Z_ MIT

———

LI Open Access Articles

Extending Manual Drawing Practices
with Artist-Centric Programming Tools

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation Jacobs, Jennifer et al. "Extending Manual Drawing Practices with
Artist-Centric Programming Tools.” Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems, April 2018,
Montreal, Canada, ACM Press, April 2018. © 2018 Association for
Computing Machinery

As Published http://dx.doi.org/10.1145/3173574.3174164

Publisher ACM Press

Version Author’s final manuscript

Citable link https://hdl.handle.net/1721.1/128479

Terms of Use Creative Commons Attribution-Noncommercial-Share Alike

Detailed Terms http://creativecommons.org/licenses/by-nc-sa/4.0/

.
I I I I I Massachusetts Institute of Technology Dspace @ M |T

https://libraries.mit.edu/forms/dspace-oa-articles.html
https://hdl.handle.net/1721.1/128479
http://creativecommons.org/licenses/by-nc-sa/4.0/

Extending Manual Drawing Practices with Artist-Centric
Programming Tools

Jennifer Jacobs!, Joel Brandt>’, Radomir Méch?, Mitchel Resnick!'

IMIT Media Lab

2Adobe Research

{jacobsj,mres } @media.mit.edu jbrandt@snap.com’ rmech@adobe.com

Figure 1. 1: Dynamic Brushes programming and drawing interfaces. 2-3: The system enables artists to create procedural drawing tools that extend
manual drawing. Here, an artist has created tools that replicate and transform manual strokes through variation in rotation, reflection and style.

ABSTRACT

Procedural art, or art made with programming, suggests op-
portunities to extend traditional arts like painting and drawing;
however, this potential is limited by tools that conflict with
manual practices. Programming languages present learning
barriers and manual drawing input is not a first class primitive
in common programming models. We hypothesize that by
developing programming languages and environments that
align with how manual artists work, we can build procedural
systems that enhance, rather than displace, manual art. To
explore this, we developed Dynamic Brushes, a programming
and drawing environment motivated by interviews with artists.
Dynamic Brushes enables the creation of ad-hoc drawing tools
that transform stylus inputs to procedural patterns. Applica-
tions range from transforming individual strokes to behaviors
that draw multiple strokes simultaneously, respond to temporal
events, and leverage external data. Results from an extended
evaluation with artists provide guidelines for learnable, ex-
pressive systems that blend manual and procedural creation.

Author Keywords
Procedural art; generative art; programming

ACM Classification Keywords
D.2.6 Programming Environments

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

CHI 2018, April 21-26, 2018, Montréal, QC, Canada.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-5620-6/18/04 ...$15.00.
http://doi.org/10.1145/3173574.3174164

INTRODUCTION

Throughout human history, artists have used their hands to
express themselves. Traditional arts like painting rely on the
expressive power of manual tools to preserve traces of human
movement and gesture [42]. Manual processes like drawing
enable artists to quickly translate their ideas to reality [4].
Manual manipulation allows artists to develop knowledge and
skills through physical practice [46, 56]. Computers have dis-
placed some forms of manual production and altered others,
however; they have also provided alternative artistic opportu-
nities. Computer programming has given rise to procedural
art: artworks described as a series of instruction and executed
by a machine [53]. Procedural creation allows artists to man-
age complex structures, automate processes, and generalize
and reuse operations [41, 52]. Computational tools support
exploration and experimentation because their processes can
be revised and iterated upon without loss of quality or affor-
dance [40] and the act of programming enables reflection on
aesthetic relationships and process [32].

Procedural and manual art practices have different qualities,
yet they are not mutually exclusive. Experienced program-
mers build software that procedurally transforms manual draw-
ings [33, 35, 45] and collaborations between artists and com-
puter scientists demonstrate how algorithms from computa-
tional geometry [16] and machine learning [15] can be adapted
to blend manual and generative designs. Yet the building
blocks of procedural art are often poorly aligned with the pro-
cesses of manual artists. Programming languages for art [10,
37, 50] use abstractions from general-purpose textual lan-
guages [51]. As a result, they have high learning thresholds
for new programmers [31]. Because manual drawing inputs
are not first-class primitives in most programming languages,

TNow at Snap Inc.

Constants A constant numeric value.

Stylus Inputs Data from the stylus including force, x and y position and delta,

angle, heading, and speed.

UI Inputs References to the drawing interface sliders and color-picker.

Generators Functions that return a sequence of values between 0 and 100
corresponding with waveform or distribution—modulation with

a sine function, or a random sequence of values.

Brush Properties Properties of a brush, including position, geometry, and style.

Brush Hierarchy Hierarchical properties relative to parent including spawn index

and sibling count.

Table 1. Mapping Input Types

creating procedures that respond to manual drawing requires
significant effort and expertise. Furthermore, programming
environments present manual artists with unfamiliar interfaces
and interactions that can prevent artists from incorporating
their existing skills [23]. The creative opportunities of com-
bining manual and procedural art, and the challenges manual
artists encounter when attempting to do so led to our research
question: How can we develop programming environments
that support the integration of procedural and manual art?

We hypothesized that, by developing programming languages
and environments that align with manual practices, we can
build procedural systems that enhance and extend manual art.
To explore this, we interviewed professional artists and exam-
ined manual and procedural practice. Interviews revealed the
importance manual artists place on tools that preserve manual
variation and style. Observations demonstrated how proce-
dural artists incorporated manual expression in their work or
collaborated with manual artists, by building ad-hoc inter-
active drawing tools that procedurally transformed manual
drawings. Our observations led us to develop an approach-
able and expressive environment for personal drawing-tool
creation that empowers manual artists to create procedural
tools that support their established practices.

Prior research that aims to broaden participation in procedural
art focuses on simplified textual languages [22, 48, 50], visual
programming [13, 14, 17], or direct-manipulation of procedu-
ral and parametric relationships [21, 28, 63]. Instead, we build
on systems that integrate representational programming and
direct-manipulation interfaces [1, 9, 20, 24, 39], but with the
new objective of tool creation. We make the following contri-
butions: First, we introduce Dynamic Brushes, an integrated
visual programming and stylus-based drawing environment.
Second, we demonstrate the Dynamic Brushes programming
model, which enables the creation of numerous tool behaviors
through a small number of primitives and operations. The
model combines declarative property mappings, states, and
event-driven transitions to enable applications that range from
procedural transformation of individual strokes to behaviors
that draw multiple strokes simultaneously, respond to tempo-
ral events, and leverage external inputs and data. Third, we
demonstrate how procedural tool creation can extend man-
ual practices, support reflection, and foster agency through
an extended evaluation with professional artists. Fourth, we
provide insights for developing learnable and expressive pro-
cedural tools that are compatible with manual creation.

BACKGROUND

We built on personal experience in manual and procedural
art through 9 interviews with professional artists. Within our
subjects, 5 worked primarily with manual tools and 4 used

programming. Interviews lasted 30 minutes to 2 hours. From
analysis of interview transcripts we distilled themes on manual
and procedural learning, process, and expression, which we
describe in relation to learning and creativity research.

Learning

Manual artists learn through physical practice. Interviewed
artists described how tactile feedback and physical engage-
ment improved their understanding of proportion and com-
position and helped refine their aesthetic. The importance of
physical learning is well established. Gestural expression and
epistemic action enable distinct forms of understanding not
possible through verbal or auditory forms of learning [30].
Art instructors often encourage students to learn technique
through direct material engagement when visual demonstra-
tion and verbal instruction are insufficient [46]. This suggests
that tools that limit manual engagement, like many program-
ming platforms may hinder the learning of manual artists. 4
of 5 manual artists we spoke with were interested in program-
ming, yet many encountered difficulties when learning it. 2
artists were particularly frustrated, stating that after invest-
ing significant time and effort, they were still only able to
produce trivial outcomes. This experience aligns with the
sharp learning thresholds encountered by learners of general-
purpose programming languages. [43]. These frustrations also
suggest a disconnect between the primitives of common pro-
gramming models, which focus on manipulation of simple
geometric forms, and the concerns of manual artists who, in
our interviews, emphasized stylistic and aesthetic diversity.

Process

Every artist, regardless of discipline, emphasized the value of
working quickly and continuously. The importance of contin-
uous production corresponds with Cziksentmihalyi’s concept
of flow, an invested and active creative state [12]. Manual
and procedural artists relied on different kinds of expertise to
achieve flow. Procedural artists developed an understanding
of technical approaches and design patterns, which enabled
them to rapidly respond to a variety of ideas and applications.
Conversely, manual artists emphasized building confidence in
their gestures and instincts through manual practice, which
led to the ability to create work intuitively. These different
pathways to flow connect to different styles of learning, but
they also correspond with affordances of manual and proce-
dural tools. Traditional manual tools and direct-manipulation
environments enable artists to sense what to try and when and
intuit which tool to use [40]. By contrast, the breadth of many
programming languages requires even expert programmers to
regularly stop and consult references [7].

Programming is often portrayed as an exclusively analytic
domain [11, 19], which can create the assumption that it is
unappealing for people with intuitive processes. However,
our interviews suggest that many manual artists are interested
in both intuitive and analytic practices. Manual artists de-
scribed how they also valued formal, abstract, or quantifiable
representations of their work. One described how he refer-
enced formal design principles when drawing, while another
described efforts to quantify her process by documenting the
distance travelled by her pen and her drawing execution time.

Position (active)

X,y Absolute Cartesian position.

radius,theta Absolute polar position, relative to the brush origin.
delta x,y Relative Cartesian position (position vector).
Geometry (passive)

scale X,y Scale of the segment relative to the stroke’s origin.
rotation Rotation of the segment relative to the stroke’s origin.
Style (passive)

diameter Stroke width in pixels.

hue, saturation, lightness Brush color in HSL.

alpha Opacity of the stroke.

Table 2. Brush outputs. Brushes draw whenever mappings to active out-
puts are updated. Passive outputs are referenced when drawing occurs
Computers offer a bridge between concrete and formal do-
mains by converting symbols to concrete artifacts [60]. This
suggests that the right computational interface could enable
manual artists to bridge analytic and intuitive practices.

Expression

Procedural and manual tools produce different aesthetics. Man-
ual tools preserve evidence of the human hand, whereas pro-
cedural tools often diminish manual traces. Mumford argued
that the aesthetic subtleties created by different artists produce
“significant impulses that can come forth in no other way” [42].
Interestingly, artists from both procedural and manual domains
expressed similar dissatisfaction with the flat, predictable qual-
ity of computational generativity and the loss of manual style
when using procedural tools. Prior human-computer inter-
action (HCI) research in integrating craft and computation
demonstrates how re-designing existing computational tools
to accommodate traditional forms of making can provide ac-
cess to digital fabrication [66] or embedded computing [8],
while producing artifacts that retain manual aesthetics and
traditional materials. Redesigning programming environments
to preserve manual interaction could enable similar outcomes
in procedural art.

Many procedural artists we spoke with created custom fools
to incorporate manual expression into procedural work or fos-
ter collaborations with manual artists. These tools ranged
from polished programming libraries and software to ad-hoc
scripts written while making art. Levin argues that artists are
innovative tool developers because they are well connected
to the needs of other artists and invested in experimentation
and exploration [34]. The procedural artists we spoke to often
created tools as a byproduct of producing other artifacts, by
generalizing and repackaging their code for personal or public
use. This suggests that tool development is a natural affor-
dance of programming. Providing more approachable forms
of procedural tool creation making may enable more artists to
create procedural functionality that aligns with their practices.

Design Goals
We used the themes from our interviews to generate design
goals for procedural tools that support manual practice:

Learnable for new programmers: The system should allow
people to make interesting things with simple programs and
scaffold learning through multiple entry points. Artists should
be able to independently explore procedural functionality.

Compatibility with manual practice: The programming
model should emphasize procedural manipulation of man-
ual drawing data. The interface should support manual and

procedural interaction equally. The system should enable con-
tinuous drawing.

Balanced support for procedural and manual expression:
The system should provide access to primary procedural affor-
dances while preserving the manual styles of different artists.

Motivating Example

To illustrate potential applications of our system, we draw on
our interview themes and design goals to describe an example
artist who would benefit from our approach. Taylor is an
illustrator and calligrapher. Through extensive practice, she’s
developed a fluid drawing style. Her work is characterized by
symmetric repeating designs with organic curves. She works
by sketching elements of a pattern with a pencil and then uses
software to copy and repeat her hand-drawn forms. Doing so
requires her to guess at how her drawings might look when
digitally transformed. Taylor wants a tool that automatically
repeats and transform her hand-drawn strokes while she draws
and in the manner she specifies. Such a tool would allow
her to rapidly generate ornate patterns and explore variations,
without sacrificing her drawing style.

" _,—@ d.default mappings
- f. stat
“/ |

myState

stylus x| e (NS

| sartos s — CEESS

©. mappings added for spiral
brush

[— path of stylus _,_‘_I_L

/]/[/
Fy @Z stylus origin A

[Sinewave] - (stylusdeliay) g

¥

o -#
e 4
‘M'N-“““

Figure 2. Single-state brushes: 1. Simple template with added mappings
to generate spiral. 2-5. Additional single-state brushes.

SYSTEM DESCRIPTION

Dynamic Brushes (DB) is an integrated programming and
drawing environment for creating personal drawing tools that
translate manual input to procedural forms and patterns. DB
was developed through an iterative process. We used an analy-
sis of drawing techniques in procedural and manual artwork to
create sample brushes with general-purpose languages. These
samples informed the development of our programming model
and interface. We tested and revised our system through in-
formal sessions with artists and feedback from professional
interaction designers. In the remainder of this section we de-
scribe the DB programming model and interface and illustrate
its use through sample applications.

Programming Model

The DB programming model is organized around the creation
of brushes—bitmap drawing tools that respond to external
inputs and events. Each brush is an instance of a behavior—a
class definition that describes brush functionality. Behaviors
are composed of three components: property mappings, states,
and transitions. Property mappings are declarative relation-
ships between an input— incoming data, and an output—a
brush property that is automatically updated when the input
changes (fig 2-1, e). To support personal expressiveness in
procedural artwork and preserve manual processes, the DB
model uses stylus data as the primary input. Additional inputs
include values generated by user-interface components and
function generators (table: 1) which enable artists to manip-
ulate how other brush properties are modified in response to
stylus actions. Outputs include brush position, visual style,
and geometric transformations (table: 2). Collections of map-
pings are organized within states and become active when the
state is entered (fig 2-1, f). DB contains two specialized states:
start, which serves as a setup action, and end, which destroys
the brush when entered. States are activated and deactivated
via event-driven, unidirectional transitions (fig 2-1,b). Transi-
tions are triggered by stylus, spatial, geometric, and temporal
events. Transitions can include actions— discrete methods
executed when the transition occurs (fig 2-1, c).

In developing the DB programming language, our objective
was to create a model that blended procedural generativity with
manual data and events, allowing different artists to create dif-
ferent styles with the same brushes. We chose the combination
of mappings, states, and transitions because this set provided
an expressive representation for this integration while also
offering a way to lower learning thresholds. Constraints are
easy to use for simple relationships, yet can be confusing when
chained together in complex relationships [43]. State machines
offer a powerful way to describe reactive systems [3], and the
combination of constraints and states has been demonstrated to
simplify the creation of constraint-based interactive User Inter-
face (UI) behavior [47]. Our system contributes to prior work
through a new constraints-and-states programming model that
enables artists to integrate procedural and manual art creation,
while avoiding complex constraint-based programming.

Interface

The DB interface is comprised of two linked applications: a PC
visual programming environment for behavior creation and a
direct-manipulation tablet drawing interface where behaviors
are initialized as brushes and used to create artwork (fig 1-
1) . The drawing interface is an iOS application running
on an iPad Pro. The authoring interface is implemented in
JavaScript using jsPlumb and CodeMirror > Communication
between the applications is managed by a Node.js server.

To support continuous drawing, the DB interface preserves
conventions from traditional stylus-based drawing tools, in-
cluding a drawing canvas, layer panel, color-picker, property
adjustment sliders and buttons for different pen modes. We
also designed the drawing interface to be supported by, rather

ISee github.com/pixelmaid/DynamicBrushes for source.
2jsplumbtoolkit.com, codemirror.net. Accessed July 21st 2017.

than dependent on, the programming interface, meaning that
artists can begin work exclusively in the drawing interface
with example brushes and transition to the programming inter-
face when developing new brush behaviors.The programming
interface includes an example menu, palette of behavior prim-
itives, and a central scripting area. We developed DB as a
visual language to support exploratory learning. Like block-
languages [54], the DB palette provides access to primitives
without an external reference. In addition, the environment is
live, meaning as a behavior is edited, any active brushes in the
drawing interface are automatically updated.

Artists program by dragging mapping inputs, outputs, and
states from the palette into the scripting area. Transitions
are created by dragging from the yellow handles of one state
into another state. Each transition contains a panel with its
event trigger. When initialized, transitions are triggered via
an on-complete event, which occurs automatically after the
state is entered. The event can be changed by dropping in a
different event from the palette. Actions are also stored in
the palette and can be added to a transition by dropping them
in the box beneath the event. Events and actions that accept
arguments contain a drop-down menu or numeric entry box.
Artists can create behaviors in DB from scratch. To make start-
ing programming approachable, however, we also included
learning scaffolds in the form of example brushes and tem-
plates. Templates enable artists to explore procedural concepts
incrementally by providing starting points for common design
patterns in DB. The following sections demonstrate sample
brushes that build on primary design patterns.

Figure 3. Automated regular forms: 1. Timer-driven behavior that
draws regular forms through polar mappings. 2-7 Radial forms pro-
duced through different generator mappings to the radius output.
Simple Brushes

DB can be applied to the creation of simple programs with
compelling effects. Simple brushes are derived from single
state behaviors and create effects solely through property map-
pings. The simple template demonstrates this design pattern
(fig 2-1). It contains a state (“default”) that maps the stylus
x and y inputs to the brush x and y outputs (fig 2-1, d). The
default state is activated upon initialization through an on-
complete transition (fig 2-1, b). A second looping transition,
activated on a stylusDown generates a new stroke each time
the stylus is touched to the canvas by calling the new stroke
action in the transition (fig 2-1, ¢). This structure produces
functionality comparable to a traditional bitmap brush, and
provides a jumping off point for more complex functionality.

github.com/pixelmaid/DynamicBrushes
jsplumbtoolkit.com
codemirror.net

path of stylus

Figure 4. Automated Brushes: 1. Timer template, 2. Crosshatch brush,
3. Circle brush with diameter modulated by stylus force, 4. Wave brush
with amplitude modulated by stylus y.

By mapping the rotation property to a sawtooth generator,
the simple template can be modified to produce a brush that
automatically draws spirals (fig 2-1, e). Brush strokes in DB
are represented as a series of segments. The brush rotation
property specifies the degree to which the current segment
should be rotated relative to the stroke origin. Therefore, a
generator input that linearly increases the rotation property as
the brush position changes will incrementally shift the brush’s
heading and produce a spiraling stroke as the artist draws.
Signal generators are common in music synthesizers [26, 13].
We adapt them in DB to augment manually executed strokes
with periodic variation in color, position, and scale (fig 2).

Automated Brushes

One primary affordance of programming is the ability to au-
tomate processes. DB enables automated drawing through
mechanisms to control timers and respond to temporal events.
Each brush contains an internal timer that can be controlled
by the startTimer and stopTimer actions. Transitions can be
activated in response to timers through the timerinterval event,
which triggers on a specified interval. The timer template
provides a starting point for using timers to create automated
brushes (fig 4-1). The template is similar to the simple tem-
plate, meaning that the brush will begin to draw whenever and
wherever the stylus is touched to the canvas, and will restart
with each subsequent stylusDown event. The template also
includes a startTimer action in the start transition (fig 4-1, a)
and a second looping transition on the default state triggered
on a timerInterval of 100 ms (fig 4-1,b). Unlike the simple
template, the timer template "default" state contains a single
mapping from an constant input to the delfa x brush property.
(fig 4-1, c). Deltas specify relative position by setting the dis-
tance the brush should move when the input is updated. The

timerInterval transition continually activates the delta map-
ping, producing a brush that draws a line across the canvas at
a one pixel per 100ms.

The timer template provides a starting point for automated
drawing of regular patterns. For example, adding a mapping
between a constant numerical input and the brush rotation
output creates straight lines drawn on an angle. This enables
the creation of grids and cross-hatch effects (fig 4-2). Timers
also enable the creation of precise geometric shapes. Cir-
cles can be drawn automatically with the timer template by
mapping radius to a constant, and the polar angle (theta) to
a generator with a linear increase, like the sawtooth gener-
ator (fig: 3-1, 2). Mapping the radius to a generator input
results in brushes that draw pinwheels, stars, and fans (fig: 3-3
through 7). Automated shape-drawing brushes create forms
like those produced through textual creative coding languages,
yet there is a key difference in how these shapes are initialized.
Conventional programming languages initialize shapes with
multiple function calls and indicate position via textual Carte-
sian coordinates which can be difficult to intuit. In DB, shapes
are initialized and positioned through direct manipulation by
touching the stylus in the desired location.

The DB model makes it easy to adjust the behavior of auto-
mated brushes with stylus actions and other forms of manual
input. Mapping brush diameter to stylus force in the circle-
drawing behavior enables the artist to modulate the line thick-
ness along the circle’s edge by pressing harder or softer on the
stylus (fig 4-3). Mapping stylistic and geometric outputs to
stylus and Ul inputs allows the artist to use the stylus and their
non-dominant hand to manipulate an automated brush, for in-
stance by manually tuning the scale and hue of a regular form
as it is being drawn. Stylus input can also be used to introduce
variation into regular patterns. Mapping the delta y output to
a mathematical expression that adds the sine wave generator
to the stylus y delta enables the artist to change the depth of
each wave as the brush draws across the canvas by moving the
stylus (fig 4-4). Collectively, these examples demonstrate how
DB blends manual control and procedural automation.

Spawning Behaviors

Manual art often involves a one-to-one relationship between
input and output where for every gesture with a pencil or paint-
brush, one mark is drawn. Unlike manual drawing, computers
provide the opportunity to run multiple processes simultane-
ously, and procedural art is often produced through systems
with multiple interacting agents. DB preserves this affordance
by enabling artists to create brushes that generate multiple au-
tonomous drawing processes. Using the spawn action enables
one brush to generate any number of new brush instances. The
spawn action includes two arguments: a dropdown menu that
enables the artist to select from a list of existing behaviors,
and a text entry input to specify the number of instances of
that behavior to generate.

The parent and child templates provide a design pattern for
spawn-based behaviors. The child template consists of a single
state with two transitions to the start and end states. The in-
going transition calls the newStroke action. The outgoing
transition occurs on stylusUp and destroys the brush. The

¥ [— 2.

Uit

shytas miiy - D
atplis duits 8 e (AR

m— TN
- stylusorigiW)) ‘pﬁ; stylus

E

—

[B 3 e | BN |

furee

gl daina g

Mrplu datia s

path of stylus

’, stylus origin

ST |
]

—

|

Figure 5. Spawning 1. Radial design produced through spawning and iterative rotation. 2. Drip Brush produced through spawning and timers.

parent brush acts as a mechanism for spawning multiple child
brushes on a stylusDown event. In unison, these behaviors
create 10 child brushes on each stylus-down event, which are
removed on each stylus-up event.

Spawning can be combined with timers to create behaviors that
generate multiple automated brushes. Figure 5-2 demonstrates
an effect created by pairing the parent spawning template with
a child behavior that draws on a timerInterval loop. As the
parent brush draws, it spawns one child brush on a regular
interval. Each child uses a timerInterval transition to draw
a downward vertical line from the parent stroke. After 1500
ms, the child behavior transitions to a “drop” state which,
maps the brush diameter to a sine-wave generator, and then in
turn, increases then decreases the diameter of the stroke before
transitioning to the end state. This creates a dripping effect.

Spawning is powerful enough to support behaviors that mimic
professional procedural artwork. Figure 6 compares a pro-
cedural illustration by Zach Lieberman created in the C++
openFrameworks library to one created in DB. The DB piece
is created by a behavior similar to the drip brush effect where
automated child brushes are spawned on a distance interval
event, ensuring regular spacing. The child brushes draw hor-
izontally until they intersect with the parent line, or draw
beyond the edge of the canvas. This is achieved through two
transitions to the end state, one that occurs on an intersection
event, and the other which occurs on a distance event.

Simple, automated, and spawning behaviors demonstrate how
the DB model supports a high degree of procedural expres-
siveness with a small number of procedural concepts and prop-
erties. Furthermore, these applications demonstrate how DB
can reproduce forms and patterns similar to those created with
textual procedural tools while also adding manual control.

Dynamic Brushes Workflow

To demonstrate a sample workflow with DB, we return to our
motivating example and describe how Taylor would use the
system to create her desired tool. Taylor begins in the DB
programming interface. She uses the basic template to create
two new behaviors—"standard" and "mirrored". She adds a
mapping in the mirrored behavior, setting the scale x property
to -1. When Taylor transitions to the drawing interface and
draws a curling line with the stylus, the brushes generated
by her behaviors respond, producing a mirrored pattern of
her original stroke (fig 1-2). To increase the complexity of

design, Taylor creates copies of her first two behaviors named
“standard-rotated” and “mirrored-rotated.” She adds a rota-
tion mapping to both copies set to 50. Taylor switches to the
drawing interface, hides the layer with her first mirrored draw-
ing, and creates a new blank layer to draw on. The combined
brushes create a pattern with four strokes, mirrored on both x
and y axes. Taylor is not yet satisfied with the result; however,
modifying the rotation has given her an idea.

Returning to the programming interface, Taylor deactivates
all behaviors except “standard-rotated.” She drags index and
sibling count generators from the palette (table: 1-brush hier-
archy) into the rotation mapping and sets the rotation to index
* 100 / sibling count. As a result, each child brush is rotated
relative to its index of instantiation. Taylor then modifies the
transitions of the standard-rotated behavior to correspond with
the child design pattern (fig 5-1). Taylor creates a new behav-
ior from the parent template and sets it to spawn five instances
of the "standard-rotated" behavior. Finally, she returns to the
drawing interface and adds a new layer. Now, as she draws,
a complex radial pattern is produced with lines radiating out
from the point at which she first touches the stylus to the can-
vas (fig 5-1). She explores variations of this behavior structure
to produce a variety of radial and mirrored patterns (fig 1-3).

EVALUATION

The evaluation of DB sought to examine the system’s expres-
siveness, learnability, and compatibility with manual art. We
used a 2 week study with professional artists to evaluate DB’s
performance in extended practice. This approach built on prior
methodology evaluating creative systems with a small num-
ber of participants over an extended period [23]. We selected
evaluation criteria that aligned with our design goals:

Compatibility with manual practice: Are manual artists
interested and engaged in DB? Do they consider it useful?
Can artists make procedural modifications while drawing?

Expressiveness: Do artworks contain procedural and manual
aesthetics? Can artists create works in their personal style?

Learnability: Is the system approachable? Can artists explore
it independently? Does it aid in learning procedural concepts?

Evaluation Methodology

We commissioned 2 professional artists to use DB for 2 weeks
and requested they create a minimum of 3 finished works dur-
ing that time. We selected the graphic illustrator, Fish McGill

and the painter Ben Tritt. McGill was a professional illustrator
and faculty at a fine-arts college. He had extensive experience
in physical and digital illustration, some prior experience in
web scripting, and had collaborated with procedural artists
using Processing. McGill maintained a daily sketching prac-
tice, and was interested in incorporating programming with his
drawing. Tritt was a professional oil and digital painter. His
work included portraits and abstract compositions. Tritt had
no prior programming experience but was interested in achiev-
ing greater control in digital painting. Both drew regularly
with digital styluses. We interviewed McGill and Tritt and
observed them at work one week before the study. These pre-
interviews informed additional system adjustments, including
improved layer transparency and the addition of a color picker
and sliders for stroke weight and alpha. We updated the model
with mapping inputs that corresponded with these additions.

During the study, we met with each artist separately, every
2-3 days based on their availability. We had 7 meetings with
McGill and 5 with Tritt. The first 3 meetings lasted 2 hours
apiece and were divided between training the artists and ob-
serving their use of DB. The first training covered simple
behaviors, the second focused on multi-state behaviors and
timers, and the third introduced spawning. In later meetings
we reviewed participant artwork and discussed the artists’ ex-
periences. In the final meetings, both artists presented their
completed works. We concluded with a group discussion.

We collected data through transcribed audio and video record-
ings of the meetings and observation sessions, written surveys,
and participant artwork. Surveys contained attitudinal ques-
tions relating to our evaluation criteria, using 5-point Likert
scales, with 5 as the optimal response. We instrumented DB
to store in-progress artwork and brush behaviors while artists
used the system. Artists also wrote short reflections after every
working session, which we reviewed prior to each meeting. We
allowed the artists to incorporate external software and tools
in their work with DB to understand its cross compatibility
with other forms of production. In the results, we distinguish
between portions of artwork produced with DB and those
produced by other means. Surveys, transcripts, observation
videos, and artwork were analyzed with respect to our evalua-
tion criteria. The majority of the results are qualitative, drawn
from artwork analysis, survey responses, and discussions.

1. P4 & | il 4

Figure 6. Comparison of Zach Lieberman’s work, created with the open-
Frameworks C++ library (1, 3) vs. artwork in Dynamic Brushes (2,4).

Limitations

We compensated for our small sample size by selecting artists
in different mediums and styles. Evaluations with additional
artists would likely reveal additional insights. The variety of
the results suggests our approach has broad relevance.

Results
The artists found the DB model challenging at first but de-
veloped competency and demonstrated a grasp of primary

concepts by the end of the study. Tritt produced 6 finished por-
traits, and McGill produced upwards of 10 illustrations. The
artists felt DB provided greater flexibility compared to other
digital art tools, though it was better suited to the McGill’s il-
lustration than Tritt’s painting, and both used motion graphics
software to convert their DB drawings to animations.

Learnability: Both artists initially approached DB by trying
to understand all aspects of the programming model, and
struggled to grasp some concepts at first. McGill understood
constraints and transitions in the first week but took longer to
understand spawning. By the end of week 1, he transitioned
from focusing on learning the model to focusing on making
artwork and exploring new procedural concepts in the process.
McGill described how this exploratory approach was similar to
how he learned other drawing tools, and made his experience
with DB more enjoyable. Tritt had greater difficulty learning
some of procedural concepts. He initially struggled with the
semantic difference between transitions and mappings. In
spite of these challenges, Tritt also had moments of insight
while using the tool. He described his feeling when he first
understood the power of property mappings:

At first my brain didn’t really understand being able to use
[stylus] force for multiple things ...what would that mean?
And then I felt it. The force could actually control two things
or even three ... lightness AND the diameter!

Tritt said these insights made working with DB “addictive”,
and that he felt his “brain light up” as he learned the model.

Both artists felt that examples and templates aided in their
learning process. In addition the artists immediately gravitated
to the drawing interface. Both artists said the familiarity of
the drawing interface increased their comfort with the system
as a whole, and Tritt felt its simplicity allowed him to focus
on painting. For McGill, the familiar drawing interface made
him more willing to explore aspects of the programming envi-
ronment. McGill and Tritt relied on layers as a mechanism to
experiment with behaviors, using one layer as a scratch pad
for testing and revising a brush, and other layers for drawing
artwork once they were satisfied.

Compatibility with manual practice: Tritt and McGill had
different reactions to the DB interface. Both saw value in sep-
arating programming and drawing; however, McGill disliked
having to switch to the programming interface to perform sim-
ple adjustments, like modifying the parameters of the brush
or switching to a different brush. To compensate, we added a
control panel that enabled artists to select and activate different
brushes in the drawing interface. These additions addressed
some but not all of McGill’s concerns. McGill disliked work-
ing on two devices by himself but enjoyed the setup when
collaborating with another person. When working from home,
McGill involved his son in his drawing. In these scenarios,
one person drew on the tablet, while the other modified the be-
havior by changing the values of the expression or by dragging
in new property mappings.

Tritt enjoyed the separation created between the two interfaces
because it reflected his desire to create tools before or after
making art, rather than during production. McGill and Tritt’s

different attitudes towards tool creation were reflected in their
use of brushes. McGill experimented with many different
brushes. He started by creating a variety of textures and pat-
terns with brushes that changed color on an interval, repeated
strokes in a fan configuration, or produced a scribble-like pat-
tern (fig 7, 2). In the second week, McGill used the spawning
template to create a brush that drew multiple identical marks
offset from the position of the stylus. He later modified it to
incorporate a random jitter in the line of the child brush so that
the resulting effect was two identical drawings with different
line qualities. McGill named this brush the “fraternal twin
brush,” characterizing it as a way to draw as “one artist at two
different periods in their life.” He drew inspiration from how
the cartoonist Charles Schulz’s style changed as he aged.

Unlike McGill, Tritt primarily iterated on one type of brush.
He began the study with an interest in precisely controlling
the texture and “flow” of the brush. As a result, he initially
worked to finely tune the relationship between stylus force,
diameter, and alpha. Tritt requested assistance in modifying
the brush to simulate qualities of a physical paintbrush. With
assistance, he created a brush that continued drawing a stroke
for one second after the stylus was lifted from the canvas at a
speed and angle relative to the vector and speed of the stylus.
Using this brush, Tritt attempted to simulate the physics of
paint as the brush was flicked across the canvas; however, he
was not able to refine the effect to the desired level. We added
additional stylus inputs to improve Tritt’s experience including
stylus speed and heading. The speed property was effective in
achieving a degree of physical brush simulation, but much of
Tritt’s interest centered on variable control over the hardness
of the top and bottom edges of the brush.

Expressiveness: McGill used the repeating patterns he cre-
ated in the first week as backgrounds and textures for other
illustrations he created in DB. In the process, he built on
themes from his prior work. He extended a series of illustrated
composition notebooks he had produced prior to the study by
using the scribble brush to create patterns for a new set of
notebooks, and by adding typography in Illustrator (fig 7,1-2).
In the second week, he used his twin-brush behavior to create a
series of repeating illustrations. He described how he tweaked
the distance and positioning between each brush so that the re-
peats were less obvious. After adding the jitter effect, he used
the fraternal twin brush to design a typeface, with alternating
smooth and rough letters (fig 7, 4-6). Tritt primarily focused
on using the flicking brush to create painterly portraits (fig 8).
This aligned with his prior work in oil portraiture.

Both Tritt and McGill created animated works in the final
week of the study. McGill approached this by creating mul-
tiple variations of a drawing with his twin brush and using
additional software to compose these variations into an anima-
tion. He described how DB improved the process of creating
hand-drawn animations:

[Animations are] something I've done before," but with [DB]
it’s much more suitable and enjoyable to draw with.

McGill also converted his alphabet into a series of animated
letters. He used his fraternal twin brush to simultaneously

create two variations of each lette,r and then animated them
to flip back and forth between the variations (fig 7-4). Tritt
also created animations, but unlike McGill, Tritt’s animations
reflected the progression of a painting through different brush
iterations and different stages in the study. He described how
the animations stemmed from a desire to document how the
procedural aspects of the painting changed over time.

DISCUSSION

We motivated DB with the idea that tool creation could help
artists combine manual and procedural expression. Here we
discuss the outcomes of our approach by examining how the
DB model aligned with different types of manual practice; the
ways in which the DB interface supported learning, creation,
and reflection; and the potential for tool making to encourage
critical analysis and agency in software production.

Aligning Procedural Models with Practice

Both artists created personal brushes during the study, yet
McGill was more satisfied with the results of his brushes than
Tritt. In part, this may reflect McGill’s prior experience with
web programming; however, it also suggests that DB’s model
was better aligned with McGill’s process. Tritt described how
his paintings were made up of “very simple things,” combined
in “very complex ways.” His manual process involved skillful
manipulation of spots, edges, and transparency. In contrast,
McGill said his drawings were all comprised of three line
types: “zigzags,” “wiggly lines,” and an “up and down.”

McGill’s line types are evocative of DB’s generators, which
he used extensively in his brushes. His success demonstrates
how DB’s model is well suited to manipulating manual art
at the level of form and composition. By comparison, Tritt’s
description of spots and edges reflected his desire to control
texture and transparency at a lower level. DB’s current brush
properties are not effective at providing precise control over
mark texture and edge quality. It is possible that the same
state-based model, with different mapping primitives could
support Tritt’s painterly applications. A future study that tests
a version of DB with higher-level representations of stylus
physics and lower-level representations of bitmap textures
would provide a starting point for testing this idea. Further-
more, the demonstration of the current limitations of DB is
useful in and of itself, by contributing to the understanding of
how procedural tools might better support a variety of man-
ual practices. Our failure to anticipate the limitations of DB
primitives for painting suggests that future design frameworks
for procedural tools should also examine how the level of ab-
straction of the programming model aligns with the types of
control and mark-making exhibited in a given domain.

Informing Decisions and Supporting Reflections

The evaluation demonstrated how, in 2 weeks, artists were
able to develop sufficient competency in DB to produce pol-
ished outcomes. Furthermore it showed how DB helped to
foster an understanding of general procedural concepts, such
as the arbitrary nature of constraints. Despite these successes,
evidence suggests that improvements in the way DB visual-
izes programs and communicates procedural functionality may
improve artists’ abilities to learn and apply the system.

Figure 7. McGill’s artwork. 1. Prior illustrations with pen and ink, 2. Continuation of pen and ink series with patterns drawn in dynamic brushes and
typography from Illustrator, 3. Repeating pattern drawn with “scribble”” and “‘stereo” brushes, 4-5. Alphabet produced with “fraternal twin” brushes

Communication of DB programming model functionality could
be revised to be easier to understand and more compatible with
manual practice. Both McGill and Tritt initially struggled with
understanding the functionality of some inputs. They also dis-
liked having to read textual explanations while working. Tritt
described how he transitioned to a non-verbal mindset when
painting. We revised generator tool-tips to display animated
wave-forms rather than text, which both artists found easier
to understand. The generator revision suggests procedural
systems that communicate primitive functionality primarily
through icons and motion, rather than text, could be easier for
manual artists to interpret while they are engaged in drawing.
A similar approach could help artists to better predict the ef-
fects of their edits. At times we noticed artists using trial and
error to set the desired value for a mapping. This challenge
could be mitigated through a mechanism for inspecting the
current value of mapping inputs and outputs, and with visu-
alizations demonstrating how the outputs change over time.
When possible, these values could be communicated visually.

Finally, DB could improve by aiding artists in documenting
and examining brush execution. It is not incidental that both
artists created animations that reflected different iterations of
a brush. Tritt described how DB’s brush creation naturally
had implications for more general forms of reflection. His
animations stemmed from his desire to document his process:

A recording process should be part of the medium . . . This is the
most obvious affordance. You can have the work reflect the
thinking process in a way that in analog, you never could.

Modifying DB to include functionality to record, visualize
and simulate brush execution could both aid in the reflection
process. In addition, it could offer a method for debugging
brushes by enabling artists to step through the execution of a
brush in response to pre-recorded input data. Finally, a record-
ing mechanism would provide the opportunity to formally
extend dynamic brushes as a tool for animation.

Integrating Tool and Art Making

By design, DB encourages artists to integrate art production
and tool production. Tool production involves different mind-
sets and approaches than artwork creation; therefore, we were
unsure how manual artists would react to their integration. The
procedural artists we interviewed described how building effec-
tive tools required them to think in general terms and consider
multiple scenarios that could interfere with making specific
artifacts. Our own experiences simultaneously building DB
and creating sample artwork highlighted similar tensions. De-
spite these tensions, our evaluation demonstrated that while
procedural tool production is challenging, it is also a process

that manual artists can enjoy and benefit from. McGill’s use of
DB to extend his prior illustration work and his development
of procedural behaviors that reflected his ideas about artistic
practice demonstrate how integrating tool making and manual
drawing can connect new forms of expression with established
practices and values. Furthermore, feedback from McGill
and Tritt in our final discussion suggests that tool production
may also foster critical evaluation of digital software conven-
tions and encourage artists to consider alternatives. McGill
described how working with DB made him less satisfied with
Photoshop:

I’m a little frustrated now when I open Photoshop. I'm like,
“Wait a second. I can’t make brushes like I was doing in there.”
[DBY] feels more like a drawing experience than other tools
because it’s combining just enough of the good stuff with more
complex, robust stuff.

Tritt went even further, questioning the overall justification for
digital tools. His use of DB led him to wonder if instead of
simulating physical media, digital tools were perhaps more
powerful when applied to forms of creation not possible with
“analog” media. Overall, both artists left the study with a
strong desire to reshape the digital tools they used.

Technological advances suggest opportunities for democra-
tized software development [65], yet many communities are
still poorly served by software created by others [2, 27]. Roque
demonstrated how creative programming workshops helped
people who were underrepresented in technology production
to develop both technological empowerment and community
connections [57] Our research suggests that relevant and ap-
proachable tools for software development, targeted at groups
of people who are underrepresented in technology production,
may contribute to addressing forms of technological inequity.

RELATED WORK
Our research is inspired by creative coding tools, learnable
programming systems, and procedural direct manipulation.

Creative Coding Frameworks

Our research was galvanized by the study of specialized textual
programming libraries for procedural and interactive art [50,
37, 6]. These libraries are powerful and expressive [51, 36],
yet they retain many of challenges of general-purpose program-
ming languages. Visual programming can address some of the
challenges of textual programming while retaining expressive-
ness [44]. We noted that visual languages for artists often use
a dataflow representation. Programs are structured as directed
graphs that filter and operate on three-dimensional models,
audio, images, and video [13, 49, 14, 17]. Dataflow systems

I4.

Figure 8. Tritt’s Art. 1. Prior work in oil, 2-3. Portraits drawn in
Dynamic Brushes with “flicking” brush, 4. Closeup of “flicking” effect.

are expressive, but often ill-matched for describing cyclic sys-
tems [25]. We therefore chose a visual state-based paradigm
for DB so that artists could create behaviors that cycle through
different functionality on discrete drawing events.

Integrated programming models and interfaces can support
specific applications and workflows. In the space of visual
design, DressCode [24], PIM [39], and DesignScript [1] inte-
grate textual programming, with linked direct-manipulation
environments to simultaneously support different design ap-
proaches through different interfaces. Loi et al. developed
a programming model for 2D texture generation with three
levels of operators targeted at different portions of the texture-
generation process [38]. Juxtapose improves the process of
iterative interaction design through parallel source editing and
tuning of parameters with sliders [18]. Interstate simplifies
user-interface programming through a combination of declara-
tive constraints, state machines, and a live, visual notation [47].
Reactable [26] supports real-time procedural music perfor-
mance through a flow-controlled programming language with
physical blocks representing modular synthesizer components.
We also sought to leverage domain knowledge to coordinate
the development of a programming model and programming
environment uniquely suited to the needs of manual artists.
Therefore, we focused on programming abstractions that pre-
served the expressiveness of manual drawing and embedded
these abstractions in an interface with aspects that resembled
conventional digital drawing software.

Learnable Programming Languages

In developing DB, our goal was to enable artists to achieve
practical ends while simultaneously engaging in new forms of
thinking and learning. To achieve this goal, we examined prior
research on supporting new programmers in creative forms
of learning. When creating learnable creative languages for
young people, Resnick and Silverman argue that a little bit of
programming goes a long way, and they focus on systems with
a minimal number of carefully selected programming concepts.
Designing programming tools that are tinkerable can facilitate
continuous exploration and ease of entry by providing access
to computational concepts through re-configurable modular
components [55]. The Scratch programming language demon-

strates how this approach provides easy entry points, while
also supporting a diversity of projects and applications [54].
To provide artists with an approachable, tinkerable platform
for procedural art, DB is structured on small number of pro-
gramming primitives that can be recombined in different ways.

Procedural Direct Manipulation

Visual programming languages reduce some of the challenges
of programming, but they still require artists and designers to
work through an abstract description rather than a concrete
artifact [61]. An alternative approach involves creating and
manipulating procedural relationships through direct manipu-
lation. SketchPad demonstrated parametric relationships that
could be described by selecting and manipulating geomet-
ric shapes [59]. More recently, Victor demonstrated sample
systems with applications in game development, interactive
animation, and data visualization [62, 63, 64]. Kitty [28] and
Skuid [29] reduced the challenge of creating interactive mo-
tion graphics and animation through direct manipulation of a
relational graph that is superimposed on the artwork and Appa-
ratus [58] enables the creation of interactive diagrams through
an integration of a direct manipulation editor and declarative
textual expressions. In two-dimensional graphic art, Hoarau
and Conversy demonstrate graphic design tools that enable de-
signers to indicate dependencies between object properties and
use master objects to perform global updates [21]. Pampliset
represents parameter values for bitmap transformations as im-
age layers, which can be retroactively adjusted to propagate
changes across a composition [5]. Para supports procedural art
through the combination of visually represented constraints,
lists, and declarative duplication [23]. Like these prior sys-
tems, DB relies on the convenience and brevity of declarative
constraints to describe mappings between external data and
drawing output; however, our overall programming model is
fundamentally different. Procedural direct manipulation is
well suited to forms of design that emphasize relationships be-
tween visual entities. Our goal involved the more abstract task
of tool development. We therefore incorporated an external
programming representation into DB that was better suited to
representing abstract interactive behaviors.

CONCLUSION AND FUTURE WORK

Motivated by conversations with artists, we created Dynamic
Brushes, a visual programming and drawing environment for
blending manual and procedural production through personal
tool creation. Our evaluation demonstrated that tool devel-
opment can be engaging for manual artists while providing
opportunities to extend their established practice and style. We
see future research opportunities in developing mechanisms to
support artists in visualizing, recording and inspecting drawing
behaviors, and experimenting with different brush primitives
to support procedural control over brush textures and physics.
Overall, we are excited about the potential of domain-specific
programming languages to foster broader participation in cre-
ative system development.

ACKNOWLEDGMENTS

Thanks to the Dynamic Medium and Lifelong Kindergarten
research groups, and Golan Levin. Special thanks to Fish
McGill and Ben Tritt.

REFERENCES

1.

10.

11.

12.

13.

Robert Aish. 2012. DesignScript: origins, explanation,
illustration. In Computational Design Modelling.
Springer, 1-8.

. Julia Angwin, Jeff Larson, Surya Mattu, and Lauren

Kirchner. 2016. Machine Bias:There ’s software used
across the country to predict future criminals. And it ’s
biased against blacks. ProPublica (May 2016).
https://www.propublica.org/article/
machine-bias-risk-assessments-in-criminal-sentencing.

. C. Appert and M. Beaudouin-Lafon. 2008. SwingStates:

Adding State Machines to Java and the Swing Toolkit.
Softw. Pract. Exper. 38, 11 (Sept. 2008), 1149-1182. DOI:
http://dx.doi.org/10.1002/spe.v38:11

. John Berger. 2008. Drawing. In Selected Essays of John

Berger, Geoff Dyer (Ed.). Knopf Doubleday Publishing
Group. https://books.google.com/books?id=dYIUiSrKvVccC

. Alan F. Blackwell. 2014. Palimpsest: A layered language

for exploratory image processing. Journal of Visual
Languages Computing 25,5 (2014), 545 —571. DOI:
http://dx.doi.org/10.1016/j.jv1lc.2014.07.001

. Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer.

2011. D3 Data-Driven Documents. IEEE Transactions on
Visualization and Computer Graphics 17, 12 (Dec. 2011),
2301-2309. DOI:
http://dx.doi.org/10.1109/TVCG.2011.185

. Joel Brandt, Mira Dontcheva, Marcos Weskamp, and

Scott R. Klemmer. 2010. Example-centric Programming:
Integrating Web Search into the Development
Environment. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (CHI "10).
ACM, New York, NY, USA, 513-522. DOI:
http://dx.doi.org/10.1145/1753326.1753402

. Leah Buechley and Benjamin Mako Hill. 2010. LilyPad

in the Wild: How Hardware’s Long Tail is Supporting
New Engineering and Design Communities. In
Proceedings of the 8th ACM Conference on Designing
Interactive Systems (DIS ’10). ACM, New York, NY,
USA, 199-207. DOI:
http://dx.doi.org/10.1145/1858171.1858206

. Ravi Chugh, Jacob Albers, and Mitchell Spradlin. 2015.

Program Synthesis for Direct Manipulation Interfaces.
CoRR abs/1507.02988 (2015).
http://arxiv.org/abs/1507.02988

Cinder. 2017. Cinder:About. (2017).
https://libcinder.org/about.

Cecile Crutzen and Erna Kotkamp. 2008. Object
Orientation. MIT Press.

M. Csikszentmihalyi. 2009. Flow: The Psychology of
Optimal Experience. Harper Collins.

Cycling-74. 2016. Max. (2016).
http://cycling74.com/products/max.

19.

20.

21.

22.

23.

24.

25.

. Scott Davidson. 2007. Grasshopper.

http://www.grasshopper3d. com. (2007).

. Nettrice Gaskins. 2017. Machine Drawing: Shantell

Martin and the Algorist. (2017).
http://magazine.art21.0org/2017/07/06/
machine-drawing-shantell-martin-and-the-algorist.

. Emily Gobielle and Theo Watson. 2010. Here to There:

Poster Series for Children. (2010).
http://design-io.com/projects/HereToThere/.

. Experimental Media Research Group. 2004. NodeBox.

(2004). http://www.nodebox.net.

. Bjorn Hartmann, Loren Yu, Abel Allison, Yeonsoo Yang,

and Scott R. Klemmer. 2008. Design As Exploration:
Creating Interface Alternatives Through Parallel
Authoring and Runtime Tuning. In Proceedings of the
21st Annual ACM Symposium on User Interface Software
and Technology (UIST ’08). ACM, New York, NY, USA,
91-100. http://doi.acm.org/10.1145/1449715. 1449732

B. Harvey. 1991. Symbolic Programming vs. the A.P.
Curriculum. The Computing Teacher 56 (February 1991),
27-29.

Brian Hempel and Ravi Chugh. 2016. Semi-Automated
SVG Programming via Direct Manipulation. In
Proceedings of the 29th Annual Symposium on User
Interface Software and Technology (UIST "16). ACM,
New York, NY, USA, 379-390. DOI:
http://dx.doi.org/10.1145/2984511.2984575

Raphaél Hoarau and Stéphane Conversy. 2012.
Augmenting the Scope of Interactions with Implicit and
Explicit Graphical Structures. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (CHI ’12). ACM, New York, NY, USA,
1937-1946. DOI:
http://dx.doi.org/10.1145/2207676.2208337

Jennifer Jacobs and Leah Buechley. 2013. Codeable
Objects: Computational Design and Digital Fabrication
for Novice Programmers. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems
(CHI ’13). ACM, New York, NY, USA, 1589-1598.

Jennifer Jacobs, Sumit Gogia, Radomir Méch, and Joel R.
Brandt. 2017. Supporting Expressive Procedural Art
Creation Through Direct Manipulation. In Proceedings of
the 2017 CHI Conference on Human Factors in
Computing Systems (CHI ’17). ACM, New York, NY,
USA, 6330-6341. DOI:
http://dx.doi.org/10.1145/3025453.3025927

Jennifer Jacobs, Mitchel Resnick, and Leah Buechley.
2014. Dresscode: supporting youth in computational
design and making. In Constructionism. Vienna, Austria.

Wesley M. Johnston, J. R. Paul Hanna, and Richard J.
Millar. 2004. Advances in Dataflow Programming
Languages. Comput. Surveys 36, 1 (March 2004), 1-34.
DOI:http://dx.doi.org/10.1145/1013208.1013209

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
http://dx.doi.org/10.1002/spe.v38:11
https://books.google.com/books?id=dYIUiSrKVccC
http://dx.doi.org/10.1016/j.jvlc.2014.07.001
http://dx.doi.org/10.1109/TVCG.2011.185
http://dx.doi.org/10.1145/1753326.1753402
http://dx.doi.org/10.1145/1858171.1858206
http://arxiv.org/abs/1507.02988
https://libcinder.org/about
http://cycling74.com/products/max
http://www.grasshopper3d.com
http://magazine.art21.org/2017/07/06/machine-drawing-shantell-martin-and-the-algorist
http://magazine.art21.org/2017/07/06/machine-drawing-shantell-martin-and-the-algorist
http://design-io.com/projects/HereToThere/
http://www.nodebox.net
http://doi.acm.org/10.1145/1449715.1449732
http://dx.doi.org/10.1145/2984511.2984575
http://dx.doi.org/10.1145/2207676.2208337
http://dx.doi.org/10.1145/3025453.3025927
http://dx.doi.org/10.1145/1013208.1013209

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Sergi Jorda, Giinter Geiger, Marcos Alonso, and Martin
Kaltenbrunner. 2007. The reacTable: Exploring the
Synergy Between Live Music Performance and Tabletop
Tangible Interfaces. In Proceedings of the st
International Conference on Tangible and Embedded
Interaction (TEI 07). ACM, New York, NY, USA.

Matthew Kay, Cynthia Matuszek, and Sean A. Munson.
2015. Unequal Representation and Gender Stereotypes in
Image Search Results for Occupations. In Proceedings of
the 33rd Annual ACM Conference on Human Factors in
Computing Systems (CHI ’15). ACM, New York, NY,
USA, 3819-3828. DOI:
http://dx.doi.org/10.1145/2702123.2702520

Rubaiat Habib Kazi, Fanny Chevalier, Tovi Grossman,
and George Fitzmaurice. 2014. Kitty: Sketching Dynamic
and Interactive Illustrations. In Proceedings of the 27th
Annual ACM Symposium on User Interface Software and
Technology (UIST ’14). ACM, New York, NY, USA, 11.

Rubaiat Habib Kazi, Tovi Grossman, Nobuyuki Umetani,
and George Fitzmaurice. 2016. SKUID: Sketching
Dynamic Drawings Using the Principles of 2D
Animation. In ACM SIGGRAPH 2016 Talks (SIGGRAPH
'16). ACM, New York, NY, USA, Article 84, 1 pages.
DOI:http://dx.doi.org/10.1145/2897839.2927410

Scott R. Klemmer, Bjorn Hartmann, and Leila Takayama.
2006. How Bodies Matter: Five Themes for Interaction
Design. In Proceedings of the 6th Conference on
Designing Interactive Systems (DIS ’06). ACM, New
York, NY, USA.

Andrew J. Ko, Brad A. Myers, and Htet Htet Aung. 2004.
Six Learning Barriers in End-User Programming Systems.
In Proceedings of the 2004 IEEE Symposium on Visual
Languages - Human Centric Computing (VLHCC ’04).
IEEE Computer Society, Washington, DC, USA,
199-206. http://dx.doi.org/10.1109/VLHCC. 2004.47

Golan Levin. 2003. Essay for Creative Code. (2003).

http://www.flong.com/texts/essays/essay_creative_code

Golan Levin. 2010. Yellowtail. (2010).
http://flong.com/projects/yellowtail.

Golan Levin. 2015. Foreword: For Us, By Us. In EYEO:
Converge to Inspire. 2011-2015.

Zach Lieberman. 2009. Drawn. (2009).
http://thesystemis.com/projects/drawn/.

Zach Lieberman. 2014. Philosophy. In ofBook, a
collaboratively written book about openFrameworks.
http://openframeworks.cc/ofBook/chapters/of_
philosophy.html.

Z. Lieberman, T. Watson, and A. Castro. 2015.
openFrameworks. (2015).
http://openframeworks.cc/about.

Hugo Loi, Thomas Hurtut, Romain Vergne, and Joelle
Thollot. 2017. Programmable 2D Arrangements for
Element Texture Design. ACM Trans. Graph. 36, 3,

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

Article 27 (May 2017), 17 pages. DOTI:
http://dx.doi.org/10.1145/2983617

Maryam M. Maleki, Robert F. Woodbury, and Carman
Neustaedter. 2014. Liveness, Localization and
Lookahead: Interaction Elements for Parametric Design.
In Proceedings of the 2014 Conference on Designing
Interactive Systems (DIS ’14). ACM, New York, NY,
USA.

M. McCullough. 1996. Abstracting Craft: The Practiced
Digital Hand. The MIT Press, Cambridge, Massachusetts.

W.J. Mitchell. 1990. The Logic of Architecture: Design,
Computation, and Cognition. MIT Press, Cambridge,
MA, USA.

L. Mumford. 1952. Art and Technics. Columbia
University Press.

Brad Myers, Scott E Hudson, and Randy Pausch. 2000.
Past, present, and future of user interface software tools.
ACM Transactions on Computer-Human Interaction

(TOCHI) 7, 1 (2000), 3-28.

Brad A Myers. 1990. Taxonomies of visual programming
and program visualization. Journal of Visual Languages
& Computing 1, 1 (1990), 97-123.

Erik Natzke. 2012. Cloud Art Process. (2012).
http://vimeo.com/69323991.

C. Needleman. 1979. The work of craft: an inquiry into
the nature of crafts and craftsmanship. Arkana.

Stephen Oney, Brad Myers, and Joel Brandt. 2014.
InterState: A Language and Environment for Expressing
Interface Behavior. In Proceedings of the 27th Annual
ACM Symposium on User Interface Software and
Technology (UIST ’14). ACM, New York, NY, USA.

S. Papert. 1980. Mindstorms: children, computers, and
powerful ideas. Basic Books.

Miller Puckette. 1988. The patcher. In Proceedings of the
1988 International Computer Music Conference. San
Francisco. International Computer Music Association.

C. Reas and B. Fry. 2004. Processing. (2004).
http://processing.org.

C. Reas and B. Fry. 2007. The Processing Handbook.
MIT Press, Cambridge, Massachusetts, USA.

C. Reas, C. McWilliams, and LUST. 2010. Form and
Code. Princeton Architectural Press, New York, NY,
USA.

Jasia Reichardt. 1969. Cybernetic serendipity: the
computer and the arts. Praeger.

Mitchel Resnick, John Maloney, Andrés
Monroy-Hernandez, Natalie Rusk, Evelyn Eastmond,
Karen Brennan, Amon Millner, Eric Rosenbaum, Jay
Silver, Brian Silverman, and Yasmin Kafai. 2009. Scratch:
Programming for All. Commun. ACM 52, 11 (nov 2009).

http://dx.doi.org/10.1145/2702123.2702520
http://dx.doi.org/10.1145/2897839.2927410
http://dx.doi.org/10.1109/VLHCC.2004.47
http://www.flong.com/texts/essays/essay_creative_code
http://flong.com/projects/yellowtail
http://thesystemis.com/projects/drawn/
http://openframeworks.cc/ofBook/chapters/of_philosophy.html
http://openframeworks.cc/ofBook/chapters/of_philosophy.html
http://openframeworks.cc/about
http://dx.doi.org/10.1145/2983617
http://vimeo.com/69323991
http://processing.org

55.

56.

57.

58.

59.

M. Resnick and E.O. Rosenbaum. 2013. Designing for
Tinkerability. In Design Make Play: Growing the Next
Generation of STEM Innovators, M. Honey and

D. Kanter (Eds.). Routledge.

David Roedl, Shaowen Bardzell, and Jeffrey Bardzell.
2015. Sustainable Making? Balancing Optimism and
Criticism in HCI Discourse. ACM Trans. Comput.-Hum.
Interact. 22, 3 (June 2015).

R. Roque, K. Lin, and R. Liuzzi. 2016. “I’m not just a
mom”: Parents developing multiple roles in creative
computing.. In 12th International Conference of the
Learning Sciences.

Toby Schachman. 2015. Apparatus: a hybrid graphics
editor / programming environment for creating interactive
diagrams. In Strange Loop.

Ivan E. Sutherland. 1964. Sketchpad a Man-Machine
Graphical Communication System. Transactions of the

Society for Computer Simulation 2, 5 (1964), R-3-R-20.

DOI:http://dx.doi.org/10.1177/003754976400200514

60

61.

62.

63.

64.

65.

66.

. S. Turkle and S. Papert. 1992. Epistemological Pluralism
and the Revaluation of the Concrete. Journal of
Mathematical Behavior 11, 1 (March 1992).

B. Victor. 2011. Dynamic Pictures. (2011).

http://worrydream.com/DynamicPicturesMotivation.

B. Victor. 2012a. Inventing on Principle. In Proc. of the
Canadian University Software Engineering Conference.

B. Victor. 2012b. Stop Drawing Dead Fish. In ACM
SIGGRAPH 2012 Talks (SIGGRAPH ’12).

B. Victor. 2013. Drawing Dynamic Data Visualizations
(Talk). (2013). http://vimeo.com/66085662.

E. von Hippel. 2005. Democratizing Innovation. MIT
Press.

Amit Zoran and Joseph A. Paradiso. 2013. FreeD: A
Freehand Digital Sculpting Tool. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (CHI ’13). ACM, New York, NY, USA.

http://dx.doi.org/10.1177/003754976400200514
http://worrydream.com/DynamicPicturesMotivation
http://vimeo.com/66085662

	Introduction
	Background
	Learning
	Process
	Expression
	Design Goals
	Motivating Example

	System Description
	Programming Model
	Interface
	Simple Brushes
	Automated Brushes
	Spawning Behaviors
	Dynamic Brushes Workflow

	Evaluation
	Evaluation Methodology
	Limitations
	Results

	Discussion
	Aligning Procedural Models with Practice
	Informing Decisions and Supporting Reflections
	Integrating Tool and Art Making

	Related Work
	Creative Coding Frameworks
	Learnable Programming Languages
	Procedural Direct Manipulation

	Conclusion and Future Work
	Acknowledgments
	References

