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Extending Noether’s theorem by quantifying
the asymmetry of quantum states
Iman Marvian1,2,3 & Robert W. Spekkens1

Noether’s theorem is a fundamental result in physics stating that every symmetry of the

dynamics implies a conservation law. It is, however, deficient in several respects: for one, it is

not applicable to dynamics wherein the system interacts with an environment; furthermore,

even in the case where the system is isolated, if the quantum state is mixed then the Noether

conservation laws do not capture all of the consequences of the symmetries. Here we

address these deficiencies by introducing measures of the extent to which a quantum state

breaks a symmetry. Such measures yield novel constraints on state transitions: for non-

isolated systems they cannot increase, whereas for isolated systems they are conserved. We

demonstrate that the problem of finding non-trivial asymmetry measures can be solved using

the tools of quantum information theory. Applications include deriving model-independent

bounds on the quantum noise in amplifiers and assessing quantum schemes for achieving

high-precision metrology.
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F
inding the consequences of symmetries for dynamics is a
subject with broad applications in physics, from high-energy
scattering experiments, through control problems in meso-

scopic physics, to issues in quantum cosmology. In many cases, a
complete solution of the dynamics is not possible either because it
is too complex or because one lacks precise knowledge of all of
the relevant parameters. In such cases, one can often still make
non-trivial inferences by a consideration of the symmetries.
The most prominent example is the inference from dynamical
symmetries to constants of the motion in closed-system
dynamics. For instance, from invariance of the laws of motion
under translation in time, translation in space, and rotation, one
can infer, respectively, the conservation of energy, linear
momentum, and angular momentum. This result has its origin
in the work of Lagrange in classical mechanics1, but when the
symmetries of interest are differentiable, the connection is
established by Noether’s theorem2. These days, physicists tend
to use the term ‘Noether’s theorem’ to refer to the general result,
and we follow this convention here. The theorem applies also in
the quantum realm, where symmetries of the time evolution
imply the existence of a set of observables all of whose moments
are conserved3. The quantum case is the one of interest in this
work.

A symmetric evolution is one that commutes with the action of
the symmetry group4. For instance, a rotationally invariant
dynamics is such that a rotation of the state before the dynamics
has the same effect as doing so after the dynamics. An asymmetry
measure quantifies how much the symmetry in question is
broken by a given state. More precisely, a function f from states to
real numbers is an asymmetry measure5–11 if the existence
of symmetric dynamics taking r to s implies f(r)Zf(s). A
measure for rotational asymmetry, for instance, is a function
over states that is non-increasing under rotationally invariant
dynamics.

For systems interacting with an environment (open-system
dynamics), where Noether’s theorem does not apply, every
asymmetry measure imposes a non-trivial constraint on what
state transitions are possible under the symmetric dynamics,
namely that the measure evaluated on the final state be no larger
than that evaluated on the initial state. For isolated systems
(closed-system dynamics), the existence of a symmetric unitary
for some state transition implies the existence of a symmetric
unitary for the reverse transition (namely, the adjoint of the
unitary); hence, each asymmetry measure is a conserved quantity
under the symmetric dynamics. We show that, for transitions
between mixed states, the conserved quantities one obtains in this
way in general can be independent of those prescribed by
Noether’s theorem. In this way, we find new conservation laws,
which are not captured by Noether’s theorem. Our results also
allow us to derive constraints on state transitions given discrete
symmetries of the dynamics, that is, symmetries associated with
finite groups, where there are no generators of the group action
and it is less obvious how to apply Noether’s theorem.

Results
The inadequacy of Noether conservation laws. How can we find
non-trivial asymmetry measures? In the case of rotational sym-
metry, one might guess that the (expectation value of) compo-
nents of angular momentum are good candidates. For one, a state
with non-zero angular momentum is necessarily non-invariant
under some rotation. For another, in closed-system dynamics,
any asymmetry measure must be a constant of the motion
and angular momentum certainly satisfies this condition.
Nonetheless, it turns out that angular momentum is not an
asymmetry measure. More generally, it turns out that none of

the Noether conserved quantities, nor any functions thereof,
provide non-trivial measures of asymmetry. To prove this, it is
necessary to provide more precise definitions of the notions of
symmetric states and symmetric time evolutions.

One specifies the symmetry of interest by specifying an abstract
group G of transformations and the appropriate representation
thereof. For a general symmetry described by a group G, the
symmetry transformation corresponding to the group element g
is represented by the map r-Ug(r) where Ug( � )�U(g)( � )Uw(g)
and U(g) is a unitary operator. For instance, under rotation
around an axis n̂ by angle y, the density operator of a system will
be transformed as r ! e�iyJ�n̂reiyJ�n̂ where J¼ (Jx, Jy, Jz) is the
vector of angular momentum operators. A state r does not break
the symmetry G, or is symmetric relative to group G, if for all
group elements gAG it holds that Ug(r)¼r. A general time
evolution E, which is a linear transformation from the space of
density operators to itself, r-E(r), is symmetric relative to
group G if it commutes with the symmetry transformation
r-Ug(r) for all group elements g in group G (See Fig. 1). Note
that this definition of a symmetric time evolution applies equally
well to the cases of closed-system dynamics and open-system
dynamics (see Fig. 2).

For a symmetry described by a Lie group G, Noether’s theorem
states that every generator L of G is conserved, or equivalently,
the expectation value of any function of L is conserved. Therefore,
if under a unitary symmetric dynamics state r evolves to state s,
then all the implications of Noether’s theorem for quantum
theory can be summarized as:

8k 2 N : trðrLkÞ ¼ trðsLkÞ ð1Þ

for every generator L of G.
We can now make precise the sense in which Noether-

conserved quantities yield no non-trivial measures of asymmetry:
for a symmetry corresponding to any compact Lie group G, any
asymmetry measure f that is a continuous function of only the
Noether-conserved quantities is trivial, that is, it takes the same
value for all states.

The proof is provided in the Methods section, but we will here
sketch the main idea. States that are asymmetric must necessarily
fail to commute with some generator of the group, say L, and
consequently must have coherence between different eigenspaces
of L (for example, a state that is non-invariant under phase shifts
necessarily has coherence between eigenspaces of the correspond-
ing number operator). A non-trivial asymmetry measure must be
able to detect such coherence. If the state were known to be pure,
then the presence of such coherences would be revealed by a non-
zero variance over L. However, an asymmetry measure is a
function over all states, and there exists mixed states that have
non-trivial variance over L, even though they have no coherence
between the eigenspaces of L. Hence, the value of the second
moment of L has no information about the asymmetry properties
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= U (g )  (�)U †(g )

Time
evolution

Time
evolution

Figure 1 | The definition of symmetric dynamics. A time evolution is called

symmetric relative to a group G if the map E describing the evolution

commutes with the symmetry transformation associated with every group

element gAG.
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of the state. By the same logic, no moment of L has any
information about the asymmetry properties of the state.

It follows that the problem of devising measures of asymmetry
is non-trivial. Nonetheless, it can be solved by taking an
information-theoretic perspective on symmetric dynamics.

Measures of asymmetry from measures of information. Con-
sider the problem of communicating information about a direc-
tion in space (See Fig. 3). It is clear that to be able to succeed in
this task, one needs to use states that break the rotational sym-
metry. Furthermore, intuitively we expect that to transfer more
directional information one needs to use states that are more
asymmetric. This suggests that one can quantify rotational
asymmetry by the amount of information a state encodes about
orientation.

To make this connection precise, we note that if r-s by some
symmetric dynamics then by definition this dynamics also takes
every state in the group orbit of r to the corresponding state in
the group orbit of s, that is, Ug(r)-Ug(s) for all gAG. The set of
states {Ug(r) : gAG} can be understood as a quantum encoding of
a classical variable that ranges over the elements of the group G,
and the dynamical evolution realizing Ug(r)-Ug(s) for all gAG

can be understood as a kind of data processing. From the
existence of such a data processing, it follows that the s-based
encoding must contain no more information about g than the
r-based encoding.

A measure of the information content of an encoding is a
function from encodings to reals that is nonincreasing under
data processing. Specifically, I is a measure of information if for
any two different quantum encodings of a classical random
variable xAX, {rx : xAX} and {sx : xAX}, the existence of a
dynamical evolution that maps rx to sx for all xAX implies that
I({rx : xAX})ZI({sx : xAX}). (In the context of information
theory, the monotonicity of a measure of information is known
as the data processing inequality.) It follows that if we define a
real function f such that its value on a state is the measure of
information I of the group orbit of that state, that is,
f(r)� I({Ug(r) : gAG}), then f is a measure of asymmetry. The
proof is simply that if r is mapped to s by some symmetric
dynamics, then for all gAG the state Ug(r) is mapped to Ug(s)
by that dynamics, and consequently I({Ug(r) : gAG})ZI(Ug(s) :
gAG), which implies f(r)Z f(s).
Quantum information theorists have defined many measures

of information and for each of these we can obtain a measure of
asymmetry. We mention a few that can be derived in this manner
(details of the derivation are provided in the Methods section).

� Let p(g) be an arbitrary probability density over the group
manifold, and define the twirling operation weighted by p(g) as
Gp�

R
dg p(g)Ug. Let S(r) � � tr(r logr) be the von Neumann

entropy. The function

GpðrÞ � S GpðrÞ
� �

� SðrÞ ð2Þ
is an asymmetry measure. We will refer to such a measure as a
Holevo asymmetry measure. The intuition behind it is as
follows: if a state is close to symmetric, then it is close to
invariant under rotations and mixing over all rotations does not
change its entropy much, while, if it is highly asymmetric, then
under rotations it covers a broader manifold of states and hence
mixing over all rotations increases the entropy significantly.

� Let the matrix commutator of A and B be denoted by [A, B]

and the trace norm (or c1-norm) by Ak k1 � trð
ffiffiffiffiffiffiffiffiffi
AyA

p
Þ. For

any generator L of the group action, the function

FLðrÞ � ½r; L�k k1 ð3Þ
is a measure of asymmetry. This measure formalizes the
intuition that the asymmetry of a state can be quantified by the
extent to which it fails to commute with the generators of the
symmetry.

Heisenberg
interaction

Unpolarized
bath of spins

�

tr

Figure 2 | Symmetric open-system dynamics. The top figure depicts such

dynamics as a circuit. The system is coupled to an ancilla that is prepared in

a symmetric state s, that is, [s,U(g)]¼0 8gAG, and the pair undergoes a

closed-system dynamics associated with a symmetric unitary map

V( � )�V �Vwwhere V is a unitary operator satisfying the symmetry property

[V,U(g)]¼0 8gAG. The overall dynamics for the system then corresponds

to an open-systen dynamics associated with a completely positive trace-

preserving linear map E( � )�tra[V( �#r)Vw] that is symmetric, that is,

E(U(g) �Uw(g))¼U(g)E( � )Uw(g) 8gAG. (Here tra denotes the trace

operation on the ancilla.) Furthermore, every symmetric map E can be

implemented in this manner31. An example of such a dynamics is a spin-1/2

system interacting via a Heisenberg spin–spin interaction (which is

rotationally invariant) with a bath of spin-1/2 systems that are polarized in

random directions, such that the overall state is unpolarized. This is

depicted in the bottom figure.

n̂

Prep Meas

BobAlice

n ′ˆ

Figure 3 | Quantum communication protocol for sending information

about direction. Alice chooses a direction n̂ and prepares a spin-j system in

the coherent state in this direction, that is, she prepares the state j; jj in̂
where J � n̂ j; jj in̂¼ �hj j; jj in̂. Then she sends this spin system to Bob. Bob

performs a measurement on the system and obtains an estimate of n̂,

denoted n̂0 . The uncertainty principle implies that there is a fundamental

limit on the accuracy of Bob’s estimate which is determined by j: the

variance of the estimated angles are bounded by a constant factor times

1/j2. Within the set of coherent states, therefore, the amount of directional

information, and hence the rotational asymmetry, increases with j.
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� For any generator L, and for 0oso1, the function

SL;sðrÞ � trðrL2Þ� trðrsLr1� sLÞ ð4Þ
is a measure of asymmetry. This quantity was introduced by
Wigner and Yanase12 with s¼ 1/2 and generalized by Dyson
to arbitrary s. While it has attracted much interest, its
monotonicity under symmetric dynamics—and hence its
interpretation as a measure of asymmetry—was not
previously recognized.

For all of these examples, if r is a symmetric state then the
asymmetry measure has value zero. Furthermore, for FL and SL,s,
if r is a pure state then the measure reduces to the variance over
L. The measures FL and SL,s can both be understood as
quantifying the ‘coherent spread’ over the eigenvalues of L. As
discussed earlier, this is precisely what the variance over L (or any
function of L) could not do.

Inadequacy of Noether conservation laws for isolated systems.
We have seen how conservation of all the Noether quantities is
neither a necessary nor a sufficient condition for the possibility of
a state transition in open-system symmetric dynamics. We now
turn to closed-system dynamics. Recalling that measures of
asymmetry are conserved quantitites in closed-system symmetric
dynamics and that any non-trivial measure of asymmetry cannot
be expressed as a function of the Noether quantities alone, one is
led to expect that the constraints obtained from the conservation
of non-trivial measures of asymmetry can be independent of the
constraints obtained from Noether conservation laws. In this
section, we show that this is indeed the case. Although Noether
conservation laws provide necessary conditions for a state tran-
sition to be achievable in a closed-system symmetric dynamics,
they do not provide sufficient conditions.

Necessity follows from the fact that if there exists a unitary U
such that s¼U rUw and having the relevant symmetry (that is,
[U, L] for every generator L of G), then the Noether conditions
(Equation 1) are satisfied. Insufficiency is established by the
following counterexample, which exhibits a state transition that
does not violate any Noether conservation law, but that violates
the conservation law for a non-trivial measure of asymmetry.

Consider a spin-1/2 system that also has some other
independent degree of freedom, which is invariant under
rotation, denoted by the observable Q. Let jþ n̂i; j� n̂i denote
eigenstates of spin along the n̂-axis, and let |q1S, |q2S denote
orthogonal eigenstates of Q. Then define

r � 1
2 jþ ẑihþ ẑ j�jq1ihq1 jþ 1

2 j� ẑih� ẑ j�jq2ihq2 j; ð5Þ
and

s � 1
2 jþ x̂ihþ x̂ j�jq1ihq1 jþ 1

2 j� x̂ih� x̂ j�jq2ihq2 j : ð6Þ
We can easily check that: (1) the state transition r-s is

impossible by rotationally symmetric closed-system dynamics (but
possible by dynamics that break rotational symmetry, namely, a
rotation around ŷ by p/2, so that the transition would not be
forbidden were it not for considerations of symmetry).
(2) All constraints implied by Noether’s theorem hold, that is, the
conditions of Equation (1) for generators of rotations are satisfied,
and therefore Noether’s theorem does not forbid this transition.

Condition (2) is straightforward to verify. The truth of (1) can
be made intuitive by noting that r is symmetric under rotations
about the ẑ-axis while s is not, such that a transition from r to s
is symmetry breaking and hence impossible by rotationally
symmetric dynamics. One can derive this same conclusion using
asymmetry measures. Consider the Holevo asymmetry measure
Gp for the probability density p that is vanishing for all rotations
besides those about the ẑ axis, where it assigns a uniform measure

over all angles fA[0, 2p]. (More precisely, if Oẑ,f denotes the
element of SO(3) corresponding to a rotation by f about the ẑ
axis and dO denotes the uniform measure over SO(3), then the
probability density p is defined as follows: for any arbitrary
function f over SO(3),

R
pðOÞf ðOÞdO ¼ 1

2p

R 2p
0 f ðOẑ;fÞdf). One

easily verifies that Gp(r)¼ 0 and Gp(s)¼ 1, that is, Gp increases in
this state transition, thereby demonstrating that it cannot be
achieved by rotationally symmetric dynamics. We have shown
that constants of the motion derived from asymmetry measures
can capture restrictions on the dynamics that are not captured by
Noether’s theorem.

Special case of closed-system dynamics of pure states. One final
special case remains to be considered. Might it be that con-
servation of the Noether-conserved quantities is the necessary
and sufficient condition for the possibility of state interconversion
under symmetric closed-system dynamics when the states are
pure? In this case, the answer is yes.

It has previously been shown13 that the asymmetry properties
of a pure state |cS are completely determined by the complex
function /c|U(g)|cS over the group manifold, called the
characteristic function. Equality of characteristic functions is the
necessary and sufficient condition for two pure states to be
reversibly interconvertible under symmetric unitary dynamics13.
Expanding U(g) in a power series over the generators, one
deduces that for connected compact Lie groups, such as the group
of rotations, the equality of all moments of the generators is
equivalent to the equality of the characteristic functions.
Consequently, for pure states undergoing reversible dynamics
with such a symmetry, Noether’s theorem, that is, Equation (1),
captures all of the consequences of the symmetry.

In practice, we are always faced with some loss of information
under any quantum dynamics, due to the ubiquity of decoher-
ence, and there is always some noise in our preparation of the
initial state. Therefore, reversible dynamics of pure states is an
idealization that is never achieved in practice, and as soon as one
departs from it Noether’s theorem is inadequate for describing
the consequences of symmetry.

Applications of measures of asymmetry. Phase-insensitive
quantum amplifiers are examples of open-system dynamics that
have a symmetry property. Consequently, from the nonincrease
of measures of asymmetry, we can derive bounds on their per-
formance. The purpose of a quantum amplifier is to increase the
expectation value of some observable, such as the number
operator for optical fields14. In most studies, constraints on
amplification are obtained for specific physical models of the
amplifier. Furthermore, the analysis is typically done separately
for linear and nonlinear amplifiers as well as for deterministic and
nondeterministic amplifiers15. By contrast, the constraints that
can be found with our techniques follow from assumptions of
symmetry alone. For instance, in optics they follow from the fact
that the amplifier is phase-insensitive. They are therefore model
independent and can be applied whether the amplifier is linear or
nonlinear, deterministic or nondeterministic.

Here is an example of such a constraint, arising from the
Holevo measure of asymmetry. If r is mapped to s by a
symmetric amplifier, then

SðsÞ� SðrÞ � SðGpðsÞÞ� SðGpðrÞÞ; ð7Þ

which asserts that the change in entropy under the transition has
a non-trivial lower bound.

For instance, suppose that r is a state of a spin-1/2 system,
while s is a state of a spin-j system for j441/2. Suppose further
that the probability density p in Gp is chosen to be the uniform
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measure over the symmetry group (which in this problem is
SO(3)), so that S(Gp(r))¼ 1 while SðGp(s)) is large (logarithmic in j).
The inequality then implies that S(r)� S(s) must be large.

This demonstrates that in the case of rotationally symmetric
open-system dynamics, an increase in the value of the angular
momentum along some axis is not prohibited as long as entropy
increases. This ensures that the distinguishability of states at the
output is not more than the distinguishability of states at the input,
so that the information content has not increased (see Fig. 4).

A second application of measures of asymmetry is to quantify
quantum coherence16,17. Coherence is at the heart of
many distinctly quantum phenomena from interference of
individual quanta to superconductivity and superfluidity. On
the practical side, coherence is the property of quantum states
that is critical for quantum phase estimation: a coherent
superposition of number eigenstates, such as 1ffiffi

2
p ðj0iþ jniÞ, is

sensitive to phase shifts, while an incoherent mixture, such as
1
2 ðj0ih0 jþjnihn jÞ, is not. Phase shifts, however, are symmetry
transformations. Therefore, states with coherence are precisely
those that are asymmetric relative to the group of phase shifts. It
follows that we can define a measure of coherence as any function
that is nonincreasing under phase-insensitive time evolutions8.
Hence the measures of asymmetry proposed here—Equations (2),
(3) and (4)—can be used as measures of coherence relative to the
eigenspaces of the generator L (that is, as the ‘coherent spread’).

Finally, measures of asymmetry are important because
asymmetry is the resource that powers quantum metrology (this
contrasts with the more standard view that the relevant resource
is entanglement, although sometimes measures of entanglement

may be related to measures of asymmetry). Metrology involves
estimating a symmetry transformation18. In the general case, the
set of symmetry transformations forms a non-Abelian group,
such as the group of rotations, but, in the most common example,
it is the Abelian group of phase shifts (in which case asymmetry
corresponds to coherence). We focus on this example to illustrate
the idea.

To estimate an unknown phase shift f of an optical mode, one
prepares the mode in the state r, subjects it to the unknown phase
shift, leaving it in the state eifNre� ifN, where N is the number
operator, and finally one measures it. The usefulness of
a particular state r can be quantified by any measure of the
information content of the ensemble {eifNre� ifN :fA[0, 2p]},
but, as shown above, every such measure is a measure of the
asymmetry of r relative to phase shifts. The figure of merit for a
metrology task is therefore a measure of asymmetry and dictates
the optimal r. Suppose, for instance, that one seeks an unbiased
estimator f̂ of f and the figure of merit is the variance in f̂,
denoted Varðf̂Þ. It has previously been shown19 that for a state
r, we have Varðf̂Þ 	 1=4SN;12

ðrÞ (a quantum generalization of
the Cramer-Rao bound) where SN;12

ðrÞ is the Wigner-Araki-Dyson
skew information of order s¼ 1/2, defined in Equation (4). Hence,
it is the latter measure of asymmetry that is relevant in this case.

Discussion
To date, the field of quantum information theory has been
primarily concerned with problems that are of interest to
computer scientists. It has become apparent, however, that
there are also important applications to problems that are of

Meas  
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symmetric
amplifier

Meas
Noiseless
symmetric
amplifier

Alice 

Prep

n

Bob

ˆ

n′ˆ

n′ˆ

Figure 4 | An example of information-theoretic constraints on state transitions in symmetric open-system dynamics. Suppose that there were a

rotationally symmetric open-system dynamics which transforms the coherent state aligned in the n̂-direction, j j; jin̂, to the coherent state j j0; j0in̂ where

j04j, that is, a rotationally symmetric noiseless amplifier. If this were possible then in the communication protocol described in Fig. 3, Bob could first

apply this dynamics and then estimate the direction n̂ using the state j j0; j0in̂. Such a strategy would yield an estimate with variance proportional to 1=j02,

which is better than what is allowed by the fundamental quantum limit. Hence, we conclude that the state transition is not possible by rotationally

symmetric dynamics. In contrast, for a similar rotationally symmetric dynamics, which adds noise to the state, such that j j; jin̂ is not mapped to j j0; j0in̂
but to a mixed spin-j0 state, as long as the noise is large enough to ensure that Bob can only estimate n̂ with a variance proportional to 1=j2, considerations

of information content do not rule out the transition. Indeed, one can always increase the expectation value of the angular momentum if there is a

compensating increase in the entropy.
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interest to physicists, such as simulating many-body systems20–22;
describing quantum phase transitions and topological
order23–25; and understanding black hole thermodynamics26.
We have here presented another example of this broadening of
the field’s scope by demonstrating its applicability to a prominent
and generic physics problem, that of deducing the consequences
of symmetries for the evolution of dynamical systems.

Specifically, we have demonstrated a duality between state
evolution under constrained dynamics and evolution of a set of
states (a quantum encoding of information) under unconstrained
dynamics. This duality has been used to build measures of the
extent to which a quantum state breaks a symmetry from
measures of the extent to which it can encode information about
a classical variable that ranges over the elements of the symmetry
group. In symmetric open-system dynamics, where Noether’s
theorem does not apply, the monotonicity of such measures of
asymmetry yields non-trivial constraints on state transitions.
These can be understood as analogues of the monotonicity of the
entropy under thermodynamically cyclic processes, the standard
expression of the second law of thermodynamics. In symmetric
closed-system dynamics, one also obtains new results: for every
non-trivial measure of asymmetry, there are state transitions
under closed-system dynamics that are not forbidden by the
traditional Noether conservation laws, but are forbidden by the
new conservation law for that measure.

Our analysis prompts the question: what are the necessary
and sufficient conditions on two quantum states (not both
pure) for it to be possible to map one to the other under
symmetric dynamics? Such conditions would capture all of the
consequences of the symmetry of the dynamics. The question
remains open but our results suggest that adopting an
information-theoretic perspective may be the most expedient
path to a solution.

Methods
Noether conserved quantities cannot specify the asymmetry. We here prove
that for symmetries corresponding to compact Lie groups, functions of Noether-
conserved quantities yield only trivial measures of asymmetry. In the case of finite
groups, there are no generators of the group action, and therefore we cannot
generate Noether-conserved quantities in the standard way. Nonetheless, we can
show that a similar result holds in this case as well.

We phrase our general result (which applies to both compact Lie groups
and finite groups) in terms of characteristic functions. Recall that the characteristic
function of a state r is the expectation value of the unitary representation of the
group, tr(rU(g)), which is a complex function over the group manifold. Then we
can prove the following theorem about measures of asymmetry.

Theorem 1: let f be an asymmetry measure for a finite or compact Lie group G
with unitary representation U. Assume that f depends on the characteristic function
of the state alone, that is, f(r)¼F [tr(rU(g))] for some functional F :C(G)-R.
Furthermore, in the case of compact Lie groups, assume that f is continuous. Then
f(r) is independent of r, hence f is a trivial measure of asymmetry.

In the case of compact Lie groups, the characteristic function of a state r uniquely
specifies all the moments tr(rLk) for all generators L of the symmetry; this can be
seen by considering the Taylor expansion of U(g) around the identity. Therefore, the
theorem implies that if a continuous measure of asymmetry can be expressed entirely
in terms of the Noether-conserved quantities alone, that is, in terms of moments of
the form tr(rLk), then it should be a constant function independent of r.

Proof of theorem 1: we first present the proof for the case of finite groups and
then we explain how the result can be generalized to the case of compact Lie groups
as well.

Suppose H* is the Hilbert space of a physical system on which the unitary
representation g-U(g) of the symmetry group G acts as the left regular
representation, that is,H* has an orthonormal basis denoted by {|gS: gAG} such that

8g; h 2 G : UðgÞ jhi ¼ jghi: ð8Þ
It turns out that on this space we can define another representation of G, called

the right regular representation denoted by g-VR(g), such that

8g; h 2 G : VRðgÞ jhi ¼ jhg � 1i: ð9Þ
Then one can easily see that these two representations of G on H* commute,

8g; h 2 G : ½VRðhÞ;UðgÞ� ¼ 0: ð10Þ

Define G to be the quantum operation that averages over all symmetry
transformations, G�

P
gAGUg. Let eAG be the identity element of the group.

We have

tr UðgÞGð jeihe jÞð Þ

¼ 1
jG j

X
s2G

tr UðgÞUðsÞ jeihe jUyðsÞ
� �

¼ 1
jG j

X
s2G

tr UðgÞVRðs� 1Þ jeihe jVy
R ðs� 1Þ

� �
¼ tr UðgÞ jeihe jð Þ;

where to get the last equality we have used the fact that the two representations
commute, Equation (10). Hence, the characteristic function of the state |eS/e| is
equal to the characteristic function of the state G(|eS/e|). This means that for any
measure f whose value for a given state depends only on the characteristic function
of that state, we have

f jeihe jð Þ ¼ f Gðjeihe jÞð Þ ð11Þ
As we have seen before, however, for any asymmetry measure, the value of the

measure is the same for all symmetric states and furthermore this value is the
minimum value of that function over all states. Given that G(|eS/e|) is a
symmetric state, it follows that

f jeihe jð Þ ¼ min
s

f sð Þ: ð12Þ

Now consider an arbitrary state r on a Hilbert space H where the
projective unitary representation of the symmetry group G is g-T(g). Then,
one can easily show that there exists symmetric quantum channels that map
the state |eS/e| on H* to the state r on H. One such channel is described by
the map

ErðXÞ � 1
jG j

X
g2G

tr jgihg jXð ÞTðgÞrTyðgÞ ð13Þ

However, the fact that Er is symmetric together with the fact that f is an
asymmetry measure implies that for any state r it holds that

f rð Þ ¼ f Erðjeihe jÞ
� �

	 f jeihe jð Þ: ð14Þ
This together with (Equation 12) implies that for an arbitrary state r,

f rð Þ ¼ min
s

f sð Þ; ð15Þ

and so the asymmetry measure f is constant over all states. This completes the
proof for the case of finite groups.

In the following, we prove that making the extra assumption that the
asymmetry measure is also continuous, this result can be extended to the case of
compact Lie groups. Note that in this case the regular representation of the group is
not finite dimensional. Nonetheless, as has been noted previously4,27, there still
exists a sequence of finite d-dimensional spaces, {Hd : dAN}, and for each Hd an
over-complete basis {|gS: gAG} such that the unitary representation g-U(g) of the
symmetry group G acts as

8g; h 2 G : UðgÞ jhi ¼jghi: ð16Þ
Furthermore, for a given pair of distinct group elements, g1ag2, one can make

the inner product /g2|g1S arbitrarily close to zero in the limit of large d4,27. In this
limit, the state |eS/e| has the maximal asymmetry in the sense that for any given
state r on an arbitrary Hilbert space H, there exists a symmetric channel Er such
that

lim
d!1

Erðjeihe jÞ ! r: ð17Þ

The symmetric channel Er can be defined in a manner similar to how it was
defined for the case of finite groups, namely,

ErðXÞ �
Z

dg tr jgihg jXð ÞTðgÞrTyðgÞ: ð18Þ

We can also define another representation of G on Hd, denoted g-VR(g),
such that

8g; h 2 G : VRðgÞ jhi ¼ jhg � 1i: ð19Þ
Then one can easily see that these two representations of G on Hd commute,

8g; h 2 G : ½VRðhÞ;UðgÞ� ¼ 0: ð20Þ
Therefore, using the same argument that we used for the case of finite groups,

we can prove that tr(|eS/e|U(g))¼ tr(G(|eS/e|)U(g)) where e is the identity
element of the group G. Therefore, for any measure f whose value for a given state
depends only on the characteristic function of that state, it holds that

f jeihe jð Þ ¼ min
s

f sð Þ: ð21Þ

Furthermore, because f is an asymmetry measure and because Er is a symmetric
channel, we have

f Erðjeihe jÞ
� �

	 f ðjeihe jÞ: ð22Þ
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The above two equations imply that

f Erðjeihe jÞ
� �

¼ min
s

f sð Þ: ð23Þ

Given that f is assumed to be continuous, Equation (17) implies that

lim
d!1

f ErðjeihejÞ
� �

! f ðrÞ: ð24Þ

This, together with Equation (23), proves that for any arbitrary state r in an
arbitrary finite dimensional space H, it holds that

f ðrÞ ¼ min
s

f sð Þ: ð25Þ

Therefore, in the case of compact Lie groups, any continuous asymmetry
measure which only depends on the characteristic function of the state is a constant
function. This completes the proof.

Derivation of some families of asymmetry measures. We now apply the recipe
described in the Results section to generate various measures of asymmetry from
measures of information. Specifically we prove that the functions Gp, FL and SL,s,
defined in Equations (2), (3) and (4) respectively, are indeed measures of asym-
metry, and we say a bit more about their properties. Along the way, we derive some
other families of asymmetry measures.

Our first example starts from a family of information measures that are based
on the Holevo quantity28. For a set of states {rx : xAX}, and a probability
distribution px over X, the Holevo quantity is defined as

Hpðfrx : x 2 XgÞ � S
X
x2X

pxrx

 !
�
X
x2X

pxSðrxÞ;

where S(r)� � tr(r logr) is the von Neumann entropy of the state r (if x is a
continuous variable, and p(x) is a probability density, we simply replace sums by
integrals). It is well known that this quantity is non-increasing under data
processing, hence it is a measure of information28. Taking the classical variable
xAX to be the variable gAG (which ranges over the elements of the relevant group),
and using the argument provided in the Results section, the Holevo quantity yields
a family of asymmetry measures, one for every probability density p(g) over the
group manifold (probability distribution for the case of a finite group). Specifically,
it yields Gp(r)�S(Gp(r))� S(r) (previously defined in Equation (2)), where
Gp�

R
dg p(g) Ug is the superoperator that performs a p-weighted average over the

group action. This justifies the claim from the Results section that Gp is an
asymmetry measure and explains why it is appropriate to call it a Holevo
asymmetry measure.

Note that for any symmetric state r and any arbitrary probability distribution
p(g), Gp(r)¼ 0. Also, note that for any probability distribution p(g) which is non-
zero for all G, and for any state that breaks the symmetry, Gp(r)a0. For the special
case of a uniform weighting, this measure has been proposed previously7 and
proven to be monotonic under symmetric operations using a different type of
argument.

The rest of the families of asymmetry measures we consider are derived from a
particular subclass of measures of the information content of a set of quantum
states: those that consider the distinguishability of just a single pair of states within
the set. A measure of distinguishability is defined to be a function D from pairs of
states to the reals, such that for any pair of states r1 and r2 and any quantum
channel E,

D Eðr1Þ; Eðr2Þð Þ 	 D r1; r2ð Þ: ð26Þ
Specializing to the case of interest here, where the state provides information

about the variable gAG, we focus on the distinguishability of two elements in the
group orbit of r. Without loss of generality, we can choose the pair to be r and
Ug(r) for some gAG.

Consider a Lie group G. Take the distinguishability measure to be the trace
distance,

Dtr r1; r2ð Þ � r1 � r2k k1 ð27Þ
where Ak k1 � tr

ffiffiffiffiffiffiffiffiffi
AAy

p� �
is the trace norm (or c1-norm) of the operator A. It

is well known that the trace distance satisfies Equation (26) and hence constitutes a
measure of the distinguishability of a pair of states29. Therefore, we can define an
asymmetry measure using this distinguishability measure, namely,

FgðrÞ � r�UgðrÞ
�� ��

1
:

This family of measures, based on the trace norm, supplements those that were
discussed in the Results section. The latter are derived as follows.

Since G is a Lie group, we can consider group elements gAG that are
infinitessimally close to the identity element. Specifically, we can consider
U(g)¼ eiyL for some generator L and phase y, and in the limit where y-0, we have

r�UgðrÞ
�� ��

1
’ y ½r; L�k k1 þOðy2Þ: ð28Þ

Hence, we conclude that for any generator L of the Lie group the function
FL(r)�||[r, L]||1 (previously defined in Equation (3)) is an asymmetry measure.

Any state r that is symmetric (that is, invariant under the group action)
necessarily commutes with all the generators of the group action, so for such states,
FL(r)¼ 0 for all L. More generally, a state r is invariant under the subgroup of G
that is generated by L if and only if FL(r)¼ 0. In other words, state r can only be

asymmetric relative to this subgroup if it has some coherence over the eigenspaces
of L, that is, if [r, L]a0. Therefore, in retrospect one would naturally expect that
some operator norm of the commutator [r, L] should be a measure of asymmetry
relative to this subgroup. This intuition does not, however, tell us which operator
norm to use. Our result shows that the trace norm does the job.

The asymmetry measure FL also reduces to a simple expression for pure states:
it is proportional to the square root of the variance of the observable L, that is,

FLðjcihc jÞ ¼ 2 hc jL2 jci� hc jL jci2
� �1=2

: ð29Þ
Given that a superposition over the eigenspaces of L that is totally incoherent

(that is, a mixture over the eigenspaces) has vanishing asymmetry according
to this measure, while a superposition over these eigenspaces that is totally
coherent has asymmetry that depends only on the variance over L, this asymmetry
measure seems to succeed in quantifying the amount of variance over L that is
coherent, which one might call the ‘coherent spread’ over the eigenspaces of L.

We turn to our third and final example of a family of asymmetry measures. We
take as our measure of distinguishability the relative Renyi entropy of order s,
defined as

Dsðr1;r2Þ � 1
s� 1

log trðrs1r1� s
2 Þ

� �
: ð30Þ

For sA(0, 1), it is well known that Ds satisfies Equation (26) and is therefore a
valid measure of distinguishability30. It follows that

Ds;gðrÞ � Dsðr;UgðrÞÞ ¼
1

s� 1
log tr rsUðgÞr1� sUyðgÞ

� �� �
is an asymmetry measure, one that we we did not discuss in the Results section.
As in the previous example, by considering Ds(r, Ug(r)) for group elements that
are infinitessimally close to the identity element, we can derive a measure of
asymmetry for any arbitrary generator L of the group. Using this argument, we can
show that for any sA(0, 1) and any generator L, the function
SL,s(r)�tr(rL2)� tr(rs Lr(1� s)L) (previously defined in Equation (4)) is a
measure of asymmetry.

The family of measures of the form of SL,s have been previously studied under
the name of the Wigner-Yanase-Dyson skew information12, but their status as
measures of asymmetry had not been recognized. If r is a symmetric state, then it
commutes with all generators of the group, and so SL,s(r)¼ 0. We also find this
measure to be zero when r is not symmetric, but is invariant under the subgroup of
G generated by L.

For pure states, this measure reduces to the variance of the observable L, that is,

SL;sðjcihc jÞ ¼ hc jL2 jci� hc jL jci2: ð31Þ
Again, we see that a mixture over the eigenspaces of L has vanishing SL,s, while a

coherent superposition over these eigenspaces has SL,s equal to the variance over L.
Consequently, just as we found for FL, the asymmetry measure SL,s can be said to
quantify the coherent spread over the eigenspaces of L.
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