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This paper describes extensions to OpenMP that implement

data placement features needed for NUMA architectures.

OpenMP is a collection of compiler directives and library

routines used to write portable parallel programs for shared-

memory architectures. Writing efficient parallel programs

for NUMA architectures, which have characteristics of both

shared-memory and distributed-memory architectures, re-

quires that a programmer control the placement of data in

memory and the placement of computations that operate on

that data. Optimal performance is obtained when computa-

tions occur on processors that have fast access to the data

needed by those computations. OpenMP – designed for

shared-memory architectures – does not by itself address

these issues.

The extensions to OpenMP Fortran presented here have

been mainly taken from High Performance Fortran. The pa-

per describes some of the techniques that the Compaq For-

tran compiler uses to generate efficient code based on these

extensions. It also describes some additional compiler opti-

mizations, and concludes with some preliminary results.

1. Introduction

As computer vendors increase both the amount of

memory and the number of processors that can be con-

figured within a single system, the bandwidth of the

connection between processors and the memory they

share has become a critical bottleneck that limits the

scaling of parallel applications.

As a result, a number of vendors are designing sys-

tems partitioned into smaller modules. Within each

module is a local memory and a small number of pro-

cessors which have very high speed access to that local

memory. The modules are interconnected so each pro-
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cessor can access the memory located in other modules

– there is logically one global memory. However, ac-
cess to such memory in other modules (measured both
by latency and bandwidth) is slower. These systems are
referred to as Non-Uniform Memory Architectures, or
NUMA. Commercial examples include: Compaq’s Al-

phaServer GS80, GS160, and GS320 systems, the HP
9000 V-class systems, IBM’s NUMA-Q architecture,
and SGI’s Origin 2000 systems.

NUMA systems can deliver high performance for
OpenMP [1] applications if the placement of data and
computations is such that the data needed by each

thread is local to the processor on which that thread is
executing. Techniques for automatically placing data
and computations, while effective in some cases, do not
work well for all programs. Accordingly, Compaq has
added a set of directives to its Fortran for Tru64 UNIX

that extend the OpenMP Fortran API. Using these di-
rectives, the programmer can specify the placement of
data and computations onto memories for optimal per-
formance.

2. Motivation

Consider the red-black code in Fig. 1.
Each page of the array X must be stored in one

of the physical memories of the NUMA system. The
processors on the same module as that page have very
fast access to it; the processors on other modules have
slower access to it.

In the program above, the schedule clause of each

DO directive controls the assignment of iterations to
threads. But the program does not associate the threads
with the portions of the array X that they will be ac-
cessing. For example, if all of array X is stored in
the memory of one module, but the threads of the pro-
gram execute on processors on all of the modules, then

only the few threads executing on the module contain-
ing array X benefit from the high speed local access.
All other threads compete for the limited bandwidth of
the remote access path to that memory, which limits
application scaling and increases execution time.

If the storage for array X was divided into pieces,
with each piece placed into the module of the thread
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Fig. 1. An OpenMP Fortran code for a red-black computation.

using that piece, then all of the threads would benefit

from high speed local access to their data. This univer-

sal local access would result in a dramatic improvement

in scaling and execution time.

2.1. Automatic Methods and Operating System

Features

A simple way to spread an application’s data across

the memories of a NUMA system is to make the oper-

ating system’s virtual memory subsystem aware of the

distinct physical memories as it chooses which physical

pages to use to satisfy page faults. The system can use

different algorithms to determine in which memory a

given virtual page will be stored:

The round robin algorithm effectively arranges the

memories in a circular list and maps each consecutive

virtual page to the next memory in the list. This elimi-

nates the bottleneck that occurs when all of the data is

stored in a single memory. However, it does not specif-

ically place pages of data on the memory modules of

their referencing threads.

The first touch algorithm chooses a physical page on

the module with the thread that first caused a page fault

for that page. This causes each page to be located on

the module that makes the first reference to it.

A more dynamic approach to page placement is au-

tomatic page migration. In this approach statistical in-

formation is kept about the number of references to

a page from each module in the NUMA system. If

references from a module not containing the physi-

cal page predominate, then the operating system mi-

grates the physical page to the referencing module.

Researchers have presented encouraging results using

this technique; however experience has shown that it is

challenging to tune automatic page migration such that

it responds rapidly enough without incurring excessive

overhead.
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Each of these techniques has limited information

about how the application uses the data:

– The round robin algorithm uses no information

about the program whatsoever, and so there is no

reason to expect a page to exist on the module with

the thread that is accessing it.

– The first touch algorithm only uses information

based on where a page was first referenced.

It knows nothing about subsequent references,

which might well be by different threads on dif-

ferent modules.

– Automatic page migration uses statistical informa-

tion but often suffers because it must wait until suf-

ficient data has been gathered to justify migrating

a page.

On the other hand, skilled parallel programmers can

easily identify the computationally intensive parts of

their application, so they are already aware of the pat-

tern in which the threads will access the data. Such

knowledge is already required to tune applications for

optimum cache performance.

This knowledge can be used to direct the compiler

to place data in the modules for fast access by threads.

The remainder of this paper describes extensions to

OpenMP to allow programmers to accomplish this

placement.

3. An extended OpenMP language

This paper presents two related, but different, sets

of directives for extending OpenMP for NUMA sys-

tems: user-directed page migration and user-directed

data layout.

3.1. User-directed page migration directives

Many technical applications have a small number

of loop nests which account for a large percentage of

the execution time. Furthermore, when these loops are

parallelized, each thread often makes repeated access

to the same sections of memory.

The MIGRATE NEXT TOUCH directive provides

a simple data migration solution that will often yield

nearly optimal performance in these cases. Its syntax

is:

!dec$ migrate next touch (variable1, . . .,

variablen)

For each variable in the list, this directive specifies

a range of pages starting with the page that contains

the first byte of the variable, and ending with the page

that contains the last byte of the variable. When execu-

tion reaches the MIGRATE NEXT TOUCH directive,

each of the indicated pages is marked for migration.

The next time a thread references one of these pages,

the page will migrate to the module of the referenc-

ing thread. In the typical application, the user will in-

sert a MIGRATE NEXT TOUCH directive just before

the key parallel loops. This marks for migration each

shared array used in the loop. For example, the red-

black program in Fig. 1 would only need the following

directive inserted prior to the do while loop:

!dec$ migrate next touch (X)

This user-directed form of page migration avoids the

delays associated with gathering statistics for automatic

page migration. The overhead of migrating the pages

is small compared to the savings of time achieved by

making most of the references local.

If you inspect your MIGRATE NEXT TOUCH di-

rective and discover that the data in the array men-

tioned in the directive will never be used (because

it will all be overwritten before it is read), then a

PLACE NEXT TOUCH directive can be used instead.

This directive remaps the virtual pages without copying

the original data in the array. Its syntax is:

!dec$ place next touch (variable1, . . . , variablen)

For each variable in the list, this directive specifies a

range of pages including all pages that are entirely con-

tained within the storage for the variable. Partial pages

at the start or end of the storage for the variable are not

included. The next time a thread references data in one

of these pages, the operating system assigns a physical

page to it that is located on the module of the referenc-

ing thread. The previous contents of the page are not

moved to the new location, and hence the contents of

the page are undefined. The Place Next Touch direc-

tive provides a highly efficient method for distributing

an output array over a set of modules.

3.2. User-directed data layout directives

When there is not a sustained association between

threads and the data they reference, the overhead of

migrating pages may be unacceptable. Furthermore,

when pages are large relative to the declared extents

of arrays, distribution with page granularity may be

too coarse. To overcome this limitation, an OpenMP

programmer can make use of compiler support for dis-

tributing individual elements of arrays onto the memo-

ries.
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OpenMP has a rich language for specifying thread-

parallel computations, but its storage model assumes

a single uniform memory architecture and provides no

facilities for laying out data onto multiple distinct mem-

ories. Further, the schedulable computation entity, a

loop iteration, cannot be scheduled in a way that rec-

ognizes the data accesses made by that iteration. High

Performance Fortran (HPF) [3], developed by a consor-

tium of users and vendors, contains a carefully designed

set of directives to solve exactly these problems. Com-

paq has added HPF’s data layout directives to Compaq

Fortran for Tru64 UNIX.

The programmer uses these data layout directives to

specify how to divide arrays into pieces and how to

assign those pieces to the memories. The program-

mer will use knowledge of the algorithm to place these

pieces so that, to the extent allowed by the algorithm,

all pieces needed by a loop iteration are in the same

memory unit. Based on the data layout and the data

references in the loop, the compiler then identifies the

module on which each iteration should be executed and

assigns the loop iterations to threads executing on those

modules.

As a matter of terminology, the data layout of an

array is also called the mapping of the array. That

is, the data layout itself is referred to as a mapping—

it describes the function that maps array elements to

memory locations on different modules. An array to

which mapping directives apply is called a mapped

array.

3.2.1. Data layout directives

The simplest and most important data layout direc-

tive is the DISTRIBUTE directive. This directive spec-

ifies a mapping pattern of data objects onto memories.

It is used with the keywords BLOCK, CYCLIC, or ∗,

which specify the distribution pattern.

The use of the DISTRIBUTE directive is best ex-

plained by examining some example distributions.

Consider the case of a 16×16 arrayA in an environment

with 4 memories. Here is one possible specification for

A:

real A(16, 16)
!dec$ distribute A(∗,block)
Figure 2 shows this distribution.

The asterisk (*) for the first dimension of A means

that the array elements are not distributed along the

first (vertical) axis. In other words, the elements in any

given column are not divided up among different mem-

ories, but assigned entirely to one memory. This type of

mapping is called a “collapsed” or “serial” distribution.

0 1 2 3

MLO-011938

Fig. 2. Distributing a 16 × 16 array (*, BLOCK). The shading

indicates into which memory each array element is mapped.

The BLOCK keyword for the second dimension
means that for any given row, the array elements are
distributed over each memory in large blocks. The
blocks are of approximately equal size with each mem-
ory assigned to only one block. As a result, A is bro-
ken into four contiguous groups of columns with each
group assigned to one memory.

Another possibility is (*, CYCLIC) distribution. As
in (*, BLOCK), the elements in any given column are
assigned as entirely to one memory. The elements in
any given row,however, are dealt out to the memories in
round-robin order, like playing cards dealt out to play-
ers around the table. When elements are distributed
over n memories, each memory, starting from a differ-
ent offset, contains every nth column. Figure 3 shows
the same array and memory arrangement as Fig. 2, dis-
tributed (*, CYCLIC) instead of (*, BLOCK).

The pattern of distribution is figured independently
for each dimension: the elements in any given column
of the array are distributed according to the keyword
for the first dimension, and the elements in any given
row are distributed according to the keyword for the
second dimension. For example, in an array distributed
(BLOCK, CYCLIC), the elements in any given column
are laid out in blocks, and the elements in any given
row are laid out cyclically, as in Fig. 4.

Figure 5 shows an example array distributed (BLOCK,
BLOCK).
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Fig. 3. Distributing a 16 × 16 array (*, CYCLIC). The shading

indicates into which memory each array element is mapped.

A BLOCK, BLOCK distribution divides the array

into large rectangles. The array elements in any given

column or any given row are divided into two large

blocks. In the current example, memory 0 gets A(1:8,

1:8), memory 1 gets A(9:16, 1:8), memory 2 gets A(1:8,

9:16), and memory 3 gets A(9:16, 9:16).

3.2.2. Deciding on a distribution

There is no simple rule for computing data distribu-

tion, because optimal distribution is highly algorithm-

dependent. When the best-performing distribution is

not obvious, it is possible to find a suitable distribution

through trial and error, because the DISTRIBUTE di-

rective affects only the performance of a program (not

the meaning or result). In many cases, however, you

can find an appropriate distribution simply by answer-

ing the following questions:

– Does the algorithm have a row-wise or column-

wise orientation?

– Does the calculation of an array element make

use of distant elements in the array, or – like the

red-black computation in Fig. 1 – does it need

information primarily from its near neighbors in

the array?

If the algorithm is oriented toward a certain dimen-

sion, the DISTRIBUTE directive can be used to map

MLO-011922

= 0

= 1 = 3

= 2Key:

Fig. 4. Distributing a 16×16 array (BLOCK, CYCLIC). The shading

indicates into which memory each array element is mapped.

the data appropriately. For example, Fig. 2 shows that

a (*, BLOCK) distribution is vertically oriented. A

(BLOCK, *) distribution, in contrast, is horizontally

oriented.

Nearest-neighbor calculations generally run faster

with a BLOCK distribution. This is because the com-

putations needed to update the array will reference data

that resides in the same memory in most cases.

When the calculation of an array element requires

information from distant elements in the array, a

CYCLIC distribution is frequently faster because of

load-balancing considerations.

3.2.3. An example: LU decomposition

We take as an example the standard textbook form of

LU decomposition, without pivoting. (Adding pivoting

is important in ensuring numerical stability, but does

not materially change the analysis we present here.)

Figure 6 shows the Fortran code, written with an

OpenMP directive (beginning with !$omp) specifying

that the j loop will iterate in parallel over the columns

of the array.

Figure 7 shows how the algorithm progresses. On it-

eration k of the outer loop, the lightly shaded column of

elements below a(k, k) is normalized by dividing each

element by a(k, k). This is the operation performed by
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Fig. 5. Distributing a 16 × 16 (BLOCK, BLOCK). The shading

indicates into which memory each array element is mapped.

Fig. 6. LU decomposition without pivoting, with a data layout direc-
tive added.

the inner loop on m (labeled “Column normalization”)

inside the k loop. Next, the darker shaded square of

elements to the right of that column is updated by tak-

ing each element a(i, j) and subtracting the product of

the elements a(i, k) and a(k, j). This update can be

performed in parallel.

The update step accesses data symmetrically across

both dimensions of the matrix a. The normalization

step, on the other hand, accesses data down a single

column of the matrix. For this reason, it seems most

efficient to map the data so that each column lives en-

tirely on one memory. In that way, the normalization

step can be carried out as a purely local pipelined com-

putation. Parallelism will come about by distributing

the columns to distinct threads.

To map the columns of the array a to distinct pro-

cessors, we could use either a (*, BLOCK) or a (*,

CYCLIC) distribution. Since the update step accesses

distant elements in the array, little advantage would be

gained from a block distribution. On the other hand,

there is much to be gained from using a cyclic distri-

bution in the case of our algorithm. To see why, see

Fig. 8, which depicts the computation with (*,BLOCK)

distribution (the illustration shows a 16 by 16 array

distributed over four memories).

Computation is done on progressively smaller sub-

matrices in the lower right-hand corner of the array.

The first panel of the figure shows the first iteration of

the DO loop, in which the entire array is worked on in

parallel by all the threads. The second panel shows the

seventh iteration, by which time the threads assigned to

memory 0 are completely idle, because none of the ele-

ments of the submatrix are stored in on memory 0. The

third panel of the figure shows the eleventh iteration

of the DO loop, by which time the threads assigned to

memories 0 and 1 are idle. The fourth panel shows the

fifteenth iteration, where only the threads assigned to

memory 3 are working, with all the other threads idle.

For most of time spent in the DO loop, one or more

threads are left idle.

In contrast, a (*, CYCLIC) distribution uses threads

on all four memories up until the point when only 3 out

of 16 columns remain to be completed (see Fig. 9). This

load balancing consideration makes a (*, CYCLIC)

distribution the far better choice for this algorithm.

3.2.4. Element granularity vs. page granularity data

layout

In some cases the data layout directives specify that

two elements within the same page should be placed

in different memory units. However, virtual memory

hardware and software can only place entire pages in a

memory unit. Consequently the compiler must either

choose one memory in which to place both elements, or

it must rearrange the order of elements in the virtual ad-

dress space to keep the two elements on distinct pages.

The former approach is called page-granularity layout

because the granularity of the data being placed is a



J. Bircsak et al. / Extending OpenMP for NUMA machines 169

Fig. 7. Computations in the kth iteration of the outer LU decomposition loop.

page. The latter approach is called element-granularity

layout because the granularity of the data being placed

is the individual array element.

Some Fortran programs depend upon the standard

ordering of array elements. This may occur when

an EQUIVALENCE statement is used to map another

symbol onto the storage for the array or when the array

is passed as an argument in a call where the subroutine

declares the dummy argument with a different shape.

When arrays are used in this manner, the compiler is

not permitted to rearrange the order of elements, thus

element-granularity cannot be used.

When permitted, element granularity is preferred be-

cause it provides precise placement of data. This is im-

portant in cases where the extent of an array dimension

is such that the ratio of the number of pages needed

to store that dimension is small relative to the number

of memories assigned to that dimension. This can oc-

cur when many dimensions of an array are distributed,

and the number of memories on the target machine is

large. Large page sizes exacerbate this problem. Fi-

nally, element granularity has a more efficient imple-

mentation, particularly for mapped local variables in

subprograms, and it enables other optimizations which

could not be performed while maintaining the original

order of elements.

Element and page granularity data layout are de-

scribed in more detail below in Section 4.3.

Compaq’s new directives include NOSEQUENCE,

used to enable element granularity layout for the spec-

ified arrays. Page granularity is the default. NOSE-

QUENCE can be used to override this default either for

one or more arrays or for an entire program or subpro-

gram.
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Fig. 8. LU Decomposition with (*, BLOCK) distribution.

3.2.5. Placing computations

The OMP NUMA directive immediately before an
OMP PARALLEL DO loop (see Fig. 6) tells the com-
piler to schedule each iteration of the loop onto a thread
that is associated with the memory containing the data
to be used in that iteration.

In the previous examples, such a proper assignment
of loop iterations to memory units is obvious. With
more complicated loops, however, it is not always so
obvious. For this reason, we have added the ON direc-
tive, which allows programmers to specify the desired
assignment. Consider the following example:

integer, parameter:: (n = 1000)
real, dimension(n):: X,Y, Z,Q,R, S

!dee$ distribute (block):: X,Y, Z,Q,R, S

!dec$ omp numa
!$omp parallel do
do i = 1, n− 1

!dec$ on home (x(i + 1))
X(i + 1) = Y (i) + Z(i + 1)
!dec$ on home (q(i))
Q(i) = R(i) + S(i)

end do

In this example, there is no single obvious choice for

an assignment of iterations to memory units. The ON

HOME directives indicate that for the assignment to

X , iteration i should execute on the module containing

X(i + 1), and that for the assignment to Q, iteration i

should occur on the module containing Q(i). The ON

directive is not required by the language as compilers

can determine some location for the computation, but

it is useful for cases where the compiler’s choice is not

optimal.

3.2.6. Other directives

In addition to the MIGRATE NEXT TOUCH user-

directed migration directive, the language also includes

a MIGRATE TO OMP THREAD directive. This di-

rective causes a set of pages to be placed in the module

executing the specified thread.

While much user-directed data layout can be per-

formed simply with the DISTRIBUTE directive de-

scribed previously, most real programs will need addi-
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Fig. 9. LU Decomposition with (*, CYCLIC) distribution.

tional capabilities. Compaq Fortran for True64 Unix

therefore includes the following additional directives:

SEQUENCE/NOSEQUENCE The SEQUENCE di-

rective (which is the default) specifies that an

array is page-granularity, rather than element-

granularity. The NOSEQUENCE directive can be

used to override this default for an array, or for

a group of arrays, or for each array in a program

unit.

MEMORIES The MEMORIES directive is equivalent

to the HPF PROCESSORS directive. It provides

a way to specify that the memories of the machine

are to be thought of as an array, where the rank

of the array and the extent in each dimension are

given in the directive. For instance,

!dec$ memories M (4,5,4)

double precision, dimension (1000, 1000,

1000):: A

!dec$ distribute (cyclic, block, block) onto M ::

A

ALIGN This directive can be used for the following

purposes:

1. Aligning a 1-dimensional array with succes-

sive columns or rows of a 2-dimensional ar-

ray. This could be useful, for instance, when

calling a subroutine iteratively on the columns

of an array. In such a case, the 1-dimensional

dummy argument would be explicitly aligned

by such a directive with a particular column,

that column changing on each invocation of the

subroutine.

2. Specifying that an array is replicated. A repli-

cated array is an array that has an identical copy

on each memory. It is useful for data that is

written once (or seldom) and read often. Since

corresponding elements on each memory must

have the same values, it can be thought of as a

privatized variable with shared semantics. It is

the compiler’s responsibility to make sure that

any change to the array is reflected in every

copy of the array.
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The ALIGN directive can also be used to indicate

that an array is partially replicated. For instance,

the array might be distributed over one dimension

of a 2-dimensional array of memories, and then

replicated over the other dimension.

ON In general, the compiler decides how to distribute

iterations of a NUMA PARALLEL loop nest over

memories based on the mapping of an array within

the loop nest. There are some cases in which the

compiler may not have enough information to pick

the right distribution of iterations. For instance,

there may be more than one array, with slightly

different mappings; or there may be an array with

an indirection vector. In such cases, the ON direc-

tive may be used to tell the compiler exactly how

to distribute the iterations over memories.

TEMPLATE A template is used to define a virtual

array (i.e., one that takes up no storage) which

can be mapped and with which other arrays can

be aligned. Suppose for example, that we have

a subroutine with three dummy arguments A, B,

and C, each passed in as assumed shape arrays.

We might have declarations like this at the top of

the subroutine:

!dec$ template T (1000, 2000, 1000)

!dec$ distribute (block, block, cyclic):: T

double precision, dimension (:,:,:):: A,B,C

!dec$ align (i, j, k) with T (i, j, k):: A,B,C

In this example, arrays A, B, and C may not have

the same extents, since they are assumed shape

dummies. However, the mapping directives guar-

antee that corresponding elements of A, B, and C

are aligned – that is, they live on the same mem-

ory. For instance, A(10, 15, 20), B(10, 15, 20),
and C(10, 15, 20) (assuming all these elements

exist) all live on the same memory.

This is a guarantee to the subroutine in which these

dummies are declared. It is the responsibility of

the compiler to make sure that these directives

are honored and to remap the actual arguments if

needed to ensure this.

REALIGN, REDISTRIBUTE These two directives

can be used in the executable code to dynamically

change the mapping of an array in the program.

The compiler then generates code to move the ele-

ments of the array to their new specified locations.

Compaq Fortran also contains facilities to allow the

passing of mapped arrays to functions and subroutines.

Variations of the ALIGN and DISTRIBUTE directives

allow the programmer to specify:

Fig. 10. A two-dimensional loop nest.

– that the mapping of a dummy argument is known

to be mapped in the same way as the actual, or

– that the compiler must remap the incoming argu-

ment if necessary so that it has the specified map-

ping. (This was already mentioned above in dis-

cussing the TEMPLATE directive.)

Using these capabilities requires an explicit interface

in the code. Such an explicit interface is most easily

provided automatically by having the subroutine be

contained in a module.

In addition, the INHERIT directive can be used to

specify that a dummy argument is coming in with a

mapping that will not be known until run-time.

4. Some compiler internals

This section is addressed to people with some knowl-

edge of compiler technology and the techniques that

compilers use to generate code for distributed-memory

machines. Such techniques have been exhaustively

studied, particularly in the context of High Performance

Fortran. A general introduction to this area can be

found in the paper [5]; this paper also establishes some

of the terminology used internally in the Compaq For-

tran compiler.

For the most part, this section of the paper there-

fore describes the changes that are made to distributed-

memory processing to target a shared-memory NUMA

architecture. It also describes some new optimizations

that the compiler can introduce in this context.

4.1. Data space and iteration space

Let us use a simple example, shown in Fig. 10.

The notions of data and iteration space are repre-

sented as internal data structures in the compiler. They

are used by the compiler to manage parallelism.

Each array has associated with it a data space, which

holds information about the shape of the array and how

the array is laid out over the memories of the machine.
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In this example, the data space for both arrays A and

B is two-dimensional, with extents 100 and 200. As

yet, we have not stated anything about where the data

is located.

Each computation (for instance, an addition, or an

assignment) has an associated compiler data structure

called iteration space, which represents the shape of the

computation and where in the machine the computation

is performed. In Fig. 10, the iteration space has the

same rank and extents as the data space. In general

though, this does not have to be the case. For instance,

here is an example that initializes a boundary column

of an array:

!$omp do parallel

do i = 1, 100
A(i, 1) = 1

end do

Here the data space of the array is 2-dimensional, but

the iteration space of this computation is 1-dimensional.

Another example is:

!$omp do parallel

do j = 1, 100
!$omp do parallel

do i = 1, 200
A(i, j) = B(i)

end do

end do

In this computation the data space of array B is 1-

dimensional, but the iteration space of the computation

is 2-dimensional.

4.2. Locating data and computations

The MEMORIES directive, described in Sec-

tion 3.2.6, enables the programmer to specify to the

compiler that the machine is to be regarded logically as

a multi-dimensional array of memories, each with its

own set of processors. The extent of this array of mem-

ories in each dimension is specified by this directive.

The compiler then has to associate elements of each

mapped array with locations in the various logical

memories. We refer to this process as “mapping an ar-

ray”. This mapping is based on information contained

in the mapping directives, such as ALIGN and DIS-

TRIBUTE, that apply to a given array. The mapping

happens conceptually in two steps:

1. Data space is mapped coordinatewise onto an

unbounded multidimensional array of virtual

memories1 using the information contained in a

combination of ALIGN and TEMPLATE direc-

tives. In the common case, this mapping is im-

plicit and no programmer directives are necessary.

However, these directives are available when ex-

plicit control is needed.

2. The virtual memories are mapped coordinatewise

onto the logical memories using information con-

tained in a DISTRIBUTE directive.

Computations are similarly mapped onto these logi-

cal memories by the same two-step process, except that

there are no ALIGN or DISTRIBUTE directives that

apply directly to computations. Rather, the iteration

space of a parallel computation is normally mapped by

the compiler without explicit directives, based on the

mappings of the data being accessed.

There are instances in which the compiler may not

be sure which array to use in determining the mapping

of the iteration space. As described in Sections 3.2.5

and 3.2.6, in such cases the programmer can insert an

ON directive to specify the array to be used.

The relation of iteration space mapping to data space

mapping is discussed in more detail in [5].

4.3. Element granularity versus page granularity

To show the effects of element granularity and page

granularity mappings, let us assume that we have an

array A declared as follows:

real A(5,5)

!dec$ distribute A (block, block)

An element granularity mapping of the array A

would lead to the data layout shown in Fig. 11. In

this figure, we have pretended that that page size in our

machine is 4 array elements in size. This is of course

much smaller than any real page size, but we do this

only to illustrate how pages are mapped to memories.

Note that there is some wasted memory space with

element granularity mapping. This space consists of

some empty locations “inside” the array and up to about

a page in each memory.

The corresponding page granularity mapping is

achieved by first laying out the array conceptually in ar-

ray element order as in Fig. 12. Then one element from

each page is picked, and the entire page is assigned to

the physical memory to which that element would be

mapped in an element granularity mapping. If we pick

the first element of each page for instance, we get the

layout shown in Fig. 13.
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Fig. 11. The array A(5, 5) distributed (block, block) over 4 mem-
ories, using element granularity with a page size of 4, with page

boundaries indicated.

While this mapping causes many array elements to

be assigned to a memory other than the one specified by

the mapping directive, much of this problem is really

due to edge effects and is greatly diminished as the ratio

of the array dimensions to the page size increases.

We expect, in fact, that page granularity mapping will

in many cases be quite acceptable. When converting

old Fortran code to NUMA machines, it may be all that

is needed. Nevertheless, it is in general true that better

performance can be expected with element granularity

than with page granularity.

4.4. Generating code

There are two main tasks involved in generating code

for mapped objects: adjusting the subscripts and dis-

tributing loop iterations over threads.

4.4.1. Adjusting subscripts

An element granularity array may not have its ele-

ments stored in memory in array element order, as we

have seen above. Therefore the subscripts in such an

array need to be modified to reflect this. Let us take as

an example an array A declared as in Fig. 14.

1In [5] virtual and logical memories are called virtual and logical

processors, respectively.

Fig. 12. The array A(5, 5), in array element order, showing how

array elements get allocated to pages when sequence and storage

association are honored.

Here our machine consists of 30 memories arranged

conceptually in a 2 × 3 × 5 array. Each dimension of

the array A is mapped to a corresponding dimension

of that array. We have made the subscripts in the array

0-based for convenience in this example, but this is not

necessary in general.

The first dimension of the array has extent 200.

It is mapped BLOCK onto a memory array with ex-

tent 2 in the corresponding dimension. Therefore,

for each fixed pair of values i2 and i3, the memory
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Fig. 13. The array A(5, 5) distributed (block, block) over 4 memo-

ries, but now with sequence and storage association honored, show-
ing how pages are allocated to memories. The 12 shaded array el-

ements are assigned to memories that are not those specified by the

mapping directive.

Fig. 14. A 3-dimensional array distributed (BLOCK, BLOCK,

BLOCK) over a 3-dimensional array of memories.

holding element A(0, i2, i3) holds the 100 elements

A(0:99, i2, i3), and another memory holds the 100 ele-

ments A(100:199, i2, i3). We denote this value of 100

by num folds1. Similar calculations are performed in

each dimension, giving us the values

num folds1 = 100

num folds2 = 80

num folds3 = 60

The product of all the num folds/j (in this case,

480000) is denoted by num folds (without any sub-

script). This is the number of storage locations needed

on each memory to hold the entire array A.
The memories in the machine are numbered from 0

to 29. We denote a particular memory number by the
symbol v.

This is explained further in [5]. A virtual memory address

is denoted by v. Such an address is thought of as having

a component v denoting which memory it refers to, and a

second component v̂ denoting the address in that memory.

In a distributed-memory machine, v̂ is broken up into co-

ordinates that become the modified subscripts of the array,

while v is used for generating message-passing code. In

a (shared-memory) NUMA machine on the other hand, v

and v̂ need to be combined to form one global memory

address. The analysis, however, is largely the same.

We can think of v as having 3 coordinates (v1, v2, v3)
corresponding to the three dimensions of the memory

array. These coordinates are given simply by

v1 = v mod 2

v2 =

⌊

v

2

⌋

mod 3

v3 =

⌊

v

2 ∗ 3

⌋

mod 5

and v is retrieved from its coordinates simply by

v = v1 + 2 ∗ v2 + 2 ∗ 3 ∗ v3

With these conventions, the values v j corresponding

to an array element A(i1, i2, i3) in our example be

computed simply as follows:

vj =

⌊

ij

num foldsj

⌋

An array element A(i1, i2, i3) then has its subscripts

adjusted so it becomes A(λ1, λ2, λ3), where

λ1 = i1 mod num folds1 + v ∗ num folds

λ2 = i2 mod num folds2

λ3 = i3 mod num folds3

If we were generating code for a distributed-memory

machine, the term v ∗ num folds in λ1 would not

appear. (The other terms represent the components of

v̂, as described above.) Each section of the array would

be stored in the same set of virtual offsets on each of the

distributed memories. Since this is a shared-memory

machine, however, we have to ensure that these memory

locations are distinct. Adding v∗num folds to the first

subscript ofA does that. Of course, the page placement

code for the array A then has to be written to map the

pages of A to the correct memories, in conformance

with this convention.

These subscripts can also be written as

λ1 = i1 − v1 ∗ num folds1 + v ∗ num folds

λ2 = i2 − v2 ∗ num folds2

λ3 = i3 − v3 ∗ num folds3

In a parallel construct that is local (i.e., each thread

accesses only array elements living on its own memory)

this second version is preferable since all the terms on

the right except ij will be determined by the memory
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and will be loop invariants. This avoids an expensive

mod operation in the subscript calculation.

Of course the formulas for subscript transformations

can be rather more complex, particularly if the pro-

grammer has used ALIGN statements. The formulas

also change for different distributions such as CYCLIC

or CYCLIC(n). But extending these subscript trans-

formations to cover such cases is straightforward, if

tedious, and the general idea remains true: the ex-

pressions that are generated are highly optimizable and

cause no noticeable performance degradation.

4.4.2. Distributing loop iterations

The directive OMP NUMA (see Fig. 6) is used to

indicate that the immediately following PARALLEL

DO loop is to have its iterations assigned to threads in a

NUMA-aware manner. Such a loop is called a NUMA

loop.

In generating code for a NUMA loop, the compiler

binds each thread to a memory of the machine. It dis-

tributes the iterations of the loop to these threads as

if by a STATIC schedule. The particular schedule is

determined by the mapping of the iteration space of the

loop. This mapping is always taken to be an element

granularity mapping – that is, the loop iterations are

distributed exactly in accordance with the mapping di-

rectives. This is because, even if the data were mapped

with page granularity, it would involve too much run-

time overhead to make the distribution of loop itera-

tions exactly match this mapping, as can be seen, for

instance, in Fig. 13. Thus, even in a trivial assignment

such as

!dec$ numa

!$omp parallel do

do i = 1, n
A(i) = i

end do

where the iteration space is derived from the mapping

of the array A, the assignments to A(i) will only really

be guaranteed to be local if A is given an element

granularity mapping. If A is a page granularity array,

some of the assignments to A(i) will be executed by

threads on remote memories.

Loop iterations are conceptually assigned in two

stages:

Stage 1: The iterations are distributed over the memo-

ries of the machine.

Stage 2: The iterations assigned to each memory are

distributed over the threads executing on that

memory.

Fig. 15. Example of nested parallel loops.

Fig. 16. Parallel loop nest after stage 1. Note that this is just a view

of the internal representation in the compiler. The PARALLEL DO
directives have been replaced by PARALLEL directives, since the

distribution of loop iterations is already being made explicit in the

loop bounds.

Stage 1: Distributing iterations over memories In the

first stage, the iterations are distributed over the mem-

ories of the machine. This is done by parametrizing

the loop bounds for the iterations of the loop to be exe-

cuted by a single thread by the number of the memory

on which that thread is executing. Let us consider for

example the loop nest in Fig. 15. Let us assume that

the array A has the same mapping as we used before in

Fig. 14.

Figure 16 shows how this first step transforms the

loop nest, where the new bounds LB loc
j , UBloc

j and so

on are expressions in terms of

– the mapping of the iteration space of the assign-

ment, which is derived from the data space shape

and mapping of the array A, and

– the value my memory, which takes values in the

interval

[0 . . . 〈number of physical memories〉 − 1]

If we assume that the iteration space of this loop

nest is inferred from the distribution of the array A (as
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would certainly be the case in this example), then, the

local iteration bounds are computed as follows:

LBloc
1

= (my memory mod 2) ∗ 100

UBloc
1

= (my memory mod 2 + 1) ∗ 100 − 1

Sloc
1

= 1

LBloc
2

=
(my memory

2
mod 3

)

∗ 80

UBloc
2

=
(my memory

2
mod 3 + 1

)

∗ 80 − 1

Sloc
2

= 1

LBloc
3

=
my memory

6
∗ 60

UBloc
3

=
(my memory

6
+ 1

)

∗ 60 − 1

Sloc
3

= 1

The modified subscripts, assuming element granu-

larity, are

λ1 = i1 − v1 ∗ num folds1 + v ∗ num folds

λ2 = i2 − v2 ∗ num folds2

λ3 = i3 − v3 ∗ num folds3

With page granularity, the subscripts (in this exam-

ple) are unchanged:

λ1 = i1

λ2 = i2

λ3 = i3

Of course, all these formulas depend on the partic-

ular mapping. For instance, if the mapping of A were

(block, cyclic, cyclic(10)), or if A were given a non-

trivial alignment, the formulas would look quite differ-

ent. In addition, in order to manage cyclic(n) distribu-

tions, an additional loop would be generated for each

dimension distributed cyclic(n). But there is nothing

new in this – it is exactly what HPF compilers have

traditionally done for distributed memory, with slight

modifications only in how subscripts are treated.

Stage 2: Distributing iterations in a memory over

threads In the second stage, the iterations assigned to

each memory of the machine are distributed over the

threads that execute on that memory.

Let us denote the number of threads per memory by

tpm. We will assume that the memory number – the

number returned by my memory – is given by

Fig. 17. Parallel loops after stage 2: inner loop threadized.

my memory =

⌊

my thread()

tpm

⌋

For instance, if tpm = 4, then threads 0–3 are as-

signed to memory 0, threads 4–7 to memory 1, and so

on.

In our implementation all the threads in a memory

are distributed at one loop level (rather than having the

threads conceived as a multi-dimensional space whose

dimensions are parceled out over various loop levels).

Let us call this process “threadizing”.

Figure 17 shows the generated code in Fig. 16 when

the inner loop is threadized.

The new quantities LB
loc

1
, UB

loc

1
, and STR

loc

1
can

be computed in two different ways:

The first way is to distribute the iterations on a mem-

ory in a block fashion over the threads assigned to that

processor:

LB
loc

1
= LBloc

1
+ (my thread mod tpm)

∗









⌊

UBloc

1
−LBloc

1

Sloc

1

⌋

+ 1

tpm









∗ Sloc
1

UB
loc

1
= min







































UBloc
1

LBloc
1

+



 (my thread mod tpm + 1)∗









⌊

UBloc

1
−LBloc

1

Sloc

1

⌋

+ 1

tpm









− 1



 ∗ Sloc
1

STR
loc

1
= Sloc

1

The second way is to distribute the iterations on a

memory in a cyclic fashion over the threads assigned

to that processor:
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LB
loc

1
= LBloc

1
+ Sloc

1
∗ (my thread ∗ tpm)

UB
loc

1
=



































LB
loc

1
+

⌊

UBloc

1
−LBloc

1

tpm∗Sloc

1

⌋

∗ tpm ∗ Sloc
1

if my thread mod tpm

�

⌊

UBloc

1
−LBloc

1

Sloc

1

⌋

mod tpm

LB
loc

1
+

(⌊

UBloc

1
−LBloc

1

tpm∗Sloc

1

⌋

− 1
)

∗ tpm ∗ Sloc
1

otherwise

STR
loc

1
= tpm ∗ Sloc

1

The code in the case that the outer loop is thread-

ized is entirely similar. The only difference is that the

bounds of the outer loop are modified, rather than those

of the inner loop.

No modification of this needs to be made to handle

imperfectly nested loops. The design handles such loop

nests as is.

We decide which loop to threadize as follows: In

general, the outermost NUMA loop is threadized.

However, the programmer can specify that a loop has

few iterations by giving it the “shortloop” attribute.

Shortloops will not be threadized unless there is no al-

ternative, and the compiler searches for the outermost

non-shortloop to threadize. Since the NUMA loops

form a forest, each tree has to be handled separately,and

since shortloop declarations can be scattered through-

out this tree, some care has to be taken in the compiler

to handle this correctly. The actual algorithm used is

as follows:

1. Perform a depth-first walk of each numa loop tree.

Some of the loops are marked S (“shortloop”).

On each path down from the root, mark the first

non-S loop as M (“go multiple”), and don’t con-

tinue the walk further down the tree at that node.

On the way back up the tree, mark each ancestor

of an M node as A (“above M”).

2. Perform a second depth-first walk of the each

numa loop tree. For each node N,

a) if N is an M node, stop the recursion at this

point.

b) if N is an A node (and so in particular not an

M node), recurse.

c) if N is an S node but not an A node, mark it as

M and stop the recursion at this point.

There are no other possibilities. For the root of the

tree must be either an S node (and possibly also an A

node) or an M node. If any other node N is unmarked,

then it must not have been reached in the first walk,

which means that there is an M loop above it, and this

in turn means that it is not reached in the second walk.

Thus at the end of Stage 2, code has been generated

that causes the threads to execute the NUMA loop nest

in parallel, with each iteration executed by exactly one

thread.

4.5. An HPF-style optimization for loop nests

Creating and destroying threads can be expensive.

Therefore, our implementation creates one thread for

each physical processor in the machine. Each thread

is bound to its processor, and this binding persists

throughout the program. OpenMP teams are created

from these existing threads.

When a nest of parallel loops is encountered, the

OpenMP language specifies that a new team starts up at

each level of the nest. This can be somewhat inefficient.

However, in many cases our compiler can determine

that it would not change the observable semantics of

the program if all the threads were started up at the

outermost loop and the compiler simply managed those

threads explicitly at each level. Here is an example:

real, dimension (n, n):: B
real, dimension (n):: A
!dec$ distribute (block, block):: B

!dec$ align A(i) with B(i, ∗)
!dec$ numa

!$omp parallel do
do i = 1, n
A(i) = . . .

!dec$ numa

!$omp parallel do

do i = 1, n
B(i, j) = . . . A(i) . . .

end do

end do
The array A is partially replicated over the second

dimension of B. In a straightforward OMP implemen-

tation, each iteration of the outer loop would be exe-

cuted by exactly one thread. This thread, which assigns

to A(i) say, would have to assign to all the replicated

versions of A(i), and of necessity this would have to

be done serially since it is all done by one thread. Each

such thread would then spawn a sub-team which would

execute the inner loop over j.

However, each thread executing an iteration of the

inner loop could have executed the assignment to the

replicated instance of A(i) that it subsequently used.

So we can obtain greater parallelism by starting up all
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the threads on entry to the outer loop. The assignments

to all the replicated values of A are done in parallel,

following which the inner loop just executes in parallel

as it would in any case.

This optimization can also be useful even when there

is only one loop in the nest. Here is an example:

real, dimension (n, n):: B
!dec$ distribute (block, block):: B

!dec$ numa

!$omp parallel do

do i = 1, n
B(i, n) = 1

end do

In this example a slice of the array B is being initial-

ized. A 1-dimensional team of threads could in prin-

ciple be constructed to perform this initialization. The

problem is that the set of threads that have data local

to them (let us call this the “natural” set of threads for

this loop) may not include the master thread because

the master thread may be bound to a processor on a

module not containing any data in this slice.

This natural set of OpenMP threads therefore could

not by itself constitute an OpenMP team of threads

because it does not include the master thread. So in

this case, our compiler creates a team consisting of all

the threads, and guards the assignment statement so

that only those threads that live on logical memories

owning elements of the slice B(:, n) participate in the

assignment statement.

4.6. Explicit stack management for

element-granularity mapped arrays

Let us call an array declared in a subprogram that

is not a dummy argument a local array. Thus, all au-

tomatic arrays are local arrays, but a local array might

have constant bounds and therefore not be automatic.

Unfortunately, this definition of “local” conflicts with

the standard Fortran definition, but we use it only here.

Mapped local arrays have to be allocated on entry to

the subprogram in which they are defined and deallo-

cated on exit from that subprogram. Such arrays are

typically allocated on the stack. Thus, on entry to the

subprogram, code has to be generated to map the the

virtual pages of the stack to the appropriate memories

based on the mapping of the local variables. Further-

more, if two different subprograms contain local vari-

ables with different mappings, the virtual stack pages

will have to be remapped on each entry. This is a

time-consuming process. There is, however, a way that

we can overcome this problem, at least in the case of

element-granularity local arrays:

At the start of the program some storage is allocated

on each memory. We can think of this as a collec-

tion of “local” stacks that together constitute a separate

compiler-managed stack. Note that these separate “lo-

cal” stacks are in global memory, not in thread-local

storage; an array allocated over these stacks needs to

be globally visible to all threads in the subprogram.

For convenience in addressing, this collection of lo-

cal stacks is allocated as a continuous range of global

addresses.

On entry to each subprogram, each element-

granularity mapped local array will have storage re-

served for it in each of these local stacks. Only as much

storage will be reserved in each local stack as is nec-

essary to hold the local section of the array. Since the

array is assumed to be element-granularity, we do not

have to be concerned about the fact that the pages allo-

cated to an array are not in array element order or that

an array may not use up all of a page before skipping

to a page on another memory.

Mapping directives are not honored for arrays in

a scope that is entered from within a parallel region.

This constraint means that each such stack will only be

manipulated by one thread (i.e., the single thread that

initially starts executing the program); as a result, there

will be no problem maintaining the integrity of these

stacks.

The main advantage of this technique is that the pages

never have to be remapped. Once the original allocation

has been done, the operating system is never involved

in this stack management. Since we are managing this

memory as a stack (or a set of stacks), allocation and

deallocation are quite efficient.

A secondary advantage of this technique is that we

do not waste any memory. These arrays are allocated

even more efficiently than element-granularity mapped

arrays that could not be placed on the stack.

5. Results

Preliminary performance measurments of our NUMA

extensions have been gathered on an AlphaServer

GS320 system running Version 5.1 of Tru64 UNIX. We

measured several variants of a simple LU decomposi-

tion without pivoting. The pattern of access to the data

appears in Section 3.2.3. This is a good example of

a program in which the pattern of access to the data

changes frequently.
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Fig. 18. Speedup for the LU example. Timing was measured for 4, 8, 16, and 32 processors. Speedup is relative to the 4 processor standard

OpenMP time.

The variants of the program that were measured are

referred to as follows:

OpenMP The program with standard OpenMP

directives only.

OpenMP+
Migrate

The standard OpenMP program with

one MIGRATE NEXT TOUCH direc-

tive added. We measured two different

versions, with the directive in different

places.

OpenMP+
Layout

The standard OpenMP program with

data layout directives added. We mea-

sured two different versions, one with

page granularity and one with element

granularity.

Figure 18 shows the performance of the four

versions of LU that were measured. Notice that

OpenMP+Layout significantly outperforms the stan-

dard OpenMP version. The data layout directives cou-

pled with the NUMA-aware scheduling of iterations

causes the workload to be spread across the threads

while executing each iteration on a thread that is near

the data needed by that iteration. Note also that as

expected, element granularity performs somewhat bet-

ter than page granularity, although both significantly

outperform the other versions.

OpenMP+Layout also outperforms OpenMP+ Mi-

grate. To understand this, consider the two places

in the program where you could insert the MI-

GRATE NEXT TOUCH directive. The first place

(which is denoted by Migrate 1) is outside the outer

loop. This causes the pages to migrate near the thread

that uses them on the first iteration and then remain

there. However, the second and later iterations have

many nonlocal references because the threads access

different columns than they did on the first iteration.

The same problem occurs regardless of the SCHED-

ULE clause specified on the PARALLEL DO directive.

The second place for the MIGRATE NEXT TOUCH

directive (denoted by Migrate 2) is inside of the outer

loop. Here the pages are migrated to the correct places

on each iteration of the outer loop, and the references

are all local. However, the overhead of migrating the

pages on every iteration of the outer loop adds signifi-

cantly to execution time.

6. Comparisons with other implementations

The Silicon Graphics Origin 2000 Fortran com-

piler [4] implements a set of data distribution direc-

tives supporting element-granularity layout (which they

call “reshaped” distribution) and page-granularity lay-

out (which they call “regular” distribution). In addi-

tion, there is a REDISTRIBUTE directive to move the

pages containing an array to correspond to a differ-

ent distribution. There is also an AFFINITY direc-

tive, essentially a combination of the ON HOME and

OMP NUMA directives described above. Both the For-

tran and C compilers support a directive like the mi-
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grate to omp thread described above, which they call

“page place”. The Origin 2000 compilers do not sup-

port the migrate next touch capability.

Compaq’s new directives deal with the issues that

arise when passing distributed arrays as arguments

to subroutines and functions. The ALIGN directive,

which specifies how to lay out arrays relative to other

arrays, is needed to handle mapped array sections as

actual arguments and for describing array replication;

this directive is not part of Origin 2000 Fortran. The IN-

HERIT directive facilitates writing library code which

must accept arguments whose distributions vary from

call to call. Origin 2000 Fortran does not use direc-

tives on page granularity dummy arguments; it clones

the subroutine for each different distribution of actual

arguments in the program.

Compaq’s new directives also provide support for

the full Fortran 95 language, including array sections,

pointers, and derived types. The data layout directives

also provide the necessary information to properly op-

timize the use of array syntax for NUMA machines.

7. Conclusions

The extensions to OpenMP described in this paper

allow OpenMP programmers to easily write efficient

code for NUMA architectures. User-directed page mi-

gration provides a simple way to place data in mod-

ules whose threads access it, and this migration will be

effective for many real applications.

User-directed data layout, a more powerful capabil-

ity, can do the following:

– It can place objects smaller than a page in specific

memories.

– It allows better control of iteration scheduling.

– It can partially or fully replicate objects.

– It allows flexible handling of subroutine interface

issues.

– It has certain implementation efficiencies not

available with user-directed page migration.

The performance results show the effectiveness of

both approaches. The directives, in either case, do not

add significant complexity to the source code.
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