
Czechoslovak Mathematical Journal

Semra Doğruöz
Extending modules relative to a torsion theory

Czechoslovak Mathematical Journal, Vol. 58 (2008), No. 2, 381–393

Persistent URL: http://dml.cz/dmlcz/128264

Terms of use:
© Institute of Mathematics AS CR, 2008

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/128264
http://dml.cz


Czechoslovak Mathematical Journal, 58 (133) (2008), 381–393

EXTENDING MODULES RELATIVE TO A TORSION THEORY

Semra Doğruöz, Aydin
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Abstract. An R-module M is said to be an extending module if every closed submodule
of M is a direct summand. In this paper we introduce and investigate the concept of a type
2 τ -extending module, where τ is a hereditary torsion theory on Mod-R. An R-module M
is called type 2 τ -extending if every type 2 τ -closed submodule of M is a direct summand
of M . If τI is the torsion theory on Mod-R corresponding to an idempotent ideal I of R
and M is a type 2 τI -extending R-module, then the question of whether or not M/MI is
an extending R/I-module is investigated. In particular, for the Goldie torsion theory τG

we give an example of a module that is type 2 τG-extending but not extending.
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1. Introduction

Extending modules have been studied extensively in recent years, see [2], [4], [11]

and [14]. In [5] and [6] the authors investigated extending modules relative to certain

classes of modules. Our purpose is to define and study extending modules relative

to a torsion theory τ on Mod-R. This brings out a new and more general concept

of extending modules, and we present some of the fundamental properties of these

modules. Throughout the paper R will denote an associative ring with identity,

Mod-R will be the category of unitary right R-modules, and unless stated otherwise,

all modules and module homomorphisms will belong to Mod-R.

If τ := (T ,F ) is a torsion theory on Mod-R, then τ is uniquely determined by

its associated torsion class T of τ -torsion modules. Modules in T will be called τ -

torsion and modules in F are said to be τ -torsion free. If τ(M) denotes the sum of

the τ -torsion submodules ofM , then τ(M) is necessarily the unique largest τ -torsion

submodule of M and τ(M/τ(M)) = 0 for an R-module M . τ(M) is referred to as

the τ -torsion submodule of M and it follows that T := {M ∈ Mod-R; τ(M) = M}
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and F := {M ∈ Mod-R; τ(M) = 0}. For every torsion theory τ , both the torsion

class T and the torsion-free classF of R-modules contain the zero module and both

are closed under isomorphisms; that is, if N ∈ T and N ′ ∼= N , then N ′ ∈ T , and

similarly for F . A T -submodule (or F -submodule) of M is a submodule N of M

such that N belongs to T (or F ).

For a torsion theory τ := (T ,F ), T ∩ F = 0 and the torsion class T is closed

under homomorphic images, direct sums and extensions; and F is closed under

submodules, direct products and extensions. A class C of modules is said to be

closed under extensions if whenever 0 → M ′ → M → M ′′ → 0 is exact in Mod-R

and M ′,M ′′ ∈ C , then M ∈ C .

The torsion theories on Mod-R can be partially ordered by using their torsion

classes. If σ := (Tσ,Fσ) and τ := (Tτ ,Fτ ) are torsion theories on Mod-R, then we

write σ 6 τ whenever Tσ ⊆ Tτ . Throughout, ξ will denote the torsion theory in

which only the zero module is torsion and χ will denote the torsion theory in which

every module is torsion. Clearly ξ 6 τ 6 χ for every torsion theory τ . All torsion

theories τ are assumed to be hereditary, that is, we assume that submodules of τ -

torsion modules are τ -torsion, unless stated otherwise. If I is an idempotent ideal of

R, then it is well known that I determines a hereditary torsion theory τI with torsion

class {M ; MI = 0}. We refer to τI as the torsion theory corresponding to I. If τG is

the Goldie torsion theory [12], then τG is hereditary and the τG-torsion submodule

τG(M) of an R-module M is just the second singular submodule of M . That is,

τG(M) is the submodule Z2(M) ofM such that Z2(M)/Z(M) = Z(M/Z(M)), where

for an R-module M , Z(M) denotes the singular submodule of M [12]. Additional

information on torsion theory can be found in [3], [10] and [12] and we refer to [1],

[4] for general information on rings and modules.

A nonzero submodule N of an R-module M is said to be essential in M if N has

nonzero intersection with each nonzero submodule of M , written N 6e M ; then a

closure of N (in M) is a submodule K of M such that K is maximal among the

submodules of M such that N is essential in K. A submodule N of M is called

closed (in M) if N has no proper essential extension in M , written K 6c M . A

Zorn’s Lemma argument shows that for each submodule N of M there is a closed

submodule K of M such that N is essential in K. Given a submodule N of M , by

a complement (in M) we mean a submodule L of M that is maximal among the

submodules H of M such that H ∩ N = 0. A submodule L of M is said to be a

complement if there is a submodule N of M such that L is a complement of N . It

is well known that a submodule K of M is a complement if K is closed in M .

Let τ := (T ,F ) be a torsion theory and M an R-module. A submodule N of

M is called τ -essential in M if N is essential in M and M/N is τ -torsion; this is

denoted N 6τe
M . A submodule N of M is called type 1 τ-closed in M if N has
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no proper τ -essential extension in M ; this is denoted N 6τ1c M [7]. In this work we

call a submodule N of M type 2 τ-closed in M if M/N is τ -torsion and N is closed

in M ; this will be denoted by N 6τ2c M . A module M is type 1 τ-extending if every

type 1 τ -closed submodule is a direct summand [7]. We will call a module M type 2

τ-extending if every type 2 τ -closed submodule is a direct summand. A submodule

N of a module M is called τ -dense in M if M/N is a τ -torsion module. A module

M is τ-complemented if every submodule is τ -dense in a direct summand. Hence M

is τ -complemented if and only if for any N 6 M there exists a direct summand K

containing N with K/N is τ -torsion. A submodule N of M is said to be τ -cotorsion

free [12], if N has no proper τ -dense submodules.

2. Type 2 τ-extending modules

Recall that an R-moduleM is said to be type 2 τ -extending if every type 2 τ -closed

submodule of M is a direct summand of M . Semisimple modules, uniform modules

and injective modules provide examples of modules that are type 2 τ -extending.

In this section we will be mainly interested in studying basic properties of type

2 τ -extending modules. In this and later sections we shall also be interested in the

following questions posed by P.F. Smith from Glasgow after he has read the first

draft of this paper.

Question 1. Let τI be the torsion theory corresponding to an idempotent ideal

I of R. Is it true that an R-module M is type 2 τI -extending if and only if M/MI

is an extending R/I-module?

Question 2. When is a finite direct sum of type 2 τ -extending modules type 2

τ -extending?

Question 3. Is there a module that is type 2 τG-extending but not extending?

Before considering Question 1, we prove several fundamental properties of type 2

τ -extending modules. The following lemma gives some immediate consequences of

the definitions.

Lemma 2.1. The following hold for an R-module M .

(1) If N is a type 2 τ -closed submodule of M , then N is closed in M .

(2) If N is a type 2 τ -closed submodule of K and K is a type 2 τ -closed submodule

of M , then N is type 2 τ -closed in M .

(3) If M is extending, then M is type 2 τ -extending.

(4) If M is τ -torsion and type 2 τ -extending, then M is extending.
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(5) If M is τ -torsion free, then M is type 2 τ -extending.

(6) Every direct summand of a type 2 τ -extending module is type 2 τ -extending.

P r o o f. (1) Clear from the definitions.

(2) If N and K are as described in the lemma, then K/N andM/K are τ -torsion.

Since the torsion class of τ is closed under extensions, it follows that M/N is τ -

torsion. On the other hand, N is closed in K and K closed in M implies that N is

closed in M (see [4, Page 6, Property 4]). Hence N is type 2 τ -closed in M .

(3) Let M be an extending module and let N be a type 2 τ -closed submodule

of M . By (1), N is closed, so N is a direct summand of M . Hence, M is type 2

τ -extending.

(4) Let M be a τ -torsion module and suppose that M is type 2 τ -extending. If N

is a closed submodule of M , since M/N is τ -torsion, N is type 2 τ -closed in M . By

assumption N is a direct summand of M , so we see that M is extending.

(5) Let N be a type 2 τ -closed submodule of a τ -torsion free R-module M . Since

N is closed in M , there exists a submodule K of M such that N is maximal with

respect to N ∩ K = 0. It follows that K is isomorphic to a submodule of the τ -

torsion moduleM/N , so K is τ -torsion. SinceM is τ -torsion free, K = 0. Therefore

M = N , and so M is type 2 τ -extending.

(6) Let an R-module M = M1 ⊕M2 be the direct sum of the submodules M1 and

M2, and suppose that M is type 2 τ -extending. If N is a type 2 τ -closed submodule

of M1, then M1/N is τ -torsion and N is closed in M1. If N
′ = N ⊕ M2, then

M/N ′ = (M1 ⊕M2)/(N ⊕M2) ∼= M1/N , so M/N ′ is τ -torsion. We claim that N ′

is closed in M . If N ′ is essential in a submodule T of M , then N is an essential

submodule of M1 ∩ T ⊆ M1. So it follows that N = M1 ∩ T . Since M2 ⊆ T

and M = M1 ⊕M2, by modularity, T = M2 + (T ∩M1) = M2 + N = N ′. Thus

N ′ is closed in M . But we have just seen that M/N ′ is τ -torsion, so N ′ is type

2 τ -closed in M . By hypothesis, M = N ′ ⊕ K for some submodule K of M , so

M = N ′ ⊕K = N ⊕M2 ⊕K. By modularity we have M1 = N ⊕ (M1 ∩ (M2 ⊕K))

which shows that M1 is type 2 τ -extending. �

Example 2.2. Every R-module is type 2 ξ-extending, where ξ := (0,Mod-R)

is the torsion theory in which only the zero module is considered to be torsion.

P r o o f. This follows easily since N is a type 2 ξ-closed submodule of M , thus

M/N ξ-torsion, and so N = M . �

Example 2.3. An R-module M is type 2 χ-extending if and only if it is

extending, where χ is the torsion theory in which every module is considered to be

torsion.
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P r o o f. The sufficiency is clear by Lemma 2.1 part (3). So assume that M is

type 2 χ-extending and let N be a closed submodule of M . Now every module is χ-

torsion, so in particular,M/N is χ-torsion. Hence N is a type 2 χ-closed submodule

of M . Therefore N is a direct summand of M , and so M is extending. �

The following example shows that there are torsion theories τ and modules M

that are type 2 τ -extending but not extending. It also shows that there are mod-

ules which have closed submodules which are not type 2 τ -closed. Because of this

example, we see that in (4) of Lemma 2.1, the assumption that M is τ -torsion is not

superfluous.

Example 2.4. Consider the ring R =





F F F

0 F 0

0 0 F



, where F is a field.

If τI is the torsion theory on Mod-R corresponding to the idempotent ideal I =




F F F

0 0 0

0 0 0



, that is TI := {N ∈ Mod-R : NI = 0}, then the following hold for the

right R-module M := RR.

(1) M is a type 2 τI -extending module, but is not extending.

(2) M has direct summands that are not type 2 τI -closed.

(3) The τI -torsion submodule τI(M) of M is not a direct summand.

P r o o f. Note that τI(M) =





0 F F

0 F 0

0 0 F



, so M is not τI -torsion.

(1) Consider the submodules K =





0 F 0

0 0 0

0 0 0



 and L =





0 0 F

0 0 0

0 0 0



. Then

K ∩ L = 0 and K is a maximal submodule of I with respect to the property of

having zero intersection with L. Hence K is a complement in I of L, and therefore

in M since I is a direct summand of M . But K is not a direct summand of M ,

so M is not an extending R-module. However M is type 2 τI -extending. To see

this, let N be a type 2 τI -closed submodule of M . Then M/N is τI -torsion and N

is a closed submodule of M . If N is τI -torsion submodule of M , then M will be

τI -torsion which is not the case. Hence N is not a τI -torsion submodule and, in this

case, it is easy to check that all possibilities for N are N = I or N =





F F F

0 F 0

0 0 0





or N =





F F F

0 0 0

0 0 F



 or N = M . Hence in all cases N is a direct summand of M ,

and so M is a type 2 τI -extending module.
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(2) Let V =





0 0 0

0 0 0

0 0 F



. Then V is a direct summand of M . Since M/V is not

τI -torsion, V is not type 2 τI -closed.

(3) It is easy to see that τI(M) is an essential submodule of M , and therefore it

is not a direct summand of M . �

In the preceding example, we found a torsion theory τI and an R-module M such

thatM is type 2 τI -extending. In the following example, we provide an example of a

torsion theory τJ such that the same R-moduleM is not type 2 τJ -extending. These

examples show that whether or not a module is type 2 τ -extending depends on the

particular torsion theory τ under consideration.

Example 2.5. Let R and M be as in Example 2.4 and let J be the idempotent

ideal J =





0 0 F

0 0 0

0 0 F



 of R. If τJ is the torsion theory on Mod-R corresponding to

J , that is TJ := {N ∈ Mod-R : NJ = 0}, then M is neither extending nor type 2

τJ -extending.

P r o o f. To show that M is not type 2 τJ -extending, let N be a type 2 τJ -closed

submodule ofM . ThenM/N is τJ -torsion and N is a closed submodule ofM . Hence

(M/N)J = 0, and so MJ 6 N . Now

MJ =





F F F

0 F 0

0 0 F









0 0 F

0 0 0

0 0 F



 =





0 0 F

0 0 0

0 0 F



 = J 6 N.

Since (M/J)J = 0, M/J is τJ -torsion. It is easy to check that J is closed in M , so

J is a type 2 τJ -closed in M . But J is not a direct summand of M , and so M is not

type 2 τJ -extending. �

The following two examples provide a negative answer to Question 1. These

examples demonstrate that for an idempotent ideal I of R it is possible for an R-

module M to be such that M/MI is an extending R/I-module but M is not type 2

τI -extending, and that it is possible for an R-module M to be type 2 τI -extending

even though M/MI is not an extending R/I-module.

Example 2.6. If R, M , J and τJ are as in Example 2.5, then M/MJ is an

extending R/J-module, but M is not type 2 τJ -extending.
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P r o o f. We have just seen in Example 2.5 that M is not type 2 τJ -extending.

So it remains to show that M/MJ is an extending R/J-module. Now the ring

R/J :=

{





a b c

0 d 0

0 0 e



 + J : a, b, c, d, e ∈ F

}

is isomorphic to the ring of upper triangular matrices over F . By [4, 13.5, 13.6] every

right (R/J)-module is extending since R/J is an Artinian serial ring that is also a

(left and right) hereditary right SI ring [4] with J(R/J)2 = 0. Hence M/MJ is an

extending (R/J)-module. �

Example 2.7. There exist a torsion theory τK corresponding to an idempotent

ideal K of a ring R and a right R-module M such that M is type 2 τK -extending

but M/MK is not R/K-extending.

P r o o f. Let Z denote the ring of integers and R =





Z Z Z
0 Z Z
0 0 Z

, and con-

sider the idempotent ideal K of R, K =





0 0 Z
0 0 Z
0 0 Z

, and the right R-module

M =





0 0 Z
0 Z ZZ Z Z

. Let τK := (TK ,FK) denote the torsion theory on Mod-R cor-

responding to the idempotent ideal K, that is TK := {N ∈ Mod-R : NK = 0}. For

a submodule N of M , M/N is τK-torsion if and only if (M/N)K = 0 if and only if

MK 6 N . Let N be a type 2 τK-closed submodule of M . Thus N is closed in M

and MK 6 N . So it is easy to check that such a closed submodule N of M is M

itself. Hence M is type 2 τK-extending. Now consider the R/K-submodules N/MK

and L/MK of the module M/MK, N/MK =

{





0 0 0

0 2n 0

0 n 0



 + MK; n ∈ Z}

,

L/MK =

{





0 0 0

0 0 0

a b 0



 + MK; a, b ∈ Z}

. It is a routine to check that the sub-

module N/MK is maximal with respect to the property (N/MK) ∩ (L/MK) = 0.

So N/MK is closed in M/MK. But it can not be a direct summand of M/MK as

R/K-module. Hence M/MK is not an extending R/K-module. �

The following results deal with characterizations of type 2 τ -extending modules.
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Proposition 2.8. If M is an R-module, then for a τ -dense submodule N of M

there is a type 2 τ -closed submodule K of M such that N is essential in K.

P r o o f. Let N be a τ -dense submodule of M . By Zorn’s Lemma, we may

find a closed submodule K of M such that N is essential in K. Since M/K is

a homomorphic image of M/N , M/K is τ -torsion. Thus K is a type 2 τ -closed

submodule of M such that N is essential in K. �

Lemma 2.9. The following are equivalent for an R-module M .

(1) M is type 2 τ -extending.

(2) For each τ -dense submodule N of M , there is a direct summand A of M such

that N is essential in A.

P r o o f. (1) ⇒ (2). Let N be a τ -dense submodule of M . By Proposition 2.8,

we can find a type 2 τ -closed submodule K of M such that N is essential in K. By

(1) K is a direct summand of M , and so (2) holds.

(2) ⇒ (1). Let N be a type 2 τ -closed submodule of M . Then N is τ -dense and

closed in M . By (2) there exists a direct summand A of M such that N is essential

in A. Since N is closed in M , N = A. Hence (1) holds. �

Proposition 2.10. The following hold for a τ -torsion free R-module M .

(1) M has no proper type 2 τ -closed submodules.

(2) Every τ -dense submodule N of M is essential in M .

P r o o f. (1) Let N be a type 2 τ -closed submodule ofM . ThenM/N is τ -torsion

and N is closed in M . By hypothesis M = N ⊕ N ′ for some submodule N ′ of M ,

and so N ′ is clearly τ -torsion. Since τ(M) = 0, N ′ = 0, and so M = N .

(2) (See also [13, Lemma 1.7].) Let N be a τ -dense submodule of M . By Propo-

sition 2.8, there is a type 2 τ -closed submodule K of M such that N is essential in

K. By (1) K = M . So N is essential in M . �

Proposition 2.11. If N is type 2 τ -closed submodule of an R-module M , then

there is a submodule K of M such that N is maximal with respect to the property

N ∩K = 0. In this case N ⊕K is τ -essential in M . Conversely, if K is a τ -torsion

submodule of M such that a submodule N of M is maximal with respect to the

property N ∩K = 0, then N is a type 2 τ -closed submodule of M .

P r o o f. If N is a type 2 τ -closed submodule ofM , then N is τ -dense and closed

in M . Then N is a complement in M (see [4, p. 6]). Let K be a submodule of M

such that N is a maximal submodule of M such that N ∩K = 0.

Next we show that N⊕K is τ -essential inM . Assume that N ⊕K is not essential

in M . Then there is a nonzero submodule N1 of M such that (N ⊕ K) ∩ N1 = 0.
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This gives (N1⊕N)∩K = 0 which is a contradiction. Hence N⊕K is essential inM .

Finally M/(N ⊕K) is a homomorphic image of M/N , so M/(N ⊕K) is τ -torsion.

Therefore N ⊕K is τ -essential in M .

Conversely, suppose that there exists a submodule K ofM with the property that

K is τ -torsion and that N is maximal with respect to the property N ∩K = 0. We

claim that N is type 2 τ -closed in M . It is clear that N is closed in M , so we need

to show that N is τ -dense in M . Since K and M/(N ⊕K) are τ -torsion, by exact

sequence

0 → K ∼= (K ⊕N)/N →M/N →M/(K ⊕N) → 0,

shows that M/N is τ -torsion. Hence N is type 2 τ -closed in M . �

It was our hope that an investigation of the decomposition of type 2 τ -extending

modules would not only provide information about such decompositions but that it

would indirectly shed light on Question 2: When is a finite direct sum of type 2

τ -extending modules type 2 τ -extending? Unfortunately this does not seem to be

the case, so this question is yet to be resolved. In this vein we discuss the following

example in the hope to shed light for further study toward the question.

Example 2.12. There exists a ring R, a torsion theory τ and type 2 τ -extending

modules M1, M2 such that M = M1 ⊕M2 is a τ -torsion module but need not be

type 2 τ -extending.

P r o o f. Let p be a prime integer and consider the Z-modules M1 = Zp and

M2 = Zp3 andM = M1 ⊕M2. It is well known that M is not extending (see namely

[9]). Let τp = τ := (Tp,Fp) denote the torsion theory on Mod-Z where
Tp := {K ∈ Mod -Z; for each k ∈ K there exists a positive integer t

depending on k with kpt = 0}.

Since M1 and M2 are uniform, they are extending, in particular they are type 2

τp-extending modules. Clearly M is also a τp-torsion module and since it is not

extending, it is not type 2 τp-extending. In order to see this directly, let N = (1̄, p̄)Z.
Then it is easy to check that N is type 2 τp-closed submodule of M but not a direct

summand. Hence M is not a type 2 τp-extending Z-module. �

Let U and M both be R-modules. We say that U is M -injective if, for every

submodule N of M , every homomorphism ϕ : N → U can be extended to a homo-

morphism ψ : M → U such that ψ(x) = ϕ(x), for all x ∈ N . A class of R-modules

{Mi : i ∈ I}, where I is an index set, is called relatively injective ifMi isMj-injective

for every pair of distinct i, j ∈ I.

We mention Theorem 2.13 relating to Question 2.
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Theorem 2.13. Let τ be a hereditary torsion theory and let M be an R-module

which is a direct sumM = M1⊕M2 of two relatively injective τ -torsion submodules

M1 and M2. Then M is type 2 τ -extending if and only if both M1 and M2 are type

2 τ -extending.

P r o o f. The necessity is clear by Lemma 2.1 part (6). For the sufficiency let

M1 and M2 be relatively injective τ -torsion type 2 τ -extending submodules. It is

easy to see that M1 and M2 are both extending submodules. By [9, Theorem 8] M

is extending. Therefore by Lemma 2.1, M is type 2 τ -extending. �

3. Type 2 τG-extending modules

In this section we investigate extending modules relative to Goldie torsion theory

τG on Mod-R. Recall that the singular submodule of an R-module M is given by

Z(M) := {x ∈M ; xE = 0, E an essential right ideal of R} and that M is τG-torsion

free if and only if Z(M) = 0.

We show that if τ is a torsion theory such that τG 6 τ , then a singular module

M is type 2 τ -extending if and only if it is type 2 τG-extending. We also investigate

Question 3: Is there an example of a type 2 τG-extending module which is not

extending? We begin with the following proposition.

Proposition 3.1. If M is type 2 τG-extending module, then τG(M) is a direct

summand of M .

P r o o f. Let M be a type 2 τG-extending module. If M is τG-torsion, then by

Lemma 2.1 part (4), M is extending. So suppose that M is not τG-torsion. If K is a

complement of τG(M) inM , then K⊕τG(M) is an essential submodule ofM , and by

[8, Proposition 3.26]M/(K⊕τG(M)) is τG-torsion. Since τG(M) ∼= (K⊕τG(M))/K

is τG-torsion, the short exact sequence

0 → (K ⊕ τG(M))/K →M/K →M/(K ⊕ τG(M)) → 0

shows that M/K is τG-torsion. Hence K is type 2 τG-closed in M . By assumption

K is a direct summand of M , so M = K ⊕K ′ for some submodule K ′ of M . Thus

K is τG-torsion free (i.e., non-singular) and τG(M) is contained in K ′. Moreover,

M/K ∼= K ′, so K ′ is τG-torsion. But τG(M) is the largest τG-torsion submodule of

M , so τG(M) = K ′. Therefore, we have M = τG(M) ⊕K. �
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Proposition 3.2. Let τ and ̺ be torsion theories such that τ 6 ̺. If an R-module

M is type 2 ̺-extending, then M is type 2 τ -extending.

P r o o f. Assume that M is a type 2 ̺-extending R-module and that N is a type

2 τ -closed submodule of M . Then M/N is τ -torsion and N is closed in M , so since

τ 6 ̺, M/N is ̺-torsion and N is closed in M . Thus N is type 2 ̺-closed in M . By

assumption M is type 2 ̺-extending, so N is a direct summand of M . Therefore M

is type 2 τ -extending. �

The following example shows that converse of Proposition 3.2 does not hold.

Example 3.3. If R, I, τI and M are as in Example 2.4, then τI 6 χ and M is

type 2 τI -extending but not type 2 χ-extending.

P r o o f. We saw in Example 2.4 that M is a type 2 τI -extending module that

is not extending. But for the torsion theory χ, an R-module is type 2 χ-extending

if and only if it is extending (see Example 2.3). Thus, M is type 2 τI -extending but

not type 2 χ-extending. �

Corollary 3.4. Let τ be a torsion theory such that τ 6 τG. The following hold

for an R-module M .

(1) If M is non-singular, then M is type 2 τG-extending.

(2) If M is type 2 τG-extending, then M is type 2 τ -extending.

(3) If M is non-singular, then M is type 2 τ -extending.

P r o o f. (1) IfM is a non-singularR-module, then Z(M) = 0, and so τG(M) = 0.

Thus M is τG-torsion free. By Lemma 2.1 part (5), M is type 2 τG-extending.

(2) By Proposition 3.2, this is clear.

(3) By part (1) and (2), this is also clear. �

The converses of Corollary 3.4 part (1) and (3) are not true in general as the

following example shows.

Example 3.5. For Z the ring of integers, Zp2 is a type 2 τG-extending Z-module
but it is not a non-singular Z-module.
P r o o f. Since Zp2 is a uniform Z-module, we know that for the Goldie torsion

theory τG, every uniform module is type 2 τG-extending. Thus Zp2 is type 2 τG-

extending and also type 2 τ -extending since Zp2 is uniform. It is easy to see thatZp2 is not a non-singular Z-module. �

What can we say about the converse of 3.4 part (2)? Is there a torsion theory

τ such that τ 6 τG and a module which is type 2 τ -extending but not type 2 τG-

extending? We leave this question open.
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Further we ask whether there exists or not a hereditary torsion theory τ and a

module M with τ 6 τG such that M is type 2 τ -extending but not type 2 τG-

extending.

We also have the following characterization.

Theorem 3.6. Suppose that τ is a torsion theory such that τG 6 τ . Then a

singular R-module M is type 2 τ -extending if and only if it is type 2 τG-extending.

P r o o f. Since τG 6 τ , by Proposition 3.2, if M is type 2 τ -extending, then M

is type 2 τG-extending.

Conversely, suppose that M is type 2 τG-extending. Let N be a type 2 τ -closed

submodule of M . Then N is closed in M and N is τ -dense in M . Since M is a

singular module, Z(M) = M , and so τG(M) = M . Thus M is τG-torsion, and so

M/N is τG-torsion as a homomorphic image of M . Thus N is a type 2 τG-closed

submodule of M . By hypothesis N is a direct summand of M . Therefore M is type

2 τ -extending. �

We conclude our discussion of type 2 τG-extending modules with the following

example of a module which is type 2 τG-extending but not extending.

Example 3.7. Consider the ringR =

{[Z Z
0 Z]}

, whereZ is the ring of integers.
If M is the R-module RR, then M is a nonsingular type 2 τG-extending, but not

extending R-module.

P r o o f. For 1 6 i, j 6 2, let eij denote the matrix unit with 1 in the (i, j)th

position and the other entries 0. Then M is not an extending module since N =

(e12 + e222)R is a closed submodule of M that is not a direct summand (see also [2,

Example 6.2]). It is easy to check that M is non-singular, so M is a τG-torsion free.

Lemma 2.1 shows that M is type 2 τG-extending. �
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[6] S.Doğruöz and P.F. Smith: Modules which are weak extending Relative to Module
Classes. Acta Math. Hungarica 87 (2000), 1–10.
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