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ABSTRACT: We present a complete and independent set of dimension-7 operators in the
low energy effective field theory (LEFT) where the dynamical degrees of freedom are the
standard model five quarks and all of the neutral and charged leptons. All operators
are non-Hermitian and are classified according to their baryon (AB) and lepton (AL)
numbers violated. Including Hermitian-conjugated operators, there are in total 3168, 750,
588, 712 operators with (AB,AL) = (0,0), (0,£2), (£1,F1), (£1,+1) respectively. We
perform the tree-level matching with the standard model effective field theory (SMEFT)
up to dimension-7 (dim-7) operators in both LEFT and SMEFT. As a phenomenological
application we study the effective neutrino-photon interactions due to dim-7 lepton number
violating operators that are induced and much enhanced at one loop from dim-6 operators
that in turn are matched from dim-7 SMEFT operators. We compare various neutrino-
photon scattering cross sections with their counterparts in the standard model and highlight
the new features. Finally, we illustrate how these effective interactions could arise from
ultraviolet completion.
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1 Introduction

While neutrino mass and dark matter provide evidence for physics beyond the standard
model (SM), persistent searches for new heavy particle production have hitherto yielded
a null result. In this circumstance, effective field theory (EFT) offers an appropriate and
universal approach to quantifying unknown effects of possibly very heavy new particles
on the interactions of SM particles at relatively low energies. In this framework, i.e., the
standard model effective field theory (SMEFT), the standard model appears as the leading
interactions that are generally augmented by an infinite tower of effective interactions that
involve higher and higher dimensional operators and are more and more suppressed by
heavy particles masses. The precise measurements and severe constraints on these effective
interactions will shed light on possible form of new physics.

Suppose that certain new physics scale Anp is significantly higher than the electroweak
scale Agw ~ 10% GeV and that there are no particles other than the SM ones of a mass
around or below Apw. The effective field theory between the scales Axp and Agpw is
then the SMEFT that includes all SM fields and satisfies the complete gauge symmetry
SU@3)c x SU(2)r x U(1l)y. Since it is an EFT at low energy compared to Anp, it can
be organized by the dimensions of operators involved in effective interactions. The bases
of complete and independent operators have now been known at dimension 5 (dim-5) [1],
dimension 6 [2, 3|, dimension 7 [4, 5], and dimension 8 [6-9], and the one-loop renormal-
ization of those basis operators due to the SM interactions has been accomplished up to
dimension 7 in refs. [5, 10-19]. As the dimension of operators goes up further, the number
of basis operators increases horribly fast [7]; for recent efforts on basis operators of even
higher dimensions, see for instance, refs. [7, 2022, 22-24]. On the other hand, if there are
new particles that have a mass less than Agw and are most likely a singlet under the SM
gauge group, such as sterile neutrinos, they must be incorporated into the EFT framework
thus extending the regime of SMEFT [25-28].

Since many measurements are made below the electroweak scale, it is necessary to
develop EFTs below Agw. By integrating out the heavy particles in SM, i.e., the weak



gauge bosons W, Z. the Higgs boson h, and the top quark ¢, we arrive at the so-called low
energy effective field theory (LEFT). It thus includes all other SM fields as its dynamical
degrees of freedom including five quarks, all neutral and charged leptons, and respects the
gauge symmetry SU(3)c x U(1)gym. It has been successfully applied in flavor physics; for a
review, see for instance, ref. [29]. In recent years LEFT has been systematically developed.
The classification of its basis operators up to dimension 6 and their tree-level and one-
loop matching to the SMEFT also up to dimension 6 have been made in refs. [30, 31].
(We note in passing that the basis of dim-6 operators in LEFT extended with light sterile
neutrinos has been worked out recently [32, 33].) The complete one-loop renormalization
of those basis operators has been accomplished in ref. [34]. In this work we will push this
systematic investigation one step further by building the basis of dim-7 operators in LEFT
and matching the effective interactions at tree level between SMEFT and LEFT both to
dim-7 operators.

The outline of this paper is as follows. We first establish in section 2 the basis of
dim-7 operators in LEFT, and then do the tree-level matching between the SMEFT and
the LEFT in section 3 by incorporating new terms due to dim-7 operators in SMEFT or
LEFT or in both. As a simple yet interesting application we study in section 4 the lepton
number violating neutrino-photon interactions arising from dim-7 operators, and calculate
various scattering cross sections and compare them with the SM results. We will also show
a few examples of ultraviolet completion of a dim-7 operator in SMEFT that enters the
above neutrino-photon interactions. Our main results are finally summarized in section 5.

2 The basis of dim-7 operator in LEFT

In the LEFT where we are working the electroweak symmetry breakdown has already taken
place, so that the gauge group is SU(3)¢ x U(1)gy. We have also integrated out the heavy
particles of a mass of order Ay, i.e., the weak gauge bosons W=, Z, the Higgs boson h,
and the top quark ¢. Then the dynamical degrees of freedom are the ny = 3 number of
the down-type quarks (d, s, b) and of the neutral (v 23) plus charged (e, u, 7) leptons,
the n, = 2 number of the up-type quarks (u, c¢), and the photon (A,) and eight gluons
(Gﬁ). Although we work with chiral fields (¢1 r), we assume they are already in their
mass eigenstates. This means that any factors of quark and lepton mixing matrix elements
are hidden in the Wilson coefficients of high dimensional operators. We label the fermion
fields usually by the indices p, 7, s, t, i.e., Vp, €ip, Uip, dip With chirality i = L, R, that
appear in the same order in an operator and its Wilson coefficient. For specific applications
these indices assume a generation value or a flavor name interchangeably.

The bases of dim-5 and dim-6 operators have been established in ref. [30]. In the
following we will do the similar thing for dim-7 operators. First of all, Lorentz symmetry
restricts dim-7 operators to the following possible classes:

VX3, YD, Y2XD?, 2 DY, (2.1)

where the gauge covariant derivative is D,, = 0, —ieQA, — igSTAG;‘ with Q and T4 being
the electric charge and color generators and with e and gs; being gauge couplings, and



X =Fu, Gﬁy are the gauge field strength tensors. Note that there are no pure bosonic
operators made out of X and D because Lorentz invariance requires an even number of D
factors which however cannot lead to an odd-dimensional operator. The operators in the
last two classes 12X D? and 1?D* are actually reducible to those in the first two classes
¥?X? and 9* D plus lower dimensional (i.e., dim-5 and dim-6) ones already covered in [30],
by the use of equations of motion (EoMs) and integration by parts (IBP). Consider first
the class ¢¥?2D*. By Lorentz symmetry the two fermion fields must form a scalar 111
or tensor @Zlaung bilinear with all of the four factors of D arranged by IBP to act on
wo. For the tensor bilinear, if D* and D" are adjacent, 1;10#,, -+ DFEDY .. 1h9 reduces to
the 92X D? class by the relation [D,, D,] o< X, which will be coped with in a moment;
otherwise, D, (or equivalently D,) stays on the far right or far left. For the former, we
proceed as 1)y - - 10, DYy = PUTREE D s — IIREE ’yulDwg, where the second term yields by
EoMs the lower dimensional operators covered in [30] and the first belongs to the scalar
bilinear that we will reduce further. If D, stays on the far left, we make it act on 1 by IBP
instead and then a similar manipulation to the above applies. The scalar bilinear is easy
to handle. The four D factors are contracted by either €,,,, or g, both of which reduce
to the operators in the other three classes (¢¥2X?2, ¥*D, ¢?XD?) and lower dimensional
ones by the relations [D,,, D,] < X, and D?y = IDIPyp = EoM operators. This establishes
the reducibility of the class ¥ D,

Now we turn to reduce the class Y2 X D?. Again, the two fermion fields must form either
a scalar or a tensor bilinear. The operators with a tensor bilinear can be transformed into
those with a scalar bilinear plus EoM operators by the use of IBP, EoMs, and the Bianchi
identity (BI) DHXYP + DV XPF + DPXH = (. The proof goes like this. There are two
types of Lorentz contractions: (a) (Y10,,¢2) X" DPD, and (b) ({10,,¢2)X"?D"D,. By
IBP we choose X to be derivative free. Then we will not bother to display gauge group
indices involved in X which do not interrupt reduction of operators. For type (b), there
are six ways of attaching D? to fermion fields. Two of them are reduced to scalar bilinear

operators and EoM operators (shown as ):
R - R
(DFp1i01, D piha) X¥P = (DV4P1 D ptha) X0+ (31 D, D pipa) X7,
=% (D791 D) X*#+[ EoM |,

(aiUuVD“Dplb?)Xyp = (Ei%u[D”v Dph/’Z)Xyp_ %(%[Dpa Du]w2)XVp+(E'YVDplDw2)XVp

B, 2 2.4 [Eob) 22

and the other four with D, and D* interchanged or with both D, and D* acting on 1)1 are

similarly reduced. For type (a), excluding the trivial EoM operators with D? acting on a
single fermion field, we are left with the following operator whose reduction goes as follows:

(Dptrioy D o) XM =22 — (1110, Dytp2) DP X — (10, D*4iz) X1
— 2(Y1iou Dptpa) DM XMP +

LBL 2 (DFic,, Dytpa) X7P — 2(1h1io,, D D yahy) X7° +[EoM |
(2.3)



The two operators on the right-hand side have already been reduced in equation (2.2). The
reducibility of the class ©>X D? now rests on that of the scalar bilinear operators. In this
case the Lorentz indices in X and D? have to be contracted. Since D, X" only yields
EoM operators that can be discarded as lower dimensional operators, we can apply IBP to
make each fermion field be acted upon by one derivative. This yields the unique operator
which itself is reducible:

IBP

(D1 Dyipg) XM — —EE[DM, D)o XH — 31 (Dyaha) D, XM +

oM p2x2 D, (2.4)

where stands for the total derivative terms that can be discarded in the effective La-
grangian. This finally establishes the reducibility of the class ¥?X D?.

We are thus left with the classes 1> X? and ¥*D to examine further. Working with chi-
ral fermion fields we see that the monomial operators in these classes are all non-Hermitian
due to the special Lorentz structure which can be formed. So in the following we will work
out one half of them while the other half can be obtained by Hermitian conjugate. We
start with the class 12X ?2, which may take the following forms for generic chiral fermion
fields wLQ:

Oyr1 = (Y11p2) Oyra = (1tp2) Fu I,
Oyra1 = (01 TH ¢2) ;WGA m Oyraa = (U1 T4e) F, G
Oyras = (V1T 010 FFGAY,
Oy = (112)Ga, G Opca = (112) G, G
Oyas = dapo (D1 T )G L, G, Opaa = dapc (1T )Gl GOM
Oyas = fapc (10, THbe)GPHGEY, (2.5)

where the field strength dual X* = e“P? X, /2, fapc is the structure constant of SU(3),
and d4pc the symmetric invariant appearing in the anticommutator of generators in the
fundamental representation, {74, TP} = §48/3 + dABCTC. The other possible operators
either vanish or can be reduced to the above ones,

(V10 12) X1 XY, =0, (P10, P2) XPOXY =0, X =F,G4,
(Y1740, Peipo) FPGA, = £iOyras,  fapc (Yo TAPis)GPHGEY, = £i0ycs,
Fape (@1 T4)GE GO =0, fapo (T 4)GE GO =0,  (2.6)

where the chiral projectors Py = (1 4+ +°)/2 are also understood to appear in Oyras and
Oyqs of equation (2.6). The above reduction makes use of the following identities,

1
Up,VP:I: = :Fiew,ng'pUPj:, e,uzzpaeaﬁ’ya = —g,[f‘gfgz], (27)

with [...] indicating antisymmetrization of the arguments inside. With equation (2.5) it is
easy to figure out the relevant fields 1)1 » and find the complete set of operators in this class.
These operators conserve baryon number (AB = 0) but can conserve (AL = 0) or violate
lepton number by two units (AL = £2), which are displayed respectively in tables 1 and 2.



Operator | Specific form | # (ny, ny) | Operator | Specific form | # (ny, ny)
(AL, AB) = (0, 0)
(RL)X? (RL)XX
Ocr1 Oem (€ReL) Fyu 1 ”?c Oera Oem (€RE L)F,WF*“’ n}
Oar1 Qe (dRdyp) Flu ™ n’ Oura em (drdyp) Fu F1 n2
Our Oem (TruL) Fpu FM n2 Oura Cem (TRUL) Flu FH n2
Oarcr | egs(drTdL) Fu G nj Oarcs | egs(drTAdL) G n?
Oaras eg3(drTAo" dp) FyGy” n%
Ourct | egs(WRT up) Fu G i Ourca | egs(WRT up) Fu G4 n
Ouras eg3(@RT Ao up) FyGy” n?
Occn as(erer) G, G n Occa as(erer) G, G n%
Oucr | as(drdr)G, G n Oucz | as(drdy)Gil, G n}
Ouacs asdapo(drTdL)GE,GO n Odca asdape(drTAdL)GE,GOM | n}
Oacs asf ABc(dRTAa“”dL)GprC” n%
Oucn o (TRuL) Gy, G n, Ouc2 a(Ugup )G, GAP n,
Oucs asdapo(@RT ur)G, G | nj Ougs asdape(@RT ur)GE,GM | n?
Ouas OészBc(ﬁTAa“”uL)Gprgp n2
(T1*L)(ED,R) (RY*R)(LD,R)
OveD (7’)/“1/)(61,@.5;63) nj%
Oudip (77“1/)(%%'8)”(13) n}
Owp | v )(aziDyun) n2n?
Ocept (ez7er)@xiDyen) 313y =1) | Ocen2 (err“er) €ziDyer) nd(ng —1)
Ocap1 (exy*er)( dLiEdR) n} Ocan2 (eRw“eR)(szﬁdR n}
Ocun1 (eryer)( uLiEz“R) ning Ocun2 (ery* R)(ULZE)UR ning,
Oden1 (dLVMdL)(eLiE)QR) n} Odep2 (dry"d R)(emﬁeﬁg n}
Oaapt (dpy*dp)(dLiDydr) n} Odap2 (dry"d R)(dedR n}
Oaunt (dL’YudL)(“LiﬁﬂuR) nin;, Oaups (dry"dg)(ur ﬁuR) nin?
Oaup2 dLW#dL][ULiﬁu“R) nin, Odgupa (dr7"dg] [Umﬁ uR) ning,
Ouep1 (WW“L)(@Z'F)HGR) ning, Ouep2 (WrY"ur) (emﬁ> €R) ning,
Ouann (W'Y““L)(Eiﬁudl%) nini, Ouaps (UR’Y“uR)(@zB;dR) nin;,
Owipz | (@ry"ur)(@LiDudr) nin; Owpi | @ry"ur)(dziDydr) nn?
Ouupi (@ryur)( “Liﬁu“R) m Ouwup2 (@'VMUR)(WZ'SZUR) ni
Oveaqup | (7 ”eL)(dLi LUR) nin,
Ocvuap | (€L TL'Lﬁ dr) niny,
Oduven1 (deyf‘uL I/ZﬁeR niny, OduveD? (@qu)(mﬁgeR) nin,

# total: 9} +n}(4n, — 1) +nF(13n3, + 14) + 203 (ng, +5) (= 1584 at n, = 2, ny = 3)

Table 1. Basis of dim-7 operators in LEFT with lepton and baryon numbers conserved, i.e.,
AB = AL = 0, together with count of operators for general n,, ny. L, R refer to left- and right-
handed fermion fields, and qem = €2/(47) and oy = g2/(47). The two brackets (,) and [,] indicate
two different color contractions. Hermitian conjugate operators are not displayed.




Operator | Specific form # (ng, ny) Operator | Specific form # (nyg, ny)
(AL,AB) = (2, 0)
(LCL)X? ICL)XX
Our1 Qe (VOV) Fy FH Ing(ng +1) Oura Cem (VOV) F F ing(ng +1)
Ovcn as(VOV) G, GARY tng(ng+1) Ouvi2 as(VOv) G, GARY ing(ng+1)
(I*L)(TCD,L) (Ry"R)(ICD,L)
Owp (?W“V)(ﬁi?uV) §n5(n —3nf +2)
Ownr | @ er)WCidu) | tnd(ng —1) Owpz | @' er)@Cid,v) | Lnd(ng —1)
Oavp1 (@WdL)(Vicing) an(ng —1) Oavp2 (ﬁv“dR)(Vicig;V) 3n(ng —1)
Owmr | @ ur)(Cidyv) | ngnd(ng —1) | Owpe | @y*ur)(Cibw) | Snpnng —1)
Omevpr | @irur)(eCiDyv) | nin, Owevpe | @ry*ur)(§iDw) | nin,
(ROA"L)(RD,L) (RO#L)(LD, R)
OevudD1 @W V)(ﬁiEiUL) niny, OevudD2 (%W V)(Eiﬁiu}z) niny,

# total: gng(13n% 4 3n7(8ny — 5) + 2nf(3n3 +7) — 6n7 +12) (= 375 at n, = 2, ny = 3)

(AL,AB) = (1, —1)
(EyL) (LD, L) (Ly*L)(RD,RC)
Odgvuapt | (dry* V)(@iﬁﬂdg) nin,
Ouvap1 (H’Y“V)(Eimdg) annu(ng +1) Ouwvdp2 (WW’“V)(@@'B;CZ%) 3nna(ng +1)
Odedn1 (@7“6L)(Eiﬁ>d€) %nfc(nfc +3nf +2) | Ogedn2 (@WGL)(@Z'ELCZ%) %n?}(nf +1)
(Ry*R)(LD,.LC) (Ry* R)(RD,.RC)
Odedps3 (@’Y%R)(@iﬁ;dg) 30y +1) Odedna (@7“%)(@1’77261%) §n3(n% +3nf +2)
# total: %n?@nf +1)(2nf +3ny, +2) (=294 at n, =2, ng =3)
(AL,AB) = (1, 1)
(RCy*L)(L°D, L) (ROA*L)(RCD,R)
Ouivz | ([@50")(WGiDudy) | nin,
Owaps | (uGy* V)(@iﬁdﬂ 3ngnu(ng +1) Owvdpa (@VMV)(@iE)dR) %"?”u(”f +1)
Oteurn | ([@G"er)(WGiDyur) | 3ndnu(nu+1) | Ogeune | (@5 er) (uGiDuur) | dn2nu(n, +1)
Oueuarr | (u§G* eL)(EindL) ning (Lic'y“R)(ﬁﬁ;R)
(LC~*R) (LTE)L) Odeuna (@7*‘63)(@2‘31”%) 33 (ny + 1)
Odeuns (@’VueR)(Eiﬁ/iuL) 3500 (ny + 1) OueduD2 (E’Y”GR)(EiE)dR) nin:,
# total: 9n +n(4ny, — 1) +n3(13n3, + 14) + 2n3 (n +5) (= 306 at n, = 2, ny = 3)

Table 2. Basis of dim-7 operators in LEFT with lepton or baryon number or both violated, i.e.,

(AB,AL) = (2,0), (1,
contraction is implied for triple quark fields, and H = ioo H* and iDM[JC =

Hermitian conjugate operators are not displayed.

—1), (1,1), together with count of operators for general n,, ny. Color
(iD, )¢ for brevity.




For the class 1* D, there are two possible Lorentz structures,

(D10 ) (P Doyt (G17"0s) (i Dps), (2.8)

where Zﬁ;B = ZDMB — ZEB. However, the two structures are not independent as the
tensor structure can be reduced to the vector one plus dim-6 operators () with the
aid of EoMs, IBP, and the Fierz identities (FI):

(¢1U“V¢2)(%V[uim¢4)
LB 120D, (10" o) (Psyutha) + 4(P10™ o) (Vy,ui Duths) +
EM. o (i Dppo) (377 0h4) + (177 12) (37,4 Dyiba) +

FI, IBP {—%wﬁﬂwzxmﬂzﬂwo — 4(1iD,, Pipa) (37 Pitba) + [ T] +[dim-6

BM | —2(1iD, Patbe) (P57 Peiba) + [ dim6 .
(2.9)

In the second step we have used the relation o = iyHy" — igh” = ig"” — iyY~*, and in
the last step distinguished between the two cases in which 12 4 have the same or opposite
chirality to apply the Fls:

(V17" Paah) (Y37uiDy Piips) = —2(1iDy Pathy) (37" Pibs),

(V1" Patba) (W37t Dy Prips) = 2(01 Pripo) (Y3i D Peiby) + 2(p1i D Pips) (Y3 Prba).
(2.10)

Therefore, the tensor structure can be discarded in favor of the vector one in equation (2.8)
to work out all possible operators. For a given field configuration (11, 12, 13, 14) fulfilling
gauge invariance, we may form several apparently different operators. However, we find
there is only one independent operator by the use of IBP, EoM, and the following Fierz
transformations [5]:

— (P17 Peaa) (Y3 Pirpa) = (biy" Patp§ ) (0§ Patpa) + (917" Pirpa) (b3 Paiho),
— (17" Piabo) (3 Pxibs) = (91 P ) (WG Picha) + (1 Papa) (3" Pitba), (2.11)

where charge conjugation is defined as ¢ = C9T with the matrix C satisfying the relations
CT = 0t = —C and C? = —1 so that ()¢ = 4. Considering the above reduction, for
a given configuration of fields 1234 € {ur/r,dr/g,er/R,V}, one can write down the
corresponding gauge invariant operators. The final complete operators in this class are
given in the rest part of tables 1 and 2 according to their lepton and baryon numbers.

In tables 1 and 2 we also count the number of each operator for generally n, up-type
quarks, ny down-type quarks, and n; neutral and charged leptons. Comparing to dim-7
operators in SMEFT [4, 5] and its sterile neutrino extended ¥SMEFT [28] which only have
(AL,AB) = (2,0), (1,—1), the dim-7 operators in LEFT have additional sectors with
(AL,AB) = (2,0), (1,1). In counting independent operators in each sector we have taken
into account symmetries in their flavor indices. In the sector with (AL, AB) = (0,0), only



prst prst . . . .
the operators O, ), and O__p,, have flavor symmetries, and are respectively antisymmetric

under p <> s and 7 <> t up to dim-6 terms by EoM, thus reducing the number of their
independent operators. In the sector with (AL,AB) = (2,0), the operators O}, , and
(’)58172 are symmetric under p <> r, and Oggl,?’ 052%1,2 and (’)ﬁ;‘}t)m are antisymmetric
in the neutrino indices s, t, while Oﬁ;‘% are totally antisymmetric in the neutrino indices
r, s, t. In the sector with (AL, AB) = (1,—1), the operators Oﬁi‘:’fDm and OZZZtDz,g are
symmetric under s <> ¢, while OSZ?DL 4 are totally symmetric in p, s, t for the three down-
type quark fields up to dim-6 terms by EoM. In the last sector with (AL, AB) = (1,1),
the operators OZZ?DS’ 4 and 0322%172’37 4 are all symmetric under s <+ . We have confirmed
our above count of independent operators by the Hilbert series method in ref. [7]. By
utilizing the Mathematica code developed in that reference, we generate all possible field
configurations that can form a gauge and Lorentz invariant dim-7 operator, and count the
total number of independent operators for each field configuration. This counting is easily
done with n,, up-type quarks, ny down-type quarks, and ny neutral and charged leptons,
and is in accord with the counts shown in tables 1 and 2 obtained by an analysis of flavor
symmetries. For the SM case with n, = 2, ny = 3 and including Hermitian conjugates
of the operators, there are in total 3168]3%=0 + 750|35=5" + 588|Xpeyy + T12/R5=5)
independent dim-7 operators in LEFT.

3 Matching with SMEFT up to dimension 7

Although the SMEFT is defined above the electroweak scale Agw and stays closer to certain
new physics at the scale Axp, we have to employ the LEFT defined below Agw when
coping with low energy processes. The new physics information parameterized in SMEFT
is then inherited by LEFT through the matching conditions and renormalization group
effects. Previously, the tree-level matching has been done in [30] from the SMEFT effective
interactions up to dim-6 operators to the LEFT also up to dim-6 operators. In this section
we extend this matching to the dim-7 operators in both SMEFT and LEFT based on the
basis of dim-7 operators in LEFT described in section 2 and the basis of dim-7 operators in
SMEFT established in ref. [5] and further refined in ref. [37]. This result will be necessary
for a consistent study of new physics effects at low energy beyond the leading order.

The matching is done by integrating out the SM heavy particles W*, Z, h, t from
the SMEFT in the electroweak symmetry broken phase. Since the effective interactions of
higher-dimensional operators in SMEFT are supposed to be suppressed by more powers
of Axp which is much larger than Agw, we will work to the linear terms in them. Then
the effective interaction of a dim-m (m > 5) operator in SMEFT will possibly induce an
effective interaction in LEFT of a dim-n operator with the correspondence of the Wilson
coeflicients:

i 1 . 1
SMEFT: Cdiom ~ — = LEFT: Cdmon

- T pre— (3.1)
Axp ANp Apw



¢2H4 w2H3D

On | €ijemn(LOL™)H/H(HTH) | Openp €ij€mn(LC,e) HI (H™iDFH™)
W2H2D? VHPX
Orpm | €ijemn(LCID,LI)(H™DFH™) | Opmp g1€ijemn (L0, L™) HIH"BH
Orpra | €im€in(LCALI)(D,H™D*H™) | Orgw | g2€ij(em!)imn (LG50, L™) HI H"WIH
1D ViIH
OquLpL eij (dyuu) (W@ﬁ“ L) OcerrLu €ij€mn(€LY)(LEIL™)H™
Odorrm €ijemn(dQ")(LEIL™)H"
Oiorrm2 €ij€mn(do,, Q1) (LECIgH L) H™
OduLen ij(dyuu) (LS iyte) HY
O@uLLH €ij(Qu) (L CL@)HJ
OLqdpa (Lu.Q) (d_ciﬁ”d) OF quai (Ld)(uCd)H
Ocaiap (£,)(@CiDya) o~ (La)(dd)H
OzQaait €i;(€Q")(d°d) H’
OLigon €i; (Ld)(QCQ") HY

Table 3. Basis of dim-7 operators in SMEFT [37]. Here L, @ are the left-handed lepton and
quark doublet fields, u, d, e the right-handed up-type quark, down-type quark and charged lepton
singlet fields, and H the Higgs doublet with H? = ¢ HJ. Color contraction is implied for triple
quark fields. The operators in gray have (AL, AB) = (—1,1) while others have (AL, AB) = (2,0).
Hermitian conjugate operators are not displayed.

where we do not include couplings in SM. Since t couples to another heavy particle (W*)
or another heavy particle (Z, h) and itself, it cannot contribute to the tree-level matching
up to dimension 7. Excluding the heavy particles (W*, Z, t), h couples very weakly to
the light fermions. We will therefore ignore these small Yukawa couplings, so that the
Higgs doublet field H can be simply replaced by its vacuum expectation value (vev) v/v/2
for the purpose of matching calculation. This leaves with us only the integration of the
weak gauge bosons W¥*, Z. Inspection of the effective interactions from the dim-6 and
dim-7 operators in SMEFT shows that a single W+, Z propagator is required to connect
an SMEFT vertex to an SM vertex to arrive at an LEFT operator up to dim-7.

We adopt for the dim-6 operators in SMEFT the Warsaw basis [3], and for the dim-7
operators the basis in ref. [37] that is refined from the previous one [5] and reproduced in
table 3. The bases of dim-5 and dim-6 operators in LEFT are taken from ref. [30] while
the basis of dim-7 operators is listed in tables 1 and 2. Our matching results are recorded
as follows. While the matching to dim-7 operators in LEFT is new, the matching results
up to dim-6 operators in LEFT are to be added to those in ref. [30] when both baryon and
lepton numbers match.



s Matching from dim-5/7 operators in SMEFT to dim-3 operators in LEFT

o =(WGw,),

1 1
Cgr =+ ich,UQ + 10?%1)4

(3.2)

where C?" is the Wilson coefficient of the dim-5 Weinberg operator Os = €;j€m, (LE L™)HIH™.

m Matching from dim-7 operators in SMEFT to dim-5 operators in LEFT

or —(?UWVT)F‘“’,

1
Cy =+ —ev?

4

(QC%JB +Crlw — Cﬁfw)’

(3.3)

where the dim-5 Majorana neutrino dipole moment operator vanishes for identical flavors.

m Matching from dim-7 operators in SMEFT to dim-6 operators in LEFT

e Operators with (AL, AB) =

O&prst

evl

OS prst

ev2

OT prst __

S,prst
Odl/

T,prst __
Odl/

OS,prst

OS prst

duvel —

OS prst

duve2

T,prst __
Oduu e

Viprst __
Oduu el =

OVprst

duve2 —

(€rperr) (EW),

= (€Lperr) (EW) )

= (@mpowerr) WCa"™ vy),
(ddeLr) (EW) )
(dRpqudLr)(VCUWVt)
(ULpuryr) (EVt)v
(drpurr)(vCers),
(deuRr)(? Lt)
(dRpUuVULT) (VCU“ ert),

(de’Y,U,U/L’/‘) (Ef)/ueRt ) )

(dRp’V,uuRr ) (E’Y“ eRt) )

(2,0):

S,prst
Ceul

S,prst
Cel/2

T _
Ceu_

S,prst
CdV

T,prst
Cdu

S,prst __
Cu;/ -

CS,prst

duv el

CS,prst

duv e2

T,prst
Cduu e

V,prst
Cduu el

CV prst

duve2

2v
- \g (2CY L+ Colf g + s 1),

\f
\ffu

(CLeHD(Stp + CZ?HDdsp)a
32

t t
35 (Ceon = Celiin),
o \/Q V (Cpxst

4 dQLLH1

\/i prst
] Va (CdQLLHQ

\fv
ffu
\f

pxts
+ CdQLLHl)

__ Ypxts
CdQLLH2)

( Cprst

prts
QuLLH +C5 )

QuLLH/’

pris
C’leLLHl ’

* ~xrts
V;PCQuLLH’

pris
C(dQLLH2’

\f .
——V5Cienn:
\f 2v

Cpr st

duLeH’ (34)

where V), is the CKM matrix coming from the SM charged current weak interactions.

These matching results can contribute to nuclear neutrinoless double 3 decays and

LNV meson decays via the long distance mechanism [19, 35-37].
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e Operators with (AL, AB) =

S,prst
Ou 517;;1 - eaﬁ’Y(Vder) (U’Rs d’ly%t)
OS,prst d d’y
v dud2 = €apy(Vp Rr)(uLs i)
S, prst _ C
Ot = eapy (@) (dps )

S,prst C
OS5Il = eapy (ERrpdS, ) (dos dy),

S, prst ~.BC
OSP = o (€pdR, ) (drS d},),

These operators can induce usual nucleon decays such as p — v+

(—=1,1):

fv prst

S,prst __
C
vdudl — 9 LdudH’
CS,prst \['U V Cprsa:
vdud2 — 9 LdQQH’
CS prst \[U Cprst
edddl LdddH’
CS,prst \/>U V Cpxst
eddd2 eQddH’
S,prst \[U proy pryT
CedddS =——Vas Vyt (CLdQQH EdQQFI) :
(3.5)

[5] and n — er™ that

change baryon and lepton numbers by one unit while keeping their sum conserved.

m Matching from dim-7 operators in SMEFT to dim-7 operators in LEFT

e Operators with (AL, AB) = (2,0):

ot = ) (Eidm)

—
OsyDl (et err) (1/528#14) ,

prst
OeuDQ

(€rpY"err) <usczyyt)
Oy = ([ dur) (vEi0m)

"
prst —C
Ouwp2 = (drp"dry) <Vsclyu’/t
Aeard

Oy = (s (@auut)

prst (T A C prst
OdueuDQ - (dRP’y URT) (eleﬁ#Vt> ) Cduel/DQ

Chrl = =0 Cily,
1
crin=+2 (5 - sk ) o7ty
+ [0" 2CTyw + Cipm) — s < 1],

prst 2 cpr st
CeuDQ__QSW(S CLX

1 1
t
cpin=+2 (5 - 370 ) 7

2
t
ngsDz = *gs%V‘;pTCLX,
1 2
t
ngrj)l = -2 (2 - 33%/[/) 5prCLX7
crrst = A2 sor st
vvD +3 3 SW LX>
t *
Chep1 = T2V (2CEuw + CEpm)
prts
2CduLDL’ (3.6)

where sy = sinfy, cw = cosfy with Oy being the weak mixing angle, and the

following shortcut is used,

st __ 2 st 2 st ts
Cix =2swClup + ciw(Coaw — Crluw)-

(3.7)
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e Operators with (AL,AB) = (1,—1):

t — 8. C t t
Ot = capn (W) (d%iDd)C), Crt ) = it
R 7‘ C
Ot = eap(@r"er)(d5iDLd)C), Ol = Vi, Ot
t —= 8. C t t
Ot = o (@ er)(d5iDLd]0), st = Ot (3.8)

s Matching from dim-6 operators in SMEFT to dim-7 operators in LEFT

The operators involved in this matching all conserve baryon and lepton numbers. We will
use the shortcuts:

Cst oX = CWcSIt/V + SchtB, Cﬁg{ = Cchf/V + SWCdB’ CZtX = CWcil‘t,V — SWthB. (3.9)

e Operators in the class (Ly*L)(LiD,R):

OVt — (T, ) (ET5i Dye ), crrat —nﬁawcgg( - 2\[537"0%/7
Ot = (v, (dsi D). Clap = —;{6’”1/* ost,,

O — (Tt @iDumy), OIS = \f(swcux,

Ot = (epters)(@mmiDpers),  CUL = Qm\/f <; - s%v> sPrest
05231 = (ﬁweLr)(diL'siﬁuth), Cf;iﬁtl = —i—2m\/Z§ (; — s%) SPTVECT
b1 = (eTW“@Lr)(TLsiS;URt), o = —QmZQ <; — s%v> SPrCst
Oepy = (TMV”dLr)(TLsiﬁueRt), o = +2m\/f (; - ;s%v) 5Pt
Oht | = (A dpe) @i Dpdpe),  Clity = +fn\/f <; = ;s%,v) PTVECSL
Ot = (A" di) WLsiDyury),  Cliy = —if (i - ésﬁv) " Cix
Ot = (@ di )i Dyure).  Clhiy = —i;fx/srv;poﬁv,

Oty = (WVMULT)(TLJKERO, crret = _Qm\/f <; — ;S%’V> SPrCS
Oty = (wmr un ) @i Ddm). Ol = —22 (3= 2 ) orviacik
Ot — (wipur, [diDydry), O, = fnfv* o

_ . 2v/2 2 5
Oﬁ:fgl = (ULPVMULT)(ULSZEUM)? 052%1 - +m725pr (2 3 ) Cox
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—_— 2v/2 .
Ot = yer,) [rsiDyue),  CESL = +75mv ot
. 2v2
OEZthD - (eLpfyMVT)(uLSZﬁ;th)v CgltfbfiD - +75p7chw,
2\f .
Ofeon = " ur) Do), Clhitipy =+ Vi, Clly (3.10)

e Operators in the class (Ry*R)(LiD,R):

Oty = Emten)eimiDien), Ol =~ 2,

Ot — (@ er ) (drsi Dypdre), crsl = —i s, 6PV Ot

ngsf:gz (erpY'err)( uleﬁ URE), Cﬁ’;gz \[ s2 6”05& ’

Ot = (g dpe ) (@TsiDyens), crrat — —2‘2; 2,670t

Oty = W) D), Oty =22 Ly ot
Ol = (dRpVHdRr)(TLsiEiURt), chrst = \g 12 SO Ost,

Ot = (Wi ure)(@Lxi Dper), o = +2‘/Z§2 2,67 Csk

Ot = (@ un) (siDydr), Ol = +2mf§ 2 gy cat
Oﬁffgz (TrpY urr)( uLszﬁuRt CZZ%Q = 2\252 2 6Pt (3.11)

4 Low energy neutrino-photon interactions and ultraviolet completion

Among the dim-7 operators in LEFT the most interesting might be the ¥?X? type, which
contains both (AL, AB) = (0,0) and (AL,AB) = (2,0) sectors. We first note that ref. [38]
listed the subset of dim-7 operators for the b — s transition which however contains an
identically vanishing operator 5; R = bovP Py, JRSE W F ", = 0. In this section we consider
the low energy neutrino-photon (v7) interactions in the (AL, AB) = (2,0) sector. The
leading terms appear at dimension 7:

LENY = 0%, Co% + 002, Cop, + huc., (4.1)

where the two operators are listed in table 2 whose Wilson coefficients are symmetric in
neutrino flavors o, 3. We note in passing that in ref. [39] the operators O, /2 and Opq1 /9
have been used to study coherent elastic neutrino-nucleus scattering. As a neutral particle,
these interactions cannot originate directly from a tree level matching to the first few
high-dimensional operators in SMEFT. Instead, they would arise as a loop effect of the
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v Y \ Y
(a) (b)

Figure 1. One-loop Feynman diagrams that induce effective v+ interactions in equation (4.1) due
to effective ve interactions in equation (4.2).

effective interactions between neutrinos and charged particles in LEFT that can originate
from a tree level matching to SMEFT. We content ourselves in this work with effective vy
interactions at energies below the mass of the lightest charged particle, i.e., the electron.
We will see that the dominant contribution comes from the dim-6 operators [30] involving
the electron:

L5, = ccabpSecal | pSccafgecall | pTecafTecal L ¢ (4.2)

evl e ev2 e

where the Wilson coefficients are given in equation (3.4) in terms of those in SMEFT.
Contracting the two electron lines in any of the vertices in equation (4.2) and attaching

two photons to the contracted electron line yields the effective interactions between two

neutrinos and two photons as shown in figure 1, which at energies below the electron mass

m. have the form of equation (4.1), with

g _ 1 SeeaB | ~Seeap B _ 1 SeeaB _ ~Seeaf
CSFl - 127m, <Cel/iea + Ceugea ) ) CSF? - _87Tme (Cel/(iw - GVZECV ) : (43)
The tensor interaction in equation (4.2) yields a vanishing result because of the Schouten

identity,
gaﬂe;wpa + ga,u,ez/poﬁ + gowGpch,u + gapeoﬁ,uu + gaaeﬁ,uup — O, (44)

which is indeed consistent with the absence in table 2 of a neutrino tensor bilinear coupled to
a field strength squared. The 1/m, factor in equation (4.3) is not surprising, but is actually
the same as that in the ¢-loop contribution to the decay amplitude for h — v+ in the heavy
top limit where 1/m; is cancelled by the top Yukawa coupling. There is an additional
contribution to the Wilson coefficient C,r1: when one H in the dim-5 Weinberg operator
Os assumes its vev and the other H field is connected to the two photons through the
SM one-loop diagrams, C, s gains a term proportional to m,/(v?m3) which is suppressed
by the neutrino mass m, and can be safely ignored. Parameterizing by A;é’, the SMEFT
eq,

Wilson coeflicients entering szﬁ(z)ﬁ through the matching conditions in equation (3.4), one
has roughly

op v 1
CVFI(Z) Am, A3NP ’ (45)

which offers a huge enhancement factor of ~ 10%-10° compared to the effect of a usual
dim-7 operator.
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With the above enhancement in mind we calculate the cross sections for various vy
scattering processes. The amplitudes are

A (F)va(p) = v (K)op(p'))
A (k)yn (K') = valp)vs(p'))

Aa(P)vs () = By (K)) = 20 [Cofy (14 N) +iCo5(0+ N)| %2 (46)

v

20em [Cofy (1= AX) +iC57, (A = V)] (=02,

2atem [COP (14 AX) +iCoP5(A+ X) | 52,

Here A\, ) denote the helicities of the photons, s = (k + k'), and t = (k — k’)%2. We have
ignored the tiny masses of the neutrinos and explicitly evaluated their spinor wavefunctions.
The crossing symmetry is manifest in the above amplitudes: the first and third amplitudes
are related by (s, \') «» (—t, —\') while the last two are related by (A, \') <> (=X, —)’) and
complex conjugate. Denoting the photon energy by w and the scattering angle by 6 in the
center of mass frame, the differential cross sections are,

do(vays = pn)  oZpwt | o 9
dcosf - e47r Oy (1= AN) +iC%y (A= N)| (1 — cos6)?,
do’(f)//\f}/)\' — Voﬂ/ﬂ) a2 wt ap ’ . ~aB , 2 2
dcosf T ’/Fl( + )+Z uF2( + ) 1+ 60’
d aVg — ’ 2 4 o o 9
0(Valg = MWIN) _ Qomw Co8 (14 AN) +ics, (A + X[ . (47)

dcosf T

Upon averaging (summing) over the initial (final) photon helicities, the total cross
sections are,

_ 402, wt
o(vay = 737) = 2 (|CoL P+ CSf )
_ 2
o(yy = vavg) = o(YWa — Ug7) T
6
o(vavg = v7y) = 4o (ywa — U37). (4.8)

There are some salient features in our above results when compared to their counter-
parts in SM [40], i.e., vy — vv, vy — v, and v — 7. First, the cross sections for
each pair of similar processes vanish for opposite paring of photon helicities. For instance,
vyx — vy here does not occur for identical helicities A = X', while vyy, — vy in SM is
absent for opposite helicities A = —). The situation for the other two pairs of processes
is just reversed. This circumstance is an interesting consequence of lepton number being
violated or conserved: fixing an always left-handed neutrino in either initial or final states,
what is for the second fermion to be a left-handed neutrino (right-handed antineutrino) in
the SM process becomes a right-handed (left-handed) neutrino in the process under consid-
eration here. Thus in a sense the flip or nonflip of a photon helicity offers a veto to Dirac
or Majorana neutrinos. In addition, yv — ¥ cannot take place in the forward direction,
while vy — vv and vv — ~+ show a purely s-wave behavior. These are also different from
the SM processes. Second, our cross sections are proportional to (v?/ mg)Agg while the SM
ones are typical one-loop processes of order m;‘f In?(m?,/m2). This results in a different
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Figure 2. Cross sections are shown as functions of photon energy w (in units of m.) for LNV
scattering (orange solid curves) and SM scattering (purple dashed or dot-dashed curves) [40, 41].

low energy behavior in cross sections: our processes behave as w* while the SM ones go as
w8, All of this power counting is indeed consistent with the fact that the effective operators
for vy interactions start with dimension 7 here but with dimension 8 in SM. Numerically,
in our case o(yvo — UgY)/o(yy = vavg) = 1 (1/2) for vy = vg (Vo # vg), which is in
contrast to the SM case o(vy — vv)/o(yy = vi) ~ 15.

To get some feel about the orders of magnitude of various processes here and in SM,
we make a simplifying assumption in our matching conditions shown in equation (3.4), i.e.,
the Wilson coefficient C7’,;;, = 0 in SMEFT, so that the Wilson coefficient C’f,/’gmt =0in
LEFT while ny”lmt gains a contribution from the Wilson coefficient C2;5, ; in SMEFT. To

compare with the SM processes, we consider the case with v, = vg = v, so that effectively
we have from equations (3.4) and (4.3),

cl— _ 2v - n ClL. 3v2v 1111 (4.9)
vF'1 167T77’Le eLLLH> vE2 327Tm6 eLLLH> *
where the superscript 1 refers to the first generation neutrino and charged lepton. Param-
eterizing |CHL | = A, this gives
1302, v? w? 15 [ W Y Tev©
v — 7y) = — ~1Ix107B8 (=) (=) b, 4.10
oy ) 12873 m2 ASp Me Anp (4.10)

and o(yy — vv) = o(yw — vy), o(vv — vy) = 4o(yv — v7y). The above cross section
is depicted in figure 2 as a function of w/m. at three values of the new physics scale
Axp =1, 10, 100 TeV. Also shown are the SM cross sections for yv — yv, vy — v [40],
and yv — yyv [41]. The last process arises from dim-10 operators whose Wilson coefficients
are significantly enhanced at one loop by a factor of 1/m?, and has an w!? behavior in
its cross section. As one can see from the figure, the LNV v+ interactions result in a
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Figure 3. Tree-level topologies for ultraviolet completion generating operator Ozrrrp-

generically much larger cross section even for a high scale Axyp than the SM interactions.
We will systematically explore in the future work its possible implications in cosmology.

Before we conclude this section we illustrate by examples how the dim-7 operators
02’2‘? p g in SMEFT that are called for in the above analysis could be generated by ultra-
violet completion. The possible tree-level topologies are classified in figure 3. While the
topology (a) only involves new scalar fields, the others require both scalar and fermion
fields. We notice that gauge anomaly cancellation may demand vector-like fermions which
are usually easy to arrange. The electroweak gauge symmetry SU(2);, x U(1)y at each
vertex then gives two possible solutions to the quantum numbers of the heavy fields in
each topology, which are:

model (al): X

(3,=1), ¢ ( @
(3,-1), o (2,—%), model (b2): S "
(3,—1), ¢=(370)7 model (C2) S:( )7 =1, )7
( ) $=(3,0),  model (d2): § "

Let us consider model (a2) as an example. The relevant new terms in the Lagrangian

1
2,—§>, model (a2): ¥ =(1,-1),

model (bl):

S
model (c1): S
model (d1): S

are,
LD Yspei LY LIS+ A, ST H + Y, presjegLig? + hec., (4.12)

where Yy, = YZ , Yy, and Ay, are generally complex Yukawa coupling matrices in lepton
flavors and triple scalar coupling respectively. Then the diagram (a) and its crossings in

figure 3 lead to the effective interaction C25, ;O .. But before we present the Wilson

coeflicients we must first decide on the set of independent operators contained in Oézsg LH

which have nontrivial flavor relations [19]:
prst ptsr psrt pirs pstr pris
Otrrem + Oty = Ocrrin + Ocrrin = Ocrion + Cerrin- (4.13)
Note that the second equality is actually not independent but can be obtained from the

first one, and we include it only for clarity. With three generations, suppose we choose the
set to be,

DrTT DT'SS DSST 123 p132 213 p231
OELLLH’ O'LLLH’ O‘LLLH’ O'LLLH’ OéLLLH’ OéLLLH’ OELLLH’ (414)
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where s # r assumes values 1, 2, 3, then the redundant operators are,

O ien = O iom + Ot — Obiim

O im = OgingLH + 08w — O o

OfiLm = (OIEDZSELH + O m)- (4.15)
By integrating out heavy particles from the Lagrangian or computing first amplitudes and
then rewriting them back into effective interactions, we find the Wilson coefficients for

the set of independent operators shown in equation (4.14) upon applying Fierz and other
algebraic identities:

As
prrr _ prSs _ 4 __ __(YpssT
Cerrrm =0, Cerrom = 2 ups irs = —Corom
m2m¢
o g A Up1i32 — Uyso] o o A o
eLLLH — <2 2 p1;32 3;12 |5 eLLLH — 2 o Ypl;23,
msm © mzm
CrEs g A%e [Up2,31 — Upson] crBL g ey (4.16)
eLLLH — “, 2 2 p2;31 3521 | eLLLH — “ 2 2 D2;135 :
mym mgme,

where my ,, are the masses of the new heavy scalars and the shortcut Up,.st = (Yy)pr (Yx) st
is used. With the matching condition in equation (3.4), we obtain the corresponding LEFT
Wilson coefficient in equation (4.2):

CS,eeocﬂ _ \/Q’U)\Ego

evl 4m%m% [(Yw)la(YE)lﬁ + <Y80)1,3<YE)104] . (417)
It is interesting that while szfieee = 0 due to antisymmetry of the Yy matrix, CES eea3

generically does not vanish when either of the neutrino indices «, 8 or both refers to the
second or third generation.

As a second example we consider model (d2) which introduces three vector-like heavy
singlet fermions ¢ of mass matrix M, and one doublet scalar S of mass mg. The relevant
new Yukawa couplings are,

Lyue =(Yerp)preijp L HI 4 (Yo )pr0ii Ly 10,87 + (Yo )preijep LS + hec., (4.18)

where Yy, Yy, Yse are complex Yukawa coupling matrices in generation space. Choosing
the same set of independent operators in equation (4.14), the diagram (d) in figure 3 leads
to the tree-level result:

1
prrr
CéLLLH - migvpr;m"a
oprss :i[v. VN } opssT :i[v. TV ]
eLLLH m% pr;ss 2 psS;Ts | eLLLH m% ps;sr 9 ps;rs |
1 1
123 132
Cliin = = (Vo123 = Vpzoan | Ciriig = = (Vo132 + Vpziaz + Vpsin]
1 1
213 231
Clirin = m (Vo213 — Vpza2 Ciriin = m Vp2i31 + Vo2 + Vpzn ], (4.19)
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with the shortcut V.5t = (Yse)pr(ngMq; 1YH¢) st- Thus the LEFT Wilson coefficient in
equation (4.2) becomes

3\/51} _
ol = —W(Yse)ll(YS¢Mw Wiy (4.20)
s

We see that in this case C’eslﬁeee with identical lepton flavors survives.

5 Conclusion

We have established the basis of dim-7 operators in LEFT which is a low energy effective
field theory for the SM particles excluding the weak gauge bosons, the Higgs boson and
the top quark. We found these operators are classified into four sectors according to their
baryon and lepton numbers. Including Hermitian conjugates of the operators, there are
3168 operators with (AL,AB) = (0,0), 750 operators with (AL,AB) = (£2,0), 588
operators with (AL, AB) = (£1,F1), and 712 operators with (AL, AB) = (£1,+1). We
have done a tree-level matching calculation to relate the Wilson coefficients between the
SMEFT defined above the electroweak scale and the LEFT. The matching incorporates
new terms due to dim-7 operators in SMEFT on the one hand, and extends to dim-7
operators in LEFT found in this work on the other. As a phenomenological application
we have calculated the effective neutrino-photon interaction due to dim-7 operators in
LEFT, and found several interesting features compared to the SM case. The cross sections
for neutrino-photon scattering have a different correlation between the helicities of the
photons. The interaction arises from a one-loop effect due to dim-6 operators in LEFT and
is significantly enhanced at low energy by an inverse electron mass. As a consequence of
this, the cross sections are even larger than their SM counterparts for a new physics scale
as large as 100 TeV. Finally, we illustrate by example models how ultraviolet completion
could eventually generate the mentioned dim-6 operators.
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