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Abstrat

\It is my thesis that worthwhile improvements an be made to

lossless image ompression shemes, by onsidering the orrela-

tions between the spetral, temporal and interview aspets of im-

age data, in extension to the spatial orrelations that are tradi-

tionally exploited."

Images are an important part of today's digital world. However, due to the large

quantity of data needed to represent modern imagery the storage of suh data an be

expensive. Thus, work on eÆient image storage (image ompression) has the potential to

redue storage osts and enable new appliations.

Many image ompression shemes are lossy; that is they sari�e image information

to ahieve very ompat storage. Although this is aeptable for many appliations, some

environments require that ompression not alter the image data. This lossless image

ompression has uses in medial, sienti� and professional video proessing appliations.

Most of the work on lossless image ompression has foused on monohrome images

and has made use of the spatial smoothness of image data. Only reently have researhers

begun to look spei�ally at the lossless ompression of olour images and video. By

extending ompression shemes for olour images and video, the storage requirements for

these important lasses of image data an be further redued.

Muh of the previous researh into lossless olour image and video ompression has been

exploratory. This dissertation studies the problem in a strutured way. Spatial, spetral

and temporal orrelations are all onsidered to failitate improved ompression. This has

lead to a greater data redution than many existing shemes for lossless olour image and

olour video ompression.

Furthermore, this work has onsidered the appliation of extended lossless image oding

to more reent image types, suh as multiview imagery. Thus, systems that use multiple

views of the same sene to provide 3D viewing, have been provided with a ompletely novel

solution for the ompression of multiview olour video.
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Chapter 1

Introdution

Pitures have been with us sine the dawn of time. However, the way that pitures have

been represented and displayed has hanged greatly. Originally every piture was unique,

being both represented and displayed in a physial way, suh as paint on a ave wall or

ethings in stone. However, in reent times pitures have been dealt with eletronially.

One onsequene of this is that the representation used for transmission or storage of the

image an be separated from the means of display. One example of this is traditional

broadast olour television, where the representation that is transmitted does not relate

diretly to the intensities of the red, green and blue eletron guns in a television set.

By storing images in digital form, the possibilities for image representation inrease

dramatially. An image an be stored in any representation, provided there is an algo-

rithm that an onvert it to a form usable by a display. This proess of hanging the

representation of an image is alled image oding and if the result uses less storage spae

than the original it is alled image ompression.

1.1 The Nature of Digital Images

A real image an be haraterised as a ontinuous two-dimensional (2D) funtion f(x; y).

To beome a digital image, this funtion must be digitised. This is ahieved by measuring

the value of the funtion at a �xed number of loations (spatial sampling) and limiting the

result to a �xed set of values (amplitude quantisation). The relationship between pixels

values and an image is illustrated in Figure 1.1. A full overage of these topis an be

found in any good image proessing book[GW92, SHB93℄.

The number of samples taken determines the resolution of the image. For example,

using a retangular grid of equally spaed sampling points, with 1024 sampling points per

row and 768 per olumn, yields an image with a resolution that is written 1024 � 768.

Eah sample is generally thought of as representing the intensity of a piture element or

pixel.

The size of the set of values that an be taken by a pixel is almost always a power of

2. If a pixel an have 2n values, then it requires n bits of storage. Thus, a two-tone image

1
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Figure 1.1: Alternative views of image data.

(e.g. a fax) would have a binary value for eah pixel, and is often referred to as a 1 bit

image. Continuous-tone greysale images generally use 8 bits per pixel (bpp) and olour

images use 24 bits per pixel (8 eah for red, green and blue). Medial and sienti� images

typially use more bits per pixel, sometimes up to 16 bpp for greysale.

Taken together, the values of all the pixels in an image onstitute the raw data repre-

sentation of the image. The amount of storage required by this raw data an be alulated

as the produt of the number of pixels and the bits used per pixel. As an example, on-

sider a ontinuous-tone olour image of dimensions 1024x768 using 24 bpp. The storage

requirements for the raw data of suh an image would be:

1024 x 768 x 24 = 18874368 bits = 2359296 Bytes = 2:25 MB

This may not seem like a great deal of storage spae, but as the number of images that

need to be stored inreases, the total storage requirements soon beome overwhelming.

For example, it is estimated that NASA reeives over a terabyte of digital imagery, every

day, from Earth orbiting satellites alone[Tat94℄. Therefore, an eÆient representation for

image storage (and transmission) is important.

1.1.1 The Eye of the Beholder

Data an only be ompressed if it ontains some form of redundany. Images ontain

two forms of redundany: soure and psyhovisual. Soure redundany is found in the
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orrelations between pixel values; that is, the soure data. For example, a given pixel

value is often lose to the value of neighbouring pixels. Therefore, by representing a pixel

value relative to its neighbours, soure redundany an be exploited and more eÆient

storage an be aomplished.

Psyhovisual redundany exists when an image is to be viewed by a human observer,

beause some small hanges in an image have no e�et on the viewer's pereption of

the image. This means that two slightly di�erent images may give the same subjetive

impression as eah other. However, if one image is more ompressible than the original

it resembles, a greater storage saving an be made by storing the near mathing image

rather than the original. This is known as lossy ompression, whereas lossless ompression,

making areful use of only soure redundany, guarantees that the deoded image will be

exatly the same as the original.

The use of lossy ompression for appliations where the imagery is only intended to

be viewed by a human observer is both sensible and wide-spread. Prominent examples

of this inlude pitures on the world wide web, image storage in digital ameras, and

the emerging digital broadast television. However, some appliations still bene�t from,

or require, lossless ompression. Suh appliations inlude sienti� and medial image

storage and high quality video prodution tehniques.

1.2 Bakground to Lossless Image Compression

The foundation of image ompression is information theory, as laid down by the likes of

Shannon in the late 1940s[Sha48, Ver98℄. Information theory tells us that the information

of an event is:

log2
1

p(e)
bits (1.1)

where p(e) is the probability of the event ourring. Thus, the information ontent of an

event is diretly proportional to our surprise at the event happening. A very unlikely event

arries a lot of information, while an event that is very probable arries little information.

Enoding an image an be thought of as reording a sequene of events, where eah

event is the ourrene of a pixel value. If we have no model for an image, we might assume

that all pixel values are equally likely. Thus, for a greysale image with 256 grey levels,

we would assume p(e) = 1=256 for all possible pixel values. The apparent information

required to reord eah pixel value is then log2 256 = 8 bits. Clearly, this is no better than

the raw data representation mentioned above.

However, due to the spatial smoothness ommon in images, we expet a given pixel

to be muh like the one before it. If the given pixel value onforms to our expetation of

being lose to the previous value, then little information is gained by the event of learning

the urrent pixel's value. Consequentially, only a little information need be reorded, so

that the deoding proess an reonstrut the pixel value.



4 CHAPTER 1. INTRODUCTION

This idea of using previous pixel values to lower the information ontent of the ur-

rent pixel's enoding has gone under several names: Di�erential Pulse Code Modulation

(DPCM), di�erene mapping and more generally preditive oding. From early work in

the 50s and 60s on television signal oding[O'N66, Oli52, Har52℄, to modern lossless image

ompression shemes, preditive oding has been widely used. The ommon theme has

always been to use previous data to predit the urrent pixel and then only the predition

error (or predition residual) need be enoded.

Preditive oding requires the notion of a urrent pixel and past pixels and this implies

a one-dimensional (1D) sequene of pixels. However, image data is two-dimensional. To

orret for this mis-math a 1D path is needed that visits every pixel in the 2D image. By

far the most ommon path is raster-san ordering, whih starts at the top left of an image

and works left to right, top to bottom, over the whole image.

1.2.1 Entropy and Symbol Coding

One way to get a quantitative measure of the bene�ts of predition is to use entropy. This

ommonly used measure of information ontent, again provided by Shannon, says that for

a olletion of independent, identially distributed (i.i.d.) symbols x0; x1; : : : ; xi, eah with

a value in the range 0 � j � (N � 1), the average information ontent per symbol is:

(N�1)X
j=0

p(xi = j) log2
1

p(xi = j)
bits (1.2)

where p(xi = j) is the probability of a given symbol having value j. The i.i.d. assump-

tion implies a memoryless soure model for the data. That is, it does not use information

based on preeding symbols (memory) to model the value of the urrent symbol. Note

that this assumption is almost never true at any stage in image oding, however it is a

useful simplifying model at this stage.

Equation 1.2 shows that it is the distribution of pixel values, the p(xi = j), that is im-

portant. It an be inferred that distributions that are nearly at (all symbols nearly

equiprobable) have average information measures approahing log2N , whereas sharply

peaked distributions have muh lower entropies. Figure 1.2 gives an example of this and

shows that simple preditive oding produes a residual image with a sharply peaked dis-

tribution.

Having hanged the distribution of symbols so that their entropy is redued, it remains

to store them eÆiently. An e�etive way to do this involves Variable Length Codes

(VLCs), where short odes are given to frequent symbols and longer odes are given to

infrequent symbols. In 1952 Hu�man[Huf52℄ desribed his algorithm for produing optimal

odes of integer length. However, in the late 1970s, researhers at IBM sueeded in

implementing Arithmeti oding, whih by removing the integer length onstraint allows

more eÆient symbol oding.

Image ompression shemes tend to be innovative in the stages leading up to symbol

oding. The �nal symbol oding stage is generally implemented using traditional algo-
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a) Without Predition:

Pixel Distribution:

7.53 bits

per pixel

b) With Predition:

Residual Distribution:

5.10 bits

per pixel

Figure 1.2: The bene�t of predition. In a) the entropy of the pixel values is lose to the

raw data size of 8 bpp. In b) Using the previous pixel value as a preditor, the predition

errors (adjusted for display) have a muh lower entropy.

rithms. Suh shemes are doumented in any good book on data ompression[BCW90,

Nel91℄ and for ompleteness some of the most ommon approahes are briey doumented

in Appendix A.

1.3 Covering New Ground

Traditional lossless image ompression uses only spatial orrelations to model image data.

While this is all that an be done for greysale images, modern imagery is often more

omplex than a still greysale image. Colour images and video are now ommon and have

orrelations beyond just the spatial domain. Colour images have spetral orrelations

between the olour bands and video has temporal orrelations between suessive frames.

Another type of imagery that is beoming more popular is multiview stereo. Two or

more views of a sene are stored and then displayed with suitable hardware. The viewer

an then see the sene in 3D or a mahine vision algorithm an attempt to alulate the

distane to objets in the sene. There is orrelation between the multiple viewpoints that

ould be exploited for ompression.
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By onsidering all the forms of orrelation present in modern imagery, lossless image

ompression an progress beyond traditional methods. Methods that are improved in this

way, whih will be referred to as extended lossless image ompression shemes, should

be apable of improved ompression when applied to advaned types of imagery, suh as

olour images, video and multiview sequenes.

Extended image ompression shemes have been investigated before, but most of the

work is either for lossy ompression, appliation spei� oding or onsiders only one or

two of the orrelation types. The question of how best to ombine information from some

or all of these orrelations, to improve lossless image ompression, remains unanswered.

The purpose of this work is to examine ways in whih the full range of orrelations an be

exploited to produe extended lossless image ompression methods, that are appliable to a

wide lass of images. It is expeted that this will lead to superior ompression performane

for advaned image types.

1.3.1 A Considered Approah

It quikly beomes apparent that by onsidering four main types of image orrelation, eah

of whih having been the subjet of numerous works of researh, the sope of this work

is quite broad. To give fous to the goal of integrating tehniques to provide extended

lossless image ompression, a number of guiding priniples were used during the ourse of

this work.

� Generi Simpliity

The way in whih multiple orrelation types are integrated should be independent

of the orrelation types available. That is, the integration method should be generi

and suÆiently simple that it an easily handle multiple types of orrelation.

� Adaptability

The resultant ompression shemes should adapt to o�er good performane for a

range of image types. Enodings that are tuned to a spei� image lass will not be

investigated.

� Solid Foundations

Many established algorithms exist for many of the problems in extended image om-

pression. Where appropriate, existing approahes will be used. Innovation will be

saved for those areas where it is needed.

� Usability

The intended inrease in ompression should not ome at the ost of unaeptable

running times for the ompression software. Thus, shemes that require extensive

analysis prior to ompression will not be used.
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1.4 Dissertation Outline

Image ompression is a well established �eld and the literature available is too numerous to

over exhaustively. However, as per the third guiding priniple above, algorithms from the

literature will be an important part of the following work. In order to learly di�erentiate

those approahes that ome from the literature and those that are novel ontributions,

the relevant literature will be surveyed separately. To this end, the literature regarding

lossless greysale image ompression and the ompression of more advaned image types

(e.g. olour images and olour video) are surveyed in Chapters 2 and 3 respetively.

Chapter 4 shows how adaptive seletion of preditor models an be used as a framework

for integrating multiple types of orrelation in imagery. In Chapter 5, the use of higher

order orrelations and their impat on entropy oding are examined. Chapter 6 introdues

ertain pratial onsiderations and quanti�es the performane of the ompression sheme

resulting from this work. In Chapter 7, ideas for further work are aired, inluding the

onept of error resilient lossless image oding. The main onlusions that an be drawn

from this work appear in Chapter 8.



8 CHAPTER 1. INTRODUCTION



Chapter 2

Lossless Greysale Image

Compression

This hapter presents a survey of the literature relating to lossless greysale image ompres-

sion. The literature in this �eld is quite extensive and it is impossible to over exhaustively

due to spae onstraints. However, to ensure a reasonably thorough overage, what are

onsidered to be good examples of all the major tehniques are disussed. In partiular

both the old and new JPEG standards for lossless image ompression are overed in some

detail.

Before the literature itself is overed, a simple model of lossless ompression is pre-

sented in Setion 2.1. This model will help simplify the disussion of the following image

ompression shemes.

A good review of lossless greysale image ompression was published in [MS95℄. From

this, and other parts of the literature, it is apparent that most modern lossless image

ompression shemes are based on some form of preditive oding. As suh, the origins

of preditive oding are presented in Setion 2.2 and the re�nements used in many reent

preditive oding shemes are detailed in Setions 2.3 and 2.4.

Having disussed the main onepts behind suessful lossless image ompression meth-

ods, three omplete shemes are desribed in Setion 2.5.

Although the material presented up to Setion 2.5 overs many mainstream ideas, other

noteworthy ontributions exist and some of these are detailed in Setion 2.6.

The literature relating to olour images, video and multiview stereo imagery is overed

in Chapter 3.

2.1 A Model for Lossless Image Compression

Lossless image ompression an be deomposed into three main stages: Mapping, Modelling

and Coding, as shown in Figure 2.1. Fitting ompression shemes to this model is often

useful for omparing the similarities and di�erenes between two shemes and thus an help

9
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Transmission
or

Storage

Mapping Modelling Coding

ModellingCodingMapping

Encoder

Decoder

Figure 2.1: Basi model for lossless image ompression.

simplify the disussion of omplex ompression shemes. Note the asymmetry between the

enoder and the deoder, aused by the oding stage's dependene on the modelling stage.

The mapping stage provides a reversible mapping of the image data, suh that the

result is less orrelated than the original data. The mapping an be as simple as replaing

eah pixel with the di�erene between the urrent and previous pixel (di�erene mapping),

although more omplex mappings often yield better results.

As previously disussed in Setion 1.2 and illustrated in Figure 1.2, by deorrelating

the image data, the mapping stage hanges the statistial properties of the pixel data.

This makes the data to be enoded loser to being i.i.d. and therefore loser to the kind

of data that an be eÆiently oded by traditional symbol oding tehniques.

The modelling stage attempts to haraterise the statistial properties of the mapped

image data. It attempts to provide aurate probability estimates to the oding stage, and

may even slightly alter the mapped data. By being mindful of higher order orrelations,

the modelling stage an go beyond the memoryless soure model and an provide better

ompression than would be apparent from measuring the entropy of the mapped image

data using Equation 1.2.

The symbol oding stage aims to store the mapped pixel data eÆiently, making use of

probability estimates from the modelling stage. Symbol oders are also sometimes alled

statistial oders (beause they use soure statistis for eÆient representation) and en-

tropy oders (beause they aim to represent data using no more storage than allowed by

the entropy of the data). Coding shemes take a sequene of symbols from an input al-

phabet and produe odewords using an output alphabet. They aim to produe a ode

with the minimum average odeword length. The reader who is unfamiliar with the stan-

dard symbol oding shemes (Hu�man oding, Arithmeti oding and Lempel-Ziv based

methods) should onsult Appendix A.

2.1.1 Requirements for Lossless Deoding

In order for an image ompression sheme to be lossless, a deoder must be able to pro-

due the original image from the data transmitted by the enoder. To ensure this, the
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Figure 2.2: Loations relative to the urrent pixel, X.

enoder must only make preditions on the basis of pixels whose value the deoder will

already know. Therefore, if all past pixels have been losslessly deoded, the deoder's next

predition will the same as that made by the enoder.

Also of importane, is that the enoder and deoder agree to the nature of the variable

length oding sheme to be used. This is easy when a �xed oding sheme is used, but if an

adaptive sheme is used, where the meaning of odes hange over time, then the deoder

must make the same adaptations. This an be ahieved either by the enoder making

a deision based on future pixels and transmitted that hange to the deoder (forward

adaptation) or by the enoder and deoder both making hanges, in a prede�ned way,

based on the values of previous pixels (bakward adaptation).

2.2 The Origins of Preditive Coding

Cutler is ommonly given as the �rst to do work on image ompression by preditive

oding[Cut52℄. Also in 1952, researhers at Bell Telephone labs published work on the use

of preditive systems to redue the bandwidth requirements for television signals[Oli52,

Har52℄. In 1966, frustrated by the fat that TV signals were still being transmitted without

eÆient oding, O'Neal[O'N66℄ re-examined the problem.

O'Neal onsidered not just the previous pixel in the TV signal, but a neighbourhood

around the urrent piture element. Suh neighbourhoods are ommon in the literature,

although the labelling of the pixel positions varies. For onsisteny, all neighbourhoods

desribed from here on will be assumed to use the labelling given in Figure 2.2.

By onsidering pixels in the previous san line, as well as those to the left in the urrent

san line, the predition beomes 2 dimensional. This is a signi�ant advane on the 1

dimensional di�erene mapping model desribed in Setion 1.2.

O'Neal used a linear preditor formulated as:

X̂ = w1W + w2N + w3NW + : : : (2.1)

where X̂ is the predited value of X and the wi are weights. The optimal weights for

a given sene were found in advane, and not hanged during the enoding of a sene. It
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should be noted that for O'Neal's work, the predition error e = X � X̂ was not symbol

oded but quantised and hene the resultant ompression sheme was lossy.

In a limited study, using three low resolution stills digitised from sample TV signals,

O'Neal found that there was little utility in using samples beyond W and N for predition,

given the model in Equation 2.1. He also noted that the distribution of predition errors

was Laplaian (i.e. a two-sided exponential distribution) as evidened in Figure 1.2.

O'Neal ommented on the penalty of DPCM oding over PCM oding. That is, by

removing the redundany inherent in the signal one also removes some protetion against

the e�ets of transmission noise. However, the opinion was given that quantisation noise

was the main ause for loss of quality and that therefore DPCM oding was in general

desirable.

2.2.1 The Lossless JPEG Standard

The �rst major preditive image oding standard ame from the Joint Photographi Ex-

perts Group (JPEG)[Wal91℄. This standardisation e�ort is best known for its lossy oder

(based on the quantisation of DCT oeÆients), however the standard did ontain a lossless

omponent (LJPEG)1.

LJPEG an use any of 8 preditors, as shown in Table 2.1. For omputational onve-

niene, the pixel weights used in the predition are either 0, 1=2 or 1. From the results in

[MS95b℄ we see that JPEG7 appears to be the best preditor on average.

The enoder must hoose one preditor for an image, and store that hoie with the

ompressed output data. This is an example of global forward adaptation of the preditor;

global beause the hoie is �xed for the whole image and forward beause the enoder

an san the image in advane to determine the best preditor. Although this allows

some exibility, it is ineÆient as di�erent regions in an image may bene�t from di�erent

preditors. For example, in a region of strong vertial orrelation (e.g. tree trunks in

a forest) preditor 2 may be best, while in a noisy region (e.g. foreground grass) the

averaging e�et of preditor 7 may yield better results.

The predition residuals an be stored with variations of either Hu�man oding or

Arithmeti oding. These two versions of LJPEG not only use di�erent symbol oders,

they also employ radially di�erent error modelling.

The Hu�man avour of LJPEG requires the enoder to determine the best oding for

the predition residuals in advane and transmit the enoding as part of the message. This

is another example of global forward adaptation.

By ontrast when LJPEG uses Arithmeti oding, it employs a more advaned error

modelling sheme that is apable of altering the way predition errors are oded on a pixel-

by-pixel basis. It does so by making use of information from the enoding of previous pixels

and is therefore an example of loal bakward adaptation. The exat method is desribed

in [LGS92℄ and more details are given in Setion 2.4.

1It should be noted that the lossless part of the standard was not the result of a ompetitive evaluation

programme like that used for the lossy JPEG methods.
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Preditor X̂ = Performane

JPEG0 0 19.37

JPEG1 W 14.41

JPEG2 N 14.61

JPEG3 NW 15.64

JPEG4 W+N-NW 14.32

JPEG5 W+((N-NW)/2) 13.95

JPEG6 N+((W-NW)/2) 14.01

JPEG7 (W+N)/2 13.83

Table 2.1: The preditors spei�ed by LJPEG. The performane �gures are from [MS95b℄

and show the entropy of the predition errors, averaged over six 24 bpp olour images.

The three olour planes in these images were eah predited separately.

Although o�ering reasonable lossless ompression, LJPEG was never widely used out-

side the researh ommunity. A version of the Hu�man avour of LJPEG is available2

and has been used as a means of omparison in many papers. However, a freely available

implementation of the Arithmeti oding avour does not seem to exist.

The main lesson to be learnt from LJPEG is that global adaptations are insuÆient

for good ompression performane. This fat has spurred most researhers to look at more

adaptive methods.

To advane upon simple shemes like LJPEG, alternative methods for predition and

error modelling are needed. The next two setions will look at how adaptation has been

used to approah these issues.

2.3 Adaptive Predition

All of the preditors mentioned so far are linear funtions. However, images typially

ontain non-linear strutures (e.g. edges). This has lead to e�orts to �nd good non-linear

preditors. Methods involving vetor quantisation[SN94℄ and neural networks[RD93℄ have

been tried. Although the results in [RD93℄ look promising, the multi-layer pereptron

network used required 6000 passes over the image data to train it, and the overhead for

sending this training data does not seem to be fatored into the results. Also, the paper

only studied the performane of the sheme for one image.

Another way to model the non-linearity of image struture is to swith between linear

preditors based on image harateristis. Although the atual preditors are still linear

funtions, the swithing mehanism an attempt to deal with non-linear features suh as

edges. Swithing shemes an be bakward or forward adaptive, depending on whether

they make their deision on the basis of past or future data respetively.

2ftp://ftp.s.ornell.edu/pub/multimed/
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2.3.1 Bakward Adaptive Tehniques

Bakward adaptive shemes use previously transmitted pixels to hose a preditor. This

means that the enoder and deoder an make the same deision without any expliit

ommuniation.

Zhang

An early sheme is given by Zhang[Zha82℄ and summarised in [MPG85℄. Zhang de�nes

four preditors, one for eah of four di�erent image harateristis. The di�erent preditors

are designed to ope with at regions, horizontal edges, non-horizontal edges and regions

of texture. Heuristis, based on a small number of pixel pair di�erenes, are given for

determining the harateristi of the urrent image region. Although detailed and omplex,

Zhang's sheme does not perform as well as more simple preditors[MS95℄.

Median Adaptive Preditor

One of the most widely reported [Mar90, MS95, WSS96, MWSM97℄ swithing shemes

is the Median Adaptive Preditor (MAP). In 1990 Martui[Mar90℄ suggested using the

median value of a set of preditive funtions as the atual predition. Three suitable

preditive funtions are W , N , and W +N �NW .

However, in [WSS96℄ the preditive sheme is given as:

X̂ =

8><
>:

min(W;N) if NW � max(W;N)

max(W;N) if NW � min(W;N)

N +W �NW otherwise

(2.2)

Simple arithmeti reasoning will show that the above formulation is the same as hoos-

ing the median of W , N , and W + N � NW . However, as noted in [WSS96℄ this way of

looking at MAP gives an alternative reasoning for the way the sheme funtions. Suppose,

NW is the brightest pixel (highest value) then we assume an edge feature. The maximum

of W and N then partners NW on the bright side of the edge, while the minimum of

W and N joins X on the dark side. Thus, min(W;N) forms a good predition for X.

Similar reasoning holds for the ase when NW is the darkest of the three pixels. In the

ase where NW is not an extreme value, W + N � NW is used, whih models the loal

pixel values as a plane and predits X aordingly. This desription of MAP as a sheme

for adapting to edge features, lead to it being alled the Median Edge Detetion (MED)

preditor in [WSS96℄.

In order to avoid onfusion, MED will be used to desribe the spei� preditor de-

sribed above, whereas MAP will be used for the onept of using the median value from

a set of preditors.
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Gradient Adjusted Predition

This idea of expliitly looking for edges in the image data was also used by Wu in [Wu96℄.

He uses the loal horizontal and vertial image gradients, given by:

dh = jW �WW j+ jN �NW j+ jNE �N j
dv = jW �NW j+ jN �NN j + jNE �NNEj (2.3)

to help predit X:

if(dv � dh > 80) //sharp horizontal edge

X̂ = W

else if(dv � dh < �80) //sharp vertial edge

X̂ = N

else

f
X̂ = (W +N)=2 + (NE �NW )=4 //assume smoothness �rst

if(dv � dh > 32) //horizontal edge

X̂ = (X̂ +W )=2

else if(dv � dh > 8) //weak horizontal edge

X̂ = (3X̂ +W )=4

else if(dv � dh < �32) //vertial edge

X̂ = (X̂ +N)=2

else if(dv � dh < �8) //weak vertial edge

X̂ = (3X̂ +N)=4

g

(2.4)

By lassifying edges as either strong, normal or weak, GAP does more modelling than

MED. This extra modelling gives GAP better performane than MED, although typially

not by a large margin. The extra work also makes GAP more omputationally expensive.

The use of MED in JPEG-LS indiates that in terms of a joint omplexity-performane

judgment, MED has the upper hand.

History Based Blending

An idea presented in [STM97℄ is to blend the preditions of several preditors to form an

overall predition. This approah an be seen as asking the advie of several experts and

then ombining their advie. The �nal predition (X̂) is a linear ombination of the results

of the individual preditive funtions (X̂i), i.e.:

X̂ =
X

ai � X̂i (2.5)

The vetor of weights a = (a1; a2; : : :) an be alulated by solving a linear system of

the form P � a = Q where P is the matrix of past preditions and Q is the matrix of past
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pixel values. In [STM97℄ the authors desribe how to avoid omputing P and Q in their

entirety, for every pixel. Instead these matries are approximated by a number of ounts.

These ounts are updated in suh a way that past information is slowly depreiated. That

the past information is used at all, gives the history element of the sheme.

The ost of omputing the weights a is given as O(n3) when there are n preditors.

To keep omputational osts down and yet permit a larger number of preditors, the

HBB onept is asaded. Three units, eah with preditors designed for a spei� image

harateristi, produe a predition via history based blending. The output of these three

units is again blended in the same way to produe the �nal predition value. The three

units are:

Unit Preditors

Noise unit (W +N)=2 (2W +N +NE)=4 (W +N +NW +NE)=4

Smooth unit W +N �NW 2W �WW 2N �NN

Edge unit W N NE

The ompleted sheme given in [STM97℄ is shown to be superior in terms of ompression

performane to other presented results in whih MED and GAP were used. This indiates

that HBB may be more e�etive than either MED or GAP, but obviously at the ost of a

great deal of omputation.

2.3.2 Forward Adaptive Swithing

In LJPEG the hoie of preditor for an image is hosen by the enoder (forward adap-

tation) and transmitted as overhead to the deoder. If we allow the enoder to adapt its

hoie of preditor to the loal harateristis of the image data, better predition may re-

sult. However, the overhead aused by transmitting these preditor hoies to the deoder

will inrease.

Blok Based Adaptation

One simple sheme, mentioned in [MS95℄, is to split the image into 8 x 8 pixel bloks

and hose the best of the LJPEG preditors to use for the blok. In [MS95℄ the trivial

preditor LJPEG0 is replaed byW+(NE�NW )=2. This preditor hoie is then enoded

as 3 bits of overhead (3=(8� 8) = 0:047 bpp overhead). In [MS95℄ the best preditor is

determined to be the one that gives the least sum of absolute predition errors for the

blok3. This method has been shown to give results that are better than MAP [MS95℄.

In [Lee95℄ a similar sheme is given, exept 16 preditors are available. Furthermore,

the overhead of sending the preditor index for eah blok is itself oded by an adaptive

Arithmeti ode, hene lowering the overhead.

3Note, the fat that a given preditor has the least sum of absolute predition errors, does not neessarily

imply that the same preditor gives the least ontribution to the total entropy of the predition residuals.
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Predition Patterns

Still better results were reported in [MS95℄ for a sheme based on predition patterns

[MS95a℄. This sheme again divides the image into bloks, but instead of a single preditor

eah blok is assigned a predition pattern index. A predition pattern spei�es how

multiple preditors should be used to best predit pixel values in a blok of pixels.

The omplex parts of the sheme, hoosing a odebook of predition patterns and

hoosing the best predition pattern for a given blok, are familiar problems in the domain

of vetor quantisation[Cla95℄. In [MS95a℄, the LBG algorithm is used for odebook design

and exhaustive searh is used to selet the best predition pattern for a given blok.

2.3.3 Adaptive Predition Summary

Bakward adaptation naturally seems to have many advantages over forward adaptation.

Bakward adaptation arries no overhead, allows an individual preditor seletion to be

made for eah pixel and permits a single-pass image oder. However bakward adaptation

has its problems as well.

This is espeially evidened in Zhang's sheme, whih although well reasoned shows

poor performane. The preditors and preditor seletion heuristis also appear well-

designed, but the preditors are made very spei� to the expeted image properties of a

given type of region, as reported by the heuristis. Thus, when the heuristis fail, very

poor predition is likely.

In ontrast MED uses more general purpose preditors that fare well in most onditions.

Thus, a poor preditor seletion deision will result in very poor predition less frequently

that Zhang's sheme. This is taken further by HBB, whih blends preditors in an attempt

to mitigate the e�ets of unsuitable preditions.

Forward adaptation an prevent the worst predition errors by looking ahead at the

data to ome. However, forward adaptation must always balane its auray against the

overhead inurred.

2.4 Advaned Error Modelling

To work eÆiently, symbol oders suh as Hu�man and Arithmeti oding require aurate

estimates of the distributions of predition errors. However, this distribution is rarely

onstant over all regions in an image. For example, in a smooth area of an image (where

most preditors work well) the predition error " = X�X̂ is highly likely to be 0. Whereas

in a textured or noisy region (where most preditors have diÆulty) " is non-zero with a

high probability. Given these hanging distributions, adaptive error modelling is required

for good ompression performane.

By using adaptive error modelling to take aount of hanging predition error distri-

butions, we no longer assume predition errors to be identially distributed. Thus, we are

now going beyond the i.i.d. assumption of zero-order entropy (see Setion 1.2.1) and an
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expet ompression performane that improves on the entropy of the predition errors as

given by Equation 1.2.

One simple solution would be to assume that the predition errors ome from a single

soure whose statistis hange over time. Frequeny ounts of errors ould be kept and a

model of the distribution built aordingly. However, this assumes that the distribution

of predition errors hanges gradually along the san path used. This is very unlikely to

our in most images.

A better solution is to assume that the predition errors ome from multiple soures.

Eah soure has its own distribution and relates to di�erent regions in the image. Con-

struting suh a model requires two main problems to be solved; determining whih soure

to use for a given pixel and adapting the individual soures to the image harateristis.

Most shemes solve the �rst problem by using some harateristi of the loal pixel

values (or the loal predition errors) in a way not unlike the swithing predition shemes

of the previous setion. Thus the pixel's relation to its neighbours - its ontext - is im-

portant. Beause the probabilities p(" = i) are onditioned in this ontext, these are

often alled onditioning ontexts. Algorithms for solving this issue an be termed ontext

determination algorithms and some examples are given in Setion 2.4.1.

The solution to the seond problem, onditioning the error probabilities based on the

ontext, generally uses some form of frequeny ounting on a per ontext basis. The exat

details tend to vary with the atual ompression sheme used.

One problem that must be overome by all ontext oding shemes, is that of ontext

dilution. This ours when the ombination of ontexts and frequeny ounts beomes

too large. In this ase, ontexts are entered infrequently and aurate statistis annot be

aquired. This leads to poor error modelling.

This problem an be avoided by limiting either the number of ontexts or the number

of frequeny ounts. However, if too few ontexts are available, the error modelling will

also be ineÆient.

It was mentioned earlier that predition errors have traditionally been assumed to

be distributed as a two sided Laplaian entred at zero. However, many authors have

found that something di�erent happens when errors are ontext modelled. Contexts that

represent ative regions in the image often have error distributions whih have a entre that

is non-zero. Suh distributions show evidene of bias and a measure of this bias is given

by the mean predition error in a given ontext. The proess of bias anellation adjusts

predition residuals to ounterat the ontextual bias, hene providing a more aurate

error model.

The issue of ontext modelling is given a good theoretial overage in [WRA96℄. The

use of tree models4 for lossless image ompression is suggested. Their approah builds

a tree, based on the image data reeived, thus keeping the number of ontexts down to

the level required. The results presented in [WRA96℄ were at the time the best available.

However, the use of more heuristi ontext modelling shemes, for example [Wu96℄ that

have shown better ompression performane, indiates that the full rigor of the methods

4Tree models ontain Markov Models as a speial ase.
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in [WRA96℄ are unneessary for good performane.

2.4.1 Examples of Context Determination Algorithms

The purpose of a ontext determination algorithm is to assign the urrent pixel to one

of a �xed set of ontexts, based on the urrent neighbourhood. This should be done in

suh a way that pixels in ative regions get put into ative ontexts and likewise pixels in

smooth regions get put into smooth ontexts. In this way, we expet all predition errors

in a given ontext to resemble the output of a single soure. Hene, modelling all errors in

a given ontext as oming from a single distribution permits eÆient oding.

Error Bukets

Examining the predition errors experiened at neighbouring pixels is one way to asertain

the loal image ativity. Suh a sheme was �rst presented in [TLR85℄, and makes use

of error bukets. The full range of errors �255 � " � 255 (for 8 bpp images) is divided

into 5 error bukets (a rude form of quantisation). The ontext of the urrent pixel is

alulated as the ross-produt of the error bukets of the losest three pixels (W , N and

NW ). Thus, there are 5� 5� 5 = 625 ontexts. Better results are reported when 11 error

bukets are used.

The use of error bukets for modelling also appeared in the SUNSET oder[Lan91,

Lan88℄ and the Arithmeti oding version of LJPEG[LGS92℄. Both these approahes use

the bit position of the most signi�ant bit in the absolute predition error as the error

buket index.

Loal Gradients

The purpose of ontext determination is to identify smooth regions in the image from ative

regions. This an be done by onsidering the loal image gradients. LOCO-I[WSS96℄ uses

4 gradients, g1 = NE�N , g2 = N�NW , g3 = NW �W and g4 = W �WW . Calulating

a ontext based on the ross-produt of these gradients would result in having just under

7 � 1010 ontexts! This is far more than an be pratially handled and would ertainly

ause problems with ontext dilution.

To overome this, the 4 gradients were quantised into a number of roughly equiprobable

bukets. g1, g2 and g3 were eah quantised into 9 regions, while g4, being further from X,

is quantised into 3 regions. This results in 93 � 3 = 2187 ontexts.

This was still deemed to be too many, so ontext merging was used to ut the number

pratially in half. By assuming,

p(" = djC = [q1; q2; q3; q4℄) = p(" = �djC = [�q1;�q2;�q3;�q4℄) (2.6)

where C is the urrent ontext and the qi are the quantised gi, ontexts that are sym-

metri around zero an be merged. This merging proess redues the number of ontexts

to 1094.
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Loal Texture and Error Energy

In [Wu96℄ Wu suggests generating ontexts based on a ombination of loal texturing and

error energy. Moreover, the sheme presented used suh hybrid ontexts only for bias

anellation, error distribution modelling is based on the loal error energy metri alone.

To haraterise loal texture, Wu onsiders a set of eight loal events:

S = fN;W;NW;NE;NN;WW; 2N �NN; 2W �WWg (2.7)

An 8 bit binary number Qt = b7b6b5 : : : b0, is then formed by:

bk =

(
0 if Sk � X̂

1 if Sk < X̂
(2.8)

In [Wu96℄ GAP is used to determine X̂. By using X̂ as a threshold, Qt is �rmly

linked to the predition and therefore the predition error. The loal error energy (�) is

determined by:

� = amin(dh; dv) + bmax(j"W j; j"N j) (2.9)

where dh and dv are as given in Equation 2.3 and "W and "N are the predition errors

from W and N respetively. The oeÆients a and b are determined by an o�ine optimi-

sation proess. � is then quantised into 8 levels to form Qd; the quantisation levels again

being determined by o�ine optimisation with a training set. Wu based his hoie of dh, dv,

j"W j and j"N j as the basis for Qd, beause of a high average orrelation oeÆient (> 0:3)

between these values and j"j.
This sheme uses 256� 8 = 2048 ontexts for bias anellation, but only 8 ontexts for

error distribution modelling.

2.5 Some Examples of Complete Shemes

The building bloks of many lossless image ompression shemes have now been detailed,

but no omplete shemes have been desribed. For reasons of spae, and to avoid exessive

repliation of material, a sample of three omplete shemes is given below.

JPEG-LS[ITU96℄ is the new lossless image oding standard from the JPEG group and

replaes LJPEG. JPEG-LS (heavily based on LOCO-I[WSS96℄) is an example of an image

oder built from a simple swithing preditor with ontext based error modelling. Many

other examples of oding shemes built along similar lines exist[WM97, STM97, LGS92,

Lan91, Wal91℄.

Although JPEG-LS was designed to o�er good ompression performane at a reasonable

level of omputational omplexity, it still has more omputational requirements than some

shemes. FELICS[HV93℄ is an example of a lossless image ompression sheme that makes

use of some interesting insights to provide aeptable ompression at great speed. It is

detailed in Setion 2.5.2 .
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Input Symbol for k = 0 for k = 1 for k = 2

0 0 00 000

1 10 10 010

2 110 010 100

3 1110 110 110

4 11110 0110 0010

5 111110 1110 0110

6 1111110 01110 1010

Table 2.2: Example Golomb-Rie odes for three values of k. Note, bits onstituting the

unary setion of the ode are shown in italis.

On the other end of the omplexity sale is a sheme named TMW[MT97℄ after its

reators. This onsiders image oding as a two part proess and is briey disussed in

Setion 2.5.3.

2.5.1 The New JPEG Standard - JPEG-LS

Due to the pereived inadequay of the LJPEG standard, the JPEG ommittee put out

a all for proposals for a new lossless image ompression standard. LOCO-I5[WSS96℄ was

put forward as one of the ontenders and the new standard JPEG-LS[ITU96℄ is heavily

based on it.

JPEG-LS uses the MED preditor and a gradient based ontext determination sheme.

The main di�erene between the ontext determination of JPEG-LS ompared to LOCO-I

is that JPEG-LS does not use the g4 gradient.

In order to help keep omplexity low and redue model ost, JPEG-LS uses a symbol

oder that requires only a single parameter to desribe an adaptive ode. The sheme

used is Golomb-Rie (GR) oding (often known only as Rie oding) and the parameter

required is k. GR odes are a subset of the Hu�man odes and have been shown to be the

optimal Hu�man odes for symbols from a geometri distribution.

Golomb-Rie odes are generated as two parts; the �rst is made from the k least

signi�ant bits of the input symbol and the latter is the remainder of the input symbol in

unary format. Some example odes are given in Table 2.2. Seleting the orret k to use

when oding a predition error is very important. The ideal value for k is strongly related

to the logarithm of the expeted predition error magnitude[WSS96℄.

In JPEG-LS four ounts are kept for every ontext. The variable N ounts the number

of times a ontext is visited and A aumulates the absolute value of the predition errors

in the ontext. The expetation for the predition error magnitude is given by A=N and

k is thus:

5LOw COmplexity LOssless COmpression for Images.



22 CHAPTER 2. LOSSLESS GREYSCALE IMAGE COMPRESSION

min(kj2kN � A) (2.10)

In [WSS96℄ it is noted that this an be onveniently written in C as:

for(k=0; (N<<k)<A; k++);

As for the other two per-ontext ounts; B aumulates the predition errors in the

ontext (atual values, not magnitudes) and C traks the predition error bias. C is

updated when B reahes a threshold. Whenever C is updated, A and B are also updated

to take aount of the now anelled bias.

Although, JPEG-LS is already highly adaptive, it has the potential for ineÆieny due

to ontextual error statistis hanging as image oding progresses. To ounter this, the

ontextual ounts are reset after the ontext has been visited a predetermined number of

times. This resetting proedure halves all the ounts for the ontext, thus reduing the

importane of past data and allowing new statistial information to play a greater role.

One limitation of GR odes is that, like general Hu�man odes, they are limited to a

minimum ode length of one bit per symbol. In very highly redundant regions of an image

this an represent a serious penalty. This e�et is limited by the introdution of a run

mode. The run mode is entered when a speial ontext is entered. This run-ontext is the

ontext for whih the loal (quantised) image gradients are all zero. One in run-mode the

next symbol is a GR oded run-length that determines how many idential symbols follow.

As the run mode an be entered even when no run is present, runs an be of zero length.

Weinberger et al. ompared LOCO-I to many other lossless shemes, inluding the

LJPEG standard. LOCO-I was found to ompress better than all the other methods

exept CALICS [Wu96℄. Weinberger et al. laim that the slightly better performane of

CALICS is at the ost of an extra order of magnitude in omputational omplexity. Its

good performane oupled with a relatively simple implementation appears to have been

persuasive, as the new standard for lossless JPEG [197℄ is strongly based on LOCO-I.

2.5.2 The Fast and EÆient Image Compression System

In [HV93℄ Howard presents his Fast, EÆient, Lossless Image Compression System.

FELICS is built around the simple observation that the probability distribution of the

urrent pixel value X, is roughly at within the range formed by the two nearest pixel's

values (W and N) and deays exponentially outside that range.

For typial images, Howard �nds that the value X is in range (i.e. between the values

of W and N) about 50% of the time. A single bit is thus used for eah pixel to determine

whether X is in range or not. As the in range probability distribution is roughly at, a

binary ode is both theoretially suitable and omputationally simple. Howard uses an

adjusted binary ode that gives a slight bias to values in the entre of the range (where a

slight hump in the probability distribution is found).

If X is not in range, a further bit is sent to indiate whether X falls below the bottom of

the range or above the top of the range. The distribution ofX was found to be symmetrial
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outside the range, therefore the use of a single bit is again justi�ed. As the distribution

for values of X falls exponentially beyond the given range, Rie odes give an eÆient way

to ode the value of X, with respet to either the lower or upper boundary of the range.

The parameter for the Rie ode is determined by ontextual adaptation; the ontext for

a given pixel is determined by Æ , where Æ = max(W;N) � min(W;N). Note, Æ is not

quantised.

Results given in [HV93℄ indiate that FELICS has roughly the same ompression perfor-

mane as the original lossless JPEG sheme but has about �ve times the data throughput

on a given mahine. It is notable that for images that are highly ompressible by LJPEG,

FELICS's relative ompression performane deteriorates. This is in part due to the as-

sumption that for typial images the in range probability is about 1=2. An atypial image

(i.e. one that is highly ompressible) is likely to have an in range probability that is

distintly di�erent from 1=2 and therefore the use of one bit to ode it is ineÆient. In

[HV93℄, Howard ignores these images on the argument that they are rare. Also, to model

the in range probability would add onsiderably to the omputational omplexity of the

sheme.

In [HV93℄ Howard notes that by diretly modelling the probability distribution for X,

FELICS neatly ombines the predition and error modelling steps of lossless ompression.

However, an alternative view of FELICS presents itself, if we onsider it to be a preditor

swithing sheme. In essene FELICS uses three preditors W , N and (W + N)=2 (the

latter is evidened by the bias given towards values in the entre of the range). Forward

adaptation is used to determine whether or not to use (W +N)=2 for predition. If X is

in range (W +N)=2 is used, although it is not neessarily the best preditor. As well as

indiating a preditor seletion that one bit also limits the predition error and indiates

a at model for the predition error distribution.

If X is out of range, forward adaptation is again used to make a preditor seletion

deision, this time hoosing between W and N . This extra bit, along with the out of

range knowledge, e�etively determine the sign of the predition error, leaving only its

magnitude to be oded by Rie oding. Thus, the eÆieny of FELICS omes largely from

the multiple inferenes that an made for eah bit of overhead information.

2.5.3 Two Part Coding

The ultimate produt of forward adaptation is the two part oding sheme. The enoder

does image analysis on the input and attempts to apture the essene of the image (its

global harateristis). This model of the image is then transmitted to the deoder. Fol-

lowing this, the image is ompressed aording to the model built for it. Suh a sheme is

presented in [MT97℄.

A set of linear preditors are used, the weights for whih are omputed by the enoder.

Instead of prediting a single value for eah pixel, the preditors alulate a probability dis-

tribution. Eah preditor produes a predition distribution entred on a value alulated

by linear predition. The distribution formed is a variant of the t-distribution. The width
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of the distribution is determined by a weighted ombination of loal predition errors; the

weights involved being part of the image model.

These distributions are blended together, yielding a omposite distribution. Note, this

takes preditor blending one step further than HBB[STM97℄. However, di�erent preditors

will best apply to di�erent areas, so a notion of preditor eÆieny is built into the system.

The predition distributions are then blended by a linear funtion, whih depends partly

on a weight alulated during the analysis phase (for global eÆieny) and partly on the

reent image past (for loal eÆieny).

It is not neessary to ompute the omposite predition distribution for all potential

values of the urrent pixel. Instead it is alulated for various ranges, thus allowing the

determination of eah atual pixel to be deomposed into a sequene of binary events.

These binary events are enoded with an arithmeti oder.

All the weights used by TMW are ontinuous and this aids the image analysis phase.

A variety of optimisation tehniques are used to �ne tune these weights. Note, that some

parameters that appear in the image model, suh as the number of preditors to use, are

not optimised and must be provided by the user.

The ompression results of TMW surpassed those of the previously best known image

ompression sheme CALIC, for all the images tested in [MT97℄. Although not learly

stated in [MT97℄, personal omments from the author suggest that the image analysis

phase of the sheme is omputationally very intensive. This makes the urrent inarnation

of TMW unsuitable for many widespread appliations.

2.5.4 Considering Extensions

When onsidering the three shemes just desribed, with a view to extending them to

olour images, video, et., some issues beome apparent. It is hard to see how FELICS

ould maintain its simpliity and eÆieny if extra dimensions were added to the input

data. Although highly adaptive, TMW is already highly omplex. An extended version

would exhibit very high omputational omplexity. Both shemes, though suessful for

greysale images, seem inappropriate as a foundation for extended lossless image oding.

However, JPEG-LS, and similar shemes suh as CALICS and SUNSET, seem a better

starting point. By adding spetral, temporal and interview onsiderations to predition,

preditor seletion and error modelling, extended lossless image ompression should be

attainable.

2.6 Misellaneous Tehniques

Although many mainstream ideas have already been overed in this hapter, there are still

other tehniques whih should be inluded to give a omprehensive review. Suh tehniques

and shemes are detailed in this setion.

Probably the most widely used standard lossless image ompression sheme is the

Graphis Interhange Format. Although muh used, it is not a good example of a state-
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of-the-art lossless ompression sheme, as detailed in Setion 2.6.1. Hierarhial deompo-

sition is a powerful tool in any form of image proessing. Although not frequently used in

lossless ompression, some examples of hierarhial methods are given in Setion 2.6.2. An-

other form of deomposition is bit plane deomposition. This and assoiated ompression

shemes are mentioned in Setion 2.6.3.

Finally, in Setion 2.6.4 we examine the interesting but rarely used onept of san

path optimisation.

2.6.1 The Graphis Interhange Format (GIF)

The �rst widely used standard for lossless image ompression was the Graphis Interhange

Format (GIF) standard invented by Compuserve[Rim92℄. It is based on Welh's popular

extension of the LZ78 oding sheme. GIF uses a olour palette, that ontains a maximum

of 256 entries. Eah entry spei�es one olour using a maximum of 8 bits for eah of red,

green and blue. The olour palette must be built prior to oding and is sent along with

the ompressed data. Note that images with more than 256 olours annot be losslessly

oded with GIF. The LZW oding is applied diretly to the pixel data, therefore there

is no mapping stage. Due to the inherently adaptive nature of LZW, it an be seen as

ombining the modelling and oding stages into one.

LZW (and hene GIF) works well for omputer generated images (espeially ions)

whih have a lot of pixel sequenes repeated exatly. However, for real pitures it performs

less well. This is due to the noise, inherent in any form of image apture, breaking the

repeating sequenes of pixels that LZW depends on. Also, the limitation of 256 di�erent

pixel values beame a problem as heaper memory made 24 bit (16777216 olours) images

more popular.

2.6.2 Hierarhial Methods

Hierarhial forms of image ompression have not been very popular for lossless applia-

tions. This is beause they generally have inferior performane to sequential shemes of

similar omplexity. The one main advantage of hierarhial shemes is that of progressive

deoding[Qiu99℄. That is, a oarse representation of the image an quikly be built up,

allowing a user to determine if the rest of the image should be deoded in full. This an

be very useful if data is oming over a slow link or if the image in question is very large.

One simple hierarhial method is quadtree oding. An image region (typially square)

is either represented as a single value, or if that is not satisfatory, it is split into four

regions. If present, the four hildren of the original region are then proessed reursively.

This tehnique has appliation in some areas, but is generally unsuitable for lossless image

ompression beause real images will require almost all nodes to be split. This auses the

overhead of representing the quadtree to exeed any advantage in representing at regions

of the image with a single value.
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L H1 H3 H1 L
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Figure 2.3: A small example of hierarhial interpolative deomposition. The L pixels

remain after four passes. The H pixels are replaed by their predition error; the sub-

sript determines in whih passes the pixel is removed.

A B A

H D H B

D C C

Figure 2.4: Neighbours in a hierarhial sheme.

Interpolative Coding

Another way to form a oarse representation of an image is to simply remove pixels from

the image and use the remaining pixels to form a lower resolution image. The removed

pixels an then be predited by some interpolating method, based on the pixels remaining.

We all the pixels remaining after one pass, the L band and the predition errors that

replae the removed pixels the H band. By using multiple passes a truly hierarhial

sheme emerges.

One sheme that has been mentioned in several papers[Rob97, HV91℄ removes every

even pixel on every odd row and every odd pixel on every even row. An example of this

deomposition is shown in Figure 2.3. It should be noted that the sampling lattie must

be rotated by 45o after eah pass.

The deoder is sent the remaining L pixels �rst (usually DPCM oded) and then H

pixels; from H4 to H1 in the urrent example. Note, every H pixel (exluded edge e�ets)

is surrounded by 4 pixels at a higher level, either as a square or as a diamond. These

four (see Figure 2.4) an be used to interpolate (predit) the H pixel and hene only the

predition error need be sent. In [Rob97℄ Robinson introdues some other preditors, in

partiular it is noted that:

Ĥ =

(
(A+ C)=2 if jA� Cj < jB �Dj
(B +D)=2 if jB �Dj < jA� Cj (2.11)

is muh better than the linear ombination Ĥ = (A +B + C +D)=4.

One drawbak of interpolative shemes is that their intermediate resolution images
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su�er from aliasing. This is due to the lak of �ltering in the sub-sampling proess.

The S-Transform

The S-Transform, whih has similarities to the multiresolution Haar representation, an be

used for hierarhial methods. Consider a sequene of 2N symbols s[n℄; s = 1; : : : ; 2N . s[n℄

an be represented as two sequenes of symbols, one that represents the low frequeny om-

ponent (averaging) of s and one that holds the high frequeny omponent (di�erening).

These sequenes are de�ned as:

l[n℄ =

$
s[2n℄ + s[2n+ 1℄

2

%
(2.12)

h[n℄ = s[2n℄� s[2n + 1℄ (2.13)

and the reverse transform is:

s[2n℄ = l[n℄ +

$
h[n℄ + 1

2

%

s[2n+ 1℄ = s[2n℄� h[n℄ (2.14)

Although the S-Transform is inherently 1-dimensional, by transforming �rst the rows

and then the olumns a 2-dimensional transform is ahieved. After the rows and olumns

have both been transformed, one quarter of the image is entirely low frequeny omponents.

This band an be transformed reursively to form a multiresolution image pyramid. An

example is given in Figure 2.5.

Although potentially useful for lossless image ompression, the use of the S-Transform

as a mapping stage is generally inferior to simple DPCM methods. However, the perfor-

mane was improved by Said and Pearlman [SP96℄ who introdued the S+P-Transform.

The P is added to indiate the presene of predition that is used to lower the entropy of

the representation. High frequeny omponents (h[n℄) are predited from previously seen

oeÆients of both high and low frequeny.

2.6.3 Bit Plane Deomposition

One of the major problems in modelling image data is the relatively large alphabet of

possible pixels values (typially 28). One way to avoid this problem is to deompose a k

bpp image into k di�erent bit planes. The k 1 bpp images that now represent the original

an then be ompressed using run-length or ontext based oding. If the pixel values are

oded with a Gray ode, rather than the standard binary ode, the resultant bit planes

are spatially more uniform and better ompression is seen[GW92℄.

One problem with bit-plane deomposition is that the entropy of the resultant k planes

is generally larger than that of the original image. In [Yu95℄ it is given that deomposing a
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Figure 2.5: Result of a multiresolution S-Transform.

k bpp image into 2k� 1 planes an overome any penalty normally assoiated with binary

deomposition tehniques.

An interesting hybrid of bit plane deomposition and preditive oding is presented

in [SA92℄. Every pixel is oded as a pre�x and a suÆx. The pre�x represents the number

of ontiguous bits, going from the most signi�ant to the least, that the urrent pixel has

in ommon with a referene pixel. The suÆx is then all but one of the lower order bits; if

the �rst n bits of the urrent pixel math the referene, then the n+1th bit of the urrent

pixel is impliitly not the n+ 1th bit of the referene. For example, if we had:
referene pixel = 10110010

urrent pixel = 10111010

the pre�x would be 4 and the suÆx would be 010. In [SA92℄ the pre�x is Hu�man

oding and the referene pixel an be hosen as either W or N . One sheme presented

in [SA92℄ alternates between potential referene pixels when the value of the pre�x falls

below a preset threshold.

2.6.4 San Path Optimisation

Almost all the ompression shemes mentioned previously have used the raster san order-

ing; one exeption being HBB[STM97℄. Theoretial work suggests that an optimal pixel

ordering would be related to a Hilbert spae �lling urve. However, suh a method is

onsidered impratial for the ompression of greysale image data[MS95℄.

Instead of trying to �nd a universally optimal san ordering, Memon et. al. have tried

optimising the san path to take aount of a given image and its features. The problem

of �nding an optimal path an be attaked with graph theory. Eah pixel is onsidered a
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vertex and a weighted edge joins every pixel to its four losest neighbours (above, below,

left and right). The weight on eah edge is the di�erene between the two relevant pixel

values. This weight an also be seen as the predition error from simple DPCM when using

a san model that traverses the edge.

It is useful to �nd a san model that minimises the absolute weight of predition

residuals. A minimum absolute weight model an be found by omputing a minimum

weight spanning tree of the graph desribed above. Fortunately, eÆient algorithms are

known for this [Sed92℄.

The drawbak of this san based method, when enoding single images, is that the ost

of reording the san path outweighs most of the performane gained by using it. However,

Memon et. al. have applied their san method to olour images with suessful results

(see Setion 3.1.3).

2.7 Summary

In this hapter we have seen some of the very many tehniques used to takle the problem

of lossless greysale image ompression. Many suessful shemes were seen to use adaptive

predition, followed by advaned error modelling through ontext based onditioning. By

extending the preditive funtions and ontext models to inlude spetral, temporal and

interview elements, we might reasonably hope to ahieve the goal of extended lossless image

oding.
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Chapter 3

Beyond Greysale Image

Compression

This hapter overs the literature underlying the ompression of olour images, video and

multiview imagery. Compared to the work on greysale image ompression, the literature

on lossless olour image ompression, disussed in Setion 3.1, is very sparse. It is mostly

reent and muh of it is related to the spei� ase of ompressing multiband satellite data.

While the literature on lossless video ompression is pratially non-existent, a huge

amount exists on lossy video ompression, inluding Clarke's exellent book \Digital Com-

pression of Still Images and Video" [Cla95℄. This is overed briey in Setion 3.2, with

partiular emphasis being plaed on tehniques that may help extend lossless methods to

video. The nature of multiview stereo imagery, whih an be seen as a speial ase of video

data, is introdued in Setion 3.3.

Finally, a summary of the literature overed is given in Setion 3.4.

3.1 Extensions for Colour

Any form of olour (or multiband) image an be thought of as funtion f(b; x; y) where b

ranges over the olour bands (0 � b � B�1) and x and y range over the width and height

respetively. Most lossless image ompression shemes, as disussed in previous hapters,

are designed to deal with funtions of the form f(x; y) and so onsider a olour image as B

funtions fb(x; y). However, by utilising the interband orrelation additional ompression

an be gained. This proess an also be thought of as using interband relationships to

better deorrelate the data prior to entropy oding.

3.1.1 Colour Spae Transforms

To have physial meaning, the values of the B pixels at a �xed spatial loation should

represent a point in some olour spae[FvDFH93℄. We shall onsider the default olour

spae to be the Red, Green and Blue (RGB) spae. This is often represented as a ube,

31
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with three orthogonal axis giving the amount of red, green and blue. The ube is usually

saled to have sides of unit length, (0; 0; 0) being blak and (1; 1; 1) being white. For image

storage it is often the ase that 8 bits are used for eah olour omponent (24 bpp in total)

and therefore we an onsider the standard RGB ube to be quantised and saled by a

fator of 255.

The RGB olour spae is related to our physial pereption of olour and is used

by display devies suh as CRTs and LCDs. However, other olour representations are

needed for other tasks. For example, when printing, the RGB sheme (an additive olour

sheme) is unusable. Instead, a subtrative sheme (so alled beause olour omponents

are removed from the white of the paper) based on yan, magenta and yellow is used. To

improve printing results, a fourth omponent is added that represents blak. This gives

the CMYK (Cyan-Magenta-Yellow-blaK) olour sheme.

Pixel values are often transformed into olour spaes that aim to separate luminane and

hrominane information. Conversion to YIQ and YUV have been popular for television

broadast appliations, where Y presents luminane and I,Q,U and V are hrominane

omponents. Y an be alulated from RGB by:

Y = 0:299R+ 0:587G+ 0:114B (3.1)

For the YUV system, the omponents U and V are desribed by olour di�erenes:

U = B � Y

V = R� Y (3.2)

However, this formulation allows U and V to be negative. The YCrCb formulation gets

around this by saling and zero-shifting the omponents:

Cr = (V=1:6) + 0:5

Cb = (U=2) + 0:5 (3.3)

Note, the 0.5 shift assumes a olour spae of unit dimension; using 8 bit imagery requires

a shift of 128.

By onverting to a olour spae suh as YCrCb, the luminane and hrominane om-

ponents are deorrelated. This allows the hrominane omponents to be handled at a

di�erent resolution to the luminane omponents. This is advantageous for lossy oding

shemes as the pereptual quality of an image is related more strongly to the luminane

than the hrominane part of the signal. Hene, the Cr and Cb bands are often sub-

sampled to half the horizontal and vertial resolution of the luminane band. This gives

great advanes in ompression but is not appliable for lossless oding.

Although, olour spae onversion is often seen as a deorrelating tehnique, the entropy

of the resultant image an be greater than that of the original[Tur94℄. Furthermore as the
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Y, Cr and Cb bands have little orrelation, subsequent interband methods are unlikely to

prove e�etive. As a onsequene, traditional olour spae onversions seem ine�etive for

lossless ompression purposes.

Optimal Transforms

Theoretially, the transform best able to deorrelate the various olour bands in an image,

would be the Karhunen-Lo�eve Transform (KLT). In [APL98℄ a reversible approximation

to the KLT is given and its usefulness in lossless image ompression is assessed.

In [APL98℄ the enoder omputes the matrix for the lossless KLT for every region in

the image (regions are either generated by simple blok division or olour segmentation)

and transmits an approximation of the matrix to the deoder. This sheme takes into

aount the possibility that olour statistis will vary over the extent of an image.

The results of several experiments are reported in [APL98℄, mostly using a CMYK (32

bpp) image musiians. It was found that the lossless KLT, followed by Arithmeti oding,

did ompress the data but was inferior to the use of the JPEG7 preditor applied to eah

band separately. The lossless KLT was then used in onert with spatial deorrelation

(JPEG7). It was found that the best results were obtained by using the KLT after the

spatial predition step. In this way, the KLT is used to assist error modelling.

The onlusions drawn in the paper were that spatial (intraband) orrelations are more

important than spetral (interband) orrelations and that their lossless KLT aided om-

pression if it followed a spatial deorrelation step. However, in the results provided it is

lear that a purely intraband version of CALIC was often able to surpass the KLT enhaned

oder presented.

The results of [APL98℄ are somewhat ounter-intuitive. It seems likely that spetral

deorrelation should have a greater utility than to be used to deorrelate spatial predition

residuals. It also suggests, that global appliation of spetral modelling may not be the

best alternative for advaned oding shemes.

3.1.2 Interband Predition

In order to use spetral oherene to diretly deorrelate pixel values, a preditive funtion

is required. To desribe suh a funtion, we shall use the same loation naming onventions

as in the last hapter (see Figure 2.2). X, W , N , et. are assumed to be in the urrent

band and Xr, Wr, Nr, et. are pixel values at the same loations but in a referene band.

All pixels up to and inluding the urrent, in the referene band, must be known by the

deoder.

An interband extension of JPEG-LS, presented in [MWSM97℄, de�nes an interband

preditor:

X̂ =
W + (Xr �Wr) +N + (Xr �Nr)

2
(3.4)
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This an be seen as using the average of the horizontal and vertial intensity gradients

in the referene band, to model the same gradients in the urrent band. In [MWSM97℄ it

is noted that despite its simpliity, the preditor de�ned by Equation 3.4 performs better

than some more omplex alternatives they onsidered.

In a more reent paper [WMC98℄ an interband version of CALIC is presented. This ex-

tension of CALIC utilises a more ompliated interband preditor, whih starts by de�ning

two potential preditive estimates:

X̂h = W + �(Xr �Wr)

X̂v = N + �(Xr �Nr) (3.5)

where � is related to the orrelation between the olour bands. In the presene of a

strong edge, one of these two values is hosen, otherwise the values are ombined. This is

omputed by:

if(jXr �Nrj � jXr �Wrj > T ) //sharp horizontal edge

X̂ = X̂h

else if(jXr �Nrj � jXr �Wrj < �T ) //sharp vertial edge

X̂ = X̂v

else

X̂ = (X̂v + X̂h)=2

(3.6)

where T is a threshold whose value is not given. This use of loal gradients in predition

is strongly reminisent of GAP.

It is worth noting that under the simplifying assumptions that � = 1 and given a degree

of image smoothness, the preditor of interband CALIC is equivalent to the one used in

interband JPEG-LS.

3.1.3 Interband Swithing Methods

In both [MWSM97℄ and [WMC98℄ it was determined that seletive use of interband pre-

dition is superior to its unonditional use. Indeed, it was found that unonditional use of

interband predition an lead to a redution in ompression performane, as ompared to

the use of intraband predition. Therefore, we shall now onsider some methods to swith

between inter- and intraband preditors.

In [MWSM97℄ two methods are ompared for swithing purposes. Firstly, the orre-

lation oeÆient between the urrent and referene bands, onsidering 10 pixel loations

lose to the urrent pixel, is alulated. If this orrelation oeÆient is greater than some

threshold, the interband preditor is used, otherwise intraband predition is performed.

The seond method given in [MWSM97℄ requires the storage of the absolute predition

errors for both intra- and interband preditors, for the urrent and previous rows. The

errors fromW , N , NW andNE are summed and the preditor with the lowest total is used.
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This was found to give roughly equivalent results to the orrelation based swithing sheme.

The use of loal error requires less omputation but more storage than the orrelation

method.

In [WMC98℄ loal orrelation is again used to swith between predition shemes. How-

ever, the loal neighbourhood is redued from 10 to 8 pixels for the orrelation oeÆient

omputation and the threshold value is given as 1=2.

Interband Methods for Improved Intraband Predition

Interband orrelations an be used purely for preditor swithing. An example is given

in [MS95b℄, in whih the Previous Best Preditor (PBP) tehnique is introdued. PBP

�rst uses JPEG7 to predit a referene band. For subsequent bands, a set of preditors

is used on the urrent pixel loation in the referene band. The preditor whih gives the

minimum preditor error in the referene band is used for the urrent band. In [MS95b℄,

the LJPEG preditors (see Table 2.1) were used[Wal91℄. It is noted that using other sets

of preditors lead to no appreiable improvement in performane

Also in [MS95b℄ a method based on san models is proposed, in a fashion similar to that

mentioned for greysale images (see Setion 2.6.4). Firstly, JPEG7 was used to predit

a referene band. Using this referene band an optimal san path for simple DPCM

is generated. This san path is then used, with DPCM, to predit the urrent band.

In [MS95b℄ the san model approah was found to outperform PBP.

Both the shemes mentioned in [MS95b℄, PBP and the interband san model, rely on

the idea that what worked well for the referene band will work well for the urrent band.

Although good ompression savings are shown, both the methods make unonditional use

of the interband information. This ould lead to poor results in ases where the image

bands have poor orrelation.

3.1.4 Satellite Imagery

The ompression of satellite images has often been ited as an appliation that requires

lossless oding, although researh employing lossy tehniques for suh ompression has been

published[AMH97, Abo95℄. One example of a lossless study is in given in [RC96℄, whih

onsiders the ompression of AVIRIS (Airborne Visible/Infrared Imaging Spetrometer)

data. This data ontains 224 bands and is hene alled hyperspetral.

Although the aim of the work in [RC96℄ is very spei� (that is, to ompression AVIRIS

data) the approah taken is quite general. Predition is followed by adaptive error oding,

in muh the same way as previous shemes.

Five preditors were onsidered independently. These inluded preditors that were

purely spatial (JPEG7), purely spetral and preditors that used both forms of orrelation.

Of the �ve linear preditors, two had onstant weights applied to the previous pixels used

in the predition. The other three had the potential to optimise their weights. The optimal

value of these weights was found via least-squares minimisation, on a row-by-row basis.
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The best weights were then quantised and transmitted as overhead. Hene, this an be

seen as forward adaptation.

The best performing preditor had the form:

X̂ = a+ bW + Xr + dWr (3.7)

As the weights an be optimised for eah line, varying amounts of spatial and spetral

orrelation ould be used as required. Hene, this use of adaptive weights in a single linear

preditor, represents an alternative means of seletion between spatial, spetral and hybrid

predition.

3.1.5 Band Ordering

The problem of band ordering an be seen as determining whih band to use as a referene

for whih other band, when spetral predition is to be used. Of the work referened so

far, stati (pre-determined) band orderings have been used. For example, in [MS95b℄ the

red band is used as a referene for the green band and the green band is then used as a

referene for blue. Whereas, in [MWSM97℄, the green band is used as a referene for both

the red and blue bands.

If we have B bands there are B! possible band orders. The most obvious solution to

the band order problem is to use all possible band orderings and hose the one that works

best. The deoder will also need to be told whih hoie was made. This approah arries

the ost of running the enoding algorithm B! times. While this may be aeptable for

RGB image (3! = 6) or CMYK images (4! = 12) some satellite images have over 200 bands

(hyperspetral images) and so alternative shemes are required.

In [Tat94℄ the ompressed size of every band is onsidered, allowing for every other band

to be the referene band. The problem is then strutured as a weighted graph problem

for whih eÆient solutions exist. As there are roughly O(B2) band pairs, the method of

[Tat94℄ redues the band ordering problem from one that is O(B!) to O(B2).

When deompressing an image stored in RGB or CMYK format it is likely that all

olour bands will require deoding. However for hyperspetral imagery, if a single band

is required, problems ould arise from band ordering. For example it may be that the

required band depends on the deompression of over a hundred previous bands. This is

learly undesirable. One solution, given in [Tat94℄, is to divide the image into partitions of

a �xed number of bands. This problem turns out to be NP-hard if more than 2 bands are

allowed in eah partition. Hene, a sheme based on band pairing is suggested for when

extration of single bands is likely to be a major issue.

3.2 Moving Pitures

The idea of using information from previous frames in a video sequene was mentioned at

least as far bak as O'Neal's work in 1966[O'N66℄. However, laking statistis on interframe
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orrelations, he did not study the idea in detail. Another barrier to the use of interframe

methods at that time, was the ost of storing the previous video frame.

For interframe predition, the obvious hoie for a preditor is the pixel value at the

same loation as the urrent pixel, but from the previous frame. We an write this as

X̂ = Xt�1, where the t�1 indiates a value from the previous frame in the time sequene. A

problem with this preditor is that it fails in areas of motion. Any image region ontaining

a moving objet will result in poor predition, beause the preditor has assumed the

urrent frame looks like the previous frame. Worse still, if there is global motion aused

by amera movement (panning), X̂ = Xt�1 will be likely to fail in all regions of the image.

To solve this problem and make eÆient use of interframe orrelations, it is neessary to

have a model for the motion in a sene. This idea underlies the topis of motion estimation

and ompensation.

3.2.1 Motion Estimation and Compensation

In order to make use of interframe orrelations despite the presene of motion, said motion

must be modelled. The proess of modelling the motion is alled motion estimation. Given

the previous frame and the motion model, the deoder an ompensate for the motion and

produe a motion ompensated interframe predition.

Motion estimation was onsidered to be \one of the main reent developments in image

oding" in a review published in 1985[MPG85℄. A good tutorial overage is also given in

[Cla95℄. Researh in motion estimation took o� in the mid-70s and is still the subjet of

many publiations today, indiating that it is still an important problem without an ideal

solution.

To model the motion for a given pixel or image region, motion estimation generally

assumes knowledge of the relevant pixel values in the urrent frame. Therefore, motion

estimation must normally be arried out by the enoder (hene this is a forward adaptive

method). Motion estimation an be omputationally very omplex and therefore a simple

model of motion is generally used. This model limits motion to 2D translational motion

of solid objets. Other forms of objet motion, for example rotation, translation along

the amera axis and non-rigid movements, all result in redued auray of the motion

ompensated predition. Although no details will be given here, some reent work has

onsidered aÆne motion models that overome most of these limitations[Csi97, WSG99℄.

If motion is modelled only as 2D translation, then a full desription of the motion

between two frames is provided by having a motion vetor for eah pixel in the urrent

frame. Eah motion vetor (a.k.a. displaement vetor) gives a horizontal and vertial

distane from the urrent loation of an image feature, to its loation in the previous

frame. Note, it is important that the motion vetors point bakwards in time. Otherwise,

if they showed how eah element in the previous frame had moved in the time up to the

urrent frame, gaps would appear in the motion ompensated frame.

Early work on motion estimation aimed to minimize the motion ompensated residual

for a given pixel by a reursive tehnique based on gradient desent. Although popular
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for a while, pratial implementations of this method seem to have been limited by the

omputing power of the late-70's. So when a simpler method named blok based motion

estimation, was introdued by Jain and Jain in 1981[JJ81℄, it soon beame the mainstream

approah for takling motion estimation.

Blok Based Motion Estimation

In [JJ81℄ the urrent frame is divided into retangular bloks of M � N pixels. Eah

blok is then mathed against bloks from the previous frame and a distortion measure

is alulated. The bloks from the previous frame used for mathing, orrespond to the

loation of the urrent blok in the urrent frame, displaed by i pixels horizontally and j

pixels vertially. The shift that gives the minimum distortion, mini;jD(i; j), is seleted as

the motion vetor for the blok.

Jain and Jain used mean square error (MSE) as their distortion metri. Hene, using

a M �N blok size and a motion vetor range of (�k;�l), the distortion D(i; j) is given

by:

D(i; j) =
1

M �N

MX
m=1

NX
n=1

(It(m;n)� It�1(m+ i; n+ j))2 � k < i < k;�l < j < l (3.8)

where It(x; y) and It�1(x; y) range over the urrent and previous frames respetively,

relative to the position of the urrent blok. The squaring operation is often replaed

by an absolute operation, to give mean absolute di�erene (MAD) as a distortion metri.

By keeping the shift (i; j) bounded, the searh is limited to a retangular region of the

previous frame. Bounding the searh limits omputational requirements, but it fores an

assumption to be made about the maximum likely motion of an objet in a sene.

Blok based mathing is learly an optimisation tehnique. As it has been desribed

thus far, the method onstitutes a full searh approah. Many alternative searhing strate-

gies have been suggested to lessen the searhing e�ort[JJ81, LL97℄. We will onsider two

suh shemes here.

In [JJ81℄, the logarithmi searh is introdued. It is based on the assumption that

the distortion D(i; j) inreases monotonially as the shift (i; j) moves away from the true

motion vetor. The searh is iterative and starts with the (0; 0) shift as the best estimate of

the true motion vetor. At eah iteration in the searh, �ve possible shifts are onsidered;

the urrent best estimate of the true motion vetor and four loations around it as shown

in Figure 3.1. If the minimum D(i; j) omes from the urrent best estimate, or from a

loation at the edge of the searh range, the step size is redued. Otherwise, the shift

giving the minimum D(i; j) is hosen as the best estimate for the next iteration. The

algorithm terminates when the best estimate for the motion vetor is found to give the

least D(i; j) and the step size has reahed a minimum threshold.

There are many other fast motion estimation algorithms given in the literature[LF96,

OA97℄. On example is the three-step searh. It is very similar in priniple to the logarithmi
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Stage 1

Figure 3.1: An example of the logarithmi searhing strategy for blok based motion

ompensation. An initial step size of 4 is used, along with a minimum step size of 1. The

displaement that yields the lowest distortion at eah stage is shown in red. The algorithm

terminates on the fourth stage beause the step size has reahed the minimum and the

urrent best estimate has the lowest assoiated distortion. The �nal motion vetor is (-2,0).
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searh. The di�erenes are that eight neighbours, rather than four, are used around the

best estimate and that the step size is redued at eah iteration regardless of where the

minimum D(i; j) was found.

Although these heuristi searhing methods redue the omputational burden of motion

estimation, they do not guarantee to �nd the optimum motion vetor 1. Given modern

omputation power and the potential for parallelising the searh with suitable hardware,

full searh is often the preferred optimisation strategy.

Another speed up that is frequently used is to perform a simple zero motion test. The

distortion D(0; 0) is alulated and if it is found to be below some threshold, it is assumed

that there is no motion in the blok. However, this may ause problems if there is very

gradual motion in a sene.

In theory there is no reason why the shifts (i; j) have to be integer shifts. Greater

auray is obtained by allowing non-integer shifts, although interpolation of the referene

frame is needed. A ompromise that is sometimes used is to allow half pixel resolution,

thus limiting the set of ases that an interpolation algorithm must deal with.

Blok based motion estimation is often ritiised as being \brute fore and ignorane".

However, an alternative view is that it is founded on sound priniples, but sari�es some

intelletual nieties for performane. It is often noted that objets in motion tend to have

uniform motion over their extent. E.g. All pixels in a ar traversing the sene will have the

same motion vetor. Therefore, it makes sense to estimate motion of regions of the image.

Dividing the image into retangular bloks is a rude segmentation, but allows simple

implementation. Reent work on region based motion estimation, employing sophistiated

segmentation tehniques, will not be overed here but an be found in [BM97, Csi97, DD99℄.

A more problemati limitation of blok based mathing is that the motion vetor found

is bound by the limits of the searh and only represents the optimum vetor aording to

the distortion metri; that is, it may not represent the true motion of the blok. A lassi

example of this last point is a large moving objet with a uniform interior. Beause the

interior of the objet is uniform, blok based mathing will not detet motion there. Only

the motion at the edges will be found. These fators an be alleviated by hierarhial

methods.

Hierarhial Motion Estimation

By starting with a large blok size and a oarse motion vetor resolution, hierarhial blok

mathing for motion estimation an model large sale motion[Bie88℄. This is ahieved

without the massive burden of using a large searh spae at a �xed resolution. The blok

size and motion vetor resolution are progressively redued until 1 pixel (or half pixel)

resolution motion estimates are available for bloks of a small size. At eah stage, the

motion estimates from the previous level are used as a starting point for further estimation.

A more sophistiated tehnique that uses a multilevel image pyramid, is presented

1Note, even the motion vetor found by full searh is only optimum with respet to the distortion

metri used.
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in [WC90℄. A three level pyramid is onstruted, where the bottom level is the original

image. The bottom level is split into 4 by 4 pixel bloks. Eah pixel in the next level up

represents the average of the orresponding blok in the bottom level. The top level is

onstruted from the middle level in the same fashion as the middle level is onstruted

from the bottom level.

The urrent and referene frames are eah onverted to this pyramid representation.

Initial estimates for the motion vetors at the top level are found by diret mathing of

elements. The mathing riteria is the math with the least absolute di�erene. A range

of �1 is used for both horizontal and vertial omponents. This range orresponds to a

range of �16 in the original image.

For the middle level, the motion estimates from the top level are used as starting

estimates. These estimates are again re�ned by diret mathing, but this time the range

is �2. This proess is repeated for the lowest level, giving motion vetors for every pixel.

The results presented in [WC90℄ show that the entropy of the motion ompensated

residuals generated with the pyramid based motion estimates were far lower than those

using a pel-reursive motion estimation sheme.

However, as the authors note, it is impratial to transmit suh a dense motion �eld to

the deoder. They present a pratial video oder based on their pyramid representation.

The di�erenes between the top levels of the urrent and previous frame pyramids are sent.

This allows the deoder to perform top level motion estimation. Using the motion vetors

alulated, the deoder an perform motion ompensation to predit the middle pyramid

level. This allows only the motion ompensated residuals for the middle level to be sent.

Motion estimation is arried out based on the middle level and those motion estimates

are used to motion ompensate the lowest level. One more set of motion ompensated

residuals is then sent. Note, motion vetors need never be sent to the deoder.

Although the pyramid based sheme seems useful for motion estimation, the test re-

sults for the ompression sheme mentioned above showed almost no improvement over a

hierarhial blok mathing based sheme.

Transmission of Motion Vetors

As motion estimation is generally a forward adaptive tehnique, the enoder must transmit

the motion vetors found by motion estimation to the deoder. This leads to various

ompromises. It might seem ideal to have an aurate motion vetor available for every

pixel. However, the data requirement for the motion vetors would easily outweigh the

bene�ts of the aurate motion vetors. Thus hoosing a motion �eld density (blok size) is

important. Also, the auray of motion vetors must be taken into aount. For example,

half-pixel auray motion vetors allow better motion ompensation, but enlarge storage

requirements for the motion vetors.

One blok size and motion vetor auray have been deided, the raw data rate for

the motion vetors is easily alulated. However, we expet aurate motion estimates to

show some orrelation over the frame. Consequentially, di�erential (or preditive) oding of
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the horizontal and vertial omponents of the motion vetors seems appropriate. However,

the literature seems divided on the issue. A study in [CP89℄, reported in [Cla95℄, suggests

that two-dimensional oding of single motion vetors is better than di�erential oding.

However, more reent work suggests an alternative onlusion. For example, in [HP99℄ a

multi-sale motion �eld is eÆiently enoded via predition and ontext based modelling.

3.2.2 Pratial Video Coding Shemes

Although all major video ompression standards are lossy, it is useful to observe how

they operate. We shall briey onsider the Moving Piture Experts Group (MPEG)

standard[MPFD96℄.

MPEG has three primary types of frame, Independent, Predited and Bi-diretionally

predited frames. The basi features of these frame types are:

� I frames: Intraframe oding is used for all bloks. Lossy oding, via quanitsed DCT,

is used.

� P frames: Frame is predited by motion ompensation, using the previous I or P

frame as a referene.

� B frames: Frame is predited by motion ompensation, using both the previous and

following I or P frames as referene. B frames are never used as a referene for motion

ompensation.

Motion estimation and ompensation are performed on marobloks of 16 by 16 pixels

(of luminane information). As motion ompensation an sometimes be ine�etive, for

example if an objet moves into the sene, or some bakground is exposed by a moving

objet, intra oding may be preferable to interframe oding. Thus, eah maroblok of an

P or B frame an be intra or interframe oded. The deision of whih to use, is made by

the enoder and passed on as part of a maroblok header.

The allowed range for the motion vetors and their auray (whole or half pixel) is

enoded into a per frame header for P and B frames. Motion vetors are oded di�erentially

using the vetor from the previous maroblok if available.

An MPEG sequene is omposed of one or more group of pitures (GOPs). A typial

GOP (in display order) would be: I-B-B-B-P-B-B-B-P-B-B-B-P. However, the B frames

require a P frame that is forward in time, hene the order in whih the frames are oded

must be: I-P-B-B-B-P-B-B-B-P-B-B-B. Clearly, the di�erene in oding and display order

requires an MPEG deoder (and enoder) to be able to bu�er several frames of video.

The use of I frames at regular intervals in a oded video might seem ineÆient, as these

frames do not use any interframe orrelations. However, using regular I frames provides

multiple aess points into the video stream. This removes the requirement that all previous
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frames be deoded to aess a given frame2. Fast forward and rewind apabilities are thus

enabled by the use of regular I frames.

3.2.3 Lossless Video Coding

There are surprisingly few papers in the literature regarding lossless video oding. One in

partiular that does approah the subjet is [MS96℄, whih onsiders the ompression of

olour video. This makes the paper partiularly interesting as it overs spatial, spetral and

temporal orrelations and thus is the most extended of the lossless ompression shemes

enountered so far.

[MS96℄ �rst ompares intraband, interband and interframe predition shemes indepen-

dently. They introdue 3D linear preditors, whih are generated from the original JPEG

set of preditors.

They also apply the Previous Best Preditor (PBP) tehnique, introdued by the same

authors in [MS95b℄, to video data. This means that the JPEG set of preditors are used

on the urrent pixel loation in the previous video frame. The preditor with the least

predition error is used for the urrent pixel in the urrent frame. They all this PBPTEMP

as they also use the PBP tehnique for spetral deorrelation (PBPSPEC).

Memon and Sayood note that all the temporal preditors given above fail to work well

in regions of high motion, hene they also inorporate motion ompensated predition

(using simple blok mathing estimation) into their study.

The �rst major result given is that when spetral predition is used independently, it

is by far better than either spatial or temporal predition, even for senes of low motion.

In fat from one set of results3 it ould be onluded that spatial predition was better

than simple temporal predition (i.e. exluding motion ompensation). If other researhers

enountered similar results at an early stage, it may aount for the low number of papers

on the subjet of lossless video ompression.

To get better performane, a hybrid sheme is used. Motion ompensation is used in

tandem with PBPSPEC, a single bit being set to indiate whih was used. JPEG7 is used

in the ase that neither of the aforementioned preditors is appliable. The hybrid sheme

is found to have the predition errors with the lowest entropy. The di�erene between the

hybrid sheme and the best of the non-swithing shemes was typially 1bpp.

After determining the predition sheme, error modelling was onsidered. The methods

used an be seen as a simple ontext model with eight ontexts. A variety of ontext deter-

mination algorithms were onsidered. The one that performed best, averaged predition

errors from a k � k blok in the referene olour band and then thresholded the result.

Memon and Sayood note that this method has again used spetral orrelations to great

e�et and that of all the methods in the paper, they feel the greatest room for improvement

lies with the error modelling step.

2The situation for MPEG is atually a little di�erent, as a GOP is not neessarily independent of all

previous GOPs.
3Note, results are only given for two video sequenes.
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Figure 3.2: Camera setup for a multiview system.

3.3 Multiview Imagery

So far we have onsidered imagery that ontains spatial, spetral and temporal variation.

This overs nearly the full range of human visual experiene. The only element missing is

stereo; the use of multiple images to add a feeling of depth to a displayed sene. Although

only two images are neessary to produe a stereo e�et, more images are sometimes used

to allow greater exibility, e.g. to allow multiple viewers to use a single display.

We will use the term multiview sequene for a set of images that are all views of the

same still sene, but taken from slightly displaed viewpoints. Suh a sequene would

be olleted by the ameras in Figure 3.2. When onsidering a time sequene, the term

multiview video will be used. If the number of views, whih will generally be arbitrary,

is just two, the terms stereo image and stereo video will be used instead of multiview

sequene and multiview video respetively.

A multiview sequene an be thought of as a time sequene, in whih the amera has

moved, with onstant veloity, in front of a still sene. However, a multiview video learly

has an extra dimension as ompared to standard video. Although multiview imagery has

similarity to video, it has an important di�erene. Video aims to present small move-

ments to fool the eye into seeing smooth motion over several frames. Whereas stereosopi

imagery presents a disparity large enough to enable the viewer to pereive depth.

The movement of an objet due to a hange in viewing position, is alled disparity

and is related to the distane from the viewpoints to the objet. Disparity estimation and

ompensation are the analogues of motion estimation and ompensation. Approahes to

disparity estimation are given in Setion 3.3.2. In order to get the most out of multiview

orrelations, we must onsider the struture of multiview imagery. This is best ahieved

by onsidering a ombination of apture devies and display devies.
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3.3.1 Stereosopi Display Methods and Camera Geometry

A 3D display system presents eah of the viewer's two eyes with a slightly di�erent image.

If these images represent two suitably displaed views of a sene, the observer should be

able to fuse the image pair and pereive depth within the sene. This use of separate

views for eah eye provides what is alled the binoular depth ue. Even though a single

image an ontain many depth ues (olusion, perspetive, et.), the binoular depth

ue is known to be one of the stronger ues and an help disambiguate onfusing depth

information.

There are many approahes to displaying stereo imagery. A lassi sheme uses spetral

multiplexing of a single display surfae. That is, one image is shown in red and the other

in green. A viewer with red-green �lter glasses then reeives a di�erent monohrome image

in eah eye. Other solutions use temporal multiplexing[MDTL96℄ of a single display or use

multiple displays to present multiple images.

When onsidering multiview imagery, it is worth thinking about the image soure; be

it apture by amera or generation by omputer graphis.

Given a linear set of laterally displaed ameras, there are two prinipal geometries

available; onverging or parallel amera axes. Many authors [M+93, DML97℄ have noted

the potential problems of the onverging axes ase:

� A display method utilising a single display an show distortions that must either be

orreted or su�ered by the viewer.

� The disparity of a sene feature, between adjaent views, may have a slight vertial

omponent. In ontrast, disparity is purely horizontal in the parallel axes ase.

This suggests that the parallel axes ase is generally more appropriate. However, this is

not always realised; for example all of the widely used DISTIMA test imagery was aptured

with a onverging amera pair. The onfusion surrounding this issue is evident in two

referenes from the DISTIMA group [Fra96, TGS97℄. In [Fra96℄ the vertial omponent of

disparity is said to be less than half a pixel and therefore negligible; however, in [TGS97℄

the vertial omponent is assumed to be in the range �2.
Even when the parallel axes setup is used, there is the question of whether to use on-axis

or o�-axis projetion. All the test imagery used by Harashima's group [FH94a, FH94b,

NKH96b, NH94, NKH96a℄ appears to use on-axis projetion, however o�-axis projetion

is required for display systems that share a single display sreen.

It seems likely that until a single display tehnology dominates the �eld, muh of this

onfusion will remain. In partiular, the onfusion will manifest itself as assumptions and

assertions that only hold if a partiular amera geometry is used. However, with everyone

using a di�erent geometry, referenes must be very arefully read.
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3.3.2 Disparity Estimation and Compensation

Disparity estimation has reeived a good deal of study [Fra96, RH97, MH96℄. In partiular

Franih's thesis [Fra96℄ presents muh interesting material. He gives a good review of

blok based disparity estimation tehniques. This is onluded by saying that disparity

maps generated by suh tehniques are not suÆiently aurate, due to inorret (spurious)

mathes, for use with advaned tehniques suh as view interpolation4.

A geneti algorithm is then proposed for disparity estimation. A lever hybridisation

of the usual reprodution, ross-over and mutation operations is employed to aid perfor-

mane. The resultant disparity maps are shown to be superior to those generated by blok

mathing.

The disparity spae image is also introdued in [Fra96℄, as a representation of the orre-

lations between horizontal lines from multiple viewpoints, with idential vertial position-

ing. Disparity and olusion information is relatively easily visualised by and extrated

from disparity spae images. A number of algorithms are presented for the extration of

said information. Of these, the best disparity maps ome from an algorithm that again

uses geneti algorithm tehniques.

3.3.3 Two View Stereo

Two view stereo ompression has been more widely researhed than the arbitrary view

ase. Most of the methods are lossy and inorporate some form of dispartiy ompensation

[SSMJ97, WO97, �OS93℄.

Perkins' Thesis

Of the relatively small body of work published on the ompression of stereo pairs, one of

the most fundamental referenes is due to Perkins [Per92℄. He introdues the CONCOD

(CONditional CODer) struture to desribe a sheme that �rst odes one image of the

stereo pair and then odes the other based on the �rst. An information theoreti argument

is then given, whih shows that although the CONCOD struture allows optimal oding in

the lossless ase, it is inherently sub-optimal when a degree of distortion is allowed. Perkins

follows this statement with the onession that although mostly sub-optimal, ompression

shemes based on the CONCOD struture are of pratial importane; largely due to their

relatively simple implementations.

Perkins presents two tehniques for the ompression of stereo pairs. The �rst uses a

simple blok mathing tehnique to estimate disparities between the two images. One of

the images is then ompressed, by quantisation of transform oeÆients following a DCT,

and stored together with the disparity estimates. The other image is predited, in the

transform domain, from the �rst using the disparity map (i.e. it is disparity ompensated)

and only the errors are oded and stored.

4A tehnique that uses available images to onstrut views from intermediate viewpoints, that were

not available in the original data.
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The seond tehnique involves mixed-resolution oding and makes use of a urious

feature of the human visual system. It is stated that if one image from a stereo pair is

displayed at low resolution, the brain an still fuse the pair. Furthermore, the observer

will pereive the result as being loser to the high resolution image than the low resolution

partner. This motivates a sheme that derives substantial ompression by simply sub-

sampling one image from the stereo pair, although this is obviously not appliable for

lossless oding.

Using the Worldline

A paper by Siegel et al. [SGSJ94℄ gives a fairly general introdution to the ompression

of stereo pairs and thus overs muh the same ground as Perkins' work. However, they do

introdue the Worldline5 orrelation. This onsiders a moving objet, in time displaed

left and right images. The onept being, if the horizontal motion of the objet suitably

ompensates perspetive, then the view of the objet in one image will be very similar to

the view of the objet in the other image at a future time. Unfortunately, they give no

pratial method for utilising this interesting orrelation.

3.3.4 Multiview Stereo Compression

A major study of multiview sequene ompression has been undertaken at the University

of Tokyo, under the diretion of Harashima [FH94a, FH94b, NKH96b, NH94, NKH96a℄. In

[FH94a, FH94b℄ a method is presented that redues a multiview sequene to a struture and

a texture map. The mesh struture is generated by plaing verties at points of minimum

variane in a so alled normalised objet spae. Coordinates are normalised using geometri

equations, although disparity estimation is required for the depth omponent.

With this sheme, deompression is a simple rendering operation. Furthermore, inter-

mediate views an easily be generated by rendering the data from a point between two

original viewpoints. However, as their own results show, the nature of the triangular mesh

used to represent sene struture is unable to apture omplex olusions.

Later papers [NKH96b, NH94℄ present a similar, but more sophistiated, method that

overomes some earlier problems. Firstly, a multiview sequene is subjeted to a 3D

segmentation. This is performed by giving an attribute vetor to all image points and

then partitioning the attribute spae using the K-means algorithm6. One again, the

image data is represented by a mesh struture and texture data. However, to deal with

olusions the surfaes determined by the segmentation are grouped into layers, whih are

mesh segments at partiular depths.

Although the work presented in [NKH96b, NH94℄ is very interesting, some unfortunate

details remain. Not least the fat that the grouping of segmented regions is done by hand.

Also, as in [FH94a, FH94b℄ a redution in data rate is ahieved purely by means of an

5A term that they admit to having stolen from General Relativity.
6A ommon optimisation tehnique from the pattern mathing and mahine learning literature.
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alternative representation; no omplete oding system appears to be developed. The work

arried out by Harashima's group seems to have been done in antiipation of its usefulness,

but without aess to a multiview autostereosopi display. This is evidened by a omplete

lak of human observer test results to evaluate their lossy methods.

3.4 Summary

In this hapter we have seen that preditive oding is still the preferred method for lossless

ompression of olour images, videos and multiview sequenes. Although interband pre-

ditors resemble the intraband preditors of the previous hapter, the most ommon means

of utilising interframe and interview orrelation are very di�erent. Motion and disparity

ompensation are forward preditive shemes, requiring more work for the enoder and the

transmission of extra information (motion vetors and disparity estimates).

Observing the publiation dates of many of the papers referened, indiates a reent

surge in interest for the lossless ompression of olour images. However, work on video

and multiview sequenes is less ommon. Indeed, while papers exist that onsider lossless

ompression for olour video[MS96℄ and lossy ompression for stereo video[SGSJ94℄, none

are apparent for lossless multiview olour video ompression.



Chapter 4

Approahes to Preditor Seletion

As preditor seletion mehanisms have been used to good e�et, in previous ompression

shemes (see Chapters 2 and 3) for both greysale and more advaned image types, it

makes good sense to further onsider their use here. In Setion 4.1 the use of preditor

seletion, for extended lossless image oding, is validated and a ommentary on the design

of preditor seletion shemes is given Setion 4.2.

In Setion 4.3 some novel seletion shemes using bakward adaptation are detailed

and ompared to existing methods. Setion 4.4 presents the same disussion for forward

adaptive methods. Hybridised methods are presented in Setion 4.5 and are followed by

the hapter summary in Setion 4.6.

This hapter ontains results produed by the author using purpose built software. To

have relevane, the tests were arried out using a set of imagery whih is used throughout

this dissertation and inludes images used elsewhere in the �eld. A ommentary on the

test imagery used is given in Appendix B.

4.1 Preditor Seletion as a Solution for Extended

Coding

The two previous hapters have shown a numbers of ways for prediting the value of the

urrent pixel based on spatial, spetral, temporal and interview relationships. For most

pixels two or more of these preditive options will be available and the problem beomes

deiding whih preditor to use.

Although the literature makes it quite lear that preditor seletion is bene�ial for

both greysale and olour image ompression, the ase is not well made for video and

multiview imagery. Thus it is prudent to test this basi assumption early on and to

determine whether preditor seletion has some bene�t over other more obvious ways of

proeeding.

A �xed order of preferene might na��vely be assigned to the preditors, using the most

advaned type of orrelation available. For example, we might hose to use interview

49
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orrelations (disparity estimated predition), dropping bak to temporal (motion ompen-

sated predition) when neighbouring views are not present. When temporal predition

is unavailable (i.e. an I frame is being oded) spetral predition would be used. Only

for the referene band in an I frame would spatial predition be needed. The result of

implementing suh a sheme, let us all it Na��ve1, will be onsidered shortly.

Given the results of [MS95b℄ as disussed in Setion 3.2.3, a less na��ve sheme would

use spetral predition in preferene to temporal predition. Furthermore, as we expet

there to be more disparity between two views than there is motion between two suessive

frames, the use of temporal predition in preferene to interview methods seems preferable.

This new wisdom leads to a sheme that shall be referred to as Na��ve2.

To allow the required omparison, the two na��ve shemes above are ompared to a very

simple seletive sheme. Blok Based Seletion (BBS) onsiders the sum of the magnitude

of errors from eah appliable preditor, over an 8 by 8 blok. The preditor with the

minimum absolute error is hosen for the blok. The unoded overhead of dlog2ne bits,

where n is the number of possible preditors, is inluded in the results shown in Table 4.1.

Note, further details regarding BBS are given in Setion 4.4.

The two na��ve shemes and BBS all have aess to a small set of preditors. The atual

preditors used and the reasons for hoosing them are desribed in Setion 4.2. The results

for the three shemes are shown in Table 4.1. The results given show the entropy of the

predition residuals, averaged over all bands, frames and views present in the imagery.

This means that these results should be onsidered against a raw data size of 8 bpp. This

is so even for the olour imagery that, having red, green and blue bands, might otherwise

be onsidered as 24 bpp in raw data terms.

The results in Table 4.1 learly show that even the na��ve use of extended predition

gives superior average ompression, ompared to the use of only spatial predition. The

fat that Na��ve2 generally outperformed Na��ve1, supports the omments made in [MS96℄

that spetral orrelation is stronger than temporal. However, there are exeptions to this

generalisation. For example the olour granny video, whih is omputer generated and has

partiularly high temporal orrelation, performs better with Na��ve1 than Na��ve2.

The result most relevant to the urrent disussion however, is that BBS, despite its

simpliity, yields a lower average entropy of predition residuals than either of the na��ve

shemes. This is a lear indiation that adaptive preditor seletion is preferable to a �xed

assignment of preditors.

However, there are examples where BBS is slightly bettered by a na��ve sheme (the

ats image and the tesh sequene). This implies that the slight overhead involved with

BBS may lead to ineÆieny in some ases and still better preditor seletion mehanisms

should be sought.

4.2 A Design Philosophy for Preditor Seletion

Having shown that even simple preditor seletion is worthwhile, it is now appropriate to

onsider one of the most important elements of a predition seletion sheme; that is, the
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Image Raw MED Na��ve1 Na��ve2 BBS

Colour Images

air2 6.05 4.44 4.49 4.49 4.30

baboon 7.64 6.43 6.14 6.14 6.09

ats 4.59 3.54 2.59 2.59 2.60

mpnd2 2.90 2.07 1.63 1.63 1.58

house 6.41 4.45 4.45 4.45 4.28

lena 7.27 4.80 4.58 4.58 4.56

Average 5.81 4.29 3.98 3.98 3.90

Greysale Video

laire 6.22 2.73 2.28 2.28 2.28

granny 7.20 3.53 2.64 2.64 2.40

mall 7.15 3.67 5.50 5.50 3.68

mobile 7.12 4.95 4.42 4.42 4.33

salesman 6.81 4.68 3.94 3.94 3.88

Average 6.90 3.91 3.76 3.76 3.31

Colour Video

laire 6.10 2.86 2.73 2.71 2.49

football 7.12 5.05 5.58 4.88 4.52

granny 7.27 3.52 2.57 2.98 2.18

mobile 7.02 4.98 4.47 4.20 4.06

susie 6.82 4.02 4.14 3.46 3.32

Average 6.87 4.09 3.90 3.65 3.31

Multiview

tesh 2.67 1.55 0.56 1.55 0.58

granny 7.29 3.55 3.35 3.31 2.74

skull 6.08 3.63 3.90 2.83 2.82

Average 5.35 2.91 2.60 2.56 2.05

Colour Multiview Video

granny 7.26 3.53 3.27 2.98 2.08

Table 4.1: A omparison of the entropies of predition residuals, following �xed and adap-

tive preditor usage.
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Image MED PP IF1 MC MED + PP MED + IF1 MED + MC

Greysale Video

laire 2.73 2.43 2.48 2.46 2.34 2.40 2.28

granny 3.53 2.88 2.83 2.79 2.46 2.65 2.39

mall 3.67 5.79 4.21 5.55 3.68 3.68 3.67

mobile 4.95 5.38 5.30 4.53 4.91 4.95 4.33

salesman 4.68 4.15 4.59 4.08 4.05 4.36 3.89

Average 3.91 4.13 3.88 3.88 3.49 3.61 3.31

Table 4.2: A omparison of the entropies of predition residuals, following various preditor

usage.

set of preditors that an be seleted from. It is important not to have too many preditors.

In a bakward adaptive setting, too many preditors would ompliate heuristis and/or

greatly inrease the number of ounts that need to be kept. If forward adaptation is used,

too many preditors would lead to inreased overhead for signalling the preditor seletion

made by the enoder.

Given that we wish to keep the number of preditors under onsideration low, it makes

sense to determine the best preditors available and use them with seletion shemes.

However, this proedure has its pitfalls. As an example of this, we shall onsider the ase

of greysale video. Three interframe preditors are ompared: the Previous Pixel (PP)

X̂ = Xt�1, a preditor we shall all InterFrame 1 (IF1):

X̂ =
W + (Xt�1 �Wt�1) +N + (Xt�1 �Nt�1)

2
(4.1)

and Motion Compensated predition (MC).

IF1 an be seen as taking the losest horizontal and vertial gradients in the previous

frame and applying them to the urrent frame1. This models stati regions and allows

for small sale hanges in lighting. Also, due to the averaging e�ets of the preditor, we

expet it to perform better than PP in regions of very slight motion.

Table 4.2 shows the results of applying eah of these three preditors to greysale video.

MED is also used as a referene. Finally, eah of the three interframe preditors are used

in onjuntion with MED, using BBS for swithing. Note, the �rst frame of eah sequene

is deorrelated with MED only.

The results show that IF1 performs better than PP. This would imply that IF1 would

be preferable to PP in a predition seletion sheme. Contrary to expetation however,

when used in onjuntion with spatial predition, the ombination of MED+PP is superior

to MED+IF1. This an be explained by onsidering the strong points of eah preditor.

PP does well in areas unhanged from frame to frame. Whereas in areas of motion, PP

1IF1 is atually the same as the interband preditor used in [MWSM97℄, but with the referene imagery

being the previous frame, rather than a referene olour band.
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will perform poorly and MED will be hosen instead. IF1 (due to its inherent averaging)

will do less well than PP in unhanged areas and beause it does not model motion, it

will perform less well than MED in areas of motion. Thus, despite the better individual

performane of IF1, the ombination of MED+PP is superior to MED+IF1.

This result implies that it is better to have preditors that model one type of image

region well, rather than a preditor with good average performane over all regions. This

fores us to re-evaluate many of the preditors in the literature, as these have often been

onstruted to provide good general performane rather than to model one type of region

well.

For example, when onsidering spatial predition we might think of JPEG7, whih

has been rekoned to be the best of the JPEG set[MS95b℄. The averaging property leads

to good overall performane, but makes the preditor less suitable for use in a preditor

seletion sheme.

A seond interesting result from Table 4.2 is given by onsidering the results of using

MED+PP and MC. As an be seen, the use of two simple preditors and a simple seletion

sheme gives predition performane that is superior to the omputationally more expen-

sive motion ompensation (although MED+MC provides still better predition). This

implies that extended lossless image ompression holds the potential to yield either muh

better ompression, or omparable levels of ompression with lower omputation require-

ments.

4.2.1 The Final Preditor Set

To help ompare preditor seletion shemes, it was deided to hose a �xed set of preditors

and use this set for all the following tests. This helps indiate whih preditor seletion

sheme is best and removes the need to jointly optimise preditor seletion alongside the

preditor set used.

For spatial predition, MED was hosen. Although MED has good general performane,

the preditors it uses are all very simple. W , N and W + N � NW are good models for

horizontal, vertial and plane-like smoothness respetively.

When using spetral predition, the preditor introdued in [MWSM97℄, as given in

Equation 3.4 was used. From here on, this preditor shall be referred to as InterBand 1

(IB1).

For temporal and interview predition, motion and disparity ompensated predition

were used respetively. As an be inferred from Chapter 3, these shemes are still the

subjet of ative researh. It is not the intention here to further the art in motion or

disparity estimation and thus fairly standard estimation/ompensation proedures were

used. For motion estimation, full searh blok mathing with an 8 � 8 blok was used.

Half-pixel resolution was employed and the resultant motion vetors were in the range

(�32;�32). For disparity estimation, the same basi approah was used, but onsidering

only horizontal shifts. As disparity ompensation arries less overhead per blok than

motion ompensation, a smaller blok size (6� 6) was found to be aeptable.
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It is also worth onsidering use of the previous pixel (PP) as a preditor for temporal

sequenes. Although simple, it does model stati senes very well and arries none of the

overhead of motion ompensation.

In the subsequent tests, all available preditors were used. All the preditor seletion

shemes that follow employ an order of preedene, that will beome important when

preditors give equally good preditions. This order is: MED, IB1, PP, MC, DC. One

onsequene of this is that PP will be seleted over MC in areas of zero motion in a video

sequene.

4.2.2 A Standard San Order

Just as in standard preditive oding, the order in whih pixels are proessed is an issue

for preditor seletion shemes. However, in the extended sope now being onsidered, a

one dimensional path must be found through the spatial, spetral, temporal and inter-

view dimensions of the input imagery. This learly leads to a multitude of possible san

orderings.

A simple solution to this problem is a logial extension of the raster-san ordering

mentioned in Chapter 1. Eah band in a olour image is proessed from the top left orner,

moving left to right, top to bottom, until the bottom right orner is reahed. For a olour

image, the bands are proessed in the order red, green and blue; eah band being entirely

proessed before the next is started. For temporal sequenes every frame is proessed from

the �rst to the last and for multiview sequenes every view is proessed from the left to

the right. For multiview video sequenes, all views at a given time step must be proessed

before moving to the next time step, otherwise interview orrelation would be lost.

Suh a simple solution is unlikely to provide an optimal ordering, however it has many

advantages. It provides previous values for MED based preditions and guarantees that the

entire previous band, frame or view is available as a referene for the relevant predition

operation. Also the sheme is general to all imagery types, without requiring any speial

ases.

Given these advantages, the simple san ordering mentioned above was used for all the

tests in this work. This has the e�et of removing another variable from onsideration

and thus helping the following tests fous on the nature of various preditor seletive

mehanisms.

4.3 Past Evidene

Preditive oding is based on the ideal of using information, reeived up to a given point,

to model future pixels and hene redue the information required to reonstrut future

portions of the image. The appliation of this ideal to preditor seletion yields bakward

adaptive methods and is disussed below.
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Figure 4.1: The pixel loations used for various regions with loal error based preditor

swithing. A region of size n omprises all pixels that are numbered � n. For example,

the region of size three, uses W , N and NW .

4.3.1 Loal Preditor Error

A simple bakward adaptive method that was shown to work well in [MWSM97℄, makes

use of the absolute predition error in the loale of the urrent pixel. In [MWSM97℄

the predition error in the region fW;N;NW;NEg was onsidered for both MED and

IB1. The preditor with the minimum absolute predition error in the region was hosen

for the urrent pixel. It was shown that this tehnique slightly outperformed a more

omputationally expensive tehnique based on orrelation. This latter method used the

orrelation between the urrent and referene olour bands as the swithing riteria.

Given its simpliity and good performane, it seems useful to further explore this

tehnique for preditor swithing. We will thus onsider the extension of loal error based

swithing to video and multiview imagery.

One issue that remains open is the best size for the region over whih to sum the

predition errors. It is noted in [MWSM97℄ that a region larger than four showed no

appreiable bene�t. Whether this will remain true when the tehnique is extended beyond

olour images is not lear.

To determine the best region size, a Loal Error Predition Seletion (LEPS) sheme

was implemented with varying sizes of error aumulating region. Eah region is built

inrementally, by adding one pixel onto the last. Figure 4.1 shows the pixels used; the

numbers show the size of the region in whih the pixel is �rst used.

The average redution in the entropy of predition residuals, for eah ategory of image

data, is shown in Figure 4.2. The results for olour images, whih bene�t the least from

inreasing the region size, show no signi�ant bene�t in a region size greater than four.

This is in agreement with the �ndings of [MWSM97℄.

The other types of imagery do show the bene�ts of larger region sizes. The fat that

more omplex imagery gains a greater bene�t as the region size inreases an be explained

by onsidering the number of preditors that are under onsideration. For example, olour

images an only make use of two preditors and an information gathering region of four
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Figure 4.2: The improvement of using ever larger regions for loal error based preditor

swithing.

pixels seems adequate for this. However, multiview video2 an make use of more preditors.

This implies that more information is needed for the preditor seletion deision and hene

a larger region is required.

However for very large region sizes, virtually no bene�t is seen by adding to the region.

Indeed, for olour video sequenes a drop in performane is seen. This lak of ontinuing

improvement is due to the redued loality enfored on the preditor seletor by using

a larger region to gather error averages. An obvious solution to this is to weight the

predition errors by distane from the urrent pixel. However, a sheme that weighted

eah error, based on the Eulidean distane between the error loation and the urrent

pixel, did not perform as well as the unweighted loal error preditor seletion sheme.

Determining the best value for the region size involves a trade o� between performane

and omputation time. As the region size grows, so to does the omputation required to

alulate the best preditor aording to the LEPS approah. The ompromise used for

the following tests was a region size of twelve. At this size, the results for olour images

and olour video have attened o� and little extra gains are evident from using a larger

region with other types of imagery.

2The partiularly good results for multiview video are based on just one sequene (granny). Hene,

they may not be truly representative of the performane of a LEPS system.
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Further Extending the Loale

As well as extending the area used for error aumulation, we an also extend the urrent

pixel's loale to the previous band or frame. By adding in a given preditor's error from

Xr or Xt�1 (or both) we gather more information about the loal performane of the given

preditor. This should help make a better preditor seletion deision.

Although this approah would seem to o�er great promise for olour images and video,

two main onerns arise. Firstly, in the ase of olour images, the interband preditor

an only draw on meaningful predition residuals from the previous band, from the third

band onwards. As olour images often onsist of only three bands this is something of

a limitation. However intraband, interframe and interview preditors an make use of

residuals from the previous band in all but the �rst band of a olour image.

The seond major onern relates to video. The use of residuals from the urrent

loation in the previous frame, only o�ers bene�t under the assumption of very low motion.

The information gained from suh residuals in the presene of motion maybe misleading

and lead to poor seletion deisions. Furthermore, in a similar situation to that above,

interframe preditors an not make use of interframe predition errors until the third frame

of video (the seond being the �rst for whih interframe predition is possible).

As the zero motion assumption is always false for multiview images, use of the predition

errors from the urrent loation in the previous view will not be onsidered.

The results of using loal error preditor seletion (LEPS) and extended LEPS (ELEPS)

are shown in Table 4.3. Both shemes use a spatial region size of 12, and ELEPS also uses

the error at the urrent loation in the previous band and/or frame if available. Before

disussing these results, we shall onsider a seond lass of bakward adaptive seletion

shemes.

4.3.2 Context Based Preditor Seletion

The sheme disussed in the previous setion, determines the ontext of the urrent pixel

in a simple way (average predition error for eah preditor) and then on that basis, makes

a �xed deision (use preditor with least average error). However, as seen in Chapters 2

and 3, there are more sophistiated ways to determine a ontext and more exible ways of

using the ontextual information.

One way to implement a ontext based preditor seletion (CBPS) sheme is to keep

trak of predition errors in a given ontext, for a set of di�erent preditors. For ex-

ample, onsider using an error buketing ontext determination sheme, as disussed in

Setion 2.4.1. The ontext is determined for eah preditor as before and the preditor

hosen is that with the least mean absolute error in its urrent ontext.

By olleting predition error magnitudes in a given ontext, a CBPS sheme makes

more seletive use of past information than a LEPS approah. However, this is done at the

expense of loality; the error aumulated and used for preditor seletion may be spatially

distant from the urrent pixel.
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Image LEPS ELEPS CBPS

Colour Images

air2 4.30 4.30 4.31

baboon 6.10 6.10 6.13

ats 2.59 2.59 2.59

mpnd2 1.59 1.57 1.58

house 4.29 4.29 4.32

lena 4.57 4.57 4.59

Average 3.91 3.90 3.92

Greysale Video

laire 2.32 2.31 2.34

granny 2.42 2.41 2.40

mall 3.82 3.81 3.82

mobile 4.39 4.39 4.44

salesman 3.90 3.88 3.90

Average 3.37 3.36 3.38

Colour Video

laire 2.48 2.42 2.44

football 4.54 4.51 4.58

granny 2.19 2.15 2.17

mobile 4.07 4.03 4.06

susie 3.36 3.34 3.37

Average 3.33 3.29 3.32

Multiview

tesh 0.61 0.61 0.59

granny 2.75 2.72 2.75

skull 2.86 2.84 2.87

Average 2.07 2.06 2.07

Colour Multiview Video

granny 2.11 2.08 2.11

Table 4.3: A omparison of the entropies of predition residuals, following di�erent bak-

ward adaptive preditor seletion mehanisms.
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In order to determine the potential bene�ts of CBPS over LEPS, a CBPS sheme was

implemented and the results are shown in Table 4.3. Context determination was via error

buketing and the predition errors at W , N and NW were quantised into 11 bukets as

suggested in [TLR85℄. As [TLR85℄ does not give atual quantisation thresholds for the error

buketing, the approah disussed in [LGS92℄ was used. This approah is to use exponents

of 2 as the thresholds. The justi�ation for this is that predition errors, generally having

a Laplaian distribution (negative exponential) would be expeted to equally populate

error bukets of exponentially inreasing size. The bukets used were:f�255; : : : ;�16g,
f�15; : : : ;�8g, f�7; : : : ;�4g, f�3;�2g, f�1g, f0g, f1g, f2; 3g, f4; : : : ; 7g, f8; : : : ; 15g,
f16; : : : ; 255g.

This idea of using ontexts for preditor seletion is independent of the ontext de-

termination used. Indeed, the use of the JPEG-LS ontext determination sheme[ITU96℄

along with Wu's method[Wu96℄ were also tried. However, these methods failed to o�er

any apparent advantage over error buketing in a CBPS system 3.

4.3.3 Comparing Bakward Adaptive Methods

From the results shown in Table 4.3, we an see that ELEPS produes predition residuals

with slightly less entropy than LEPS. This indiates that the extra information from the

predition error at the same loation in the previous band and/or frame is useful. The

fat that the improvement is slight might have been expeted, as the extra error or two

that ELEPS uses, are additional to the 12 predition errors LEPS makes use of. Hene,

the inuene of the extra predition errors will be small. This may suggest that inluding

extra predition errors from the previous band/frame into the aumulator might be useful.

However, this is unlikely to be the ase, as experiene suggests that the predition error

at W is better orrelated to X � X̂ than the predition error at Wr or Wt�1.

When omparing ELEPS to CBPS, we see that CBPS is unable to math the average

performane of ELEPS. Clearly, the more loal data olleted by ELEPS is more appro-

priate than the ontextual information aquired by CBPS.

In summary, extended loal error preditor seletion is the best performing bakward

adaptive method, out of the three methods disussed. ELEPS will be further built on in

Setion 4.5, when hybrid methods will be investigated.

4.4 Preditor Map Compression

If we determine the best preditor for eah pixel in an image, we an onstrut a preditor

map. If we store this preditor map during enoding, the best possible predition (given

the available preditors) is guaranteed for every pixel. This represents the ideal forward

adaptive preditor seletion sheme.

3It should be noted that all of these ontext determination shemes were designed for error modelling

and not preditor seletion.
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Figure 4.3: Left: A frame from the Claire sequene. Middle: The preditor errors for

optimal forward adaptive preditor seletion (entropy is 1.38 bpp). Right: A map of

optimal preditors (entropy is 1.41 bpp). Although the preditor residuals have very low

entropy (lower than that required to store the map!) the sum of the residuals and the

preditor map (2.79 bpp) is greater than using interband predition (2.52 bpp) in this

example.

Unfortunately, problems arise with this simplisti notion of a preditor map. For ex-

ample, as shown in Figure 4.3, the entropy of the preditor map is suÆient that when

added to the predition residuals, the total is not ompetitive with shemes already seen.

However, it is not neessary to store the predition map losslessly. In fat, it is not wise

to do so. Unlike the pixel values in an image, the values of elements in the predition map

are not neessarily unambiguous. Two preditors may be equally good in some instanes.

As a further example, onsider the ase where preditor A has been the best preditor for

several pixels in a row. Suppose that for the urrent pixel, preditor B is slightly superior

to preditor A. The ost of signalling the use of preditor B (rather than ontinuing the

run of preditor A usage) may well outweigh the bene�t of oding the slightly smaller

predition error generated by preditor B.

Clearly, shemes are needed that eÆiently store a useful representation of the preditor

map. Unfortunately, as is seen in Figure 4.3, the preditor map does not have the spatial

smoothness of an image and therefore preditive deorrelation is not an option.

4.4.1 Blok Based Seletion

By �nding the best preditor for a blok of pixels, we an form a very rude, sub-sampled

representation of the preditor map. This version of the preditor map has a storage

requirement that an be made arbitrarily low, simply by inreasing the blok size. Though

simple, Blok Based Seletion (BBS) has already be shown to outperform more na��ve

approahes to extended lossless image ompression (see Setion 4.1).

Bloks of 8 by 8 pixels were used, as they were found to work well. The best preditor

was determined to be the one that gave the least absolute error over the blok. For eah

blok the overhead of dlog2ne bits, where n is the number of possible preditors, is added

to the entropy of the predition errors to get the �nal outome. Even with four preditors,
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the overhead is only 2 bits per blok (2=64 = 0:03 bpp) although this ould be redued

slightly by oding the overhead bits depending on the statistis of preditor usage. Also,

overhead is further redued when using any form of forward adaptive preditor seletion,

as motion vetors and disparity estimates are only required for regions that use a motion

or disparity ompensating preditor. For regions where this overhead is not required, it is

not sent.

The main problem with BBS is that there is never a orret blok size. In plain regions

a large blok size would lower the overhead of forward adaptation. Whereas, in an ative

region, the extra overhead of using a smaller blok size ould be justi�ed by the improved

auray of the preditor map. These joint goals an be ahieved using quadtree methods.

4.4.2 Quadtree Preditor Map Coding

Quadtree based oding starts in the same way as BBS, only with a larger blok size. In

suessive iterations of the algorithm the blok size is halved. At a given stage, one blok

in the previous iteration overs the same area as a four bloks in the urrent iteration.

The predition error from the one blok (using one preditor) an then be ompared with

those of the four smaller bloks (using up to four preditors).

One again the least absolute error is used as the riterion for hoosing the best predi-

tor for a given blok. However, the deision to split a larger blok into its four hild bloks

is more ompliated, as extra overhead must be onsidered. If a parent blok is split into

four hildren, four preditor seletion deisions need to be enoded, rather than just one.

Also, splitting a parent blok requires that an extra four split/no split events are enoded.

This is unless the parent blok is twie the minimum blok size (hosen to be 2 � 2). If

this is so, the hild bloks annot be split and therefore those events need not be enoded.

To minimise the overhead assoiated with the quadtree, the probability of the split

deision an easily be estimated by ounting the frequeny of splits. Hene, the overhead

for a given split deision an be alulated as � log2 p(split) bits and likewise for the

alternative ase. As we expet splits to be more ommon at the top of the tree and less

ommon lower down, the frequeny ounts are reset at eah level.

To inrease the likelihood of a net gain, a larger blok is only split if the mean absolute

error of predition, of the four small bloks, is less than their parent by more than a

ertain threshold. This threshold is hosen so as to aount for the inrease in overhead,

per pixel. Negleting the overhead for the quadtree itself, the per blok overhead required

to indiate preditor seletion information is independent of blok size. Therefore, the per

pixel overhead is inversely related to the area of the blok. As we wish to ompare mean

absolute errors, rather than the number of bits of information eah would require, some

onstant will be needed to relate the preditor error to inreasing average overhead. That

is, to split a larger blok, the hild bloks must have a mean absolute error whih is less

than their parent by at least C=(area of a hild blok). Empirially, C = 2 was found to

work well.

The results of using this heuristi and a starting blok size of 32 x 32 pixels to onstrut
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Figure 4.4: Maps of optimal preditors for eah pixel (left), blok size of 8� 8 as used by

BBS (middle) and variable blok size as used by QTBS (right).

a quadtree based preditor seletor (QTBS) are detailed next.

4.4.3 Forward Comparison

The results for BBS and QTBS, along with hybrid shemes to be disussed in the next

setion, are given in Table 4.4. The ability of QTBS to selet appropriate blok sizes for

preditor seletion, relevant to the image properties, gives it only a slight advantage over

BBS. This is evident from the redued entropy of the predition residuals.

By looking at the preditor seletions made, we an gain a better understanding of

how QTBS beats BBS. Maps of the preditors seleted by both shemes are shown in

Figure 4.4. What is lear, is that QTBS used muh smaller blok sizes around the fae

area in the laire sequene; that is the area in whih the most motion ours. QTBS was

thus better able to determine whih areas would bene�t from motion ompensation.

However, Figure 4.4 also shows that QTBS often uses the same blok size as BBS. This

implies that 8� 8 is a good size for BBS to use by default, at least for the laire sequene.

4.5 Hybrid Shemes

Hybrid shemes, utilising both forward and bakward adaptation, give us the tantalizing

possibility of providing the best of both approahes. That is, �ne grain deisions and a

ertain element of foresight.

In fat hybrid preditor seletion shemes have already been onsidered in this hapter.

Although BBS is a simple forward adaptive preditor seletion sheme, by using MED for

spatial predition it beomes something else. BBS with MED is a multi-layered hybrid

preditor. The �rst layer uses forward adaptation to determine whih type of orrelation to

exploit and if spatial predition is used, the bakward adaptive nature of MED is utilised.

Another good example of a hybrid sheme is given in [MS96℄ (see Setion 3.2.3) where

forward adaptation is used to swith between motion ompensation and PBPSPEC. An

obvious extension of this, is to exhange motion ompensation for disparity ompensation,

allowing for multiview sequenes to be oded. For multiview video, a two step forward
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Forward Hybrid

Image BBS QTBS PBP+ Orale

Colour Images

air2 4.30 4.29 4.39 4.29

baboon 6.09 6.08 6.25 6.08

ats 2.60 2.59 3.11 2.59

mpnd2 1.58 1.55 1.84 1.57

house 4.28 4.27 4.53 4.29

lena 4.56 4.55 4.76 4.56

Average 3.90 3.89 4.15 3.90

Greysale Video

laire 2.28 2.27 2.27 2.31

granny 2.40 2.37 2.45 2.42

mall 3.68 3.67 3.77 3.82

mobile 4.33 4.36 4.32 4.38

salesman 3.88 3.88 3.87 3.87

Average 3.31 3.31 3.34 3.36

Colour Video

laire 2.49 2.47 2.44 2.45

football 4.52 4.51 4.72 4.52

granny 2.18 2.15 2.24 2.18

mobile 4.06 4.06 4.26 4.05

susie 3.32 3.31 3.55 3.35

Average 3.31 3.30 3.44 3.31

Multiview

tesh 0.58 0.57 1.87 0.61

granny 2.74 2.72 3.30 2.75

skull 2.82 2.80 3.15 2.85

Average 2.05 2.03 2.77 2.07

Colour Multiview Video

granny 2.08 2.04 2.24 2.10

Table 4.4: A omparison of the entropies of predition residuals, following di�erent forward

adaptive and hybrid preditor seletion mehanisms.
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adaptation proess is required. The �rst stage swithes between PBPSPEC and a om-

pensated preditor. In the latter ase, a further stage must determine whether motion or

disparity ompensated predition should be used. For the purposes of omparison, this

sheme was implemented and the results are shown in Table 4.4, under the heading of

PBP+.

4.5.1 Consulting the Orale

We an onsider bakward adaptation to be like a wise man, using past knowledge and

heuristis to guess the future. However, if the wise man is unsure of the future, he might

onsult an orale. The Orale has perfet knowledge of the future (i.e. it is a forward

adaptive proess), but only gives simple answers to spei� questions, e.g. \Whih of these

two preditors should I use?" Consulting the Orale is expensive (in terms of overhead)

and our wise man would only do so if he was partiularly unsure about the best way

forward.

What makes this senario di�erent from what has already been investigated in this

hapter, is that heuristis for the on�dene the system has in a preditor seletion deision,

are now required. Also, we must determine how the system an make good use of an orale.

The bakward adaptive shemes seen so far all onsider the mean absolute error of

the available preditors, although the methods for alulating this average vary. Although

the preditor with the minimum MAE is learly the best andidate, that with the next

lowest MAE may also be a strong ontender. The on�dene heuristis an be based on

the di�erene between the preditions of the top two preditors. If the two preditions

are lose, the deision is less important, however if they are greatly di�erent then a wrong

deision will more notably a�et ompression.

To implement the sheme, ELEPS (see Setion 4.3.1) is used for bakward adaptive

preditor seletion. If the di�erene between the top two preditors is greater than a

threshold T , the Orale is onsulted. The Orale uses forward adaptation to determine

whih of the two top preditors, as determined by ELEPS, should be used. The ost of

this binary deision is weighed up against the bene�t of a lower preditor error and T is

hanged aordingly. This aims to ensure that the orale is onsulted only as often as is

prudent.

Spei�ally, whenever the Orale is onsulted, the ost of doing so is alulated as the

information ontained in the Orale's answer, that is � log2 p(answer) bits. This is based

on the previously observed probabilities that the Orale will reommend staying with the

�rst preditor or swithing to the seond hoie preditor. If the �rst hoie preditor is

reommended, then no bene�t is gained. However, there is a bene�t if the seond favourite

preditor is hosen. The improvement gained in this ase is that the lower predition error

of the seond preditor will now be oded. As predition errors are generally distributed

as a Laplaian (negative exponential) distribution, a good estimate for the magnitude of

the advantage gained is the di�erene between the logarithms of the predition errors for

eah preditor. If the ost assoiated with visiting the Orale is greater than the bene�t
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gained, the unertainty threshold T is raised, to make visits to the Orale less frequent.

Similarly, after the urrent pixel is proessed, if the Orale was not visited, the deoder

an alulate the ost and bene�t that would have been assoiated with going to the Orale.

If the bene�t is found to outweigh the ost, then T is lowered. This aims to make visits

to the Orale more frequent in future.

It was empirially observed that a good starting value for T is 48. To avoid overly

rapid hanges in the unertainty threshold, the inrements and derements to the T are

both made in 0.1 steps.

4.5.2 Results of Hybridisation

The performane of PBP+ was very disappointing, as it was learly outperformed by

other tehniques. As the only extension applied in this work to PBP+ was the addition of

disparity estimation, the results for olour images and video parallel the results in [MS95b℄

and [MS96℄ respetively. As PBP+ is shown to be inferior to some of the other tehniques

developed here for preditor swithing, we an expet the ompression shemes so derived

to outperform those presented in [MS95b, MS96℄.

When omparing the Orale method against ELEPS (see Table 4.3), we �nd that the

Orale performs favourably for olour images, saving 0.02 bpp on the baboon image for

example. However the Orale's performane on both greysale and olour video is less

impressive. It atually inreases the entropy by 0.03 bpp for the olour versions of both

the laire and granny video sequenes. Suh losses are also seen on most of the multiview

sequenes.

It is interesting to note that the Orale shows its bene�t for olour images, where only

two preditors are employed. Therefore, if the �rst plae preditor is hosen against by the

Orale, the seond plae preditor is neessarily the best hoie. However, the other forms

of imagery utilise more preditors and hene the best preditor may be neither the �rst nor

seond plae preditors, as determined by ELEPS. Further work might produtively look

for improved methods for determined the seond, alternative preditor to be onsidered by

the Orale.

Hybrid preditor seletion shemes, as explored here, learly fail to bridge the per-

formane gap with the forward adaptive methods. Consequentially, as we ontinue to

build towards extended lossless ompression shemes, QTBS should be seen as the best

performing preditor seletor.

4.6 Summary

In this hapter we have demonstrated that preditor seletion is an appropriate method

for deorrelating image data, whether it be greysale, olour, video or multiview imagery.

A number of seletion approahes have been examined. Shemes using both bakward

and forward adaptation have been developed, as have hybrid methods using both forms of

adaptation.
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The end result, although lose, suggests that forward adaptation via a quadtree stru-

ture is the best method. This quadtree based seletion (QTBS) is partiularly able to

exploit the preditor seletion paradigm when employed against more advaned imagery

types suh as video and multiview data.

However, the fat that the performane of QTBS is nearly mathed by many of the

other shemes onsidered, suggests that these methods are approahing the limit of what

is possible with relatively simple shemes.



Chapter 5

Extending Error Modelling

The neessary next step in extended lossless image ompression is error modelling. Se-

tion 5.1 shows how a simple error model an be built for predition residuals. This is ap-

plied both globally and with ontext onditioning. To improve ompression performane,

extended ontext models are disussed in Setion 5.2.

In Setion 5.3 other tehniques often used in error modelling are explored. The nature

of bias in the residuals from a preditor seletive mehanism is ompared to that from

a standard preditive sheme. The e�et of bias anellation for extended image om-

pression is onsidered. Mehanisms for apturing extreme redundany and improving the

adaptability of ontext modelling are also disussed.

Finally, in Setion 5.4 we onsider the use of forward adaptive methods for error mod-

elling, using the shemes developed in the last hapter for preditor seletion as a referene

point. In partiular the idea of joint preditor-error model seletion shemes is investigated.

5.1 Modelling the Distribution

All the results presented so far have been in terms of entropy. The entropy has been

alulated at the end of eah band and averaged over all bands. These results assume

perfet knowledge of the distribution of errors over the band. Therefore they represent the

best possible performane, given the assumption of a �xed distribution for the predition

errors.

However, real image ompression shemes need to model the distribution of the predi-

tion errors at all times. These models are generated from statistial ounts of past errors.

The models are generally kept relatively simple and utilise as few ounts as possible. In

partiular for ontext onditioned shemes keeping down the number of ounts kept per

ontext is important, if ontext dilution is to be avoided (see Setion 2.4).

This need to keep ounts low, makes maintaining a perfet model of the error distribu-

tion infeasible. As a onsequene we might well expet real oding shemes to give results

slightly inferior to those entropy based results seen previously. However, highly adaptive

error models have the ability to adapt to hanging statistis and overome the �xed distri-

67



68 CHAPTER 5. EXTENDING ERROR MODELLING

bution assumption made by entropy measures. As suh, real ompression shemes ould

improve on the entropy based results in some ases.

5.1.1 Laplae Distributions

When onsidered globally, predition errors are generally found to be distributed as a

Laplae distribution (two-sided negative exponential) with zero mean[O'N66, HV91℄. Suh

a distribution has a probability density funtion of[HV91℄:

f�2(x) =
1p
2�2

exp

0
��
s

2

�2
jxj
1
A (5.1)

where x is a random variable (i.e. the predition error) and �2 is the variane of the

distribution. �2 depends on the ativity in the image and for e�etive ompression must

be well estimated.

The above distribution is ontinuous and in�nite. However, predition errors are dis-

rete and �nite. To overome this disrepany, we shall estimate the probability of disrete

predition errors, p(") to be:
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where P�2 is a normalising onstant given by:
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A (5.3)

where the range of predition errors is �� � " � �. Figure 5.1 shows a omparison of

the ontinuous and disrete distributions given by Equations 5.1 and 5.2 respetively.

To get a distribution for the urrent pixel's predition error, we must estimate �2. An

obvious estimate is �̂2 = E["2℄�E["℄2 = �"2� �"2. However, the Laplaian model impliitly

assumes that �" = 0, so the estimate �̂2 = �"2 will be used. The �"2 term in the equation is

brought bak in to provide bias anellation in Setion 5.3.2.

In order to alulate �̂2 it is suÆient to keep two aumulators per ontext. Namely,

Nontext the number of times the ontext has been visited and E2
ontext

the sum of all errors

squared.

Armed with an estimate for �2 and Equation 5.2, the error model an be used to

generate a probability distribution prior to the enoding of eah predition error. Using

the information theory law, that the information needed to ommuniate an event with

probability p is � log2(p) bits, the size of an optimum oding of the predition errors

(assuming the two-sided Laplaian model) an be alulated.

However, due to the neessity of alulating P�2 it is not pratial to let �2 vary

arbitrarily. A reurring idea, seen in many other works[MS95b, WSS96℄, is to use a set
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Figure 5.1: Continuous and disrete plots of the probability distribution for predition

errors, given the Laplaian model. � = 6 in both ases and the horizontal sale has been

trunated for display.

of �xed distributions. To this end, distributions with � = 0:5; 1; 2 : : : ; 255 were used and

the assoiated values for P�2 were pre-alulated. A distribution with � = 0 was not used

as this ase gives p(" = 0) = 1 and p(" 6= 0) = 0. Clearly this assumes more than an

neessarily be learned from the data!

The results of applying the error model under disussion are shown in Table 5.1. The

appliation of the model is split into two ases. Global appliation is onsidered on the left

of the table. For the purposes of omparison, the global entropy of the predition residuals

is given under the heading of Entropy. These results generally show a slight inrease in the

information ontent, indiating that the model is not a perfet �t to the data. Signi�ant

deviations will be disussed shortly.

Context onditioned appliation of the model is on the right of the table. This is the

ase generally used for lossless ompression shemes. The ontext determination sheme

used is the same error buketing sheme used for preditor seletion in Setion 4.3.2. These

results show a signi�ant gain over the global error modelling and reinfore the utility of

separating predition residuals by ontext.

It is interesting to note that in most ases, the less than perfet �t of the urrent

model would not have been notied if the seond olumn of results had not been given.

That is, the bene�ts of ontext onditioned error modelling generally outweigh the loss of

performane due to a slightly inaurate model.
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Global Context Conditioned

Image Entropy Modelled Modelled Model-B

Colour Images

air2 4.29 4.68 3.90 3.90

baboon 6.08 6.08 6.00 6.00

ats 2.59 3.05 2.03 2.03

mpnd2 1.55 3.07 2.56 1.12

house 4.27 4.28 4.15 4.15

lena 4.55 4.58 4.48 4.48

Average 3.89 4.29 3.85 3.61

Greysale Video

laire 2.27 2.42 2.17 2.17

granny 2.37 2.62 2.20 2.20

mall 3.67 3.72 3.70 3.70

mobile 4.36 4.43 4.36 4.36

salesman 3.88 3.89 3.77 3.77

Average 3.31 3.42 3.24 3.24

Colour Video

laire 2.47 2.59 2.34 2.34

football 4.51 4.59 4.33 4.33

granny 2.15 2.36 2.03 2.03

mobile 4.06 4.10 3.97 3.97

susie 3.31 3.35 3.27 3.27

Average 3.30 3.40 3.19 3.19

Multiview

tesh 0.57 2.08 1.51 1.51

granny 2.72 2.84 2.53 2.53

skull 2.80 2.88 2.58 2.58

Average 2.03 2.60 2.21 2.21

Colour Multiview Video

granny 2.04 2.18 1.96 1.96

Table 5.1: The information ontent of the images in the test set, following QTBS predition.

Several models are onsidered, inluding both global and ontext onditioned approahes.
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5.1.2 Bostelmann's Tehnique

One partiular example of where the urrent model breaks down is the mpnd2 image.

This ompound image ontains a signi�ant region of blak text (pixel value 0) on a white

bakground (pixel value 255). This leads to great many predition errors of -255 and 255.

Clearly this is not well modelled by the zero entred Laplaian!

One approah to address this problem is a simple tehnique, sometimes attributed to

Bostelmann[LGS92℄. This tehnique makes use of the fat that pixel values have a limited

range, say 0 to �. Predition errors therefore have a nearly doubled range �� � " � �.

However, this is redundant as a small example will show.

In the ase of mpnd2, where � is 255, it is aeptable to remap the predition errors

with:

"0 =

8><
>:
"+ 256 if " < �128
"� 256 if " > 127

" otherwise

(5.4)

Consequentially, if a blak pixel is predited to be white, the residual is " = �255
but "0 = 1. Having oded "0, when the deoder adds "0 to the predited value (255) the

result (256) will be out of range. The deoder now takes this value modulo the number of

allowable values (256) and gets 0 - the value for blak. This amounts to folding the tails

of the residual distribution bak into the entral region.

The results of using Bostelmann's tehnique prior to error modelling is shown under

the Model-B heading in Table 5.1. This shows a de�nite improvement in the ase of the

mpnd2 image, although all other images are una�eted. This is beause most images have

very few ases of predition errors that would be remapped by the Bostelmann tehnique.

One result that still shows a problem with the error modelling sheme used is that

of tesh. This omputer generated image is somewhat awkward. It ontains regions of

near onstant intensity that are demarated by sudden boundaries. As a onsequene,

although the preditor errors for this image are mainly entred around zero, there are

seondary peaks around the levels related to these steps in the image. Suh multi-modal

distributions are not well aptured by the Laplaian model. However, as we shall see in

subsequent setions, some additions to the basi error modelling desribed so far do work

to improve on the ompression performane for the tesh sequene.

5.2 Context Determination for Advaned Image Types

The ontext determination shemes presented in Chapter 2, use a ombination of predition

errors, loal image gradients and spatial texture to determine an error modelling ontext.

In these prior examples, the metris are alulated using only intraband information. The

same ontext determination shemes ould be used for olour images, video et. However,

at �rst glane this would seem to make no use of any interband, interframe or interview

information.
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Before further onsidering ontext determination for advaned image types, it is worth

reminding ourselves about the purpose of ontext determination. The assumption is made

that predition errors in a similar ontext, will have the same distribution. Hene, by

determining a ontext that partitions predition residuals into groups, suh that eah group

is well modelled by a single distribution, we an better model the errors. Better modelling

yields better probability estimates for error oding and hene allows better ompression.

So how an we gain additional information about a pixel's ontext from interband,

interframe and interview relationships? As we are using preditors that utilise orrelations

beyond just spatial relationships, we an gain information impliitly from loal predition

errors. This is beause a preditor only works well when the orrelation it is designed to

exploit is high. Thus, a preditor's error is inversely proportional to the loal orrelation it

is suited to exploit. For example, if there are high predition errors for a spetral preditor,

in loations loal to a given pixel in the urrent band, this implies a low spetral orrelation.

These orrelation measures an be very useful for ontext determination.

The urrent argument suggests that a standard ontext determination sheme like error

buketing (see Setion 2.4.1) would give extended ontext determination e�etively for free.

It is worth noting that the ontext of a given pixel would then depend on whih preditor

was being used for that pixel.

Alternatively, we may prefer a more expliit means of extending ontext determination.

The gradient based metri might seem promising, but it entails ompliations. A large

loal intraband gradient (e.g. W � NW ) in a greysale image would imply a relatively

high likelihood of a large predition error for the urrent pixel. However, a large interband

gradient (e.g. W � Wr) does not neessarily imply the same thing. The waveform of

the referene band might have the same shape as the urrent band (high orrelation)

but a di�erent amplitude. Hene, the important metri would be variation in interband

gradients, suh as (W �Wr)� (N �Nr).

For video the notion of gradient beomes less useful still. In areas of low motion we

expet a low temporal gradient, but in areas of motion the metri would take on arbitrary

values.

Instead of onerning ourselves with the omplexities of adapting loal gradient meth-

ods, we shall instead fous on methods utilising predition errors. Thus, we onsider

extended error buketing.

5.2.1 Extended Error Buketing

When onsidering extending error buketing, the main worry is ontext dilution. Standard

error buketing (SEB), as used in Setion 4.3.2, uses 11 bukets for eah of the three

loations (W , N and NW ) used in the ontext determination. That generates 113 = 1331

ontexts. If as part of an extension, a buket is added to the standard sheme, 114 = 14641

ontexts would be generated. This large inrease in the number of ontexts would be likely

to result in ontext dilution and therefore poor performane.

To overome this problem, the number of error bukets per loation an be redued.
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If 7 bukets are used instead of 11, the number of ontexts generated when 4 loations

are onsidered is 74 = 2401. Although this is still more ontexts than the 113 ase, it is a

signi�ant improvement over the 114 alternative.

The quantisation thresholds used for the 7 buket ase, also used the exponential ar-

gument disussed in Setion 4.3.2. However, due to the more rude quantisation, expo-

nents of 4 were used. Therefore, the atual bukets are:f�255; : : : ;�16g, f�15; : : : ;�4g,
f�3;�2;�1g,f0g, f1; 2; 3g, f4; : : : ; 15g, f16; : : : ; 255g.

It was deided to keep the three spatial loations (W , N and NW ) used by SEB in

Setion 4.3.2. In a manner similar to ELEPS (see Setion 4.3.1) the fourth loation was

hosen to be the urrent pixel loation in the previous band and if that was not available

the same loation in the previous frame. In the event that neither were available (i.e. the

�rst band in the �rst frame of a sequene) an extra spatial loation was used (NE).

This results in the same ompliations as experiened by ELEPS. Namely, interband

and interview preditors annot aess their own predition errors from the previous

band/frame until the third band or frame respetively.

A new ompliation that now arises, is related to the limited presene of motion vetors

and disparity estimates. As mentioned in Chapter 4, QTBS allows suh overhead to be

transmitted only when it will be used. As a onsequene, if motion ompensation is being

used for the urrent pixel, there is no guarantee that motion data will be available for any

of its spatial neighbours. To allow enoding without any extra overhead, this issue is solved

by using the motion information at the urrent pixel to get motion ompensated predition

errors for ontext determination. The same proess is used for disparity ompensation.

If predition errors are required from Xr, there is no problem. This is beause both

motion vetors and disparity estimates are shared over all bands of the urrent image.

The �nal instane of this problem relates to using the motion ompensated residual

from Xt�1. Again, there is no guarantee that motion information is present for the urrent

pixel loation in the previous frame. However, in the ase that motion ompensation is

being used, the motion ompensated error fromXt�1 is unlikely to be useful information, as

the feature in question must have moved (otherwise a di�erent preditor would be in use).

Hene, the predition error atXt�1 is onsidered as unavailable when motion ompensation

is being used.

An extended error buketing (EEB) sheme was onstruted as disussed above and

the results of this sheme are ompared to SEB in the next setion.

5.2.2 Comparing Context Determination Shemes

The utility of a given ontext determination sheme an be measured by the ompres-

sion performane obtained by an image oder, where the ontext determination sheme is

used to ondition the errors1. Using the two-sided Laplaian model, with Bostelmann's

1It is worth noting here that the use of ontext based entropy measures is not a good idea. This an

be done by alulating the entropy of predition errors in individual ontexts and then averaging these

ontextual entropies, weighted by ontext ourrene. However, this pre-supposes perfet knowledge of as
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Image SEB EEB GRAD

113 74

Colour Images

air2 3.90 3.86 3.84 3.88

baboon 6.00 6.00 6.00 5.98

ats 2.03 2.02 2.02 2.03

mpnd2 1.12 1.11 1.11 1.22

house 4.15 4.14 4.15 4.12

lena 4.48 4.47 4.47 4.46

Average 3.61 3.60 3.60 3.62

Greysale Video

laire 2.17 2.13 2.11 2.15

granny 2.20 2.21 2.21 2.41

mall 3.70 3.70 3.70 3.70

mobile 4.36 4.36 4.36 4.37

salesman 3.77 3.78 3.78 3.87

Average 3.24 3.24 3.23 3.30

Colour Video

laire 2.34 2.34 2.24 2.28

football 4.33 4.34 4.31 4.39

granny 2.03 2.02 2.02 2.19

mobile 3.97 3.98 3.96 4.03

susie 3.27 3.27 3.26 3.30

Average 3.19 3.19 3.16 3.24

Multiview

tesh 1.51 1.26 1.26 1.66

granny 2.53 2.56 2.53 2.61

skull 2.58 2.61 2.59 2.64

Average 2.21 2.14 2.13 2.30

Colour Multiview Video

granny 1.96 1.96 1.95 2.07

Table 5.2: A omparison of several ontext determination shemes is ahieved by onsid-

ering the information ontent of predition residuals, following ontext onditioned error

modelling. All ontext oding is based on predition residuals from QTBS.
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tehnique, as disussed in the previous setion, SEB and EEB were ompared.

The results in Table 5.2 inlude SEB-113 as used in the previous setion. SEB-74 (where

the fourth buket always uses the error from NE) is also inluded to determine whether

any ontext dilution e�ets are evident when the number of ontexts inreases from 1331

to 2401. Results for EEB are presented and to further the omparison, the gradient based

ontext determination sheme from JPEG-LS is also inluded under the heading GRAD.

The results from SEB-74 are very similar to those from SEB-113. Many images atually

show slight gains from the extra spei�ity gained by adding the fourth error buket. Only

a few images show signs of performane loss. Where performane is lost, it is not lear

whether this results from ontext dilution or the more oarse quantisation of the errors into

bukets. Whatever the reason, the use of a 74 buketing sheme seems quite aeptable.

Comparing the results from SEB-74 and EEB, we see that EEB is generally as good

as or better than SEB-74. The most notieable improvement is for olour video, where

predition residuals from the previous band or frame will almost always be available.

The ontext determination sheme from JPEG-LS, whih was also used in an interband

extension of the new standard[MWSM97℄, was unable to math the average performane of

EEB. One example of an exeption to this generalisation is the house image, for whih pre-

dition residuals are better modelled by the JPEG-LS sheme than by EEB. In fat SEB-74

performs better on house than EEB. This shows that purely spatial ontext determination

an still be the best of the available options, in some ases.

5.3 Further Contextual Considerations

In this setion we will onsider three other aspets of ontext based error oding. Namely

bias, runs and the resetting of ontextual data for addition adaptation.

5.3.1 A Di�erent Bias

Contextual bias in predition errors is the result of a systemati failure of the preditor to

orretly model some aspet of the image. In most work, a single preditor is used and

bias an be seen as a slight de�ieny in that preditor. In the urrent work, the predition

for a given pixel is the output of many preditors and a preditor seletion sheme. To

further the disussion of the urrent work, we should understand how the use of preditor

seletion a�ets ontextual bias in predition errors.

As preditor seletion shemes try to �nd the best preditor in a given irumstane,

we might expet the predition used to be superior to a non-seletive mehanism. As a

onsequene, if the preditor is better mathed to the urrent image harateristis, we

would expet the average absolute bias to be less for swithing preditor shemes.

many distributions as there are ontexts; a onsiderable amount of assumed information. Hene, ontext

based entropy measures an be wildly optimisti about the potential ompression performane of a given

method.
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Image JPEG7 MED QTBS

Colour Images

air2 7.13 6.25 3.16

baboon 5.97 6.05 3.56

ats 8.22 7.46 1.81

mpnd2 9.92 6.80 3.29

house 4.44 2.80 1.32

lena 5.70 5.21 2.62

Average 6.90 5.76 2.63

Greysale Video

laire 3.27 2.86 0.59

granny 5.72 4.99 2.48

mall 1.72 0.85 0.84

mobile 4.95 2.58 2.67

salesman 4.40 3.94 0.84

Average 4.01 3.04 1.48

Colour Video

laire 3.70 3.03 0.62

football 6.82 6.49 3.74

granny 6.12 5.83 2.13

mobile 6.28 5.69 2.43

susie 3.42 3.18 0.72

Average 5.27 4.84 1.93

Multiview

tesh 3.21 1.19 0.76

granny 6.22 5.25 2.30

skull 2.19 2.21 0.56

Average 3.87 2.88 1.20

Colour Multiview Video

granny 6.21 5.08 1.51

Table 5.3: The average absolute ontextual bias following various predition shemes. EEB

is used for ontext determination in all ases.
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To test this assumption, the average absolute2 ontextual bias is determined for a

number of predition shemes. JPEG7 will be used as an example of a simple, non-

swithing sheme. MED and QTBS will be used as examples of simple and omplex

swithing shemes respetively. Context determination is arried out by the EEB sheme

developed in the previous setion.

The results of this test are presented in Table 5.3. Eah result represents the average

absolute ontextual bias, averaged over all bands/frames in the image/sequene. These

results learly show that the ontextual bias of predition errors is greatly redued by using

more adaptive preditors, as argued above. MED shows a slight improvement over JPEG7

and QTBS redues the ontextual bias still further. The superior performane of QTBS

in this regard an be put down to its ative seletion of preditors via forward adaptation

and its greater hoie of preditors as ompared to MED.

5.3.2 The E�et of Bias Canellation

Although the use of QTBS has been shown to redue the ontextual bias in predition

residuals, it has not eliminated it. Hene, it may still be worthwhile to use bias anellation

to further improve ompression.

A fairly standard approah was taken to this problem. A ount of the sum of all

predition errors was kept for eah ontext. This aumulator, averaged over the number

of instanes of the ontext enountered up to a given point, gives the ontextual bias.

This bias is then subtrated from the predition error before oding. It is also used, to

o�set the alulation of �̂2. Bias anellation provides the �"2 that enables the estimation

of �̂2 = �"2 � �"2 as disussed in Setion 5.1.

The results from applying this atively re-entred distribution model are given in Ta-

ble 5.4. From these results, bias anellation an be seen to be worthwhile. With just

one exeption the test images showed improvement. It is interesting to ompare these im-

provements with the average absolute ontextual bias �gures in Table 5.3. The sequene

with the largest bias after QTBS is football and this same sequene shows the greatest

improvement after bias anellation (0.14 bpp). However, there is no simple trend to the

data when taken as a whole. mpnd2 also shows a large bias following QTBS, but shows

only slight improvement (0.02 bpp) after bias anellation. Alternatively, salesman has

very low ontextual bias but shows a large improvement (0.12 bpp) in Table 5.4.

From this analysis we an onlude that simple bias anellation should be inluded in

the urrent ompression approah. However, it is lear that the method used is unable to

deliver savings in proportion to the amount of bias present. Hene, further work may yet

yield improved bias anellation.

2To have meaning the absolute bias must be used. If the raw bias was averaged, positive and negative

biases would anel to leave the global, not ontextual, deviation from a zero mean distribution.



78 CHAPTER 5. EXTENDING ERROR MODELLING

Image EEB After Bias With Context

Canellation Run Mode Resets

Colour Images

air2 3.84 3.79 3.80 3.80

baboon 6.00 5.95 5.95 5.92

ats 2.02 1.98 1.90 1.89

mpnd2 1.11 1.09 0.99 0.99

house 4.15 4.13 4.13 4.12

lena 4.47 4.42 4.42 4.42

Average 3.60 3.56 3.53 3.52

Greysale Video

laire 2.11 2.10 2.08 2.06

granny 2.21 2.20 2.20 2.18

mall 3.70 3.69 3.69 3.70

mobile 4.36 4.34 4.34 4.34

salesman 3.78 3.66 3.66 3.65

Average 3.23 3.20 3.19 3.19

Colour Video

laire 2.24 2.22 2.22 2.20

football 4.31 4.17 4.17 4.15

granny 2.02 2.01 2.01 2.01

mobile 3.96 3.84 3.84 3.86

susie 3.26 3.16 3.16 3.16

Average 3.16 3.08 3.08 3.08

Multiview

tesh 1.26 1.27 1.24 0.88

granny 2.53 2.52 2.52 2.49

skull 2.59 2.53 2.54 2.51

Average 2.13 2.11 2.10 1.96

Colour Multiview Video

granny 1.95 1.94 1.95 1.94

Table 5.4: Results of bias anellation, run mode and ontextual resets.
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5.3.3 A Case of the Runs

The error model that emerges from the previous disussion is highly adaptive and aters

for a wide range of image ativity. However in some ases, for example the mpnd2 image,

more ould be done. This image in partiular ontains many areas where there is no image

ativity. That is, it ontains quite a lot of blank spae. To be oded e�etively, a model

that is parameterised to give a p(" = 0) of nearly 1 is required. However, this is very

dangerous, as when the region ends and the preditor error is non-zero the ost to ode

this transition ould be very high indeed.

In suh ases of extreme redundany, other approahes are needed. One suh approah

is to use a run mode. Suh a method is used in JPEG-LS[ITU96℄ and briey desribed in

Setion 2.5.1. When entering a speial ontext JPEG-LS assumes a run of pixels with the

same value and odes the run length. This use of forward adaptation allows the eÆient

oding of extreme redundany without the potential pitfall of enoding a large predition

error using a distribution in whih it is very unlikely.

As an alternative, we might onsider that a run is likely in any ontext for whih �̂2 is

lose to zero. For the purpose of pratiality, �̂2 < 0:5 is deemed to be lose to zero.

We must also onsider what sort of run to expet. JPEG-LS uses a spatial run of

idential pixel values. However in the urrent work, we might onsider an interband run,

for whih spetral predition yields zero error. Suh a run requires di�erent handling to

those of JPEG-LS. To make this di�erene, a run is here de�ned as a sequene of zero

predition errors, rather than idential pixel values.

If the urrent pixel is in a ontext where �̂2 < 0:5, a run an only start if " = 0.

So, instead of entering the run mode on entry to the ontext, the predition error is �rst

enoded and the run mode is only entered if " is indeed equal to zero.

If a run is present it is just as likely to extend down as it is to extend aross from the

urrent loation. Hene, it seems more appropriate to onsider a run not as a sequene

starting at the urrent pixel but as a region with the urrent pixel at the top left orner.

For the sake of onveniene the run region was hosen to be a square.

To summarise the implementation, the run mode is entered when the urrent pixel is

in a ontext for whih �̂2 < 0:5 and following bias anellation, " = 0. One in run mode,

the enoder searhes for the largest allowable n� n square, with the urrent pixel as the

top left orner, suh that all predition errors are zero in the region so de�ned. To enable

eÆient oding of the run length (whih must be at least 1), an upper limit is put on n

(32). Furthermore, ounts of the frequeny of ourrene of given run lengths are kept to

allow entropy oding of this overhead.

The onsequene of adding this run mode apability to the urrent modelling shemes,

is show in Table 5.4. As might be expeted, images with onsiderable at regions (ats and

mpnd2 ) show onsiderable improvement, while most of the other test data is una�eted.

The relatively small redution in bit rate for tesh was quite surprising as the sequene

appears to be very amenable to run oding. However, lose examination of the soure

images shows that apparently at regions are a�eted by noise. An apparently random

olletion of pixels are one grey level brighter than the majority of the surrounding region.
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These pixels will break the runs and hene redue the e�etiveness of the run oding

sheme.

Further Extension of the Run Mode

The runs that have just been onsidered are partially extended, in that they an be runs

of zero error from an interband, interframe or interview preditor. However, we might

onsider further extensions. The most obvious is to ombine runs in di�erent bands. With

this sheme a run mode would be entered if the predition errors at one loation, in all

bands, were zero

Suh a sheme would be expeted to o�er superior performane for images suh as ats

and mpnd2, where the at regions of blak and white have very high spetral orrelation.

However, the fat that this sheme assumes total spetral orrelation in at regions of the

image may well ause a drop in performane for other images.

The results in [MWSM97℄ support just suh a onlusion. When onsidering an inter-

band version of JPEG-LS, the standard JPEG-LS run mode is synhronised aross all the

bands in the image. ats and mpnd2 do indeed show modest improvements in bit-rate.

However, overall the e�et aross the entire test set used in [MWSM97℄ suggests that suh a

run mode is inferior to the original sheme used in JPEG-LS, as disussed in Setion 2.5.1.

5.3.4 Resetting of Contextual Data

One danger of the ount based statistis aumulated by the ontextual sheme urrently

in use, is that old data is always present. This long memory ould be harmful if the

ontextual statistis were to hange over time. One popular way to alleviate this is to

halve the ounts kept in a given ontext, when the ourrenes of that ontext reah a

ertain threshold. In this way the e�et of old statistis is lessened and subsequent ounts

will have a greater e�et.

This additional piee of adaptivity, also used in [ITU96℄, was added to the urrent

ompression sheme. A ontext ourrene threshold of 64 was used.

The results of using these ontextual resets are given in Table 5.4. In almost every ase

a slight bene�t is seen from the extra ability to adapt. Only for a ouple of sequenes is

the loss of the extra long term memory found to be negative.

5.3.5 Contextual Summary

We have seen how ontextual modelling of predition residuals an be aomplished in

the new environment of extended lossless image ompression. For ontext determination

a slight bene�t is seen by onsidering information from the previous band or frame. By

modelling runs of zero predition error, further advantage is made of extended orrelation.

This is beause runs an our in areas of extreme spetral or temporal orrelation as well

as areas that are spatially at.
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Although no obvious use of extended information has been made in bias anellation

or ontextual resetting, these tehniques were still found to be of bene�t in the urrently

proposed model.

5.4 Forward Methods for Error Modelling

Although bakward adaptive methods for error modelling are dominant in the literature,

having seen how well forward adaptive methods fared at preditor seletion, it makes sense

to test the appliation of forward methods to the urrent problem. The basi method is

the same as that seen in the previous hapter. That is, for eah region of the image the

best parameters (for an error model in this ase) are alulated and transmited to the

deoder.

Obviously, with suh shemes the nature of the error model is important. As the model

parameters must be sent to the deoder, a model that requires only one parameter is

favourable. Fortunately, the 2SL-B model used previously is just suh a sheme and is now

used with forward adaptation.

Previously, the bakward adaptive approahes had aess to distributions with � =

0:5; 1; 2 : : : ; 255. This is not appropriate for forward adaptation, as suh a �ne quantisation

of � would generate a large overhead for indiating the hoie of error modelling parameters

to the deoder. Instead, only eight values of � used, orresponding to the powers of two

1; 2; : : : ; 128.

Initial tests showed that the largest value of � was almost never used. Given this,

the meaning of the event � = 7 was hanged to indiate a run mode. If a run mode is

indiated, it implies that the predition errors are zero for all pixels in the region. Therefore

no further deoding is neessary for the relevant pixels.

Previously, when a quadtree struture was employed for preditor seletion, the deision

of whether to split a parent blok into its four hildren was governed by a simple heuristi.

That is, if the average di�erene in predition errors from the parent and the hildren was

less than a threshold, a split ourred. With error modelling the atual bits required to

enode the predition residuals are known. Hene the splitting deision an be made in a

way related to the atual ost of the additional overhead required if a split takes plae.

If a split takes plae, four extra split deisions will need to be enoded (unless the

hild blok size is the minimum allowed). The error model parameter will also be needed

for eah of the four hildren, but not for the parent. Estimating the ost of the model

parameter at 3 bits (8 possible values) and the ost of the split deisions at 1 bit eah, the

splitting threshold beomes 13 bits.

In order to test forward error modelling the results of QTBS followed by QuadTree

Base Modelling (QTBS-QTBM) are given in Table 5.5.
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Image QTBS-QTBM Joint QTM

Colour Images

air2 3.91 3.91

baboon 5.95 5.96

ats 1.94 1.94

mpnd2 1.06 1.06

house 4.13 4.13

lena 4.50 4.50

Average 3.58 3.58

Greysale Video

laire 2.16 2.15

granny 2.20 2.18

mall 3.71 3.71

mobile 4.35 4.34

salesman 3.87 3.87

Average 3.26 3.25

Colour Video

laire 2.34 2.32

football 4.35 4.34

granny 2.04 2.02

mobile 4.02 4.02

susie 3.30 3.30

Average 3.21 3.20

Multiview

tesh 1.11 1.11

granny 2.62 2.60

skull 2.63 2.63

Average 2.12 2.11

Colour Multiview Video

granny 1.98 1.96

Table 5.5: The results of forward error modelling.
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5.4.1 Joint Adaptation

Using separate forward adaptation mehanisms for preditor seletion and error modelling

may be somewhat wasteful. It is quite possible that regions that are well servied by

a partiular preditor would often produe residuals that �t a given error model. The

potential for gain is even greater with a quadtree based sheme, as the overhead for one of

the quadtrees an be saved if joint preditor seletion and error modelling is performed.

In essene the joint sheme works in a very similar way to before. However, for eah

region, every ombination of available preditor and error model is onsidered with the best

hoie being inluded in the output. The other di�erene is that the ost of enoding three

additional preditor seletion deisions must be taken into aount when determining the

split threshold. The exat ost of these deisions is determined by the number of preditors

available at a given time. The results from joint QuadTree Modelling (Joint QTM) are

also shown in Table 5.5.

5.4.2 Results for Forward Error Modelling

The results in Table 5.5 show that Joint QTM is slightly better on average than QTBS-

QTBM. However, the di�erene is slight and for the baboon image, the redued exibility

of having to speify preditor and error modelling parameter together for eah blok, has

had a negative e�et.

Considering the results of forward error modelling against those for bakward modelling,

as given in Table 5.4, we see that the latter is superior. Although the results for Joint

QTM are omparable to those for modelling with EEB ontext oding, the bakward

shemes gain a signi�ant advantage when bias anellation, run mode and ontextual

resets are added. Joint QTM already ontains a run mode and it is diÆult to see how

forward bias anellation ould be added without inurring intolerable overhead. A hybrid

sheme utilising ontextual bias anellation and forward adaptation of the error modelling

parameter would be interesting, but it is not lear that it would bridge the gap to the

bakward adaptive shemes seen earlier.

5.5 Summary

In this hapter we have seen that the standard two-sided Laplaian model, with the addition

of Bostelmann's tehnique, is an aeptable way to model the predition residuals from

QTBS.

The problems of extending ontext oding were disussed. A solution, Extended Error

Buketing was found to produe slight bene�ts over the standard approah. The nature

of ontextual bias in the predition residuals for swithed preditors (partiularly QTBS)

were analysed and found to be lower than for standard predition shemes. However, it

was also shown that bias anellation is still a neessary tehnique for top performane.

Run modes and ontextual resets were also added to the disussion.
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Forward error modelling approahes were briey onsidered and found to be inferior

to the bakward adaptive method based on ontext oding. Hene, it is onluded that

the best available method for extended error modelling uses the 2SL-B model, with EEB

ontext determination and also inludes bias anellation, run mode oding and ontextual

resets as desribed in Setion 5.3.
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Pratial Results

Now that all the relevant tehniques have been advaned, it is neessary to generate full

ompression shemes and therefore real ompression results.

Setion 6.1 disusses the pratialities involved in produing a omplete ompression

sheme from the tools previously disussed. Having introdued ertain pratialities, the

real ompression results are ompared against the theoretial results from the previous

hapter.

In Setion 6.2 several aspets of the developed ompression sheme are analysed. Pri-

marily this analysis onsiders the preditor usage and the overhead present in the output.

Finally, in order to have external relevane, the results presented must be ompared to

other ompression shemes from the literature. This is aomplished in Setion 6.3.

6.1 Towards a Pratial Coding Sheme

The results of the previous hapter were based on a theoretial information measure,

utilising the probability of events given by a partiular model. A pratial ompression

sheme needs an enoder as a �nal step. Of the many available oding shemes (see

Appendix A for an overview) the one that will allow the best math to the theoretial

result of the previous hapter is Arithmeti oding. This oding sheme is able to ode

symbols using a frational number of bits and is well known to approah the optimum

oding limit.

To avoid unneessary e�ort, an existing pakage was used for Arithmeti oding. The

pakage used was produed by John Danskin and is based on a Bell, Cleary, and Witten

style Arithmeti Coder[BCW90℄. It makes use of frequeny based histograms and provides

oding of symbols from alphabets of arbitrary size. The probability distributions generated

by the models of the last hapter were onverted into the required frequeny histograms

simply by multiplying all the probabilities by a large onstant (10000).

The impat of moving to a pratial enoding of the data is shown in Table 6.1. For

omparison the theoretial results from the last hapter are shown. To reap, these results

are based on QTBS followed by EEB ontext modelling, using 2SL-B. Bias anellation,

85
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Image Theory With Arithmeti Inluding Regular

Coding I-frames

Colour Images

air2 3.80 3.82 3.82

baboon 5.92 5.93 5.93

ats 1.89 1.91 1.91

mpnd2 0.99 0.99 0.99

house 4.12 4.15 4.15

lena 4.42 4.45 4.45

Average 3.52 3.54 3.54

Greysale Video

laire 2.06 2.09 2.12

granny 2.18 2.21 2.29

mall 3.70 3.73 3.73

mobile 4.34 4.32 4.35

salesman 3.65 3.68 3.75

Average 3.19 3.21 3.25

Colour Video

laire 2.20 2.22 2.24

football 4.15 4.17 4.17

granny 2.01 2.03 2.09

mobile 3.86 3.87 3.88

susie 3.16 3.19 3.19

Average 3.08 3.10 3.11

Multiview

tesh 0.88 0.85 0.85

granny 2.49 2.55 2.55

skull 2.51 2.54 2.54

Average 1.96 1.98 1.98

Colour Multiview Video

granny 1.94 1.98 2.02

Table 6.1: A omparison of theoretial results from the previous hapter against real results

using Arithmeti oding. The olumn on the right also inludes I-frame oding at regular

intervals, whih is a requirement for pratial video oding.
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run mode and ontextual resets are also used.

Generally the impat of using a pratial enoding method is very small; generally

around 0.03 bpp. This is as expeted given the near ideal nature of Arithmeti oding.

Analysis of Table 6.1 does present some anomalous results. Namely, mobile (greysale)

and tesh whih atually improve under pratial oding. The reason for this is the way

overhead is proessed. The theoretial results from the previous hapter used entropy

based measures to aount for the size of the motion vetors and disparity estimates. In

the pratial oding ase, the oding of these types of overhead is based on frequeny

ounts that are updated as progress is made through the image. As mobile (greysale) and

tesh make heavy use of motion ompensation and disparity ompensation respetively

(see Setion 6.2.1) this e�et is most pronouned for these two ases.

6.1.1 The Need for Regular I-frames in Video

In this work so far, there has been a onsious attempt to avoid making speial allowanes

for one type of imagery over another. However, video must be seen as being a slightly

speial ase. When a single image is deoded, the whole image is generally required.

Likewise multiview sequenes; two or more images[MDTL96℄ must be displayed at one to

gain a stereosopi e�et. Video however, an be meaningfully viewed in segments, rather

than requiring the whole.

As a onession to this di�erene, multiple aess points will be allowed to a oded

video sequene. To enable this, the Group of Pitures (GOP) struture of onventional

lossy video oders will be borrowed (see Setion 3.2.2). The GOP size will be the same as

MPEG's default GOP size (12). However, as lossless bi-diretional oding of video frames

has not been onsidered, the GOPs will onsist of one I frame followed by 11 P frames.

As an be seen from the results in Table 6.1, the ost of regular I-frames is not generally

exessive. Indeed, given the bene�t that is gained from multiple entry points into video

data, it seems a prie worth paying.

6.2 Analysis

In this setion we shall see how QTBS atually makes use of the �ve preditors available

to it. This is followed by a study of the overhead arried by the urrent sheme. That is,

how many bits are there that do not diretly enode predition errors.

6.2.1 Preditor Usage Analysis

We saw in Chapter 4 that QTBS is apable of produing predition errors with relatively

low entropy. Now, as an integral part of the presented ompression sheme, it is appropriate

to investigate how it uses the preditors that is has aess to.
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Table 6.2 shows the usage of the available preditors for the whole image test set.

The �gures shown give the perentage preditor usage, average over all bands, frames and

views. Note, the �gures are rounded and may not sum to exatly 100%.

For olour images we see that intraband predition is on average used more than in-

terband predition. However, it is important to note that these �gures are biased towards

intraband predition, beause that is the only predition available for the �rst band in the

image. The �rst band represents one third of the whole image data for these RGB images,

so the maximum possible usage of interband predition is 66:7%. With an average usage

of 40:7%, interband predition is used by QTBS for slightly over half of the pixels in the

blue and green bands of the olour images used for the test.

For greysale video, temporal predition is used twie as muh as intraframe predition

on average. The notable exeption to this is the mall sequene. This sequene ontains

whole sene movement and therefore PP would be inappropriate as a preditor. That MC

is not used for mall indiates that there is either a lot of interframe noise or that the motion

estimation used was unable to apture the movement in the sequene. It is possible that

a more sophistiated motion estimation sheme would hange this result.

Also of note for the greysale sequenes, is that PP and MC are on average used in

equal proportion. As mentioned in Chapter 4, QTBS will hoose PP in preferene to MC

if their predition residuals are equally small. However, PP arries no overhead and is well

used. This shows the importane of inluding it alongside MC.

Moving onto the olour video sequenes, it an be seen that the preferene for interframe

preditors is replaed by a tendeny to use interband predition. The exeption to this

generalisation is the granny sequene. granny is omputer generated and therefore has no

amera noise. It also has no global motion (i.e. amera movement). These two fators

taken together, give a high probability that a given pixel will be idential to the same

loation in the previous frame. This ensures that PP is the preferred preditor, even over

IB1. This is not the ase though for all the other sequenes (even those with no amera

movement) that are aptured by onventional means. However, this is not to say that the

other sequenes gain no bene�t from interframe predition. Indeed, mobile uses MC more

than MED.

The omputer generated versus amera aptured dihotomy is again present when mul-

tiview sequenes are onsidered. The omputer generated multiview sequenes, having

perfet alignment and no amera noise, are able to make good use of disparity ompensa-

tion. However, the amera aptured sequene skull barely uses disparity estimation at all.

Camera alignment is the most likely ause of this result.

It is interesting to note that tesh makes suh heavy use of disparity ompensation.

As has been mentioned previously, this image set ontains many strong edges in eah view.

These edges are the sort of feature that intraband preditors (even MED) �nd hard to deal

with. However, disparity ompensation is able to trak these features aross the sequene

and hene is generally the best preditor for tesh.

The results for the olour multiview video sequene granny is quite similar to the olour

video version of the same. However, disparity estimation is used and therefore shows that
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Image MED IB1 PP MC DC

Colour Images

air2 62.0 38.0 - - -

baboon 52.6 47.4 - - -

ats 66.4 33.6 - - -

mpnd2 64.8 35.2 - - -

house 64.3 35.7 - - -

lena 46.0 54.0 - - -

Average 59.4 40.7 - - -

Greysale Video

laire 18.9 - 68.3 12.9 -

granny 18.8 - 70.1 11.1 -

mall 99.2 - 0.1 0.7 -

mobile 14.8 - 3.6 81.7 -

salesman 13.4 - 24.6 62.0 -

Average 33.0 - 33.3 33.7 -

Colour Video

laire 38.5 33.2 22.5 5.7 -

football 23.0 51.1 5.7 20.2 -

granny 10.9 17.5 64.9 6.8 -

mobile 7.0 54.7 1.8 36.5 -

susie 20.4 64.3 7.1 8.2 -

Average 20.0 44.2 20.4 14.3 -

Multiview

tesh 19.3 0.0 - - 80.7

granny 19.7 25.6 - - 54.7

skull 29.8 66.1 - - 4.0

Average 22.9 30.6 - - 46.5

Colour Multiview Video

granny 4.0 13.4 62.7 3.7 16.2

Table 6.2: Average perentage of preditor usage for QTBS.
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is has some advantage over the other preditors in some ases.

In summary, all of the �ve preditors inluded are used in varying proportions by

QTBS, on the test data. That the preditors are used in di�erent proportions for di�erent

images shows the power of preditor seletion in allowing an adaptive, extended lossless

images ompression sheme with good general performane.

6.2.2 Analysis of Inurred Overhead

The presented ompression sheme has many elements that use forward adaptation. All

suh elements generate overhead that must be inluded in the output of the enoder. So

far, relatively little attention has been paid to this omponent of the output bit-stream.

In order to gauge the penalty of arrying this overhead, its ontribution to the output has

been determined.

Of the forward adaptive elements, QTBS is probably the most obvious and must trans-

mit both its quadtree struture and preditor seletions as overhead. Also two of the

preditors used require additional information to funtion. Motion Compensation and

Disparity Compensation require motion vetors (MVs) and disparity estimates (DEs) re-

spetively. Thanks to the nature of QTBS, this overhead need only be transmitted when

the relevant preditor is atually used. Finally the run mode introdued in Setion 5.3.3

also makes use of forward adaptation to gauge the size of the run region. The ontribu-

tion, in terms of bpp, to the output bit-stream of all these forms of overhead is reorded

in Table 6.3.

For QTBS, the overhead of the quadtree struture, whih is modelled on the basis of

the observed frequeny of splits at a given level, is quite small. The overhead for signalling

the preditor seletion deision, whih is done without any probabilisti modelling, is also

generally small. However, for olour video sequenes it does beome the largest single form

of overhead. A redution in the ost of this overhead ould be had by modelling based on

frequeny ounts. This would lead to an average improvement of around one hundredth of

a bit per pixel for olour video sequenes.

The overhead requirements for motion vetors and disparity estimates are related to

the usage of MC and DC seen in Table 6.2. These forms of overhead are already modelled

by frequeny ounts, but more sophistiated modelling shemes ould further redue the

overhead. One suh sheme, to use preditive oding for the MVs and DEs, is ompliated

by the fat that the information is only present when it is used. Therefore, the full set of

neighbouring values may not be present, making predition diÆult.

Another possibility is to not send the motion vetors/disparity estimates at all. The

deoder ould use neighbouring pixel values to ompute the relevant estimation and use

the result as an estimate for the urrent pixel. However, it is not lear that the savings

this would reate would balane against the potential loss that ould be made due to

less aurate motion and disparity estimations. This sheme would also have the undesir-

able onsequene that the deoder would have to expend a great deal of omputation on

estimation routines, every time the image was to be deompressed.
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Image Quadtree Preditor MVs DEs Run Mode Total

Colour Images

air2 0.0047 0.0072 - - 0.0278 0.0397

baboon 0.0059 0.0108 - - 0.0000 0.0167

ats 0.0002 0.0008 - - 0.0038 0.0048

mpnd2 0.0006 0.0011 - - 0.0248 0.0265

house 0.0065 0.0085 - - 0.0000 0.0150

lena 0.0058 0.0076 - - 0.0013 0.0147

Average 0.0040 0.0060 - - 0.0096 0.0196

Greysale Video

laire 0.0021 0.0054 0.0087 - 0.0194 0.0356

granny 0.0042 0.0110 0.0114 - 0.0039 0.0305

mall 0.0005 0.0027 0.0011 - 0.0000 0.0043

mobile 0.0066 0.0171 0.0631 - 0.0000 0.0868

salesman 0.0031 0.0078 0.0368 - 0.0006 0.0483

Average 0.0033 0.0088 0.0242 - 0.0048 0.0411

Colour Video

laire 0.0090 0.0211 0.0026 - 0.0332 0.0659

football 0.0124 0.0381 0.0141 - 0.0027 0.0673

granny 0.0057 0.0136 0.0043 - 0.0412 0.0648

mobile 0.0124 0.0343 0.0209 - 0.0000 0.0676

susie 0.0042 0.0113 0.0074 - 0.0012 0.0241

Average 0.0087 0.0237 0.0099 - 0.0157 0.0580

Multiview

tesh 0.0003 0.0011 - 0.0439 0.1140 0.1593

granny 0.0080 0.0167 - 0.0292 0.0225 0.0764

skull 0.0038 0.0062 - 0.0070 0.0420 0.0590

Average 0.0040 0.0080 - 0.0267 0.0595 0.0982

Colour Multiview Video

granny 0.0064 0.0200 0.0027 0.0108 0.0401 0.0800

Table 6.3: An analysis of the overhead inurred by the presented ompression sheme.
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As expeted, the overhead assoiated with the use of the run mode is diretly related to

the presene of at regions in the image. Frequeny ounts are already employed to model

this overhead and it is not lear that substantial bene�t ould be gained by an alternative

modelling sheme. Probably the best way to redue overhead in this ase is to put more

stringent limits on when the run mode is entered. This would ut down the number of

overly small runs that were enoded.

In summary, although the overhead from forward adaptive elements of the proposed

ompression method an never be wholly eliminated, redutions ould be made by further

modelling. Given the level of modelling already employed, it is not obvious that substantial

gains ould be made; any gains would most likely beome apparent for the more omplex

imagery types, whih urrently arry more overhead than the simpler types.

6.3 External Comparisons

The ulmination of the work desribed so far, is a Generalised, Extended Lossless Image

Compression sheme, whih shall now be referred to as GELIC. In order to put this into

a useful ontext, it is neessary to ompare the results presented with other shemes from

the literature.

An obvious benhmark is JPEG-LS, the new JPEG standard for lossless image om-

pression. The ompression results for JPEG-LS, given in Table 6.4, were generated with

the LOCO-I/JPEG-LS software (v1.00) provided by Hewlett-Pakard labs1. The default

parameters were used in all ases.

Comparing the results from GELIC and JPEG-LS, we see that the latter is beaten on

every test, exept mall. The poor performane of GELIC on mall an be related to the

negligible use of extended predition used for this sequene (99.2% MED usage, 0.8% PP

and MC).

In general GELIC shows superior results to JPEG-LS. This is espeially true for the

olour video and multiview sequenes. For tesh the �le size generated by GELIC is less

than half that required by JPEG-LS.

Taking olour video as an example, the 0.66 bpp improvement that GELIC provides

may not seem a revolutionary amount. However, with many millions of pixels in even a

short olour video sequene, this bene�t soon beomes large in real terms.

6.3.1 Other Extended Shemes

As the urrent work makes use of extra orrelations, that are not onsidered in JPEG-LS,

the previous omparison may seem unfair. To ensure a fair omparison, GELIC should also

be weighed up against shemes whih have purposely been extended to onsider more than

just intraband relationships. As the majority of suh shemes have only been developed

for olour images, only this part of the test set will be used in the omparison.

1Available at http://www.hpl.hp.om/loo/loodown.htm.
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Image GELIC JPEG-LS

Colour Images

air2 3.82 4.11

baboon 5.93 6.17

ats 1.91 2.61

mpnd2 0.99 1.32

house 4.15 4.19

lena 4.45 4.54

Average 3.54 3.82

Greysale Video

laire 2.12 2.32

granny 2.29 3.18

mall 3.73 3.61

mobile 4.35 4.66

salesman 3.75 4.39

Average 3.25 3.63

Colour Video

laire 2.24 2.46

football 4.17 4.80

granny 2.09 3.11

mobile 3.88 4.69

susie 3.19 3.77

Average 3.11 3.77

Multiview

tesh 0.85 2.05

granny 2.55 3.14

skull 2.54 3.17

Average 1.98 2.79

Colour Multiview Video

granny 2.02 3.12

Table 6.4: A omparison of the presented sheme versus the JPEG-LS standard for lossless

image ompression.
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Image GELIC I-JPEG-LS I-CALIC San

Colour Images

air2 3.82 3.90 - -

baboon 5.93 - - -

ats 1.91 1.92 1.81 -

mpnd2 0.99 1.05 0.92 -

house 4.15 - - 4.35

lena 4.45 - - -

Table 6.5: Comparison of the presented method with several ompression shemes in the

literature.

The extended version of JPEG-LS and CALIC are good ontenders. These shemes

are referred to as I-JPEG-LS and I-CALIC respetively in Table 6.5. As exeutables for

these methods are not publily available, the results presented have been taken from the

relevant papers (I-JPEG-LS[MWSM97℄, I-CALIC[WMC98℄). These papers, being pub-

lished during the ourse of the urrent investigation, are ertainly ontemporary with the

presented results in this work. Also inluded in Table 6.5 is a result from the san-based

method[MS95b℄ desribed in Setion 3.1.3.

All of the methods used for omparison have been developed with the intention of

ompressing 3 or 4 band olour images; primarily RGB and CMYK. However, the driving

fore behind the urrent work has been to aommodate all natures of imagery with an

uni�ed ompression sheme. As suh, the other methods might be expeted to have a

slight advantage for olour images.

However, the results in Table 6.5 show that GELIC is able to produe superior om-

pression to some of the shemes aimed spei�ally at olour images; although I-CALIC

is not beaten. In partiular, the superior performane of I-CALIC on the mpnd2 image

ould be due to a speial binary mode in I-CALIC, aimed spei�ally at suh images.

Results for olour video ompression are presented in [MS96℄, using the susie and

football sequenes. However, a omparison is made diÆult as these results are presented

as a graph of bit-rate against frame number. However, it is worth noting that the results

for GELIC presented in Table 6.4, whih are averaged over all frames inluded in the

sequene, are less than the minimum bit rate reported in [MS96℄.

6.4 Summary

Based on the tehniques disussed in the previous hapters, a onrete ompression sheme

named GELIC has been generated for the lossless ompression of all forms of imagery in

the test set. Analysis of the sheme shows that the �ve preditors inluded, are all well

used by di�erent items of test imagery. Furthermore, the amount of overhead present in the

sheme was determined. Although not generally exessive, this overhead ould be further
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attaked, by more sophistiated modelling, to yield better ompression performane.

A omparison with the new lossless standard JPEG-LS showed that GELIC o�ers lear

improvements over standard lossless shemes. A omparison with approahes designed

spei�ally to handle olour images showed GELIC to be omparable, but not the best, of

these reent developments. However, when ompared to the only known sheme for olour

video ompression, the results from GELIC were found to be superior.
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Chapter 7

Further Work

In the previous hapters of this dissertation, we have seen a thorough study of how lossless

image ompression an be extended. Extra ompression has been obtained by making use

of the additional orrelations present in olour images, video and multiview imagery. The

novel methods presented have been shown to have advantages over existing approahes.

However, it would be unreasonable to suggest that no further improvements an be made

in the �eld of extended lossless image ompression.

Setion 7.1 details some extensions to the work presented so far. Setion 7.2 arefully

onsiders an orthogonal step in extending lossless image ompression; the use of error

resilient oding methods.

7.1 General Improvements

Many possible improvements to the urrent work are apparent. Indeed, some have already

been mentioned, suh as ways to redue overhead in Setion 6.2.2. The following three

ideas are interesting avenues for subsequent work.

7.1.1 In the Same Context

QTBS was hosen as the preferred preditor seletion mehanism, as it was the best of

those onsidered in Chapter 4. However, in Chapter 5 ontext based methods were found to

be superior to the use of quadtree based error modelling. Therefore the sheme presented

in Chapter 6 requires the handling of both a quadtree struture and a ontext model.

Given the results in Chapters 4 and 5, it is lear that the advantage of ontext oding

over quadtree based error modelling, is larger than the bene�t of using quadtree based

preditor seletion instead of ontextual methods. Hene, a uni�ed sheme based on on-

textual preditor seletion and error modelling would yield an e�etive enoding sheme

with a more simple implementation than the sheme presented in Chapter 6.

When onsidering suh a sheme, it seems likely that it would have performane at

least omparable to that given in Chapter 6. It might perform slightly worse, as it uses a

97
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preditor seletion sheme that is generally inferior to QTBS. However, some bene�t may

be gained by using the same ontext for predition seletion and error modelling.

Another modi�ation that ould be made is to keep separate ontextual ounts for

eah preditor. This tehnique was shown to give a small improvement in the interband

extension of JPEG-LS[MWSM97℄. However, this e�etively multiplies the number of on-

texts by the number of preditors. While a slight bene�t was seen for olour images with

two preditors in [MWSM97℄, it is not lear that similar gains would be given by using

the tehnique for olour video, or multiview sequenes, whih make use of many more

preditors.

7.1.2 Expanding the Test Set

Although this work has onsidered a larger set of test imagery than is usual, more ould

be done to better haraterise the general performane of the methods presented. Hyper-

spetral satellite images and medial time sequenes are partiular examples of types of

imagery missing from the urrent test set. Further study with these and other additions

to the test set ould produe interesting results.

7.1.3 Keeping it Simple

One appliation of the urrent work is to arhive �lm libraries. Greysale and olour video

ould be eÆiently and losslessly stored using the tehniques desribed in previous hap-

ters. However, these tehniques have ahieved extra ompression, over standard greysale

ompression tehniques, at the expense of some extra omputational omplexity, whereas

a more simple approah ould have advantages.

A video arhive is likely to be enoded one and deoded many times. Furthermore,

suh a system would learly bene�t from the ability to deompress the arhived video

at full frame rate and this in turn would be made most onvenient by a sheme with a

omputationally simple deoder. The parts of the deoding proess that add the most

omputational load are motion ompensation, ontext oding and Arithmeti oding. By

eliminating or replaing these elements, the goal of fast lossless playbak of video ould be

realised.

It was shown in Setion 4.2 that the ombination of MED and PP are superior to MC

by itself and only a little behind MED ombined with MC. Therefore by using PP instead

of MC, some ompression performane is traded for extra deoding speed.

To simplify the error modelling and oding stages, we ould onsider using a forward

adaptive modelling sheme with Golomb-Rie oding (see Setion 2.5.1). In was shown

in Chapter 5 that forward adaptive methods are inferior to bakward, ontext adaptive

methods. However, without the overhead of ontext determination and ount keeping, a

forward adaptive method an o�er less omputational omplexity for the deoding proess.

The preeding ideas were ombined to good e�et in a sheme presented in [Pen99b℄.

A blok based adaptive method was used to jointly selet preditors and error model
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Figure 7.1: A single bit was arti�ially ipped half-way through the �le produed by a

GELIC enoder. The disastrous e�et of the error on the deoded image an be learly

seen.

parameters. The available preditors were MED, IB1 and PP. The resulting ompression

was shown to be superior to JPEG-LS in almost all of the sequenes ompared (football

being the notable exeption), although not as good as the results presented in Chapter 6.

Not only does the sheme presented in [Pen99b℄ generally o�er superior ompression

ompared to JPEG-LS, it has the potential to o�er faster deompression, as it does not have

the overhead of managing ontextual information. This suggests that useful further work

ould look at simple extended lossless ompression shemes that o�er superior ompression

and deoding speed ompared to modern lossless greysale ompression.

7.2 A New Diretion - Error Resiliene

All of the ompression shemes disussed so far are designed to operate in a noiseless

environment. That is, they require the deoder to reeive exatly the data that was sent

from the enoder. If a single bit is mis-sent, a lossless deompression will not our. In

fat, even a single bit error an have a dramati e�et, as shown in Figure 7.1.

Hardware is neessarily imperfet and therefore the e�et of errors must be handled.

This is normally done transparently by the network or storage system being used. In the

simplest ase, an error deteting hek sum aompanies the data. The reeiver alulates

a hek sum from the data reeived and if that does not math the heksum sent, the

data is requested again. More advaned shemes use Forward Error Correting (FEC)

odes[PW72℄. These introdue some redundany into the data suh that the original data

an still be retrieved if a small number of transmission errors our.

However, re-reading data is not always produtive; for example if storage media is

physially damaged. Also the appliation of FEC odes, while generally an exellent

solution, may not always be e�etive. To be e�etive it would be neessary to know

the error rate of the hannel in advane. If the error rate is not known, or is variable,

then the error protetion will either be too strong (poor overall ompression) or too weak
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(hroni image orruption).

In theoretial terms this is not a problem with a lear solution. Compression aims

to remove redundany, but redundany is needed to mitigate the e�ets of transmission

errors. The orret balane between ompression and robustness to errors will generally

depend on the appliation involved. For example medial imagery and images beamed

from far beyond Earth may require speial onsideration!

Previous researh on error resilient ompression has often onsidered lossy video oding

[YNL97℄. In this ase re-transmission would ause objetionable pauses in playbak and

in any ase would not be appliable for broadast appliations. Furthermore heavy FEC

oding is generally unaeptable due to the additional bit-rate it would require.

Error resilient lossless image ompression ould be useful for many appliations, suh

as arhiving and remote sienti� investigation. In the absene of error, lossless deoding

would be ahieved. However, in the presene of error the system would o�er a best-e�ort

deompression, yielding an image lose to the original. Although the deompression is not

lossless when errors have been introdued, it is hoped that the output of an error resiliene

lossless deoder would be signi�antly better than that of normal shemes, as exempli�ed

in Figure 7.1.

By onsidering the e�ets of transmission errors in the ontext of lossless image om-

pression, a better understanding an be gained of the issues that must be addressed to

enable error resilient lossless image ompression. Furthermore, the range of options to

takle the problems of transmission errors an be appreiated.

7.2.1 Lossless Compression Tehniques and Transmission Errors

In Chapter 2, the notion of a lossless ompression sheme as a ombination of mapping,

modelling and oding was introdued. We shall now onsider the e�ets of transmission

errors on eah part of the ompression proess. As this proess is inherently sequential, an

inorretly deoded pixel an lead to problems for all following pixels. Hene, there will

be a partiular fous on ways in whih a single error an propagate to a�et the deoding

of many pixels.

Image Mapping

If a transmission error has aused a pixel value to be inorretly deoded, any predition

based on that pixel will lead to error propagation. This is partiularly disastrous if a

preditor suh as MED is used. As MED uses W , N and NW for its predition, any pixel

deoded in error an propagate this error to all pixels below and to the right of the initially

a�eted pixel.

A solution to this is to re-synhronise the preditor by sending raw pixel values at

prede�ned intervals. For example, if the �rst pixel in every row is sent in raw format and

if W is used as the predition for X, transmission errors an only propagate to the end of

the urrent row.
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(i) (ii)

Raw pixel value

Correctly decoded pixel

Initial transmission error

In error due to propagation

Figure 7.2: (i) MED is used for predition throughout and a single transmission error

propagates to all pixels below and to the right of the originally a�eted pixel. (ii) MED

and W are used for predition on alternate lines (top line MED). An error ours when

W is being used and this propagates to the end of the line. The following line uses MED,

whih onsults the line above and hene the error ontinues to propagate. The fourth line

shown uses W and hene no further error propagation ours.

However, the performane of using W is muh lower than MED. As a ompromise we

ould onsider usingW and MED as preditors on alternate lines of the image. A line using

W as the preditor would prevent the downwards spread of mis-preditions due to errors

that MED would allow, as illustrated in Figure 7.2. By varying the ratio of lines using

W to lines using MED, the degree of error propagation an be traded against predition

performane.

Another solution to this problem, as presented in [MKC97℄, is to split the image into

small retangular regions. Preditors are then employed that only use previous pixel values

from inside the urrent region. This ensures that an inorretly deoded pixel an not ause

error propagation outside of its region.

Another issue with the raster-san based predition that has been pursued earlier in

this work, is that of data trunation. If only half the data is reeived, only the �rst half

of the image an be deoded. An alternative is to use a hierarhial image representation

that allows for progressive transfer. In that way a low resolution representation of the

whole image ould be had if some fration of the original data were reeived. One suh

representation is the S+P-Transform mentioned in Setion 2.6.2.

Another e�et of using a hierarhial image representation is that errors no longer

propagate spatially, instead they propagate to lower levels of the representation. This an

be used to good advantage if the deoder has some error detetion apabilities. If an error

is deteted, no further deoding of any a�eted pixels should take plae. This means that

an error results in a region that is only deoded to a oarse resolution. This would seem to

have advantages over a region that is left blank or ontains artefats aused by the initial

error.

Modelling

As was shown in Chapter 5, ontext based modelling of predition errors is highly e�etive

for lossless oding. However, ontext determination depends on pixels loal to the urrent
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loation and if one of those pixels had been erroneously deoded, an inorret ontext

determination ould take plae. Furthermore, ontextual statistis depend on a potentially

large, disonneted set of previous pixels. A pixel deoded in error would ompromise these

statistis for all subsequent pixels in the same ontext.

These issues are very serious and indiate that ontext based modelling is not a teh-

nique that is appliable to an error resilient appliation of lossless image oding. An

alternative is to use forward adaptive error modelling. This approah removes any depen-

dene on the orret deoding of all previous pixel values. However, the error modelling

deision of the enoder must somehow be proteted during transmission if this sheme is

to be robust.

As shown in Chapter 5, forward error modelling performs less well than ontext od-

ing. However the di�erene in performane is not large enough to outweigh the possible

advantages, as mentioned, in an error resilient appliation.

Symbol Coding

A transmission error will obviously ause the predition residual involved to be deoded

inorretly. Worse still, it may ause the symbol oder to lose synhronisation. That is, it

may read too many or too few bits from the inoming bit stream. As a onsequene, when

it starts to deode the next symbol, it will be starting from the wrong plae in the input

bit-stream and another inorret deoding is almost ertain.

Clearly there is a large potential for error propagation in the symbol oding stage.

Unfortunately, it is a onsequene of using self-terminating, variable length odes. Al-

though using a system based on �xed length odes would alleviate the issue, ompression

performane would fall as a result.

To solve this problem, the image ompression sheme needs to be able to re-synhronise

the deoder in the event of an error. This an be ahieved by dividing the predition

residuals into regions. For eah region an index into the bit-stream is then provided, in

some robust manner. The deoder an then be sure of starting eah region of residuals

from the orret plae in the input bit-stream.

As desribed, this solution requires extra overhead for the re-synhronisation indies.

As these must be sent robustly, they will require some form of FEC oding to protet them.

However, other solutions to this problem have been proposed, suh as the Error Resilient

Entropy Coder (EREC)[RK96℄ that manages this re-synhronisation with pratially no

overhead at all.

7.2.2 Possible Solutions

By onsidering the disussion above, an initial design for an error resilient lossless image

ompression sheme an be formulated. Hierarhial image representations have been

shown to have advantages over standard preditive mapping methods and so the S+P

Transform (Setion 2.6.2) makes a good hoie for the mapping stage. The error modelling

an be aomplished with a forward adaptive, blok based sheme that is very similar to
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Figure 7.3: Left: The medial image t deoded over a noisy hannel. Right: The proposed

sheme marks regions known to be deoded only to a oarse resolution due to errors in

transmission.

the quadtree modelling desribed in Setion 5.4. By using suh a sheme, the residuals

from the S+P Transform are partitioned into bloks, whih an also be used for the re-

synhronisation of the oding stage.

Eah blok requires a header that ontains the length of the blok (so the start of the

next blok is known to the deoder) and the error modelling parameter hosen by the blok

based error modelling method. To ensure robustness, the header for eah blok must be

proteted by FEC oding.

An implementation of the above sheme was presented in [Pen99a℄. Golomb-Rie odes

were used for the symbol oding stage and Golay odes[PW72℄ were used for the FEC

oding. Error detetion was based partly on whether the deoder used the orret number

of bits when deoding a blok and partly on parity bits inluded in the blok header.

The ompression obtained was found to be omparable to LJPEG, but inferior to

JPEG-LS. The error detetion was used to prevent deoding of both information found

to ontain transmission errors and any subsequent image data that depended on error

ontaminated data. As a result, pratially no image artefats related to noise were ob-

served; transmission errors instead resulted in regions that were deoded to only a oarse

resolution. Figure 7.3 shows an example of this.

While the results of this work were promising, it was found that at the error rates for

whih the above sheme returned a reasonable image, a onventional lossless image oder

followed by FEC oding was generally able to o�er lossless deoding at roughly the same

bit-rate. Clearly further work will be required if this gap is to be bridged.
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7.2.3 Further Extensions

Making progress towards an extended lossless image ompression sheme that is error

resilient, is likely to be diÆult. The methods disussed earlier in this work for exploiting

spetral, temporal and interview orrelations, alongside spatial redundany, neessarily

inrease the potential for error propagation. For example, an inorretly deoded value

an now lead to pixels in the same band and future bands, frames and views all being

inorretly predited.

One solution to this would require an extended hierarhial representation. Armed

with a representation that enabled multiple resolutions in the spatial, spetral, temporal

and interview dimensions, the approah disussed above ould be employed.

However in the event of data trunation, some appliations may prefer to have some

regions at high resolution, than to have the whole image at a potentially lower resolu-

tion. For example remote sensing appliations may require the full resolution of the image

data in order to identify ground based features from spae. Another example is digital

doument storage; where in the event of an error, it would be better to have most of

the text legible rather than all of the text at an unreadably low resolution. Suh high

resolution data sets are often very large and previous researh has onsidered ways to

provide multiple aess points to suh imagery, hene allowing image fragments to be in-

dependently deoded[AF97℄. If the meta-data required to provide these multiple aess

points is stored with FEC oding, then the same aess points an also provide means for

re-synhronisation in the event of error. If this is oupled with error detetion, to signal

image regions a�eted by error, the overall sheme also has the advantage of providing

data guarantees.

Suh error detetion an even be integrated into the oding proess. An ingenious

idea presented in [KCR98℄ is to inlude an error symbol in the alphabet for an Arithmeti

oder. This symbol is never enoded, but if it is deoded the deoder knows a transmission

error has ourred. By varying the probability assigned to this error symbol the degree of

error detetion an be varied arbitrarily. Results given in [KCR98℄ show this to be a more

e�etive means of error detetion than traditional yli redundany heks.

7.3 Summary

The work presented in this dissertation has o�ered many new ideas for lossless ompression

of modern image types. However, it seems likely that by following some of the reommen-

dations presented in Setion 7.1, still better ompression performane, or deoding speed,

ould be obtained.

The goal of error resilient lossless image oding has been disussed in Setion 7.2. This

feature would enable greater use of ompression for reliable arhiving and transmission of

image data.



Chapter 8

Contributions and Conlusions

In this hapter the primary ontributions made to the state-of-the-art in lossless image

ompression are outlined. This is followed by a summary of the onlusions drawn from

this work as a whole.

8.1 Contributions

By onsidering state-of-the-art lossless image ompression tehniques, alongside methods

that normally aompany lossy shemes (e.g. motion and disparity ompensation), the

literature review presents a unique window on previous knowledge, with a greater sope

than has been seen before. Hene, Chapters 2 and 3 onstitute an exellent starting point

for any future researh into a broad range of image ompression tehniques.

Preditor seletion for greysale and olour images has been previously studied in

[MS95℄ and [MWSM97, WMC98℄ respetively. However, never before has preditor se-

letion been thoroughly studied in a way that onsiders spatial, spetral, temporal and

interview orrelations. This study produed a forward adaptive method using a quadtree

struture for preditor seletion, that was found to perform better than any alternatives

onsidered.

Error modelling was also studied in an extended ontext. It was shown that extended

error buketing o�ers a simple and yet e�etive way to make extra use of predition er-

rors to gain improved ontext determination. Other error modelling tehniques were also

onsidered in this study. In partiular the notion that preditor seletion with aess to

intraband, interband, interframe and interview preditors an lower the ontextual bias of

predition residuals, is a useful result.

By ombining the best of these tehniques, a novel extended lossless image ompression

sheme named GELIC has been presented. GELIC is able to eÆiently deal with a wider

range of image types than previously onsidered by a single image ompression sheme.

The results from GELIC are on average signi�antly better than the urrent JPEG stan-

dard for lossless image ompression, JPEG-LS, whih onsiders only spatial orrelations.

This shows that by additionally onsidering spetral, temporal and multiview orrelations,
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ompression bene�ts for lossless image oding an be gained. GELIC's results are also

omparable with the most reent methods aimed spei�ally at olour image ompression.

For lossless ompression of video and multiview sequenes, GELIC urrently has no real

ompetition.

Finally, the ideas presented in the previous hapter o�er some preliminary results and

a variety of options for further study, that ould further enhane the �eld of extended

lossless image ompression.

8.2 Conlusions

The results of this work show that unonditional use of non-spatial preditors does not

lead to e�etive use of extended orrelations. This gives the onlusion that some form of

preditor seletion is neessary to give extended lossless ompression that is both eÆient

and exible.

By using predition errors outside the urrent band/frame, ontext determination an

yield more appropriate ontexts and hene deliver improved ompression performane

through better error modelling. However, this bene�t is rather small. This suggests that

the preditor seletion sheme developed is able to remove most of the extra orrelation

present in the advaned imagery types onsidered. The residual higher-order orrelations,

of the sort exploited by error modelling, appear to be little more than those left after

traditional spatial predition. This leads to the onlusion that signi�ant gains based

on extended error modelling are unlikely, unless radially new insights into the nature of

higher-order residual orrelations an be gathered.

The results given in Chapter 6 support the onlusion that worthwhile improvements

an be made to lossless image ompression shemes, by onsidering the orrelations between

the spetral, temporal and interview aspets of image data, in extension to the spatial

orrelations that are traditionally exploited. This is in aordane with the thesis proposed

at the beginning of this dissertation.

Based on the ideas given in the previous hapter, it an also be onluded that hal-

lenges remain in the �eld of extended lossless image ompression. Further investigation is

likely to yield still improved ompression and hene the �eld is still worthy of researh.



Appendix A

Common Symbol Coders

Probably the most widely known example of a symbol oder is Morse ode. Designed by

Samuel Finley Breese Morse in the 1840's, Morse ode uses the frequenies of letters in

English to eÆiently enode text. Common letters suh as e (�) and t (�) have short

odes, while less ommon letters have longer odes, for example Q (�� � �).
For use with digital systems, the output alphabet of a ode should be only 0s and 1s.

Although it appears binary, the output alphabet of Morse odes uses three symbols; �, �
and an inter-symbol spae. The inter-symbol spae is needed to indiate the end of a letter,

for example after reeiving a � it is not lear if this represents a single e or if it is the start

of an s (� � �). One way to eliminate the need for an inter-symbol spae is to onstrut pre�x

odes. A pre�x ode has the property that no ode word is the pre�x of another ode.

Hene, one a odeword has been read, the original input symbol an be unambiguously

identi�ed without reading anymore information. This is alled instantaneous deoding and

is a highly desirable property for a symbol oding sheme.

Image ompression shemes tend to be innovative in the mapping and modelling stages.

Whereas the oding stage of most image oders is generally based on a traditional od-

ing tehnique. Probably the three most inuential of these oding shemes are Hu�man

Coding, Arithmeti Coding and the Lempel-Ziv based methods. All of these shemes are

doumented in any good book on data ompression[Nel91℄, however due to their impor-

tane, these three methods will be briey detailed here.

A.1 Hu�man Coding

In 1952 Hu�man gave an algorithm that produes an enoding that is optimal under

ertain onditions. The algorithm requires the probabilities of all the symbols in the input

alphabet to be known beforehand. The input symbols are then sorted aording to their

probabilities. The two least frequent symbols beome the leaves of a binary tree. The tree

replaes the two symbols in the list and is given the sum of the probabilities of its leaves

as its probability. This proedure is repeated until there is only one element left; a binary

tree with the all input symbols as leaves. By labelling the paths from the root of the tree
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Figure A.1: An example of onstruting a Hu�man ode.

to the leaves with 0s and 1s a binary odeword an be given to eah input symbol. An

example of this is given in Figure A.1. Deoding a odeword an be seen as traversing the

tree from the root to a leaf, using the bits of the odeword to determine whih branh to

follow at eah node.

It should be noted that Hu�man's algorithm builds odes on a bottom-up basis.

Shannon-Fano oding, whih slightly pre-dates Hu�man's work and proeeds in a top-down

fashion, an produe odes that are inferior to those produed by Hu�man's algorithm.

Hu�man odes are only optimal if the probabilities of all the input symbols are an

integer power of 1=2; whih is an unusual ourrene. Furthermore, Hu�man odes are

bound to have a minimum length of one bit. As a onsequene, for oding distributions

in whih the most probable symbol has a probability muh greater than 1=2, onsiderable

ineÆieny may our from using Hu�man oding.

A seond drawbak of Hu�man oding is the relative diÆulty in adapting it to hanging

input statistis. Although it is oneptually simple to rebuild the ode tree whenever the

soure statistis hange, it is omputationally expensive to do so.

In spite of its drawbaks, Hu�man's algorithm generally produes good odes, is simple

to implement and is not overed by any patents. As a onsequene of these fats (espeially

the later) it is widely used.
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A.2 Arithmeti Coding

Arithmeti oding removes the limitations of Hu�man oding by onsidering not individual

symbols but the whole input message. It aims to represent the sequene of input symbols

as a pointer to a region in the interval 0 ! 1. The length of the enoded message is

determined by the preision required to reord the neessary region. The size of the region

and hene the required preision, is diretly related to the probability of the message.

In order to speify the region that the message lies in, two variables low and high are

used. These reord the low and high values of the range in whih the message lies. Initially,

low and high have values of 0 and 1 respetively. As input symbols are proessed by the

enoder, low and high are adjusted to re�ne the message's range, based on the probabilities

of the symbols already seen.

To see how this works, an example is useful. Consider an input alphabet with four

symbols, fa; b; ; dg, eah with the same probabilities as the example in Figure A.1. The

interval 0 ! 1 is now divided up so that eah symbol has a share proportional to its

probability, as illustrated in Figure A.2.

Now suppose the message to be oded is `aabd'. After proessing the �rst symbol, low

and high will have values of 0 and 0.6 respetively. The symbol probabilities are now saled

by the size of the range demarated by low and high, before the next symbol is proessed.

Hene, the seond `a' in the message auses high to be updated to 0.36, while low remains

at 0. This proess is ontinued until the whole input message is enoded. As shown in

Figure A.2 the �nal values of low and high are 0.2448 and 0.252 respetively. Hene the

message `aabd' is oded by any number in between these two values. Unfortunately, so is

any other message that starts `aabd...'. In order to deode the orret message the enoder

and deoder must either agree on the length of the message or a speial terminator symbol

must be used. As the deoder will know the dimensions of the image being proessed, the

�rst option an be used for image ompression appliations.

The operation of the deoder is fairly simple; given a value from the enoder, it an

simply read o� the next symbol in the message until the orret number of symbols have

been read. For example, the enoder ould hose to send 0.25 to enode `aabd', with an

agreed message length of 4. As 0 � 0:25 < 0:6, the �rst symbol in the message is taken as

`a'. Similarly, the rest of the message an be deoded.

Arithmeti oding as desribed so far, seems fairly simple. However, there are a number

of tehnial issues with implementing the sheme as it is given above. The main problem is

that the preision with whih low and high must be stored inreases without bound as the

message gets longer. This problem an be removed by registering digits that low and high

have in ommon. In the example above, after enoding the `b', low and high have values

0.216 and 0.252 respetively. At this stage, the enoder knows that the enoded message

must start with 0.2 and so this an be transmitted to the deoder. Having done this, the

ative range an be re-saled to 0:16! 0:52 by both the enoder and the deoder. In this

way, the preision required to support Arithmeti oding an be kept within the limits of

pratial omputing hardware. Further subtleties, suh as avoiding underow and overow
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are left to more detailed texts[BCW90℄.

As well as oding eÆieny, another bene�t of Arithmeti oding is that it an adapt to

hanging statistis in a simple way. The symbol probabilities an easily be hanged at eah

stage in the oding proess, as long as the enoder and deoder adapt their symbol proba-

bilities in the same manner. However despite its bene�ts, due to pereived implementation

diÆulties, omputational omplexity and a large number of patents, Arithmeti oding is

not as widely used as it ould be.

A.3 Lempel-Ziv Based Methods

Whereas Hu�man and Arithmeti oding aim to store a symbol, or sequene thereof,

using a variable number of bits, Lempel-Ziv methods aim to store a variable number of

input symbols using a �xed number of bits. Abraham Lempel and Jakob Ziv originally

suggested two shemes in 1977 and 1978, however the following disussion will fous on

the later (LZ78) family of methods.

LZ78 is a ditionary based oding sheme. It replaes ommon sequenes of symbols

with an index into a ditionary. The interesting part is the build-up of the ditionary.

Initially, the ditionary ontains only single input symbols. As the input data is read,

new symbol strings are added to the ditionary as they are enountered. A new string

is a sequene of symbols that appears in the ditionary, with an additional �nal symbol,

suh that the whole string is not in the ditionary. Importantly though, on enountering

a new string, the last symbol is not oded as part of that string. This neessarily leaves a

known string that is in the ditionary. The last symbol from the new string is then the �rst

symbol in the next string. Hene, by using bakward adaptation the deoder an build the

same ditionary as the enoder and the ditionary never needs to be expliitly sent.

Although LZ based methods are widely used in general data ompression shemes, they

are not frequently used in lossless image ompression shemes. The reason for this, is that

the noise inherent in natural images does not allow enough exatly repeating sequenes of

symbols to gain adequate ompression.
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Appendix B

Image Material used for Testing

The redution in data size obtained by lossless image ompression is fundamentally limited

by the information ontent of the soure image. Hene, results from lossless ompression

methods are only relevant to general performane, if the test set is a suitable sample of

the imagery to be ompressed.

Given the sope of image types this work intends to address, it is hard to envisage a fully

omprehensive test set. However, e�orts have been made to try and ensure a reasonable

variety in the test imagery used. For the olour images there are examples of natural senes,

satellite imagery and omputer generated images. The video sequenes used inlude both

slow and fast moving senes and throughout the test set there is a mixture of low and high

resolution items.

What follows is a brief ommentary on every item in the test set that was used for the

results in Chapters 4, 5 and 6. For reasons of spae, the video sequenes have only the

�rst, middle and last frames shown. Likewise for multiview sequenes only the far left,

middle and far right views are shown. Also, all images have been redued to some extent

prior to display.
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Figure B.1: Air2 - (720 � 1024, 24bpp) This is an often used example of an aerial

image.

Figure B.2: Baboon - (512 � 512, 24bpp) A popular lose-up of a baboon's fae. The

�ne detail of the fur, makes for a very noise like image.



115

Figure B.3: Cats - (3072 � 2048, 24bpp) A high resolution image of two sleeping ats.

The image inludes large blak borders at either side.

Figure B.4: Cmpnd2 - (1024 � 1400, 24bpp) An often used example of a ompound

doument. Most of the image is blak and white (binary) text, but a full olour photograph

makes up the entral portion of the image.
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Figure B.5: House - (256 � 256, 24bpp) The side of a house.

Figure B.6: Lena - (512 � 512, 24bpp) The ubiquitous Lena image is a tasteful setion

from a 1972 Playboy artile. It has long been popular with the image proessing and

ompression ommunity, beause of its mixture of smooth, texture and edge regions. This

popularity has been self-sustaining, as the image is often used for omparison, beause of

its use in previous works.
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Figure B.7: Claire - (360 � 288, 168 frames, 8bpp) A very frequently used head and

shoulders video lip.
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Figure B.8: Granny - (800 � 384, 100 frames, 8bpp) The Granny sequene was

rendered for multiview display. It was produed by Pitures on the Wall, and is used

with permission of Autostereo Displays Ltd. Here the entral view has been onverted to

greysale and is used as a video sequene. The middle 100 frames, from the full 300 frame

sequene were used. In this range, there is motion of some foreground objets.
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Figure B.9: Mall - (2048 � 1024, 50 frames, 8bpp) A high resolution sene in a

shopping mall. The footage ontains a lot of motion; people walking, amera pan and a

large entral water fountain.
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Figure B.10: Mobile - (720 � 576, 40 frames, 8bpp) This sequene ontains motion

of several independent objets and a slow amera pan.
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Figure B.11: Salesman - (360 � 288, 100 frames, 8bpp) A salesman sat behind a

desk, gestiulating as he praties his art.

Figure B.12: Claire - (360 � 288, 168 frames, 24bpp) As above, but in olour.
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Figure B.13: Football - (720 � 486, 97 frames, 24bpp) An ation sequene from an

Amerian football game. The footage is a�eted by de-interlaing artefats.
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Figure B.14: Granny - (800 � 384, 100 frames, 24bpp) As above, but in olour.
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Figure B.15: Mobile - (720 � 576, 40 frames, 24bpp) As above, but in olour.
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Figure B.16: Susie - (720 � 480, 150 frames, 24bpp) A relatively high resolution

head and shoulders lip.
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Figure B.17: CTFlesh - (320 � 240, 16 views, 8bpp) Raw CT data was rendered

into a series of views for 3D display. The rendering used thresholds to highlight the esh

aspet of the san, although the bone struture is quite visible.

Figure B.18: Granny - (800 � 384, 10 views, 24bpp) The entral ten views, taken

from the temporal mid-point of the Granny sequene.

Figure B.19: Skull - (342 � 214, 9 views, 24bpp) Nine views of an animal skull, taken

for autostereo display. The sequene su�ers from slight vertial mis-alignments, inurred

during the manual part of the apture proess.
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Figure B.20: Granny - (800 � 384, 10 views, 100 frames, 24bpp) A sequene

omprising the entral ten views, and one hundred frames from the Granny sequene.
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Glossary

bit Contration of binary digit.

bpp Bits Per Pixel

DCT Disrete Cosine Transform

gigabyte (GB) 230 � 109 bytes.

GOP Group Of Pitures

JPEG Joint Photographi Experts Group.

kilobyte (KB) 210 = 1024 � 103 bytes.

MAE Mean Absolute Error

MAP Median Adaptive Preditor

megabyte (MB) 220 = 1048576 � 106 bytes.

MED Median Edge Detetion

MPEG Moving Piture Experts Group

MSE Mean Square Error

terabyte (TB) 240 � 1012 bytes.
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