tors. While a slight bene�t was seen for 
olour images with

two predi
tors in [MWSM97℄, it is not 
lear that similar gains would be given by using

the te
hnique for 
olour video, or multiview sequen
es, whi
h make use of many more

predi
tors.

7.1.2 Expanding the Test Set

Although this work has 
onsidered a larger set of test imagery than is usual, more 
ould

be done to better 
hara
terise the general performan
e of the methods presented. Hyper-

spe
tral satellite images and medi
al time sequen
es are parti
ular examples of types of

imagery missing from the 
urrent test set. Further study with these and other additions

to the test set 
ould produ
e interesting results.

7.1.3 Keeping it Simple

One appli
ation of the 
urrent work is to ar
hive �lm libraries. Greys
ale and 
olour video


ould be eÆ
iently and losslessly stored using the te
hniques des
ribed in previous 
hap-

ters. However, these te
hniques have a
hieved extra 
ompression, over standard greys
ale


ompression te
hniques, at the expense of some extra 
omputational 
omplexity, whereas

a more simple approa
h 
ould have advantages.

A video ar
hive is likely to be en
oded on
e and de
oded many times. Furthermore,

su
h a system would 
learly bene�t from the ability to de
ompress the ar
hived video

at full frame rate and this in turn would be made most 
onvenient by a s
heme with a


omputationally simple de
oder. The parts of the de
oding pro
ess that add the most


omputational load are motion 
ompensation, 
ontext 
oding and Arithmeti
 
oding. By

eliminating or repla
ing these elements, the goal of fast lossless playba
k of video 
ould be

realised.

It was shown in Se
tion 4.2 that the 
ombination of MED and PP are superior to MC

by itself and only a little behind MED 
ombined with MC. Therefore by using PP instead

of MC, some 
ompression performan
e is traded for extra de
oding speed.

To simplify the error modelling and 
oding stages, we 
ould 
onsider using a forward

adaptive modelling s
heme with Golomb-Ri
e 
oding (see Se
tion 2.5.1). In was shown

in Chapter 5 that forward adaptive methods are inferior to ba
kward, 
ontext adaptive

methods. However, without the overhead of 
ontext determination and 
ount keeping, a

forward adaptive method 
an o�er less 
omputational 
omplexity for the de
oding pro
ess.

The pre
eding ideas were 
ombined to good e�e
t in a s
heme presented in [Pen99b℄.

A blo
k based adaptive method was used to jointly sele
t predi
tors and error model
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Figure 7.1: A single bit was arti�
ially 
ipped half-way through the �le produ
ed by a

GELIC en
oder. The disastrous e�e
t of the error on the de
oded image 
an be 
learly

seen.

parameters. The available predi
tors were MED, IB1 and PP. The resulting 
ompression

was shown to be superior to JPEG-LS in almost all of the sequen
es 
ompared (football

being the notable ex
eption), although not as good as the results presented in Chapter 6.

Not only does the s
heme presented in [Pen99b℄ generally o�er superior 
ompression


ompared to JPEG-LS, it has the potential to o�er faster de
ompression, as it does not have

the overhead of managing 
ontextual information. This suggests that useful further work


ould look at simple extended lossless 
ompression s
hemes that o�er superior 
ompression

and de
oding speed 
ompared to modern lossless greys
ale 
ompression.

7.2 A New Dire
tion - Error Resilien
e

All of the 
ompression s
hemes dis
ussed so far are designed to operate in a noiseless

environment. That is, they require the de
oder to re
eive exa
tly the data that was sent

from the en
oder. If a single bit is mis-sent, a lossless de
ompression will not o

ur. In

fa
t, even a single bit error 
an have a dramati
 e�e
t, as shown in Figure 7.1.

Hardware is ne
essarily imperfe
t and therefore the e�e
t of errors must be handled.

This is normally done transparently by the network or storage system being used. In the

simplest 
ase, an error dete
ting 
he
k sum a

ompanies the data. The re
eiver 
al
ulates

a 
he
k sum from the data re
eived and if that does not mat
h the 
he
ksum sent, the

data is requested again. More advan
ed s
hemes use Forward Error Corre
ting (FEC)


odes[PW72℄. These introdu
e some redundan
y into the data su
h that the original data


an still be retrieved if a small number of transmission errors o

ur.

However, re-reading data is not always produ
tive; for example if storage media is

physi
ally damaged. Also the appli
ation of FEC 
odes, while generally an ex
ellent

solution, may not always be e�e
tive. To be e�e
tive it would be ne
essary to know

the error rate of the 
hannel in advan
e. If the error rate is not known, or is variable,

then the error prote
tion will either be too strong (poor overall 
ompression) or too weak
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(
hroni
 image 
orruption).

In theoreti
al terms this is not a problem with a 
lear solution. Compression aims

to remove redundan
y, but redundan
y is needed to mitigate the e�e
ts of transmission

errors. The 
orre
t balan
e between 
ompression and robustness to errors will generally

depend on the appli
ation involved. For example medi
al imagery and images beamed

from far beyond Earth may require spe
ial 
onsideration!

Previous resear
h on error resilient 
ompression has often 
onsidered lossy video 
oding

[YNL97℄. In this 
ase re-transmission would 
ause obje
tionable pauses in playba
k and

in any 
ase would not be appli
able for broad
ast appli
ations. Furthermore heavy FEC


oding is generally una

eptable due to the additional bit-rate it would require.

Error resilient lossless image 
ompression 
ould be useful for many appli
ations, su
h

as ar
hiving and remote s
ienti�
 investigation. In the absen
e of error, lossless de
oding

would be a
hieved. However, in the presen
e of error the system would o�er a best-e�ort

de
ompression, yielding an image 
lose to the original. Although the de
ompression is not

lossless when errors have been introdu
ed, it is hoped that the output of an error resilien
e

lossless de
oder would be signi�
antly better than that of normal s
hemes, as exempli�ed

in Figure 7.1.

By 
onsidering the e�e
ts of transmission errors in the 
ontext of lossless image 
om-

pression, a better understanding 
an be gained of the issues that must be addressed to

enable error resilient lossless image 
ompression. Furthermore, the range of options to

ta
kle the problems of transmission errors 
an be appre
iated.

7.2.1 Lossless Compression Te
hniques and Transmission Errors

In Chapter 2, the notion of a lossless 
ompression s
heme as a 
ombination of mapping,

modelling and 
oding was introdu
ed. We shall now 
onsider the e�e
ts of transmission

errors on ea
h part of the 
ompression pro
ess. As this pro
ess is inherently sequential, an

in
orre
tly de
oded pixel 
an lead to problems for all following pixels. Hen
e, there will

be a parti
ular fo
us on ways in whi
h a single error 
an propagate to a�e
t the de
oding

of many pixels.

Image Mapping

If a transmission error has 
aused a pixel value to be in
orre
tly de
oded, any predi
tion

based on that pixel will lead to error propagation. This is parti
ularly disastrous if a

predi
tor su
h as MED is used. As MED uses W , N and NW for its predi
tion, any pixel

de
oded in error 
an propagate this error to all pixels below and to the right of the initially

a�e
ted pixel.

A solution to this is to re-syn
hronise the predi
tor by sending raw pixel values at

prede�ned intervals. For example, if the �rst pixel in every row is sent in raw format and

if W is used as the predi
tion for X, transmission errors 
an only propagate to the end of

the 
urrent row.
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(i) (ii)

Raw pixel value

Correctly decoded pixel

Initial transmission error

In error due to propagation

Figure 7.2: (i) MED is used for predi
tion throughout and a single transmission error

propagates to all pixels below and to the right of the originally a�e
ted pixel. (ii) MED

and W are used for predi
tion on alternate lines (top line MED). An error o

urs when

W is being used and this propagates to the end of the line. The following line uses MED,

whi
h 
onsults the line above and hen
e the error 
ontinues to propagate. The fourth line

shown uses W and hen
e no further error propagation o

urs.

However, the performan
e of using W is mu
h lower than MED. As a 
ompromise we


ould 
onsider usingW and MED as predi
tors on alternate lines of the image. A line using

W as the predi
tor would prevent the downwards spread of mis-predi
tions due to errors

that MED would allow, as illustrated in Figure 7.2. By varying the ratio of lines using

W to lines using MED, the degree of error propagation 
an be traded against predi
tion

performan
e.

Another solution to this problem, as presented in [MKC97℄, is to split the image into

small re
tangular regions. Predi
tors are then employed that only use previous pixel values

from inside the 
urrent region. This ensures that an in
orre
tly de
oded pixel 
an not 
ause

error propagation outside of its region.

Another issue with the raster-s
an based predi
tion that has been pursued earlier in

this work, is that of data trun
ation. If only half the data is re
eived, only the �rst half

of the image 
an be de
oded. An alternative is to use a hierar
hi
al image representation

that allows for progressive transfer. In that way a low resolution representation of the

whole image 
ould be had if some fra
tion of the original data were re
eived. One su
h

representation is the S+P-Transform mentioned in Se
tion 2.6.2.

Another e�e
t of using a hierar
hi
al image representation is that errors no longer

propagate spatially, instead they propagate to lower levels of the representation. This 
an

be used to good advantage if the de
oder has some error dete
tion 
apabilities. If an error

is dete
ted, no further de
oding of any a�e
ted pixels should take pla
e. This means that

an error results in a region that is only de
oded to a 
oarse resolution. This would seem to

have advantages over a region that is left blank or 
ontains artefa
ts 
aused by the initial

error.

Modelling

As was shown in Chapter 5, 
ontext based modelling of predi
tion errors is highly e�e
tive

for lossless 
oding. However, 
ontext determination depends on pixels lo
al to the 
urrent
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lo
ation and if one of those pixels had been erroneously de
oded, an in
orre
t 
ontext

determination 
ould take pla
e. Furthermore, 
ontextual statisti
s depend on a potentially

large, dis
onne
ted set of previous pixels. A pixel de
oded in error would 
ompromise these

statisti
s for all subsequent pixels in the same 
ontext.

These issues are very serious and indi
ate that 
ontext based modelling is not a te
h-

nique that is appli
able to an error resilient appli
ation of lossless image 
oding. An

alternative is to use forward adaptive error modelling. This approa
h removes any depen-

den
e on the 
orre
t de
oding of all previous pixel values. However, the error modelling

de
ision of the en
oder must somehow be prote
ted during transmission if this s
heme is

to be robust.

As shown in Chapter 5, forward error modelling performs less well than 
ontext 
od-

ing. However the di�eren
e in performan
e is not large enough to outweigh the possible

advantages, as mentioned, in an error resilient appli
ation.

Symbol Coding

A transmission error will obviously 
ause the predi
tion residual involved to be de
oded

in
orre
tly. Worse still, it may 
ause the symbol 
oder to lose syn
hronisation. That is, it

may read too many or too few bits from the in
oming bit stream. As a 
onsequen
e, when

it starts to de
ode the next symbol, it will be starting from the wrong pla
e in the input

bit-stream and another in
orre
t de
oding is almost 
ertain.

Clearly there is a large potential for error propagation in the symbol 
oding stage.

Unfortunately, it is a 
onsequen
e of using self-terminating, variable length 
odes. Al-

though using a system based on �xed length 
odes would alleviate the issue, 
ompression

performan
e would fall as a result.

To solve this problem, the image 
ompression s
heme needs to be able to re-syn
hronise

the de
oder in the event of an error. This 
an be a
hieved by dividing the predi
tion

residuals into regions. For ea
h region an index into the bit-stream is then provided, in

some robust manner. The de
oder 
an then be sure of starting ea
h region of residuals

from the 
orre
t pla
e in the input bit-stream.

As des
ribed, this solution requires extra overhead for the re-syn
hronisation indi
es.

As these must be sent robustly, they will require some form of FEC 
oding to prote
t them.

However, other solutions to this problem have been proposed, su
h as the Error Resilient

Entropy Coder (EREC)[RK96℄ that manages this re-syn
hronisation with pra
ti
ally no

overhead at all.

7.2.2 Possible Solutions

By 
onsidering the dis
ussion above, an initial design for an error resilient lossless image


ompression s
heme 
an be formulated. Hierar
hi
al image representations have been

shown to have advantages over standard predi
tive mapping methods and so the S+P

Transform (Se
tion 2.6.2) makes a good 
hoi
e for the mapping stage. The error modelling


an be a

omplished with a forward adaptive, blo
k based s
heme that is very similar to
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Figure 7.3: Left: The medi
al image 
t de
oded over a noisy 
hannel. Right: The proposed

s
heme marks regions known to be de
oded only to a 
oarse resolution due to errors in

transmission.

the quadtree modelling des
ribed in Se
tion 5.4. By using su
h a s
heme, the residuals

from the S+P Transform are partitioned into blo
ks, whi
h 
an also be used for the re-

syn
hronisation of the 
oding stage.

Ea
h blo
k requires a header that 
ontains the length of the blo
k (so the start of the

next blo
k is known to the de
oder) and the error modelling parameter 
hosen by the blo
k

based error modelling method. To ensure robustness, the header for ea
h blo
k must be

prote
ted by FEC 
oding.

An implementation of the above s
heme was presented in [Pen99a℄. Golomb-Ri
e 
odes

were used for the symbol 
oding stage and Golay 
odes[PW72℄ were used for the FEC


oding. Error dete
tion was based partly on whether the de
oder used the 
orre
t number

of bits when de
oding a blo
k and partly on parity bits in
luded in the blo
k header.

The 
ompression obtained was found to be 
omparable to LJPEG, but inferior to

JPEG-LS. The error dete
tion was used to prevent de
oding of both information found

to 
ontain transmission errors and any subsequent image data that depended on error


ontaminated data. As a result, pra
ti
ally no image artefa
ts related to noise were ob-

served; transmission errors instead resulted in regions that were de
oded to only a 
oarse

resolution. Figure 7.3 shows an example of this.

While the results of this work were promising, it was found that at the error rates for

whi
h the above s
heme returned a reasonable image, a 
onventional lossless image 
oder

followed by FEC 
oding was generally able to o�er lossless de
oding at roughly the same

bit-rate. Clearly further work will be required if this gap is to be bridged.
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7.2.3 Further Extensions

Making progress towards an extended lossless image 
ompression s
heme that is error

resilient, is likely to be diÆ
ult. The methods dis
ussed earlier in this work for exploiting

spe
tral, temporal and interview 
orrelations, alongside spatial redundan
y, ne
essarily

in
rease the potential for error propagation. For example, an in
orre
tly de
oded value


an now lead to pixels in the same band and future bands, frames and views all being

in
orre
tly predi
ted.

One solution to this would require an extended hierar
hi
al representation. Armed

with a representation that enabled multiple resolutions in the spatial, spe
tral, temporal

and interview dimensions, the approa
h dis
ussed above 
ould be employed.

However in the event of data trun
ation, some appli
ations may prefer to have some

regions at high resolution, than to have the whole image at a potentially lower resolu-

tion. For example remote sensing appli
ations may require the full resolution of the image

data in order to identify ground based features from spa
e. Another example is digital

do
ument storage; where in the event of an error, it would be better to have most of

the text legible rather than all of the text at an unreadably low resolution. Su
h high

resolution data sets are often very large and previous resear
h has 
onsidered ways to

provide multiple a

ess points to su
h imagery, hen
e allowing image fragments to be in-

dependently de
oded[AF97℄. If the meta-data required to provide these multiple a

ess

points is stored with FEC 
oding, then the same a

ess points 
an also provide means for

re-syn
hronisation in the event of error. If this is 
oupled with error dete
tion, to signal

image regions a�e
ted by error, the overall s
heme also has the advantage of providing

data guarantees.

Su
h error dete
tion 
an even be integrated into the 
oding pro
ess. An ingenious

idea presented in [KCR98℄ is to in
lude an error symbol in the alphabet for an Arithmeti



oder. This symbol is never en
oded, but if it is de
oded the de
oder knows a transmission

error has o

urred. By varying the probability assigned to this error symbol the degree of

error dete
tion 
an be varied arbitrarily. Results given in [KCR98℄ show this to be a more

e�e
tive means of error dete
tion than traditional 
y
li
 redundan
y 
he
ks.

7.3 Summary

The work presented in this dissertation has o�ered many new ideas for lossless 
ompression

of modern image types. However, it seems likely that by following some of the re
ommen-

dations presented in Se
tion 7.1, still better 
ompression performan
e, or de
oding speed,


ould be obtained.

The goal of error resilient lossless image 
oding has been dis
ussed in Se
tion 7.2. This

feature would enable greater use of 
ompression for reliable ar
hiving and transmission of

image data.



Chapter 8

Contributions and Con
lusions

In this 
hapter the primary 
ontributions made to the state-of-the-art in lossless image


ompression are outlined. This is followed by a summary of the 
on
lusions drawn from

this work as a whole.

8.1 Contributions

By 
onsidering state-of-the-art lossless image 
ompression te
hniques, alongside methods

that normally a

ompany lossy s
hemes (e.g. motion and disparity 
ompensation), the

literature review presents a unique window on previous knowledge, with a greater s
ope

than has been seen before. Hen
e, Chapters 2 and 3 
onstitute an ex
ellent starting point

for any future resear
h into a broad range of image 
ompression te
hniques.

Predi
tor sele
tion for greys
ale and 
olour images has been previously studied in

[MS95
℄ and [MWSM97, WMC98℄ respe
tively. However, never before has predi
tor se-

le
tion been thoroughly studied in a way that 
onsiders spatial, spe
tral, temporal and

interview 
orrelations. This study produ
ed a forward adaptive method using a quadtree

stru
ture for predi
tor sele
tion, that was found to perform better than any alternatives


onsidered.

Error modelling was also studied in an extended 
ontext. It was shown that extended

error bu
keting o�ers a simple and yet e�e
tive way to make extra use of predi
tion er-

rors to gain improved 
ontext determination. Other error modelling te
hniques were also


onsidered in this study. In parti
ular the notion that predi
tor sele
tion with a

ess to

intraband, interband, interframe and interview predi
tors 
an lower the 
ontextual bias of

predi
tion residuals, is a useful result.

By 
ombining the best of these te
hniques, a novel extended lossless image 
ompression

s
heme named GELIC has been presented. GELIC is able to eÆ
iently deal with a wider

range of image types than previously 
onsidered by a single image 
ompression s
heme.

The results from GELIC are on average signi�
antly better than the 
urrent JPEG stan-

dard for lossless image 
ompression, JPEG-LS, whi
h 
onsiders only spatial 
orrelations.

This shows that by additionally 
onsidering spe
tral, temporal and multiview 
orrelations,

105
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ompression bene�ts for lossless image 
oding 
an be gained. GELIC's results are also


omparable with the most re
ent methods aimed spe
i�
ally at 
olour image 
ompression.

For lossless 
ompression of video and multiview sequen
es, GELIC 
urrently has no real


ompetition.

Finally, the ideas presented in the previous 
hapter o�er some preliminary results and

a variety of options for further study, that 
ould further enhan
e the �eld of extended

lossless image 
ompression.

8.2 Con
lusions

The results of this work show that un
onditional use of non-spatial predi
tors does not

lead to e�e
tive use of extended 
orrelations. This gives the 
on
lusion that some form of

predi
tor sele
tion is ne
essary to give extended lossless 
ompression that is both eÆ
ient

and 
exible.

By using predi
tion errors outside the 
urrent band/frame, 
ontext determination 
an

yield more appropriate 
ontexts and hen
e deliver improved 
ompression performan
e

through better error modelling. However, this bene�t is rather small. This suggests that

the predi
tor sele
tion s
heme developed is able to remove most of the extra 
orrelation

present in the advan
ed imagery types 
onsidered. The residual higher-order 
orrelations,

of the sort exploited by error modelling, appear to be little more than those left after

traditional spatial predi
tion. This leads to the 
on
lusion that signi�
ant gains based

on extended error modelling are unlikely, unless radi
ally new insights into the nature of

higher-order residual 
orrelations 
an be gathered.

The results given in Chapter 6 support the 
on
lusion that worthwhile improvements


an be made to lossless image 
ompression s
hemes, by 
onsidering the 
orrelations between

the spe
tral, temporal and interview aspe
ts of image data, in extension to the spatial


orrelations that are traditionally exploited. This is in a

ordan
e with the thesis proposed

at the beginning of this dissertation.

Based on the ideas given in the previous 
hapter, it 
an also be 
on
luded that 
hal-

lenges remain in the �eld of extended lossless image 
ompression. Further investigation is

likely to yield still improved 
ompression and hen
e the �eld is still worthy of resear
h.



Appendix A

Common Symbol Coders

Probably the most widely known example of a symbol 
oder is Morse 
ode. Designed by

Samuel Finley Breese Morse in the 1840's, Morse 
ode uses the frequen
ies of letters in

English to eÆ
iently en
ode text. Common letters su
h as e (�) and t (�) have short


odes, while less 
ommon letters have longer 
odes, for example Q (�� � �).
For use with digital systems, the output alphabet of a 
ode should be only 0s and 1s.

Although it appears binary, the output alphabet of Morse 
odes uses three symbols; �, �
and an inter-symbol spa
e. The inter-symbol spa
e is needed to indi
ate the end of a letter,

for example after re
eiving a � it is not 
lear if this represents a single e or if it is the start

of an s (� � �). One way to eliminate the need for an inter-symbol spa
e is to 
onstru
t pre�x


odes. A pre�x 
ode has the property that no 
ode word is the pre�x of another 
ode.

Hen
e, on
e a 
odeword has been read, the original input symbol 
an be unambiguously

identi�ed without reading anymore information. This is 
alled instantaneous de
oding and

is a highly desirable property for a symbol 
oding s
heme.

Image 
ompression s
hemes tend to be innovative in the mapping and modelling stages.

Whereas the 
oding stage of most image 
oders is generally based on a traditional 
od-

ing te
hnique. Probably the three most in
uential of these 
oding s
hemes are Hu�man

Coding, Arithmeti
 Coding and the Lempel-Ziv based methods. All of these s
hemes are

do
umented in any good book on data 
ompression[Nel91℄, however due to their impor-

tan
e, these three methods will be brie
y detailed here.

A.1 Hu�man Coding

In 1952 Hu�man gave an algorithm that produ
es an en
oding that is optimal under


ertain 
onditions. The algorithm requires the probabilities of all the symbols in the input

alphabet to be known beforehand. The input symbols are then sorted a

ording to their

probabilities. The two least frequent symbols be
ome the leaves of a binary tree. The tree

repla
es the two symbols in the list and is given the sum of the probabilities of its leaves

as its probability. This pro
edure is repeated until there is only one element left; a binary

tree with the all input symbols as leaves. By labelling the paths from the root of the tree
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Figure A.1: An example of 
onstru
ting a Hu�man 
ode.

to the leaves with 0s and 1s a binary 
odeword 
an be given to ea
h input symbol. An

example of this is given in Figure A.1. De
oding a 
odeword 
an be seen as traversing the

tree from the root to a leaf, using the bits of the 
odeword to determine whi
h bran
h to

follow at ea
h node.

It should be noted that Hu�man's algorithm builds 
odes on a bottom-up basis.

Shannon-Fano 
oding, whi
h slightly pre-dates Hu�man's work and pro
eeds in a top-down

fashion, 
an produ
e 
odes that are inferior to those produ
ed by Hu�man's algorithm.

Hu�man 
odes are only optimal if the probabilities of all the input symbols are an

integer power of 1=2; whi
h is an unusual o

urren
e. Furthermore, Hu�man 
odes are

bound to have a minimum length of one bit. As a 
onsequen
e, for 
oding distributions

in whi
h the most probable symbol has a probability mu
h greater than 1=2, 
onsiderable

ineÆ
ien
y may o

ur from using Hu�man 
oding.

A se
ond drawba
k of Hu�man 
oding is the relative diÆ
ulty in adapting it to 
hanging

input statisti
s. Although it is 
on
eptually simple to rebuild the 
ode tree whenever the

sour
e statisti
s 
hange, it is 
omputationally expensive to do so.

In spite of its drawba
ks, Hu�man's algorithm generally produ
es good 
odes, is simple

to implement and is not 
overed by any patents. As a 
onsequen
e of these fa
ts (espe
ially

the later) it is widely used.
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A.2 Arithmeti
 Coding

Arithmeti
 
oding removes the limitations of Hu�man 
oding by 
onsidering not individual

symbols but the whole input message. It aims to represent the sequen
e of input symbols

as a pointer to a region in the interval 0 ! 1. The length of the en
oded message is

determined by the pre
ision required to re
ord the ne
essary region. The size of the region

and hen
e the required pre
ision, is dire
tly related to the probability of the message.

In order to spe
ify the region that the message lies in, two variables low and high are

used. These re
ord the low and high values of the range in whi
h the message lies. Initially,

low and high have values of 0 and 1 respe
tively. As input symbols are pro
essed by the

en
oder, low and high are adjusted to re�ne the message's range, based on the probabilities

of the symbols already seen.

To see how this works, an example is useful. Consider an input alphabet with four

symbols, fa; b; 
; dg, ea
h with the same probabilities as the example in Figure A.1. The

interval 0 ! 1 is now divided up so that ea
h symbol has a share proportional to its

probability, as illustrated in Figure A.2.

Now suppose the message to be 
oded is `aabd'. After pro
essing the �rst symbol, low

and high will have values of 0 and 0.6 respe
tively. The symbol probabilities are now s
aled

by the size of the range demar
ated by low and high, before the next symbol is pro
essed.

Hen
e, the se
ond `a' in the message 
auses high to be updated to 0.36, while low remains

at 0. This pro
ess is 
ontinued until the whole input message is en
oded. As shown in

Figure A.2 the �nal values of low and high are 0.2448 and 0.252 respe
tively. Hen
e the

message `aabd' is 
oded by any number in between these two values. Unfortunately, so is

any other message that starts `aabd...'. In order to de
ode the 
orre
t message the en
oder

and de
oder must either agree on the length of the message or a spe
ial terminator symbol

must be used. As the de
oder will know the dimensions of the image being pro
essed, the

�rst option 
an be used for image 
ompression appli
ations.

The operation of the de
oder is fairly simple; given a value from the en
oder, it 
an

simply read o� the next symbol in the message until the 
orre
t number of symbols have

been read. For example, the en
oder 
ould 
hose to send 0.25 to en
ode `aabd', with an

agreed message length of 4. As 0 � 0:25 < 0:6, the �rst symbol in the message is taken as

`a'. Similarly, the rest of the message 
an be de
oded.

Arithmeti
 
oding as des
ribed so far, seems fairly simple. However, there are a number

of te
hni
al issues with implementing the s
heme as it is given above. The main problem is

that the pre
ision with whi
h low and high must be stored in
reases without bound as the

message gets longer. This problem 
an be removed by registering digits that low and high

have in 
ommon. In the example above, after en
oding the `b', low and high have values

0.216 and 0.252 respe
tively. At this stage, the en
oder knows that the en
oded message

must start with 0.2 and so this 
an be transmitted to the de
oder. Having done this, the

a
tive range 
an be re-s
aled to 0:16! 0:52 by both the en
oder and the de
oder. In this

way, the pre
ision required to support Arithmeti
 
oding 
an be kept within the limits of

pra
ti
al 
omputing hardware. Further subtleties, su
h as avoiding under
ow and over
ow
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Figure A.2: An example of the Arithmeti
 
oding pro
ess.
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are left to more detailed texts[BCW90℄.

As well as 
oding eÆ
ien
y, another bene�t of Arithmeti
 
oding is that it 
an adapt to


hanging statisti
s in a simple way. The symbol probabilities 
an easily be 
hanged at ea
h

stage in the 
oding pro
ess, as long as the en
oder and de
oder adapt their symbol proba-

bilities in the same manner. However despite its bene�ts, due to per
eived implementation

diÆ
ulties, 
omputational 
omplexity and a large number of patents, Arithmeti
 
oding is

not as widely used as it 
ould be.

A.3 Lempel-Ziv Based Methods

Whereas Hu�man and Arithmeti
 
oding aim to store a symbol, or sequen
e thereof,

using a variable number of bits, Lempel-Ziv methods aim to store a variable number of

input symbols using a �xed number of bits. Abraham Lempel and Jakob Ziv originally

suggested two s
hemes in 1977 and 1978, however the following dis
ussion will fo
us on

the later (LZ78) family of methods.

LZ78 is a di
tionary based 
oding s
heme. It repla
es 
ommon sequen
es of symbols

with an index into a di
tionary. The interesting part is the build-up of the di
tionary.

Initially, the di
tionary 
ontains only single input symbols. As the input data is read,

new symbol strings are added to the di
tionary as they are en
ountered. A new string

is a sequen
e of symbols that appears in the di
tionary, with an additional �nal symbol,

su
h that the whole string is not in the di
tionary. Importantly though, on en
ountering

a new string, the last symbol is not 
oded as part of that string. This ne
essarily leaves a

known string that is in the di
tionary. The last symbol from the new string is then the �rst

symbol in the next string. Hen
e, by using ba
kward adaptation the de
oder 
an build the

same di
tionary as the en
oder and the di
tionary never needs to be expli
itly sent.

Although LZ based methods are widely used in general data 
ompression s
hemes, they

are not frequently used in lossless image 
ompression s
hemes. The reason for this, is that

the noise inherent in natural images does not allow enough exa
tly repeating sequen
es of

symbols to gain adequate 
ompression.
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Appendix B

Image Material used for Testing

The redu
tion in data size obtained by lossless image 
ompression is fundamentally limited

by the information 
ontent of the sour
e image. Hen
e, results from lossless 
ompression

methods are only relevant to general performan
e, if the test set is a suitable sample of

the imagery to be 
ompressed.

Given the s
ope of image types this work intends to address, it is hard to envisage a fully


omprehensive test set. However, e�orts have been made to try and ensure a reasonable

variety in the test imagery used. For the 
olour images there are examples of natural s
enes,

satellite imagery and 
omputer generated images. The video sequen
es used in
lude both

slow and fast moving s
enes and throughout the test set there is a mixture of low and high

resolution items.

What follows is a brief 
ommentary on every item in the test set that was used for the

results in Chapters 4, 5 and 6. For reasons of spa
e, the video sequen
es have only the

�rst, middle and last frames shown. Likewise for multiview sequen
es only the far left,

middle and far right views are shown. Also, all images have been redu
ed to some extent

prior to display.

113
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Figure B.1: Air2 - (720 � 1024, 24bpp) This is an often used example of an aerial

image.

Figure B.2: Baboon - (512 � 512, 24bpp) A popular 
lose-up of a baboon's fa
e. The

�ne detail of the fur, makes for a very noise like image.
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Figure B.3: Cats - (3072 � 2048, 24bpp) A high resolution image of two sleeping 
ats.

The image in
ludes large bla
k borders at either side.

Figure B.4: Cmpnd2 - (1024 � 1400, 24bpp) An often used example of a 
ompound

do
ument. Most of the image is bla
k and white (binary) text, but a full 
olour photograph

makes up the 
entral portion of the image.
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Figure B.5: House - (256 � 256, 24bpp) The side of a house.

Figure B.6: Lena - (512 � 512, 24bpp) The ubiquitous Lena image is a tasteful se
tion

from a 1972 Playboy arti
le. It has long been popular with the image pro
essing and


ompression 
ommunity, be
ause of its mixture of smooth, texture and edge regions. This

popularity has been self-sustaining, as the image is often used for 
omparison, be
ause of

its use in previous works.
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Figure B.7: Claire - (360 � 288, 168 frames, 8bpp) A very frequently used head and

shoulders video 
lip.
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Figure B.8: Granny - (800 � 384, 100 frames, 8bpp) The Granny sequen
e was

rendered for multiview display. It was produ
ed by Pi
tures on the Wall, and is used

with permission of Autostereo Displays Ltd. Here the 
entral view has been 
onverted to

greys
ale and is used as a video sequen
e. The middle 100 frames, from the full 300 frame

sequen
e were used. In this range, there is motion of some foreground obje
ts.
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Figure B.9: Mall - (2048 � 1024, 50 frames, 8bpp) A high resolution s
ene in a

shopping mall. The footage 
ontains a lot of motion; people walking, 
amera pan and a

large 
entral water fountain.
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Figure B.10: Mobile - (720 � 576, 40 frames, 8bpp) This sequen
e 
ontains motion

of several independent obje
ts and a slow 
amera pan.
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Figure B.11: Salesman - (360 � 288, 100 frames, 8bpp) A salesman sat behind a

desk, gesti
ulating as he pra
ti
es his art.

Figure B.12: Claire - (360 � 288, 168 frames, 24bpp) As above, but in 
olour.
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Figure B.13: Football - (720 � 486, 97 frames, 24bpp) An a
tion sequen
e from an

Ameri
an football game. The footage is a�e
ted by de-interla
ing artefa
ts.
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Figure B.14: Granny - (800 � 384, 100 frames, 24bpp) As above, but in 
olour.
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Figure B.15: Mobile - (720 � 576, 40 frames, 24bpp) As above, but in 
olour.
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Figure B.16: Susie - (720 � 480, 150 frames, 24bpp) A relatively high resolution

head and shoulders 
lip.
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Figure B.17: CTFlesh - (320 � 240, 16 views, 8bpp) Raw CT data was rendered

into a series of views for 3D display. The rendering used thresholds to highlight the 
esh

aspe
t of the s
an, although the bone stru
ture is quite visible.

Figure B.18: Granny - (800 � 384, 10 views, 24bpp) The 
entral ten views, taken

from the temporal mid-point of the Granny sequen
e.

Figure B.19: Skull - (342 � 214, 9 views, 24bpp) Nine views of an animal skull, taken

for autostereo display. The sequen
e su�ers from slight verti
al mis-alignments, in
urred

during the manual part of the 
apture pro
ess.
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Figure B.20: Granny - (800 � 384, 10 views, 100 frames, 24bpp) A sequen
e


omprising the 
entral ten views, and one hundred frames from the Granny sequen
e.
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Glossary

bit Contra
tion of binary digit.

bpp Bits Per Pixel

DCT Dis
rete Cosine Transform

gigabyte (GB) 230 � 109 bytes.

GOP Group Of Pi
tures

JPEG Joint Photographi
 Experts Group.

kilobyte (KB) 210 = 1024 � 103 bytes.

MAE Mean Absolute Error

MAP Median Adaptive Predi
tor

megabyte (MB) 220 = 1048576 � 106 bytes.

MED Median Edge Dete
tion

MPEG Moving Pi
ture Experts Group

MSE Mean Square Error

terabyte (TB) 240 � 1012 bytes.

129
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