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1 Introduction

While neutrino mass and dark matter provide evidence for physics beyond the standard

model (SM), persistent searches for new heavy particle production have hitherto yielded

a null result. In this circumstance, effective field theory (EFT) offers an appropriate and

universal approach to quantifying unknown effects of possibly very heavy new particles

on the interactions of SM particles at relatively low energies. In this framework, i.e., the

standard model effective field theory (SMEFT), the standard model appears as the leading

interactions that are generally augmented by an infinite tower of effective interactions that

involve higher and higher dimensional operators and are more and more suppressed by

heavy particles masses. The precise measurements and severe constraints on these effective

interactions will shed light on possible form of new physics.

Suppose that certain new physics scale ΛNP is significantly higher than the electroweak

scale ΛEW ∼ 102 GeV and that there are no particles other than the SM ones of a mass

around or below ΛEW. The effective field theory between the scales ΛNP and ΛEW is

then the SMEFT that includes all SM fields and satisfies the complete gauge symmetry

SU(3)C × SU(2)L ×U(1)Y . Since it is an EFT at low energy compared to ΛNP, it can

be organized by the dimensions of operators involved in effective interactions. The bases

of complete and independent operators have now been known at dimension 5 (dim-5) [1],

dimension 6 [2, 3], dimension 7 [4, 5], and dimension 8 [6–9], and the one-loop renormal-

ization of those basis operators due to the SM interactions has been accomplished up to

dimension 7 in refs. [5, 10–19]. As the dimension of operators goes up further, the number

of basis operators increases horribly fast [7]; for recent efforts on basis operators of even

higher dimensions, see for instance, refs. [7, 20–22, 22–24]. On the other hand, if there are

new particles that have a mass less than ΛEW and are most likely a singlet under the SM

gauge group, such as sterile neutrinos, they must be incorporated into the EFT framework

thus extending the regime of SMEFT [25–28].

Since many measurements are made below the electroweak scale, it is necessary to

develop EFTs below ΛEW. By integrating out the heavy particles in SM, i.e., the weak

– 1 –



J
H
E
P
0
8
(
2
0
2
0
)
1
6
2

gauge bosons W±, Z, the Higgs boson h, and the top quark t, we arrive at the so-called low

energy effective field theory (LEFT). It thus includes all other SM fields as its dynamical

degrees of freedom including five quarks, all neutral and charged leptons, and respects the

gauge symmetry SU(3)C ×U(1)EM. It has been successfully applied in flavor physics; for a

review, see for instance, ref. [29]. In recent years LEFT has been systematically developed.

The classification of its basis operators up to dimension 6 and their tree-level and one-

loop matching to the SMEFT also up to dimension 6 have been made in refs. [30, 31].

(We note in passing that the basis of dim-6 operators in LEFT extended with light sterile

neutrinos has been worked out recently [32, 33].) The complete one-loop renormalization

of those basis operators has been accomplished in ref. [34]. In this work we will push this

systematic investigation one step further by building the basis of dim-7 operators in LEFT

and matching the effective interactions at tree level between SMEFT and LEFT both to

dim-7 operators.

The outline of this paper is as follows. We first establish in section 2 the basis of

dim-7 operators in LEFT, and then do the tree-level matching between the SMEFT and

the LEFT in section 3 by incorporating new terms due to dim-7 operators in SMEFT or

LEFT or in both. As a simple yet interesting application we study in section 4 the lepton

number violating neutrino-photon interactions arising from dim-7 operators, and calculate

various scattering cross sections and compare them with the SM results. We will also show

a few examples of ultraviolet completion of a dim-7 operator in SMEFT that enters the

above neutrino-photon interactions. Our main results are finally summarized in section 5.

2 The basis of dim-7 operator in LEFT

In the LEFT where we are working the electroweak symmetry breakdown has already taken

place, so that the gauge group is SU(3)C ×U(1)EM. We have also integrated out the heavy

particles of a mass of order ΛEW, i.e., the weak gauge bosons W±, Z, the Higgs boson h,

and the top quark t. Then the dynamical degrees of freedom are the nf = 3 number of

the down-type quarks (d, s, b) and of the neutral (ν1,2,3) plus charged (e, µ, τ) leptons,

the nu = 2 number of the up-type quarks (u, c), and the photon (Aµ) and eight gluons

(GAµ ). Although we work with chiral fields (ψL,R), we assume they are already in their

mass eigenstates. This means that any factors of quark and lepton mixing matrix elements

are hidden in the Wilson coefficients of high dimensional operators. We label the fermion

fields usually by the indices p, r, s, t, i.e., νp, eip, uip, dip with chirality i = L, R, that

appear in the same order in an operator and its Wilson coefficient. For specific applications

these indices assume a generation value or a flavor name interchangeably.

The bases of dim-5 and dim-6 operators have been established in ref. [30]. In the

following we will do the similar thing for dim-7 operators. First of all, Lorentz symmetry

restricts dim-7 operators to the following possible classes:

ψ2X2, ψ4D, ψ2XD2, ψ2D4, (2.1)

where the gauge covariant derivative is Dµ = ∂µ− ieQAµ− igsTAGAµ with Q and TA being

the electric charge and color generators and with e and gs being gauge couplings, and
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Xµν = Fµν , G
A
µν are the gauge field strength tensors. Note that there are no pure bosonic

operators made out of X and D because Lorentz invariance requires an even number of D

factors which however cannot lead to an odd-dimensional operator. The operators in the

last two classes ψ2XD2 and ψ2D4 are actually reducible to those in the first two classes

ψ2X2 and ψ4D plus lower dimensional (i.e., dim-5 and dim-6) ones already covered in [30],

by the use of equations of motion (EoMs) and integration by parts (IBP). Consider first

the class ψ2D4. By Lorentz symmetry the two fermion fields must form a scalar ψ̄1ψ2

or tensor ψ̄1σµνψ2 bilinear with all of the four factors of D arranged by IBP to act on

ψ2. For the tensor bilinear, if Dµ and Dν are adjacent, ψ̄1σµν · · ·DµDν · · ·ψ2 reduces to

the ψ2XD2 class by the relation [Dµ, Dν ] ∝ Xµν , which will be coped with in a moment;

otherwise, Dν (or equivalently Dµ) stays on the far right or far left. For the former, we

proceed as ψ1 · · · iσµνDνψ2 = ψ1 · · ·Dµψ2−ψ1 · · · γµ /Dψ2, where the second term yields by

EoMs the lower dimensional operators covered in [30] and the first belongs to the scalar

bilinear that we will reduce further. If Dν stays on the far left, we make it act on ψ1 by IBP

instead and then a similar manipulation to the above applies. The scalar bilinear is easy

to handle. The four D factors are contracted by either εµνρσ or gµν , both of which reduce

to the operators in the other three classes (ψ2X2, ψ4D, ψ2XD2) and lower dimensional

ones by the relations [Dµ, Dν ] ∝ Xµν and D2ψ = /D /Dψ = EoM operators. This establishes

the reducibility of the class ψ2D4.

Now we turn to reduce the class ψ2XD2. Again, the two fermion fields must form either

a scalar or a tensor bilinear. The operators with a tensor bilinear can be transformed into

those with a scalar bilinear plus EoM operators by the use of IBP, EoMs, and the Bianchi

identity (BI) DµXνρ + DνXρµ + DρXµν = 0. The proof goes like this. There are two

types of Lorentz contractions: (a) (ψ1σµνψ2)XµνDρDρ and (b) (ψ1σµνψ2)XνρDµDρ. By

IBP we choose X to be derivative free. Then we will not bother to display gauge group

indices involved in X which do not interrupt reduction of operators. For type (b), there

are six ways of attaching D2 to fermion fields. Two of them are reduced to scalar bilinear

operators and EoM operators (shown as EoM ):

(Dµψ1iσµνDρψ2)Xνρ = (Dνψ1Dρψ2)Xνρ+(ψ1

←−
/DγνDρψ2)Xνρ,

EoM−−−→ (Dνψ1Dρψ2)Xνρ+ EoM ,

(ψ1iσµνD
µDρψ2)Xνρ = (ψ1iσµν [Dµ,Dρ]ψ2)Xνρ− 1

2
(ψ1[Dρ,Dν ]ψ2)Xνρ+(ψ1γνDρ /Dψ2)Xνρ

EoM−−−→ψ2X2+ EoM , (2.2)

and the other four with Dρ and Dµ interchanged or with both Dρ and Dµ acting on ψ1 are

similarly reduced. For type (a), excluding the trivial EoM operators with D2 acting on a

single fermion field, we are left with the following operator whose reduction goes as follows:

(Dρψ1iσµνD
ρψ2)Xµν IBP

==== −(ψ1iσµνDρψ2)DρXµν − (ψ1iσµνD
2ψ2)Xµν

BI
=== 2(ψ1iσµνDρψ2)DµXνρ + EoM

IBP
==== −2(Dµψ1iσµνDρψ2)Xνρ − 2(ψ1iσµνD

µDρψ2)Xνρ + EoM .

(2.3)
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The two operators on the right-hand side have already been reduced in equation (2.2). The

reducibility of the class ψ2XD2 now rests on that of the scalar bilinear operators. In this

case the Lorentz indices in X and D2 have to be contracted. Since DµX
µν only yields

EoM operators that can be discarded as lower dimensional operators, we can apply IBP to

make each fermion field be acted upon by one derivative. This yields the unique operator

which itself is reducible:

(Dµψ1Dνψ2)Xµν IBP
==== −1

2
ψ1[Dµ, Dν ]ψ2X

µν − ψ1(Dνψ2)DµX
µν + T

EoM−−−→ ψ2X2 + ψ4D, (2.4)

where T stands for the total derivative terms that can be discarded in the effective La-

grangian. This finally establishes the reducibility of the class ψ2XD2.

We are thus left with the classes ψ2X2 and ψ4D to examine further. Working with chi-

ral fermion fields we see that the monomial operators in these classes are all non-Hermitian

due to the special Lorentz structure which can be formed. So in the following we will work

out one half of them while the other half can be obtained by Hermitian conjugate. We

start with the class ψ2X2, which may take the following forms for generic chiral fermion

fields ψ1,2:

OψF1 = (ψ1ψ2)FµνF
µν , OψF2 = (ψ1ψ2)FµνF̃

µν ,

OψFG1 = (ψ1T
Aψ2)FµνG

Aµν , OψFG2 = (ψ1T
Aψ2)FµνG̃

Aµν ,

OψFG3 = (ψ1T
Aσµνψ2)FµαGAνα ,

OψG1 = (ψ1ψ2)GAµνG
Aµν , OψG2 = (ψ1ψ2)GAµνG̃

Aµν ,

OψG3 = dABC(ψ1T
Aψ2)GBµνG

Cµν , OψG4 = dABC(ψ1T
Aψ2)GBµνG̃

Cµν ,

OψG5 = fABC(ψ1σµνT
Aψ2)GBµαGCνα , (2.5)

where the field strength dual X̃µν = εµνρσXρσ/2, fABC is the structure constant of SU(3),

and dABC the symmetric invariant appearing in the anticommutator of generators in the

fundamental representation, {TA, TB} = δAB/3 + dABCTC . The other possible operators

either vanish or can be reduced to the above ones,

(ψ1σµνψ2)XµαXν
α = 0, (ψ1σµνψ2)XµαX̃ν

α = 0, X = F,GA,

(ψ1T
AσµνP±ψ2)FµαG̃Aνα = ±iOψFG3, fABC(ψ1σµνT

AP±ψ2)GBµαG̃Cνα = ±iOψG5,

fABC(ψ1T
Aψ2)GBµνG

Cµν = 0, fABC(ψ1T
Aψ2)GBµνG̃

Cµν = 0, (2.6)

where the chiral projectors P± = (1 ± γ5)/2 are also understood to appear in OψFG3 and

OψG5 of equation (2.6). The above reduction makes use of the following identities,

σµνP± = ∓ i
2
εµνρσσ

ρσP±, εµνρσε
αβγσ = −g[α

µ g
β
ν g

γ]
ρ , (2.7)

with [. . . ] indicating antisymmetrization of the arguments inside. With equation (2.5) it is

easy to figure out the relevant fields ψ1,2 and find the complete set of operators in this class.

These operators conserve baryon number (∆B = 0) but can conserve (∆L = 0) or violate

lepton number by two units (∆L = ±2), which are displayed respectively in tables 1 and 2.
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Operator Specific form # (nf , nu) Operator Specific form # (nf , nu)

(∆L,∆B) = (0, 0)

(RL)X2 (RL)XX̃

OeF1 αem(eReL)FµνF
µν n2

f OeF2 αem(eReL)FµνF̃
µν n2

f

OdF1 αem(dRdL)FµνF
µν n2

f OdF2 αem(dRdL)FµνF̃
µν n2

f

OuF1 αem(uRuL)FµνF
µν n2

u OuF2 αem(uRuL)FµνF̃
µν n2

u

OdFG1 eg3(dRT
AdL)FµνG

Aµν n2
f OdFG2 eg3(dRT

AdL)FµνG̃
Aµν n2

f

OdFG3 eg3(dRT
AσµνdL)FµρG

Aρ
ν n2

f

OuFG1 eg3(uRT
AuL)FµνG

Aµν n2
u OuFG2 eg3(uRT

AuL)FµνG̃
Aµν n2

u

OuFG3 eg3(uRT
AσµνuL)FµρG

Aρ
ν n2

u

OeG1 αs(eReL)GAµνG
Aµν n2

f OeG2 αs(eReL)GAµνG̃
Aµν n2

f

OdG1 αs(dRdL)GAµνG
Aµν n2

f OdG2 αs(dRdL)GAµνG̃
Aµν n2

f

OdG3 αsdABC(dRT
AdL)GBµνG

Cµν n2
f OdG4 αsdABC(dRT

AdL)GBµνG̃
Cµν n2

f

OdG5 αsfABC(dRT
AσµνdL)GBµρG

Cρ
ν n2

f

OuG1 αs(uRuL)GAµνG
Aµν n2

u OuG2 αs(uRuL)GAµνG̃
Aµν n2

u

OuG3 αsdABC(uRT
AuL)GBµνG

Cµν n2
u OuG4 αsdABC(uRT

AuL)GBµνG̃
Cµν n2

u

OuG5 αsfABC(uRT
AσµνuL)GBµρG

Cρ
ν n2

u

(L̄γµL)(L̄
←→
DµR) (R̄γµR)(L̄

←→
DµR)

OνeD (νγµν)(eLi
←→
DµeR) n4

f

OνdD (νγµν)(dLi
←→
DµdR) n4

f

OνuD (νγµν)(uLi
←→
DµuR) n2

fn
2
u

OeeD1 (eLγ
µeL)(eLi

←→
DµeR) 1

2n
3
f (nf − 1) OeeD2 (eRγ

µeR)(eLi
←→
DµeR) 1

2n
3
f (nf − 1)

OedD1 (eLγ
µeL)(dLi

←→
DµdR) n4

f OedD2 (eRγ
µeR)(dLi

←→
DµdR) n4

f

OeuD1 (eLγ
µeL)(uLi

←→
DµuR) n2

fn
2
u OeuD2 (eRγ

µeR)(uLi
←→
DµuR) n2

fn
2
u

OdeD1 (dLγ
µdL)(eLi

←→
DµeR) n4

f OdeD2 (dRγ
µdR)(eLi

←→
DµeR) n4

f

OddD1 (dLγ
µdL)(dLiDµdR) n4

f OddD2 (dRγ
µdR)(dLi

←→
DµdR) n4

f

OduD1 (dLγ
µdL)(uLi

←→
DµuR) n2

fn
2
u OduD3 (dRγ

µdR)(uL
←→
DµuR) n2

fn
2
u

OduD2 (dLγ
µdL][uLi

←→
DµuR) n2

fn
2
u OduD4 (dRγ

µdR][uLi
←→
DµuR) n2

fn
2
u

OueD1 (uLγ
µuL)(eLi

←→
DµeR) n2

fn
2
u OueD2 (uRγ

µuR)(eLi
←→
DµeR) n2

fn
2
u

OudD1 (uLγ
µuL)(dLi

←→
DµdR) n2

fn
2
u OudD3 (uRγ

µuR)(dLi
←→
DµdR) n2

fn
2
u

OudD2 (uLγ
µuL][dLi

←→
DµdR) n2

fn
2
u OudD4 (uRγ

µuR][dLi
←→
DµdR) n2

fn
2
u

OuuD1 (uLγ
µuL)(uLi

←→
DµuR) n4

u OuuD2 (uRγ
µuR)(uLi

←→
DµuR) n4

u

OνeduD (νγµeL)(dLi
←→
DµuR) n3

fnu

OeνudD (eLγ
µν)(uLi

←→
DµdR) n3

fnu

OduνeD1 (dLγ
µuL)(νi

←→
DµeR) n3

fnu OduνeD2 (dRγ
µuR)(νi

←→
DµeR) n3

fnu

# total: 9n4
f + n3

f (4nu − 1) + n2
f (13n2

u + 14) + 2n2
u(n2

u + 5) (⇒ 1584 at nu = 2, nf = 3)

Table 1. Basis of dim-7 operators in LEFT with lepton and baryon numbers conserved, i.e.,

∆B = ∆L = 0, together with count of operators for general nu, nf . L, R refer to left- and right-

handed fermion fields, and αem = e2/(4π) and αs = g2
s/(4π). The two brackets (, ) and [, ] indicate

two different color contractions. Hermitian conjugate operators are not displayed.
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Operator Specific form # (nf , nu) Operator Specific form # (nf , nu)

(∆L,∆B) = (2, 0)

(LCL)X2 LCL)XX̃

OνF1 αem(νCν)FµνF
µν 1

2nf (nf + 1) OνF2 αem(νCν)FµνF̃
µν 1

2nf (nf + 1)

OνG1 αs(νCν)GAµνG
Aµν 1

2nf (nf + 1) OνG2 αs(νCν)GAµνG̃
Aµν 1

2nf (nf + 1)

(L̄γµL)(LC
←→
DµL) (R̄γµR)(LC

←→
DµL)

OννD (νγµν)(νCi
←→
∂µν) 1

6n
2
f (n2

f − 3nf + 2)

OeνD1 (eLγ
µeL)(νCi

←→
∂µν) 1

2n
3
f (nf − 1) OeνD2 (eRγ

µeR)(νCi
←→
∂µν) 1

2n
3
f (nf − 1)

OdνD1 (dLγ
µdL)(νCi

←→
∂µν) 1

2n
3
f (nf − 1) OdνD2 (dRγ

µdR)(νCi
←→
∂µν) 1

2n
3
f (nf − 1)

OuνD1 (uLγ
µuL)(νCi

←→
∂µν) 1

2nfn
2
u(nf − 1) OuνD2 (uRγ

µuR)(νCi
←→
∂µν) 1

2nfn
2
u(nf − 1)

OdueνD1 (dLγ
µuL)(eCL i

←→
Dµν) n3

fnu OdueνD2 (dRγ
µuR)(eCL i

←→
Dµν) n3

fnu

(RCγµL)(R̄
←→
DµL) (RCγµL)(L̄

←→
DµR)

OeνudD1 (eCRγ
µν)(dRi

←→
DµuL) n3

fnu OeνudD2 (eCRγ
µν)(dLi

←→
DµuR) n3

fnu

# total: 1
6nf

(
13n3

f + 3n2
f (8nu − 5) + 2nf (3n2

u + 7)− 6n2
u + 12

)
(⇒ 375 at nu = 2, nf = 3)

(∆L,∆B) = (1, − 1)

(L̄γµL)(L̄
←→
DµL

C) (L̄γµL)(R̄
←→
DµR

C)

OdνudD1 (dLγ
µν)(uRi

←→
Dµd

C
R) n3

fnu

OuνdD1 (uLγ
µν)(dLi

←→
Dµd

C
L ) 1

2n
2
fnu(nf + 1) OuνdD2 (uLγ

µν)(dRi
←→
Dµd

C
R) 1

2n
2
fnu(nf + 1)

OdedD1 (dLγ
µeL)(dLi

←→
Dµd

C
L ) 1

6n
2
f (n2

f + 3nf + 2) OdedD2 (dLγ
µeL)(dRi

←→
Dµd

C
R) 1

2n
3
f (nf + 1)

(R̄γµR)(L̄
←→
DµL

C) (R̄γµR)(R̄
←→
DµR

C)

OdedD3 (dRγ
µeR)(dLi

←→
Dµd

C
L ) 1

2n
3
f (nf + 1) OdedD4 (dRγ

µeR)(dRi
←→
Dµd

C
R) 1

6n
2
f (n2

f + 3nf + 2)

# total: 1
3n

2
f (2nf + 1)(2nf + 3nu + 2) (⇒ 294 at nu = 2, nf = 3)

(∆L,∆B) = (1, 1)

(RCγµL)(LC
←→
DµL) (RCγµL)(RC

←→
DµR)

OdνudD2 (dCRγ
µν)(uCL i

←→
DµdL) n3

fnu

OuνdD3 (uCRγ
µν)(dCL i

←→
DµdL) 1

2n
2
fnu(nf + 1) OuνdD4 (uCRγ

µν)(dCRi
←→
DµdR) 1

2n
2
fnu(nf + 1)

OdeuD1 (dCRγ
µeL)(uCL i

←→
DµuL) 1

2n
2
fnu(nu + 1) OdeuD2 (dCRγ

µeL)(uCRi
←→
DµuR) 1

2n
2
fnu(nu + 1)

OueudD1 (uCRγ
µeL)(uCL i

←→
DµdL) n2

fn
2
u (LCγµR)(RC

←→
DµR)

(LCγµR)(LC
←→
DµL) OdeuD4 (dCLγ

µeR)(uCRi
←→
DµuR) 1

2n
2
fnu(nu + 1)

OdeuD3 (dCLγ
µeR)(uCL i

←→
DµuL) 1

2n
2
fnu(nu + 1) OueduD2 (uCLγ

µeR)(uCRi
←→
DµdR) n2

fn
2
u

# total: 9n4
f + n3

f (4nu − 1) + n2
f (13n2

u + 14) + 2n2
u(n2

u + 5) (⇒ 306 at nu = 2, nf = 3)

Table 2. Basis of dim-7 operators in LEFT with lepton or baryon number or both violated, i.e.,

(∆B,∆L) = (2, 0), (1,−1), (1, 1), together with count of operators for general nu, nf . Color

contraction is implied for triple quark fields, and H̃ = iσ2H
∗ and iDµψ

C ≡ (iDµψ)C for brevity.

Hermitian conjugate operators are not displayed.
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For the class ψ4D, there are two possible Lorentz structures,

(ψ1σ
µνψ2)(ψ3γ[µ

←→
Dν]ψ4), (ψ1γ

µψ2)(ψ3i
←→
Dµψ4), (2.8)

where A
←→
DµB = ADµB − A

←−
DµB. However, the two structures are not independent as the

tensor structure can be reduced to the vector one plus dim-6 operators ( dim-6 ) with the

aid of EoMs, IBP, and the Fierz identities (FI):

(ψ1σ
µνψ2)(ψ3γ[µi

←→
Dν]ψ4)

IBP
==== +2iDν(ψ1σ

µνψ2)(ψ3γµψ4) + 4(ψ1σ
µνψ2)(ψ3γµiDνψ4) + T

EoM
==== −2(ψ1i

←→
Dµψ2)(ψ3γ

µψ4) + 4(ψ1γ
µγνψ2)(ψ3γµiDνψ4) + dim-6

FI, IBP
======

EoM

{
−2(ψ1i

←→
DµP±ψ2)(ψ3γ

µP±ψ4)− 4(ψ1i
←→
DµP±ψ4)(ψ3γ

µP±ψ2) + T + dim-6 ,

−2(ψ1i
←→
DµP±ψ2)(ψ3γ

µP∓ψ4) + dim-6 .

(2.9)

In the second step we have used the relation σµν = iγµγν − igµν = igµν − iγνγµ, and in

the last step distinguished between the two cases in which ψ2,4 have the same or opposite

chirality to apply the FIs:

(ψ1γ
µγνP±ψ2)(ψ3γµiDνP±ψ4) = −2(ψ1iDµP±ψ4)(ψ3γ

µP±ψ2),

(ψ1γ
µγνP±ψ2)(ψ3γµiDνP∓ψ4) = 2(ψ1P±ψ2)(ψ3i /DP∓ψ4) + 2(ψ1i /DP∓ψ4)(ψ3P±ψ2).

(2.10)

Therefore, the tensor structure can be discarded in favor of the vector one in equation (2.8)

to work out all possible operators. For a given field configuration (ψ1, ψ2, ψ3, ψ4) fulfilling

gauge invariance, we may form several apparently different operators. However, we find

there is only one independent operator by the use of IBP, EoM, and the following Fierz

transformations [5]:

−(ψ1γ
µP±ψ2)(ψ3P±ψ4) = (ψ1γ

µP±ψ
C
3 )(ψC2 P±ψ4) + (ψ1γ

µP±ψ4)(ψ3P±ψ2),

−(ψ1γ
µP±ψ2)(ψ3P∓ψ4) = (ψ1P∓ψ

C
3 )(ψC4 γ

µP±ψ2) + (ψ1P∓ψ4)(ψ3γ
µP±ψ2), (2.11)

where charge conjugation is defined as ψC = Cψ̄T with the matrix C satisfying the relations

CT = C† = −C and C2 = −1 so that (ψC)C = ψ. Considering the above reduction, for

a given configuration of fields ψ1,2,3,4 ∈ {uL/R, dL/R, eL/R, ν}, one can write down the

corresponding gauge invariant operators. The final complete operators in this class are

given in the rest part of tables 1 and 2 according to their lepton and baryon numbers.

In tables 1 and 2 we also count the number of each operator for generally nu up-type

quarks, nf down-type quarks, and nf neutral and charged leptons. Comparing to dim-7

operators in SMEFT [4, 5] and its sterile neutrino extended νSMEFT [28] which only have

(∆L,∆B) = (2, 0), (1,−1), the dim-7 operators in LEFT have additional sectors with

(∆L,∆B) = (2, 0), (1, 1). In counting independent operators in each sector we have taken

into account symmetries in their flavor indices. In the sector with (∆L,∆B) = (0, 0), only
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the operators OprsteeD1 and OprsteeD2 have flavor symmetries, and are respectively antisymmetric

under p ↔ s and r ↔ t up to dim-6 terms by EoM, thus reducing the number of their

independent operators. In the sector with (∆L,∆B) = (2, 0), the operators OprνF1,2 and

OprνG1,2 are symmetric under p ↔ r, and OprsteνD1,2, OprstdνD1,2 and OprstuνD1,2 are antisymmetric

in the neutrino indices s, t, while OprstννD are totally antisymmetric in the neutrino indices

r, s, t. In the sector with (∆L,∆B) = (1,−1), the operators OprstuνdD1,2 and OprstdedD2,3 are

symmetric under s↔ t, while OprstdedD1,4 are totally symmetric in p, s, t for the three down-

type quark fields up to dim-6 terms by EoM. In the last sector with (∆L,∆B) = (1, 1),

the operators OprstuνdD3,4 and OprstdeuD1,2,3,4 are all symmetric under s↔ t. We have confirmed

our above count of independent operators by the Hilbert series method in ref. [7]. By

utilizing the Mathematica code developed in that reference, we generate all possible field

configurations that can form a gauge and Lorentz invariant dim-7 operator, and count the

total number of independent operators for each field configuration. This counting is easily

done with nu up-type quarks, nf down-type quarks, and nf neutral and charged leptons,

and is in accord with the counts shown in tables 1 and 2 obtained by an analysis of flavor

symmetries. For the SM case with nu = 2, nf = 3 and including Hermitian conjugates

of the operators, there are in total 3168|∆L=0
∆B=0 + 750|∆L=±2

∆B=0 + 588|L=±1
∆B=∓1 + 712|∆L=±1

∆B=±1

independent dim-7 operators in LEFT.

3 Matching with SMEFT up to dimension 7

Although the SMEFT is defined above the electroweak scale ΛEW and stays closer to certain

new physics at the scale ΛNP, we have to employ the LEFT defined below ΛEW when

coping with low energy processes. The new physics information parameterized in SMEFT

is then inherited by LEFT through the matching conditions and renormalization group

effects. Previously, the tree-level matching has been done in [30] from the SMEFT effective

interactions up to dim-6 operators to the LEFT also up to dim-6 operators. In this section

we extend this matching to the dim-7 operators in both SMEFT and LEFT based on the

basis of dim-7 operators in LEFT described in section 2 and the basis of dim-7 operators in

SMEFT established in ref. [5] and further refined in ref. [37]. This result will be necessary

for a consistent study of new physics effects at low energy beyond the leading order.

The matching is done by integrating out the SM heavy particles W±, Z, h, t from

the SMEFT in the electroweak symmetry broken phase. Since the effective interactions of

higher-dimensional operators in SMEFT are supposed to be suppressed by more powers

of ΛNP which is much larger than ΛEW, we will work to the linear terms in them. Then

the effective interaction of a dim-m (m ≥ 5) operator in SMEFT will possibly induce an

effective interaction in LEFT of a dim-n operator with the correspondence of the Wilson

coefficients:

SMEFT: Cdim−m
SMEFT ∼

1

Λm−4
NP

⇒ LEFT: Cdim−n
LEFT ∼

1

Λm−4
NP Λn−mEW

, (3.1)
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ψ2H4 ψ2H3D

OLH εijεmn(LC,iLm)HjHn(H†H) OLeHD εijεmn(LC,iγµe)H
j(HmiDµHn)

ψ2H2D2 ψ2H2X

OLDH1 εijεmn(LC,i
←→
DµL

j)(HmDµHn) OLHB g1εijεmn(LC,iσµνL
m)HjHnBµν

OLDH2 εimεjn(LC,iLj)(DµH
mDµHn) OLHW g2εij(ετ

I)mn(LC,iσµνL
m)HjHnW Iµν

ψ4D ψ4H

OduLDL εij(dγµu)(LC,ii
←→
D µLj) OeLLLH εijεmn(eLi)(LC,jLm)Hn

OdQLLH1 εijεmn(dQi)(LC,jLm)Hn

OdQLLH2 εijεmn(dσµνQ
i)(LC,jσµνLm)Hn

OduLeH εij(dγµu)(LC,iγµe)Hj

OQuLLH εij(Qu)(LCLi)Hj

OLQdDd (LγµQ)(dCi
←→
D µd) OLdudH̃ (Ld)(uCd)H̃

OedddD (eγµd)(dCi
←→
Dµd) OLdddH (Ld)(dCd)H

OeQddH̃ εij(eQ
i)(dCd)H̃j

OLdQQH̃ εij(Ld)(QCQi)H̃j

Table 3. Basis of dim-7 operators in SMEFT [37]. Here L, Q are the left-handed lepton and

quark doublet fields, u, d, e the right-handed up-type quark, down-type quark and charged lepton

singlet fields, and H the Higgs doublet with H̃i = εijHj . Color contraction is implied for triple

quark fields. The operators in gray have (∆L,∆B) = (−1, 1) while others have (∆L,∆B) = (2, 0).

Hermitian conjugate operators are not displayed.

where we do not include couplings in SM. Since t couples to another heavy particle (W±)

or another heavy particle (Z, h) and itself, it cannot contribute to the tree-level matching

up to dimension 7. Excluding the heavy particles (W±, Z, t), h couples very weakly to

the light fermions. We will therefore ignore these small Yukawa couplings, so that the

Higgs doublet field H can be simply replaced by its vacuum expectation value (vev) v/
√

2

for the purpose of matching calculation. This leaves with us only the integration of the

weak gauge bosons W±, Z. Inspection of the effective interactions from the dim-6 and

dim-7 operators in SMEFT shows that a single W±, Z propagator is required to connect

an SMEFT vertex to an SM vertex to arrive at an LEFT operator up to dim-7.

We adopt for the dim-6 operators in SMEFT the Warsaw basis [3], and for the dim-7

operators the basis in ref. [37] that is refined from the previous one [5] and reproduced in

table 3. The bases of dim-5 and dim-6 operators in LEFT are taken from ref. [30] while

the basis of dim-7 operators is listed in tables 1 and 2. Our matching results are recorded

as follows. While the matching to dim-7 operators in LEFT is new, the matching results

up to dim-6 operators in LEFT are to be added to those in ref. [30] when both baryon and

lepton numbers match.
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� Matching from dim-5/7 operators in SMEFT to dim-3 operators in LEFT

Oprν =(νCp νr), Cprν = +
1

2
Cpr5 v2 +

1

4
CprLHv

4, (3.2)

where Cpr5 is the Wilson coefficient of the dim-5 Weinberg operator O5 =εijεmn(LC,iLm)HjHn.

� Matching from dim-7 operators in SMEFT to dim-5 operators in LEFT

Oprνγ =(νCp σµννr)F
µν , Cprνγ = +

1

4
ev2
(

2CprLHB + CrpLHW − C
pr
LHW

)
, (3.3)

where the dim-5 Majorana neutrino dipole moment operator vanishes for identical flavors.

� Matching from dim-7 operators in SMEFT to dim-6 operators in LEFT

• Operators with (∆L,∆B) = (2, 0):

OS,prsteν1 = (eRpeLr)(νCs νt), CS,prsteν1 = −
√

2v

8

(
2CprstēLLLH + CpsrtēLLLH + s↔ t

)
,

OS,prsteν2 = (eLpeRr)(νCs νt), CS,prsteν2 = −
√

2v

2

(
CsrLeHDδ

tp + CtrLeHDδ
sp
)
,

OT,prsteν = (eRpσµνeLr)(νCs σ
µννt), CTeν = +

√
2v

32

(
CpsrtēLLLH − C

ptrs
ēLLLH

)
,

OS,prstdν = (dRpdLr)(νCs νt), CS,prstdν = −
√

2v

4
Vxr
(
Cpxst
d̄QLLH1

+ Cpxts
d̄QLLH1

)
,

OT,prstdν = (dRpσµνdLr)(νCs σ
µννt), CT,prstdν = −

√
2v

4
Vxr
(
Cpxst
d̄QLLH2

− Cpxts
d̄QLLH2

)
,

OS,prstuν = (uLpuRr)(νCs νt), CS,prstuν = +

√
2v

4

(
Cprst
Q̄uLLH

+ Cprts
Q̄uLLH

)
,

OS,prstduν e1 = (dRpuLr)(νCs eLt), CS,prstduν e1 = +

√
2v

2
Cprts
d̄QLLH1

,

OS,prstduν e2 = (dLpuRr)(νCs eLt), CS,prstduν e2 = +

√
2v

2
V ∗xpC

xrts
Q̄uLLH ,

OT,prstduν e = (dRpσµνuLr)(νCs σ
µνeLt), CT,prstduν e = −

√
2v

2
Cprts
d̄QLLH2

,

OV,prstduν e1 = (dLpγµuLr)(νCs γ
µeRt), CV,prstduν e1 = +

√
2v

2
V ∗rpC

st
LeHD,

OV,prstduν e2 = (dRpγµuRr)(νCs γ
µeRt), CV,prstduν e2 = +

√
2v

2
Cprst
d̄uLeH

, (3.4)

where Vpr is the CKM matrix coming from the SM charged current weak interactions.

These matching results can contribute to nuclear neutrinoless double β decays and

LNV meson decays via the long distance mechanism [19, 35–37].
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• Operators with (∆L,∆B) = (−1, 1):

OS,prstν dud1 = εαβγ(νpd
α
Rr)(u

βC
Rs d

γ
Rt), CS,prstν dud1 = +

√
2v

2
Cprst
L̄dudH̃

,

OS,prstν dud2 = εαβγ(νpd
α
Rr)(u

βC
Ls d

γ
Lt), CS,prstν dud2 = −

√
2v

2
VxtC

prsx

L̄dQQH̃
,

OS,prsteddd1 = εαβγ(eLpd
α
Rr)(d

βC
Rs d

γ
Rt), CS,prsteddd1 = +

√
2v

2
Cprst
L̄dddH

,

OS,prsteddd2 = εαβγ(eRpd
α
Lr)(d

βC
Rs d

γ
Rt), CS,prsteddd2 = −

√
2v

2
VxrC

pxst

ēQddH̃
,

OS,prsteddd3 = εαβγ(eLpd
α
Rr)(d

βC
Ls d

γ
Lt), CS,prsteddd3 = −

√
2v

4
VxsVyt

(
Cprxy
L̄dQQH̃

− Cpryx
L̄dQQH̃

)
.

(3.5)

These operators can induce usual nucleon decays such as p → νπ+ [5] and n → eπ+ that

change baryon and lepton numbers by one unit while keeping their sum conserved.

� Matching from dim-7 operators in SMEFT to dim-7 operators in LEFT

• Operators with (∆L,∆B) = (2, 0):

OprstννD = (νpγ
µνr)

(
νCs i
←→
∂µνt

)
, CprstννD = −δprCstLX ,

OprsteνD1 = (eLpγ
µeLr)

(
νCs i
←→
∂µνt

)
, CprsteνD1 = +2

(
1

2
− s2

W

)
δprCstLX

+
[
δpt (2CsrLHW + CsrLDH1)− s↔ t

]
,

OprsteνD2 = (eRpγ
µeRr)

(
νCs i
←→
∂µνt

)
, CprsteνD2 = −2s2

W δ
prCstLX

OprstdνD1 = (dLpγ
µdLr)

(
νCs i
←→
∂µνt

)
, CprstdνD1 = +2

(
1

2
− 1

3
s2
W

)
δprCstLX ,

OprstdνD2 = (dRpγ
µdRr)

(
νCs i
←→
∂µνt

)
, CprstdνD2 = −2

3
s2
W δ

prCstLX ,

OprstuνD1 = (uLpγ
µuLr)

(
νCs i
←→
∂µνt

)
, CprstuνD1 = −2

(
1

2
− 2

3
s2
W

)
δprCstLX ,

OprstuD2 = (uRpγ
µuRr)

(
νCs i
←→
∂µνt

)
, CprstννD = +

4

3
s2
W δ

prCstLX ,

OprstduνeD1 = (dLpγ
µuLr)

(
eCLsi
←→
Dµνt

)
, CprstdueνD1 = +2V ∗rp

(
2CtsLHW + CtsLDH1

)
,

OprstdueνD2 = (dRpγ
µuRr)

(
eCLsi
←→
Dµνt

)
, CprstdueνD2 = −2Cprts

d̄uLDL
, (3.6)

where sW = sin θW , cW = cos θW with θW being the weak mixing angle, and the

following shortcut is used,

CstLX = 2s2
WC

st
LHB + c2

W (CstLHW − CtsLHW ). (3.7)

– 11 –



J
H
E
P
0
8
(
2
0
2
0
)
1
6
2

• Operators with (∆L,∆B) = (1,−1):

OprstuνdD2 = εαβγ(uαLγ
µν)(dβRi

←→
Dµd

γC
R ), CprstuνdD2 = −Crpst∗

L̄QdDd
,

OprstdedD2 = εαβγ(dαLγ
µeL)(dβRi

←→
Dµd

γC
R ), CprstdedD2 = −V ∗xpCrxst∗L̄QdDd,

OprstdedD4 = εαβγ(dαRγ
µeR)(dβRi

←→
Dµd

γC
R ), CprstdedD4 = −Crpst∗ēdddD. (3.8)

� Matching from dim-6 operators in SMEFT to dim-7 operators in LEFT

The operators involved in this matching all conserve baryon and lepton numbers. We will

use the shortcuts:

CsteX = cWC
st
eW + sWC

st
eB, CstdX = cWC

st
dW + sWC

st
dB, CstuX = cWC

st
uW − sWCstuB. (3.9)

• Operators in the class (L̄γµL)(L̄iDµR):

OprstνeD = (νpγ
µνr)(eLsi

←→
DµeRt), CprstνeD = −

√
2

mZ
δprCsteX −

2
√

2

mW
δsrCpteW ,

OprstνdD = (νpγ
µνr)(dLsi

←→
DµdRt), CprstνdD = −

√
2

mZ
δprV ∗xsC

xt
dX ,

OprstνuD = (νpγ
µνr)(uLsi

←→
DµuRt), CprstνuD = +

√
2

mZ
δprCstuX ,

OprsteeD1 = (eLpγ
µeLr)(eLsi

←→
DµeRt), CprsteeD1 = +

2
√

2

mZ

(
1

2
− s2

W

)
δprCsteX ,

OprstedD1 = (eLpγ
µeLr)(dLsi

←→
DµdRt), CprstedD1 = +

2
√

2

mZ

(
1

2
− s2

W

)
δprV ∗xsC

xt
dX ,

OprsteuD1 = (eLpγ
µeLr)(uLsi

←→
DµuRt), CprsteuD1 = −2

√
2

mZ

(
1

2
− s2

W

)
δprCstuX ,

OprstdeD1 = (dLpγ
µdLr)(eLsi

←→
DµeRt), CprstdeD1 = +

2
√

2

mZ

(
1

2
− 1

3
s2
W

)
δprCsteX ,

OprstddD1 = (dLpγ
µdLr)(dLsi

←→
DµdRt), CprstddD1 = +

2
√

2

mZ

(
1

2
− 1

3
s2
W

)
δprV ∗xsC

xt
dX ,

OprstduD1 = (dLpγ
µdLr)(uLsi

←→
DµuRt), CprstduD1 = −2

√
2

mZ

(
1

2
− 1

3
s2
W

)
δprCstuX ,

OprstduD2 = (dLpγ
µdLr][uLsi

←→
DµuRt), CprstduD2 = −2

√
2

mW
VsrV

∗
xpC

xt
uW ,

OprstueD1 = (uLpγ
µuLr)(eLsi

←→
DµeRt), CprstueD1 = −2

√
2

mZ

(
1

2
− 2

3
s2
W

)
δprCsteX ,

OprstudD1 = (uLpγ
µuLr)(dLsi

←→
DµdRt), CprstudD1 = −2

√
2

mZ

(
1

2
− 2

3
s2
W

)
δprV ∗xsC

xt
dX ,

OprstudD2 = (uLpγ
µuLr][dLsi

←→
DµdRt), CprstudD2 = −2

√
2

mW
V ∗rsC

pt
dW ,

OprstuuD1 = (uLpγ
µuLr)(uLsi

←→
DµuRt), CprstuuD1 = +

2
√

2

mZ
δpr
(

1

2
− 2

3
s2
W

)
CstuX ,
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OprstνeduD = (νpγ
µeLr)(dLsi

←→
DµuRt), CprstνeduD = +

2
√

2

mW
δprV ∗wsC

wt
uW ,

OprsteνudD = (eLpγ
µνr)(uLsi

←→
DµdRt), CprsteνudD = +

2
√

2

mW
δprCstdW ,

OprstduνeD1 = (dLpγ
µuLr)(νsi

←→
DµeRt), CprstduνeD1 = +

2
√

2

mW
V ∗rpC

st
eW . (3.10)

• Operators in the class (R̄γµR)(L̄iDµR):

OprsteeD2 = (eRpγ
µeRr)(eLsi

←→
DµeRt), CprsteeD2 = −2

√
2

mZ
s2
W δ

prCsteX ,

OprstedD2 = (eRpγ
µeRr)(dLsi

←→
DµdRt), CprstedD2 = −2

√
2

mZ
s2
W δ

prV ∗xsC
xt
dX ,

OprsteuD2 = (eRpγ
µeRr)(uLsi

←→
DµuRt), CprsteuD2 = +

2
√

2

mZ
s2
W δ

prCstuX ,

OprstdeD2 = (dRpγ
µdRr)(eLsi

←→
DµeRt), CprstdeD2 = −2

√
2

mZ

1

3
s2
W δ

prCsteX ,

OprstddD2 = (dRpγ
µdRr)(dLsi

←→
DµdRt), CprstddD2 = −2

√
2

mZ

1

3
s2
W δ

prV ∗xsC
xt
dX ,

OprstduD3 = (dRpγ
µdRr)(uLsi

←→
DµuRt), CprstduD3 = +

2
√

2

mZ

1

3
s2
W δ

prCstuX ,

OprstueD2 = (uRpγ
µuRr)(eLsi

←→
DµeRt), CprstueD2 = +

2
√

2

mZ

2

3
s2
W δ

prCsteX ,

OprstudD3 = (uRpγ
µuRr)(dLsi

←→
DµdRt), CprstudD3 = +

2
√

2

mZ

2

3
s2
W δ

prV ∗xsC
xt
dX ,

OprstuuD2 = (uRpγ
µuRr)(uLsi

←→
DµuRt), CprstuuD2 = −2

√
2

mZ

2

3
s2
W δ

prCstuX . (3.11)

4 Low energy neutrino-photon interactions and ultraviolet completion

Among the dim-7 operators in LEFT the most interesting might be the ψ2X2 type, which

contains both (∆L,∆B) = (0, 0) and (∆L,∆B) = (2, 0) sectors. We first note that ref. [38]

listed the subset of dim-7 operators for the b → s transition which however contains an

identically vanishing operator ETL,R = b̄σνρPL/RsFµνF
µ
ρ = 0. In this section we consider

the low energy neutrino-photon (νγ) interactions in the (∆L,∆B) = (2, 0) sector. The

leading terms appear at dimension 7:

LLNV
νγ = OαβνF1C

αβ
νF1 +OαβνF2C

αβ
νF2 + h.c., (4.1)

where the two operators are listed in table 2 whose Wilson coefficients are symmetric in

neutrino flavors α, β. We note in passing that in ref. [39] the operators OνF1/2 and OνG1/2

have been used to study coherent elastic neutrino-nucleus scattering. As a neutral particle,

these interactions cannot originate directly from a tree level matching to the first few

high-dimensional operators in SMEFT. Instead, they would arise as a loop effect of the

– 13 –
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Figure 1. One-loop Feynman diagrams that induce effective νγ interactions in equation (4.1) due

to effective νe interactions in equation (4.2).

effective interactions between neutrinos and charged particles in LEFT that can originate

from a tree level matching to SMEFT. We content ourselves in this work with effective νγ

interactions at energies below the mass of the lightest charged particle, i.e., the electron.

We will see that the dominant contribution comes from the dim-6 operators [30] involving

the electron:

L6
νe = OS,eeαβeν1 CS,eeαβeν1 +OS,eeαβeν2 CS,eeαβeν2 +OT,eeαβeν CT,eeαβeν + h.c., (4.2)

where the Wilson coefficients are given in equation (3.4) in terms of those in SMEFT.

Contracting the two electron lines in any of the vertices in equation (4.2) and attaching

two photons to the contracted electron line yields the effective interactions between two

neutrinos and two photons as shown in figure 1, which at energies below the electron mass

me have the form of equation (4.1), with

CαβνF1 =
1

12πme

(
CS,eeαβeν1 + CS,eeαβeν2

)
, CαβνF2 = − i

8πme

(
CS,eeαβeν1 − CS,eeαβeν2

)
. (4.3)

The tensor interaction in equation (4.2) yields a vanishing result because of the Schouten

identity,

gαβεµνρσ + gαµενρσβ + gανερσβµ + gαρεσβµν + gασεβµνρ = 0, (4.4)

which is indeed consistent with the absence in table 2 of a neutrino tensor bilinear coupled to

a field strength squared. The 1/me factor in equation (4.3) is not surprising, but is actually

the same as that in the t-loop contribution to the decay amplitude for h→ γγ in the heavy

top limit where 1/mt is cancelled by the top Yukawa coupling. There is an additional

contribution to the Wilson coefficient CνF1: when one H in the dim-5 Weinberg operator

O5 assumes its vev and the other H field is connected to the two photons through the

SM one-loop diagrams, CνF1 gains a term proportional to mν/(v
2m2

h) which is suppressed

by the neutrino mass mν and can be safely ignored. Parameterizing by Λ−3
NP the SMEFT

Wilson coefficients entering CS,eeαβeν1(2) through the matching conditions in equation (3.4), one

has roughly

CαβνF1(2) ∼
v

4πme

1

Λ3
NP

, (4.5)

which offers a huge enhancement factor of ∼ 104–105 compared to the effect of a usual

dim-7 operator.

– 14 –
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With the above enhancement in mind we calculate the cross sections for various νγ

scattering processes. The amplitudes are

A(γλ(k)να(p)→ γλ′(k
′)ν̄β(p′)) = 2αem

[
CαβνF1

(
1− λλ′

)
+ iCαβνF2

(
λ− λ′

)]
(−t)3/2,

A(γλ(k)γλ′(k
′)→ να(p)νβ(p′)) = 2αem

[
Cαβ∗νF1(1 + λλ′) + iCαβ∗νF2(λ+ λ′)

]
s3/2,

A(να(p)νβ(p′)→ γλ(k)γλ′(k
′)) = 2αem

[
CαβνF1(1 + λλ′) + iCαβνF2(λ+ λ′)

]
s3/2. (4.6)

Here λ, λ′ denote the helicities of the photons, s = (k + k′)2, and t = (k − k′)2. We have

ignored the tiny masses of the neutrinos and explicitly evaluated their spinor wavefunctions.

The crossing symmetry is manifest in the above amplitudes: the first and third amplitudes

are related by (s, λ′)↔ (−t,−λ′) while the last two are related by (λ, λ′)↔ (−λ,−λ′) and

complex conjugate. Denoting the photon energy by ω and the scattering angle by θ in the

center of mass frame, the differential cross sections are,

dσ(ναγλ → ν̄βγλ′)

d cos θ
=
α2

emω
4

4π

∣∣∣CαβνF1

(
1− λλ′

)
+ iCαβνF2

(
λ− λ′

)∣∣∣2 (1− cos θ)3,

dσ(γλγλ′ → νανβ)

d cos θ
=
α2

emω
4

π

∣∣∣CαβνF1

(
1 + λλ′

)
+ iCαβνF2

(
λ+ λ′

)∣∣∣2 2

1 + δαβ
,

dσ(νανβ → γλγλ′)

d cos θ
=
α2

emω
4

π

∣∣∣CαβνF1

(
1 + λλ′

)
+ iCαβνF2

(
λ+ λ′

)∣∣∣2 . (4.7)

Upon averaging (summing) over the initial (final) photon helicities, the total cross

sections are,

σ(ναγ → ν̄βγ) =
4α2

emω
4

π

(
|CαβνF1|

2 + |CαβνF2|
2
)
,

σ(γγ → νανβ) = σ(γνα → ν̄βγ)
2

1 + δαβ
,

σ(νανβ → γγ) = 4σ(γνα → ν̄βγ). (4.8)

There are some salient features in our above results when compared to their counter-

parts in SM [40], i.e., νγ → νγ, γγ → νν̄, and νν̄ → γγ. First, the cross sections for

each pair of similar processes vanish for opposite paring of photon helicities. For instance,

νγλ → ν̄γλ′ here does not occur for identical helicities λ = λ′, while νγλ → νγλ′ in SM is

absent for opposite helicities λ = −λ′. The situation for the other two pairs of processes

is just reversed. This circumstance is an interesting consequence of lepton number being

violated or conserved: fixing an always left-handed neutrino in either initial or final states,

what is for the second fermion to be a left-handed neutrino (right-handed antineutrino) in

the SM process becomes a right-handed (left-handed) neutrino in the process under consid-

eration here. Thus in a sense the flip or nonflip of a photon helicity offers a veto to Dirac

or Majorana neutrinos. In addition, γν → γν̄ cannot take place in the forward direction,

while γγ → νν and νν → γγ show a purely s-wave behavior. These are also different from

the SM processes. Second, our cross sections are proportional to (v2/m2
e)Λ
−6
NP while the SM

ones are typical one-loop processes of order m−8
W ln2(m2

W /m
2
e). This results in a different

– 15 –
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γv→γν : ΛNP=1 TeV

γv→γν : ΛNP=10 TeV

γv→γν : ΛNP=100 TeV

SM: γν→γν

SM: γγ→νν
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Figure 2. Cross sections are shown as functions of photon energy ω (in units of me) for LNV

scattering (orange solid curves) and SM scattering (purple dashed or dot-dashed curves) [40, 41].

low energy behavior in cross sections: our processes behave as ω4 while the SM ones go as

ω6. All of this power counting is indeed consistent with the fact that the effective operators

for νγ interactions start with dimension 7 here but with dimension 8 in SM. Numerically,

in our case σ(γνα → ν̄βγ)/σ(γγ → νανβ) = 1 (1/2) for να = νβ (να 6= νβ), which is in

contrast to the SM case σ(νγ → νγ)/σ(γγ → νν̄) ∼ 15.

To get some feel about the orders of magnitude of various processes here and in SM,

we make a simplifying assumption in our matching conditions shown in equation (3.4), i.e.,

the Wilson coefficient CprLeHD = 0 in SMEFT, so that the Wilson coefficient CS,prsteν2 = 0 in

LEFT while CS,prsteν1 gains a contribution from the Wilson coefficient CprstēLLLH in SMEFT. To

compare with the SM processes, we consider the case with να = νβ ≡ ν, so that effectively

we have from equations (3.4) and (4.3),

C11
νF1 = −

√
2v

16πme
C1111
ēLLLH , C11

νF2 = i
3
√

2v

32πme
C1111
ēLLLH , (4.9)

where the superscript 1 refers to the first generation neutrino and charged lepton. Param-

eterizing |C1111
ēLLLH | = Λ−3

NP, this gives

σ(γν → ν̄γ) =
13α2

em

128π3

v2

m2
e

ω4

Λ6
NP

≈ 1.1× 10−15

(
ω

me

)4(TeV

ΛNP

)6

fb, (4.10)

and σ(γγ → νν) = σ(γν → ν̄γ), σ(νν → γγ) = 4σ(γν → ν̄γ). The above cross section

is depicted in figure 2 as a function of ω/me at three values of the new physics scale

ΛNP = 1, 10, 100 TeV. Also shown are the SM cross sections for γν → γν, γγ → νν̄ [40],

and γν → γγν [41]. The last process arises from dim-10 operators whose Wilson coefficients

are significantly enhanced at one loop by a factor of 1/m4
e, and has an ω10 behavior in

its cross section. As one can see from the figure, the LNV νγ interactions result in a

– 16 –
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Figure 3. Tree-level topologies for ultraviolet completion generating operator OēLLLH .

generically much larger cross section even for a high scale ΛNP than the SM interactions.

We will systematically explore in the future work its possible implications in cosmology.

Before we conclude this section we illustrate by examples how the dim-7 operators

OprstēLLLH in SMEFT that are called for in the above analysis could be generated by ultra-

violet completion. The possible tree-level topologies are classified in figure 3. While the

topology (a) only involves new scalar fields, the others require both scalar and fermion

fields. We notice that gauge anomaly cancellation may demand vector-like fermions which

are usually easy to arrange. The electroweak gauge symmetry SU(2)L × U(1)Y at each

vertex then gives two possible solutions to the quantum numbers of the heavy fields in

each topology, which are:

model (a1) : Σ = (3,−1), ϕ=
(

2,−1

2

)
, model (a2) : Σ = (1,−1), ϕ=

(
2,−1

2

)
,

model (b1) : S= (3,−1), ψ=
(

2,−3

2

)
, model (b2) : S= (1,−1), ψ=

(
2,−3

2

)
,

model (c1) : S= (3,−1), ψ= (3,0), model (c2) : S= (1,−1), ψ= (1,0),

model (d1) : S=
(

2,−1

2

)
, ψ= (3,0), model (d2) : S=

(
2,−1

2

)
, ψ= (1,0). (4.11)

Let us consider model (a2) as an example. The relevant new terms in the Lagrangian

are,

L ⊃ YΣ,prεijL
C,i
p LjrΣ

† + λΣϕΣϕ†H + Yϕ,prεijepL
i
rϕ

j + h.c., (4.12)

where YΣ = −Y T
Σ , Yϕ, and λΣϕ are generally complex Yukawa coupling matrices in lepton

flavors and triple scalar coupling respectively. Then the diagram (a) and its crossings in

figure 3 lead to the effective interaction CprstēLLLHO
prst
ēLLLH . But before we present the Wilson

coefficients we must first decide on the set of independent operators contained in OprstēLLLH

which have nontrivial flavor relations [19]:

OprstēLLLH +OptsrēLLLH = OpsrtēLLLH +OptrsēLLLH = OpstrēLLLH +OprtsēLLLH . (4.13)

Note that the second equality is actually not independent but can be obtained from the

first one, and we include it only for clarity. With three generations, suppose we choose the

set to be,

OprrrēLLLH , O
prss
ēLLLH , O

pssr
ēLLLH , O

p123
ēLLLH , O

p132
ēLLLH , O

p213
ēLLLH , O

p231
ēLLLH , (4.14)
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where s 6= r assumes values 1, 2, 3, then the redundant operators are,

Op321
eLLLH = Op231

eLLLH +Op132
eLLLH −O

p123
eLLLH ,

Op312
eLLLH = Op231

eLLLH +Op132
eLLLH −O

p213
eLLLH ,

OprsreLLLH =
1

2
(OprsseLLLH +OpssreLLLH). (4.15)

By integrating out heavy particles from the Lagrangian or computing first amplitudes and

then rewriting them back into effective interactions, we find the Wilson coefficients for

the set of independent operators shown in equation (4.14) upon applying Fierz and other

algebraic identities:

CprrrēLLLH = 0, CprssēLLLH = −
λΣϕ

m2
Σm

2
ϕ

Ups;rs = −CpssrēLLLH ,

Cp123
ēLLLH = 2

λΣϕ

m2
Σm

2
ϕ

[
Up1;32 − Up3;12

]
, Cp132

ēLLLH = 2
λΣϕ

m2
Σm

2
ϕ

Up1;23,

Cp213
ēLLLH = 2

λΣϕ

m2
Σm

2
ϕ

[
Up2;31 − Up3;21

]
, Cp231

ēLLLH = 2
λΣϕ

m2
Σm

2
ϕ

Up2;13, (4.16)

where mΣ,ϕ are the masses of the new heavy scalars and the shortcut Upr;st = (Yϕ)pr(YΣ)st
is used. With the matching condition in equation (3.4), we obtain the corresponding LEFT

Wilson coefficient in equation (4.2):

CS,eeαβeν1 =

√
2vλΣϕ

4m2
Σm

2
ϕ

[(Yϕ)1α(YΣ)1β + (Yϕ)1β(YΣ)1α] . (4.17)

It is interesting that while CS,eeeeeν1 = 0 due to antisymmetry of the YΣ matrix, CS,eeαβeν1

generically does not vanish when either of the neutrino indices α, β or both refers to the

second or third generation.

As a second example we consider model (d2) which introduces three vector-like heavy

singlet fermions ψ of mass matrix Mψ and one doublet scalar S of mass mS . The relevant

new Yukawa couplings are,

Lyuk =(YHψ)prεijψ̄pL
i
rH

j + (YSψ)prδijL
C,i
p ψrS

∗j + (YSe)prεijepL
i
rS

j + h.c., (4.18)

where YHψ, YSψ, YSe are complex Yukawa coupling matrices in generation space. Choosing

the same set of independent operators in equation (4.14), the diagram (d) in figure 3 leads

to the tree-level result:

CprrrēLLLH =
1

m2
S

Vpr;rr,

CprssēLLLH =
1

m2
S

[
Vpr;ss +

1

2
Vps;rs

]
, CpssrēLLLH =

1

m2
S

[
Vps;sr +

1

2
Vps;rs

]
,

Cp123
ēLLLH =

1

m2
S

[
Vp1;23 − Vp3;21

]
, Cp132

ēLLLH =
1

m2
S

[
Vp1;32 + Vp3;12 + Vp3;21

]
,

Cp213
ēLLLH =

1

m2
S

[
Vp2;13 − Vp3;12

]
, Cp231

ēLLLH =
1

m2
S

[
Vp2;31 + Vp3;12 + Vp3;21

]
, (4.19)
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with the shortcut Vpr;st = (YSe)pr(YSψM
−1
ψ YHψ)st. Thus the LEFT Wilson coefficient in

equation (4.2) becomes

Ceeeeeν1 = −3
√

2v

4m2
S

(YSe)11(YSψM
−1
ψ YHψ)11. (4.20)

We see that in this case CS,eeeeeν1 with identical lepton flavors survives.

5 Conclusion

We have established the basis of dim-7 operators in LEFT which is a low energy effective

field theory for the SM particles excluding the weak gauge bosons, the Higgs boson and

the top quark. We found these operators are classified into four sectors according to their

baryon and lepton numbers. Including Hermitian conjugates of the operators, there are

3168 operators with (∆L,∆B) = (0, 0), 750 operators with (∆L,∆B) = (±2, 0), 588

operators with (∆L,∆B) = (±1,∓1), and 712 operators with (∆L,∆B) = (±1,±1). We

have done a tree-level matching calculation to relate the Wilson coefficients between the

SMEFT defined above the electroweak scale and the LEFT. The matching incorporates

new terms due to dim-7 operators in SMEFT on the one hand, and extends to dim-7

operators in LEFT found in this work on the other. As a phenomenological application

we have calculated the effective neutrino-photon interaction due to dim-7 operators in

LEFT, and found several interesting features compared to the SM case. The cross sections

for neutrino-photon scattering have a different correlation between the helicities of the

photons. The interaction arises from a one-loop effect due to dim-6 operators in LEFT and

is significantly enhanced at low energy by an inverse electron mass. As a consequence of

this, the cross sections are even larger than their SM counterparts for a new physics scale

as large as 100 TeV. Finally, we illustrate by example models how ultraviolet completion

could eventually generate the mentioned dim-6 operators.
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