
Extending OpenMP to Support Slipstream Execution Mode

Khaled Z. Ibrahim and Gregory T. Byrd∗
Dept. of Electrical and Computer Engineering, North Carolina State University

{kzmousta, gbyrd}@ece.ncsu.edu

Abstract

OpenMP has emerged as a widely accepted standard for
writing shared memory programs. Hardware-specific ex-
tensions such as data placement are usually needed to im-
prove the scalability of applications based on this standard.
This paper investigates the implementation of an OpenMP
compiler that supports slipstream execution mode, a new
optimization mechanism for CMP-based distributed shared
memory multiprocessors. Slipstream mode uses additional
processors to reduce communication overhead, rather than
to increase parallelism.

We discuss how each OpenMP construct can be imple-
mented to take advantage of slipstream mode, and we present
a minor extension that allows runtime or compile-time con-
trol of slipstream execution. We also investigate the interac-
tion between slipstream mechanisms and OpenMP schedul-
ing. Our implementation supports both static and dynamic
scheduling in slipstream mode.

We extended the Omni OpenMP compiler to generate bi-
naries that support slipstream mode, and we show the per-
formance of slipstream-enabled codes using OpenMP codes
from the NAS Parallel Benchmark suite, running on the
SimOS simulator. Our extension to OpenMP allowed the
benchmarks to achieve an average performance improve-
ment of 14% with static scheduling. For dynamic scheduling
the performance improvement is 12% on average.

1. Introduction

OpenMP [3] is a directive-based standard for shared-
memory parallel programming. It allows simple incremental
parallelization of applications by identifying loops and other
regions of code that can be computed in parallel. OpenMP
does not provide facilities to control data locality or coher-
ence, as these features are platform dependent. Portability
of OpenMP applications puts the burden on compilers and
hardware to achieve good performance.

∗This work supported in part by the NSF Computer Systems Architec-
ture program, contract CCR-0105628.

While a compiler can do analysis to remove unnecessary
synchronization and to optimize for locality of data accesses,
the overhead of parallelization vs. the performance gain can-
not always be determined at compile time. For example,
we cannot determine if parallelizing a certain loop will be
worthwhile without knowing the loop iteration count, which
can be a runtime variable. Likewise, the upper limit of par-
allelization for decent performance is dependent on runtime
information, such as the problem size and the underlying ar-
chitecture. For this reason, the OpenMP standard includes
environment variables to facilitate changing decisions about
scheduling and parallelism at runtime.

Other researchers have proposed extensions to OpenMP
to express architecture specific optimizations, such as data
distribution directives for CC-NUMA [6] and software-
DSM [15] systems. Such extensions may inhibit portabil-
ity, but they can be ignored by systems for which they do
not apply. They give the programmer another tool for tun-
ing performance without explicitly modifying the applica-
tion program. In this spirit, we present extensions and com-
piler support needed to exploit slipstream execution mode—
a new performance enhancement for multiprocessors built
from dual-processor CMPs (chip multiprocessors) [9].

Slipstream execution mode is based on the observation
that adding more computational resources does not always
reduce execution time for a fixed-size problem. As the
problem is divided into smaller pieces to increase paral-
lelism, communication and synchronization overheads begin
to dominate or even overtake the reduced computation time.
When this occurs, it may be more effective to apply addi-
tional resources to reduce communication overhead, rather
than to increase parallelism.

Slipstream execution mode considers cache-coherent dis-
tributed shared memory (DSM) multiprocessors built from
dual-processor CMPs with shared L2 cache, such as the IBM
Power-4 CMP [10]. A parallel task is allocated on one pro-
cessor of each CMP node. The other processor of each
node executes a reduced version of the same task. The re-
duced version skips shared-memory stores and synchroniza-
tion, allowing it to run ahead of the true task. Even with
the skipped operations, the reduced task makes accurate for-

ward progress and generates an accurate reference stream,
because branches and addresses depend primarily on private
data. By running ahead, the reduced version prefetches data
into the shared L2 cache for use by the true task. In addition,
the reference stream of the reduced task represents a view of
the future that can be used for coherence optimizations, such
as self-invalidation. Ibrahim et al [9] show that slipstream
execution mode can reduce execution time by 12-29%, com-
pared to using one task or two tasks per dual-processor CMP.

This paper addresses the problem of supporting slip-
stream execution for programs written using the OpenMP
standard. The compiler can hide the details of slipstream
execution, so that programs can transparently use slipstream
mode to enhance performance. Specifically, one new direc-
tive and one runtime variable are introduced that enable com-
pilation for slipstream mode. The use of slipstream mode
and the slipstream synchronization mechanism (discussed in
Section 2.2) are selected at runtime, so a single executable
image can be used with and without slipstream support. If
desired, a programmer can use the directive to specify slip-
stream parameters for distinct regions of the code.

OpenMP allows an application developer to experiment
with different scheduling mechanisms and parameters. Both
static and dynamic scheduling algorithms are available. Slip-
stream mode co-exists transparently with both types of
scheduling, with no additional effort required by the pro-
grammer or user. Our slipstream-enhanced compiler deals
with all of the coordination between tasks needed during
scheduling.

Slipstream execution mode provides an additional oppor-
tunity for extending the scalability of an application. With
OpenMP, this opportunity can easily be explored, even for
programs that were not written with slipstream in mind. This
combination is a powerful tool that frees programmers from
system-specific details, while at the same time providing run-
time control and selection of the optimal execution mode for
a particular combination of system architecture, application,
and problem size.

We begin with a brief overview of slipstream execution
mode in Section 2. Section 3 describes the requirements for
supporting slipstream mode for OpenMP. Section 4 describes
the OpenMP compiler used for this study and how it is ex-
tended to support this mode. Section 5 describes the simu-
lation methodology and performance results. We show that
OpenMP with slipstream mode provides a performance gain
of 14% compared with running one or two tasks per CMP.
With dynamic scheduling the average performance gain is
12%. Related work is discussed in Section 6.

2. Overview of Slipstream Execution Mode

The motivation behind slipstream execution mode for
multiprocessors is to use the available computing resources

in the most effective way to reduce execution time. With two
processors per CMP, the natural approach is to divide the
problem into 2N tasks for N CMPs, assigning one task per
processor. As the number of CMPs increases, however, many
fixed-size applications will reach a point at which applying
additional computational resources will not reduce execution
time, due to the overheads caused by communication and
synchronization.

Instead of dividing the computation into smaller pieces,
slipstream execution mode uses the second processor on each
CMP to reduce communication overhead. Each CMP is as-
signed a single parallel task, which is executed redundantly
by two processes. The first process, called the R-stream, ex-
ecutes the original task. The second (speculative) process,
called the A-stream, shortens the task by skipping synchro-
nization events and stores to shared variables.

Running in slipstream mode reduces the latency of mem-
ory accesses for the R-stream, because the corresponding
A-stream prefetches data into the shared L2 cache. It can
also be used to give hints about future behavior of the pro-
grams that reduce the latency of data migration. This can be
achieved by sending self-invalidation hints to producers of
data based on future references by consumers.

2.1. Slipstream View of Shared vs. Private Variables

Slipstream execution mode capitalizes on the fact that
control flow and address generation rely mostly on pri-
vate variables in shared memory parallel applications. This
means that identical threads, sharing the same task ID, will
generate nearly identical memory reference traces for data
associated with shared variables. Shared variables are pri-
marily used to hold application data, but they are also used
for scheduling and synchronization. Slipstream requires
identifying these parts to be specially handled by threads
in slipstream mode. For example, synchronization routines
should be skipped by the A-stream and they are also used for
synchronization with the R-stream, as will be discussed later.
Scheduling (especially non-static) relies on shared variables
to make decisions, and the assigned jobs depend on timing.
This scheduling code requires also a special handling so that
the A-stream and the R-stream get assigned to similar jobs.

An earlier proposal [9] for implementing slipstream faced
a problem in identifying shared addresses and scheduling re-
gions. Many parallel programming models do not expose
this information explicitly to the compiler. Application pro-
grams with embedded dynamic scheduling need to be explic-
itly modified to run in slipstream mode. This limited the abil-
ity to automate running applications in slipstream mode and
made their transparent applicability selective. In summary,
without explicit identification of shared data, synchroniza-
tion and scheduling sections, programmer intervention may
be needed.

OpenMP requires shared data to be exposed explicitly to
the compiler. It also eases the identification of synchroniza-
tion and scheduling code, as they are mostly implemented
by the compiler and not by the programmer. The program-
mer shows his intent (what to do) to the compiler, and the
compiler takes over the implementation part (how to do it).
This delineation between and how and what allows applying
slipstream model unconditionally.

2.2. Synchronization between Slipstream A-stream
and R-stream

Synchronization between the A-stream and the R-stream
serves two purposes. First, it controls how far ahead an A-
stream can be ahead of of its R-stream. Second, it is used
to check if divergence of A-stream happens and to invoke
recovery routine if needed.

Figure 1 shows how synchronization between both
streams is controlled. At the beginning of a parallel re-
gion, a number of tokens is allocated that controls how far
the A-stream can be ahead of its R-stream. The A-stream
consumes one token to be able to skip the barrier synchro-
nization, while the R-stream inserts a new token each time
it reaches a barrier. The R-stream can insert a token ei-
ther when it enters the barrier, thus synchronizing with its
A-stream locally, or before exiting the barrier, thus making
its A-stream globally synchronized. If the number of tokens
allocated is exhausted by A-stream, it waits until a new to-
ken is available. The R-stream also can check if its A-stream
has reached the same barrier by comparing the number of
tokens to the initial value. If it is less than the initial value,
the R-stream predicts that its A-stream has visited this bar-
rier. Otherwise, the R-stream can invoke a recovery routine
for its deviating A-stream. This synchronization can be im-
plemented using a shared register (or memory location) be-
tween the two processors in a CMP. Thus, there are two ways
to control A-R synchronization: the number of tokens, and
the insertion point of the tokens (local vs. global).

A similar synchronization semaphore is used for system
input functions and some of the system routines. The syn-
chronization semaphore used with system calls is initialized
to zero and the token is inserted by the R-stream when exit-
ing these routines.

3. OpenMP Support for Slipstream Mode

As discussed earlier, there is a runtime component to
achieve a good performance that is not easily captured by
the compiler. Slipstream execution mode is a runtime mode
that can achieve good performance when the overheads of
parallelization start dominating the execution time. It is well
known that there is a limit to which a problem can attain
better performance by increasing the degree of parallelism.

n Initial Tokens n Initial Tokens
Time Token Bucket

Local: New token is inserted

barrier synchronization.
by R−stream

Token Bucket

R−streamR−streamA−stream A−stream

Global: New token is inserted
by R−stream
barrier synchronization.

after exitingbefore entering

th barrier

th barrieri+n

i

Figure 1. A-stream allowable progress is con-
trolled by the number of initial tokens and
when new token is inserted.

Slipstream execution mode can provide an additional option
in executing a certain parallel region. Different parallel re-
gions may have different amounts of work. It may be ad-
visable for a certain parallel region not to exceed a certain
degree of parallelism, while globally we may need a higher
number of processors to achieve good performance. Slip-
stream provides a dimension to use the dedicated resources
in an alternative manner. The decision is done per parallel
region.

3.1. Requirements for Slipstream Mode

Slipstream support for OpenMP is mostly done through
modifying the underlying library that manages threads of ex-
ecution. The changes to the library are summarized as fol-
lows:

• Process creation: The compiler creates a pool of slaves
at the start of running the program (probably equal to
the number of processors). Slipstream mode is assumed
to execute on a system with dual-processor CMP nodes.
We assume that resources dedicated has a unit of CMP
node. Following this resource dedication, the number
of processes must be even.

• Shared address space: To simplify the support for slip-
stream, the virtual shared space must be either contigu-
ous or non-contiguous but not interleaved with private
space, to ease delineation of what is shared and what
is not shared. In OpenMP, there are explicit semantics
controlling which variables are shared and which are
private. The underlying thread model decides how to
specify the shared vs. private virtual space. For UNIX
processes, for example, it is a common practice to allo-
cate shared virtual addresses in a contiguous space. For
POSIX threads, on the other hand, shared space is not
necessarily contiguous. In this case, it is the compiler’s
job to guarantee that shared space is not interleaved with
private space.

• Deciding execution mode: Slipstream is considered ad-
ditive to normal mode. We assume that the same bi-
nary should run for both normal and slipstream mode.
An application (or a kernel) declares its intent to run in
slipstream mode by writing to a control register. By de-
fault, slipstream mode is deactivated. The application
can have an argument to declare the user’s intent to ac-
tivate slipstream mode.

• Stream synchronization: As discussed earlier, synchro-
nization points have an impact on performance, as they
control how far ahead we allow the A-stream to exe-
cute. Possible A-stream divergence is also checked dur-
ing synchronization, and recovery is invoked if diver-
gence is detected. In OpenMP, suitable points for this
kind synchronization are the runtime barriers that are
inserted due to parallelization constructs. Barriers used
to do internal management by the library should not be
skipped by A-streams and thus do not require stream
synchronization/recovery.

• I/O operations: I/O operations cause irreversible effect
on the system. These operations should not be executed
by the (speculative) A-stream. Input operations may
require synchronizations between the A-stream and R-
stream, as the A-stream should see the same image
of the data that the R-stream sees. Output operations
do not requires this kind of synchronization. The ad-
ditional synchronization for input operations does not
pose a practical problem as they are usually done in
the serial part of the code (that is executed by only
one thread, e.g., the master). Additionally, these op-
erations are usually very slow, which makes stalling the
A-stream a good idea—being very far ahead could hurt
performance in this case.

• Explicit library calls

The following library calls are modified to reflect the
current execution mode. We assume that execution
mode (including A-stream R-stream synchronization, if
slipstream is activated) cannot be changed within a par-
allel construct. So, once this execution mode of a par-
allel region is established, it remains fixed to the end
of this region. Inheritance of execution mode from a
parallel region to a nested region within is implementa-
tion dependent. The default execution mode may also
be implementation dependent.

1. Reduction: Reduction code can be executed as
user code by the A-stream. Special consideration
to the task count and and the task id should be
taken into account. The A-stream may need to
synchronize with its R-stream, if the outcome of
the reduction operation will affect program con-
trol flow. For example, reduction can be used to

compute a global error that affects the iteration
or termination condition. In practice, termination
and continuation are usually decided by the mas-
ter thread and not in a parallel region, which al-
leviates the need to synchronize after a reduction
operation.

2. Thread count/ID: Thread count and ID APIs
would depend on the execution mode within a
parallel session. If running in slipstream mode,
the same ID should be returned to processes shar-
ing a CMP. The thread count used by internal li-
brary should be half of the total available. While
thread ID is usually acquired within parallel re-
gions, thread count may be acquired only once
on the serial part. This practice (which restricts
the OpenMP capability of running with a dynamic
number of threads) may force using one mode of
execution for all parallel regions. To alleviate this
problem, the thread count should simply be ac-
quired in each parallel region. Thread count and
ID are usually needed if an explicit paralleliza-
tion is programmed. Actually, the common use
scenario does not acquire or even rely on thread
count/ID information.

• Parallel constructs

1. Single: Single section is executed by a single
thread in the team (usually the first thread that
enters this section). There is no clear way an A-
stream can tell that its R-stream will execute this
section, as it depends on the order in which R-
streams reach this region. Executing them by an
A-stream that is not paired with the R-stream that
will execute them will cause unnecessary migra-
tion of data. Obviously, the chance of being lucky
gets smaller as the number of CMPs increases.
That is why these sections should be skipped by
the A-stream.

2. Master: Unlike single, the R-stream to execute
this section is predetermined a priori. The A-
stream associated with the master can execute
these sections.

3. DO/For: The execution for this construct is de-
pendent on the scheduling methodology, as will
be discussed in detail later.

4. Atomic: Atomic construct serializes access to data
within this construct when there is a small chance
for collision of accesses. It is advisable to ex-
ecute this section by the A-stream, as the data
prefetched by the A-stream are highly likely not
to be migrated. It is still the programmer’s re-
sponsibility to use this construct when advisable.

Atomic construct can be used to protect a critical
section, but performance, as well as optimization
based on common practice, may suffer.

5. Critical Section: Critical sections guarantee seri-
alization of access to data when there is a high
probability for collision. Unless dynamic self-
invalidation is supported in slipstream mode, it
may be advisable for A-streams to skip critical
sections, as they may cause unnecessary migration
of data.

6. Sections: The section construct implements func-
tional parallelism. An A-stream can execute these
sections ahead of its R-stream if the scheduler has
a static assignment policy. If dynamic policy is
adopted, then the start of these sections implies a
synchronization between R-stream and A-stream.

7. Flush Directive: This directive aims at synchro-
nizing shared variables and controlling their visi-
bility. It is implied in many other constructs. For
hardware cache-coherent systems, this construct
maps to void, since the flush semantics are main-
tained with every transaction to the memory. This
directive should be skipped by the A-stream, since
it does not produce any shared variables, and thus
should not affect the visibility.

3.2. Scheduling Strategies

Scheduling technique has an effect on the synchronization
between A-stream and R-stream. Static scheduling provides
the least restrictive model for slipstream. Other schedul-
ing techniques impose additional synchronization points that
may be viewed as additional restrictions or as useful syn-
chronization points that allow more control of how far an
A-stream should be ahead of its R-stream. This section is
devoted to the interaction between A-stream and R-stream
synchronization and scheduling techniques.

3.2.1 Static Scheduling

With static scheduling, each thread of execution indepen-
dently determines the portion of the data that should be ma-
nipulated by this thread. To compute this, each thread needs
to know the number of threads involved and the amount of
work to be done. By adjusting number of threads (to half the
available threads), and giving the A-stream and R-stream the
same ID, each thread can reach the same decision about the
task to execute independently. Scheduling under this model
does not involve any additional synchronization between R-
stream and A-stream. The task assignment for certain loops
is done only once at the beginning. This simple scheduling
strategy has a very low overhead. It also allows slipstream to
execute with different synchronization methods between the

A-stream and R-stream. Specifically, the A-stream can be
more aggressive (can be more than one session ahead) as its
tasks can be computed independently. Some of the optimiza-
tions enabled by the A-stream are tied with certain synchro-
nization models. For example, slipstream self-invalidation is
enabled when synchronization model is one-token global.

3.2.2 Dynamic Scheduling and Guided Scheduling

In dynamic and guided scheduling, the scheduler tries to
optimize load balancing by assigning jobs based on the
progress achieved by threads, the amount of work available,
and the number of threads involved in solving the problem.
Job assignment for the same loop may happen more than
once. The programmer may specify a start block size for
assignment for slaves.

This decision of scheduling parameters (e.g., chunk size)
can be problematic by itself. It may require having both a
certain problem size and the number of slaves in mind. This
scheduling also does not respect cache affinity. Considering
an application that has repetitive iterations, there is no guar-
antee under dynamic scheduling that the same thread will be
assigned the same data across iterations. Static scheduling
would have given, in this case, the same data to the same
process (and same processor assuming no process migra-
tion). A proposed affinity scheduling extension [16] attempts
to achieve the same result for dynamic scheduling. Cache
affinity is not a problem for embarrassingly parallel applica-
tions. For this class of application, dynamic scheduling is
apparently advantageous, especially if the same amount of
data requires a significantly varying execution time. Finally,
dynamic scheduling involves an additional synchronization
overhead, as the scheduling decision should be serialized us-
ing a critical section. This serialization is, in fact, a source of
load imbalance.

To support slipstream mode with these scheduling tech-
niques, the A-stream needs to know the task assigned to its
R-stream. As the task assigned to R-stream depends on the
time it asks for the job, the A-stream cannot independently
decide it a priori. The solution to this problem is that when
the A-stream hits a scheduling region, it synchronizes (us-
ing syscall hardware semaphore), waiting for its R-stream to
reach this region. After the R-stream reaches the schedul-
ing region and gets its scheduling decision, it declares this
scheduling decision by writing it to a shared variable and
then releases its A-stream by adding a token to the syn-
chronization semaphore. The A-stream can then acquire the
scheduling decision made by its R-stream and can start the
work. Although this makes the A-stream lag its R-stream a
little bit at the beginning, this is not expected to continue ex-
cept for few cycles as the data communicated between both
streams are cached in the L2 cache and the semaphore used
for synchronization is a shared hardware register. Clearly, it
is advisable to have a big enough amount of work, not only

to allow the A-stream to get ahead of its R-stream, but also
to reduce the impact of dynamic scheduling overheads.

This scheduling technique implies a more restrictive syn-
chronization than zero-token global. This does not al-
low slipstream mode to work except for prefetching. This
scheduling decision works as an additional synchronization
point between both stream. This may disallow other slip-
stream optimization, for example self-invalidation. This be-
havior can be desirable if the amount of work between two
barrier is very large compared with the available cache that
can make the A-stream prefetches evicted before being used
or cause replacement of data that is currently in use by its R-
stream. These additional synchronization points can help re-
duce premature prefetches and reduce the frequency of evict-
ing data before being referenced.

3.3. Slipstream Directives

To support slipstream mode the following directive is
needed:

!$OMP SLIPSTREAM([type] [, tokens])
The tokens specify the initial tokens count for synchro-

nization, as shown in Figure 1. The initial token has a de-
fault value of zero. The type is either GLOBAL_SYNC,
LOCAL_SYNC, or RUNTIME_SYNC. If not specified, the
default value for the synchronization is implementation-
dependent. In our implementation, we assumed it to be
global synchronization. Specifying RUNTIME_SYNC al-
lows controlling the synchronization method at runtime us-
ing an environment variable similar to those used in the
OpenMP standard. The environment variable name is pro-
posed to be OMP_SLIPSTREAM. This environment vari-
able takes the same arguments (type and tokens) used in the
SLIPSTREAM directive. The type argument may take an ad-
ditional value of NONE, which disable running in slipstream
mode.

This directive will affect the parallel region within which
it is declared. Using this directive in the serial part is inter-
preted as a global setting for the program until being over-
ridden by a later directive in the serial region. Using the
directive on a parallel region takes precedence but does not
override the global setting. Global settings are restored upon
exiting the parallel regions.

This directive can be used in conjunction with conditional
IF statements, to limit the use of slipstream when the number
of CMPs involved in solving the problem exceeds a certain
limit.

4. Slipstream-aware OpenMP Compiler

In this work, we extended the Omni OpenMP [11] com-
piler to support slipstream execution mode. This compiler
is freely available [2]. The compiler is supposed to work on

IRIX 6.5 environment. We modified it to run on IRIX 5.3,
available for our simulation environment.

4.1. Omni Compiler Overview

The Omni OpenMP compiler provides multiple thread
models that can be used for implementing its internal li-
brary. Parallelizing a certain portion of a sequential code
should have enough computation compared to the overheads
of parallelization such as thread management, synchroniza-
tion, and so forth. The Omni compiler tries to reduce the
overhead of creating processes each time a parallel region is
encountered. Instead process creation happens at the start of
the program, and processes are kept in an idle pool. Parallel
regions are transformed into functions by the compiler. The
idle processes spin (on a flag), waiting for jobs by the master.
When a parallel region is encountered, the master assigns the
job indicated by the function representing the parallel region
to a global variable, then sets the flags that indicate that a job
is ready. A slave enters this parallel region by just calling the
function indicated by the master. Based on the scheduling
strategy, the slave may use its ID to determine the portion of
work to execute or may serialize through a centralized entity
to get information about its assigned job.

Omni is an optimizing compiler for OpenMP. The Omni
compiler uses an internal representation called parallel flow
graph to model intra- and inter-process flows of data. This
information is used to reduce synchronizations, coherence
overhead, and improve data locality.

4.2. Extending Omni Compiler

This study extends Omni 1.4a compiler for compiling pro-
grams parallelized with OpenMP directives. This compiler
transforms C/F77 programs annotated with OpenMP direc-
tive into a multi-threaded C program with runtime libraries
calls. The compilation process involves: a) parsing source
code into an intermediate code, called Xobject code; b) data
flow analysis and optimizations are performed by a java class
library, called Exc java tools; c) Exc java tool generates a
C program with runtime library calls; d) finally, a native C
compiler compiles and links the generated file.

We modified the Exc tools to support the new directive for
slipstream mode to allow the programmer’s hints to control
slipstream behavior. Slipstream support also requires modifi-
cations to runtime libraries. Specifically, we modified the li-
brary for synchronization between threads forming A-stream
R-stream pairs, constructs that control handling of parallel
constructs, reduction variables handling, and task assign-
ment. Other optimizations conducted by the compiler are
not affected. So, the program transformation path to XOb-
ject is not affected except to map the slipstream directive to
a library call. We choose the internal library based on UNIX

Table 1. Simulated System Parameters
CPU

MIPSY-based CMP Model Clock Speed: 1.2 GHz
L1 Caches (I/D) L2 Cache (Unified)
Size: 16 KB Size: 1 MB
Associativity: 2 Associativity: 4
Hit Latency: 1 cycle Hit Latency: 10 cycles
Memory Parametersa (ns):
BusTime: 30 NILocalDCTime: 60
PILocalDCTime: 10 NetTime: 50
NIRemoteDCTime: 10 MemTime: 50

aDetailed description of these parameters is found in SimOS
documentation[17].

shared memory model as it allows easier delineation between
shared and local variables. Specifically, shared virtual ad-
dress space is contiguous under this model. Other models
would require more compiler involvement to guarantee no
interleaving between shared and private spaces.

5. Simulation Methodology

To explore the performance of slipstream execution mode,
we simulate a CMP-based multiprocessor. Each processing
node consists of a dual-processor CMP and a portion of the
globally-shared memory. Each CMP includes two proces-
sors. Each processor has its own L1 data and instruction
caches. The two processors access a common unified L2
cache. System-wide coherence of the L2 caches is main-
tained by an invalidate-based fully-mapped directory proto-
col. The processor interconnect is modeled as a fixed-delay
network. Contention is modeled at the network inputs and
outputs, and at the memory controller. The system is simu-
lated using SimOS [17], with IRIX 5.3 and a MIPSY-based
CMP model. Table 1 shows the simulated machine parame-
ters, including the memory and network latency parameters.
The minimum latency to bring data into the L2 cache on a
remote miss is 290 ns, assuming no contention. A local miss
requires 170 ns. The shared L2 cache manages coherence
between its L1 caches and also merges their requests when
appropriate.

Benchmarks used in this study are listed in Table 2. These
benchmarks are an OpenMP port of NAS Parallel Bench-
marks 2.3[1], done by the Omni compiler project [2]. All
simulations are done on a machine composed of 16 CMPs.
For this machine size, the problem sizes serve the purpose
of studying the performance when the communication starts
to dominate execution time and also to achieve a reasonable
simulation time.

5.1. Slipstream Performance with Static Scheduling

The performance measurement for the remainder of the
paper will be speedup normalized to single-mode execution

Table 2. OpenMP NPB2.3 benchmarks used in
this study and their problem sizes

benchmark Description
SP 3D Multi-partition for uncoupled sys-

tems of linear equations {scalar pentag-
onal} (24×24×24).

LU Lower Upper symmetric Gauss-Seidel
(33×33×33).

BT 3D Multi-partition for uncoupled sys-
tems of linear equations {block tridiag-
onal} (24×24×24).

MG Multigrid solver for Poisson equation
(32×32×32).

CG Conjugate Gradient (1400).

(one task per CMP with one processor idle). We assumed
that all the parallel regions execute in the same mode (sin-
gle, slipstream, or double) and the same synchronization (if
slipstream is activated).

Figure 2 shows the performance of slipstream and double-
mode (2 tasks/CMP) over single-mode (1 task/CMP) exe-
cution. For slipstream mode, two different types of A-R
synchronization are shown: (1) one-token local (L1), which
allows the A-stream to enter the next session when its R-
stream enters the previous synchronization event; (2) zero-
token global (G0), which allows the A-stream to enter the
next session when its R-stream exits the same synchroniza-
tion event. Figure 2 also shows the execution time break-
down. The time categories are busy cycles, memory stalls,
and two kinds of synchronization lock and barrier. Paral-
lelization overheads are also shown as scheduling time, and
job wait time. Job-wait time represents the time a process
waits for a job to be assigned.

The best performing slipstream gives a performance ad-
vantage over the best of single and double mode that ranges
from 5% for LU to 20% for MG (13.5% average). Obvi-
ously, for fewer number of CMPs, running in double mode
can yield better performance compared with single and slip-
stream. We focused on the region (degree of parallelism)
where these benchmarks benefit more from reducing the
communication overheads.

The choice of A-R synchronization affects the prefetch-
ing behavior and consequently the performance. Figure 3
shows the breakdown of memory requests for shared data
for slipstream mode with different synchronization methods.
Shared memory requests generated by the A-stream are di-
vided into three categories. An A-Timely request brings data
into the L2 cache that is later referenced by the R-stream. For
A-Late, the same data is referenced by the R-stream before
the A-stream request is satisfied. If data fetched by the A-
stream is evicted or invalidated without being referenced by
the R-stream, the reference is labeled as A-Only. The A-Only
component is considered harmful, as it reflects an unneces-

S D

L
-R L
-A

G
-R

G
-A S D

L
-R L
-A

G
-R

G
-A S D

L
-R L
-A

G
-R

G
-A S D

L
-R L
-A

G
-R

G
-A S D

L
-R L
-A

G
-R

G
-A

0

20

40

60

80

100

120

S: One task/CMP
D: Two Tasks/CMP
L: One-token Local
G: Zero-token Global

E
xe

cu
ti

o
n

 t
im

e
b

re
ak

d
o

w
n

re
la

ti
ve

 t
o

 1
 t

as
k/

C
M

P
 Busy Stall AR-wait Barrier
 Job Wait Scheduling Lock

BT CG LU MG SP

Figure 2. Execution time breakdown for single,
double and slipstream modes (static schedul-
ing).

sary increase in network traffic and may slow down applica-
tions due to unneeded data migration. Memory requests by
the R-stream are divided into similar categories: R-Timely,
R-Late and R-Only. Exclusive requests by A-stream are due
to converting some of the shared stores into prefetches. This
conversion occurs only when the A-stream is in the same
session with its R-stream and no resource contention exists.

Zero-token global exhibits average A-timely read requests
of 26% compared with 46% for one-token local. Zero-token
global has also a higher average of late read requests (34%
compared with 15% for one token local). This is because the
A-stream is not allowed to run very far ahead of its R-stream.
On the other hand, zero-token global has a higher read ex-
clusive coverage (58% compared with 38% for one-token lo-
cal). Zero-token global has also less premature prefetches
(3% compared with 8% for one-token local).

Prefetching performed by R-stream is due to two reasons.
First, the A-stream is behind his R-stream, which may hap-
pen with tight synchronization (G0). This is expected, espe-
cially with the use of operating system (IRIX) that does not
recognize slipstream mode where A-stream and R-stream are
scheduled and serviced independently. Second, the R-stream
is requesting data that were evicted or invalidated after be-
ing prefetched by A-stream, which may happens with loose
synchronization (L1). It is notable that the R-stream wait-
synchronization for its A-stream is negligible for all applica-
tions and synchronizations, which shows that the A-stream
is mostly ahead of his R-stream.

Individually, each application has a tendency to favor one
synchronization scheme over the other. CG, LU, and MG fa-
vor the loose synchronization of one-token local, while BT
and SP favor the conservative synchronization provided by
zero-token global. Other components of shared data requests
complete the images about how correlated the memory ref-
erences between A-stream and R-stream. For example, with
zero-token global, 95% of the shared data read from mem-

R
d

R
d

E
x

R
d

R
d

E
x

R
d

R
d

E
x

R
d

R
d

E
x

R
d

R
d

E
x

R
d

R
d

E
x

R
d

R
d

E
x

R
d

R
d

E
x

R
d

R
d

E
x

R
d

R
d

E
x

0

20

40

60

80

100

%
 o

f
sh

ar
ed

 m
em

o
ry

 r
eq

u
es

ts

 A-timely A-late A-only
 R-timely R-late R-only

BT (L
1)

BT (G
0)

CG (L
1)

CG (G
0)

LU (L
1)

LU (G
0)

M
G (L

1)

M
G (G

0)

SP (L
1)

SP (G
0)

L1: One-token Local
G0: Zero-token Global

Figure 3. Breakdown of memory requests for
shared data (static scheduling).

ory is referenced by both streams and 70% of the shared data
requested exclusively are referenced by both streams. Un-
der static scheduling, the scheduling component of time is
negligible as shown in Figure 2.

The performance gained, in this section, requires a sim-
ple addition of slipstream directive to the source code. We
changed the synchronization method as well as activat-
ing/deactivating slipstream at runtime while using the same
binary. The results presented shows the sensitivity of perfor-
mance to the type of A-R synchronization. This encourages
further exploration to select different A-R synchronization
for different parallel regions.

5.2. Slipstream Performance with
Dynamic Scheduling

Interaction between slipstream mode and dynamic/guided
scheduling has several interesting aspects. First, being ahead
for A-stream relies mostly on skipping shared memory oper-
ation and not on skipping synchronization. Second, the syn-
chronization between A-stream and R-stream will be tighter
than global-zero, as there is an additional synchronization at
the scheduling points. Finally, these scheduling techniques
can increase cache miss rate, compared with static schedul-
ing, due to the potential lack of cache affinity.

The behavior of dynamic/guided scheduling relies on
scheduling parameters, such as chunk size. The choice of
this parameter is dependent on iteration count, degree of par-
allelism, and the underlying hardware. The benchmarks (ex-
cept for CG) contain a small number of coarse-grained par-
allel loops. So, we used the compiler defaults for all appli-
cations, except for CG, where we used chunk size equal to
half the assignment under static block assignment. While
this does not necessarily give the best performance, it cap-
tures two main properties we want to investigate. The first
property is the existence of multiple scheduling decisions
and thus multiple synchronization points between barriers.

S R A S R A S R A S R A
0

20

40

60

80

100

S: 1 task/CMP
R: R-stream
A: A-stream

E
xe

cu
ti

o
n

 t
im

e
b

re
ak

d
o

w
n

re
la

ti
ve

 t
o

 1
 t

as
k/

C
M

P

 Busy Stall AR-wait
 Barrier Job-Wait
 Schedule Lock

BT CG MG SP

Figure 4. Execution time breakdown for single,
zero-token global slipstream mode (dynamic
scheduling).

The second property is the possible data migration due to
these scheduling policies.

We used the same benchmarks used in the previous sec-
tion except for LU as static scheduling is programmatically
specified in this benchmark for a significant portion of the
code. All other benchmarks do not specify a scheduling pol-
icy.

In our experiment, we noticed that the performance for
most of the benchmarks degrades with dynamic scheduling,
as the scheduling overhead is high. Additionally, these ap-
plications are iterative and data are reused across iterations,
so they lose the advantage of using cached data if data mi-
gration occurs. Finally, most of these benchmarks have a big
granularity of parallel work, which is not the best candidate
for dynamic scheduling.

We conducted the comparison with one task/CMP only
as the overhead of scheduling increases substantially with
the increase of the number of processes as well as the data
migration. We used only zero-token global synchronization
mode for slipstream. This is because there are additional syn-
chronizations at scheduling points that make other slipstream
synchronizations converge to zero-token global.

Figure 4 shows the execution time break down for our
benchmarks based on dynamic scheduling. The scheduling
overhead for the base case has an average of 11%. The stall
time to the busy time ratio also increased compared with
static scheduling. Figure 5 shows the breakdown of mem-
ory requests for shared data for slipstream with dynamic
scheduling. For shared data read, the A-timely component
is 28% on average and the A-late component is 26% on aver-
age. For read exclusive requests, the A-stream provides good
coverage (59% in average for A-timely, and 2% for A-late).
Slipstream mode improves the performance of the base mode
due to the high contribution of the stall time to the total ex-
ecution time. The improvement ranged from 5% for MG to
20% for SP.

Rd RdEx Rd RdEx Rd RdEx Rd RdEx
0

20

40

60

80

100

%
 o

f
sh

ar
ed

 m
em

o
ry

 r
eq

u
es

ts

 A-timely A-late A-only
 R-timely R-late R-only

BT CG MG SP

Figure 5. Breakdown of memory requests for
shared data (dynamic scheduling). Slipstream
synchronization is zero-token global.

While dynamic scheduling does not prove to be a good
choice for these benchmarks, we show that the potential for
slipstream mode to improve performance is high with dy-
namic scheduling as the memory stall time component is
usually high.

6. Related Work

The OpenMP standard does not include directives that
specify hardware-specific optimizations. Although this ap-
proach maximizes the portability of codes written with this
standard, the desire for performance inevitably leads to non-
compliant extensions that target specific hardware issues.
Data distribution specially for CC-NUMA architecture [6]
and Software-DSM [15] (distributed shared memory ma-
chines) were introduced to cover the gap intentionally left in
the standard. Other extensions [12, 14] are proposed to im-
prove execution of numerical codes. Extending OpenMP to
support slipstream mode complements these studies by de-
vising an optimization for CMP-based multiprocessor sys-
tems.

Slipstream execution mode for multiprocessors is closely
related to the slipstream uniprocessor paradigm [19]. In both
cases, a persistent redundant copy of the program or task (re-
spectively) is utilized, but A-stream creation, shortening, and
recovery, as well as A-stream to R-stream information pass-
ing, differ in fundamental ways due to the different target
architectures. Uniprocessor slipstream is compute-centric,
geared toward reducing the execution time of a sequential
program. Its A-stream is reduced by speculatively removing
instructions that do not affect the outcome of the program.
The A-stream passes values and branch outcomes directly
to its companion R-stream. In the multiprocessor domain,
the A-stream is shortened by simply skipping long-latency
events (synchronization and shared stores). The A-stream
and R-stream primarily communicate indirectly, through the

shared L2 cache and the directory-based coherence protocol.
Both approaches are related to other mechanisms that use

multiple threads to tolerate long latencies and prefetch data
in uniprocessor systems [4, 5, 7, 8, 13, 18, 20]. Slipstream
execution mode, however, does not require microarchitec-
tural support for threads, does not explicitly identify problem
loads and their pre-computation slices, and does not contin-
uously fork threads or micro-manage timing.

7. Conclusions

This work explores the opportunity for transparent sup-
port of slipstream execution mode using OpenMP. This mi-
nor extension of OpenMP allows applying slipstream trans-
parently on wide range of parallel applications. We intro-
duce how to extend a compiler to support this mode. We
also discuss how to handle each OpenMP directive, taking
special care of the semantics of each directive, to achieve
good performance. The extension requires modification of
the internal threading library and mostly does not affect the
code transformation phase and other optimization done by
the compiler. A simple directive is needed to control slip-
stream behavior.

Our implementation allows the same binary to run in
different modes, based on the application’s need. Slip-
stream mode is an additional mode that proves to be use-
ful when communication overhead dominates the execution
time. The proposed extension gives an average performance
gain of 14% for five benchmarks from NAS NPB with static
scheduling of the code.

We also investigated the interaction between slipstream
mode and dynamic scheduling. This requires more restric-
tive synchronization between the streams, since the A-stream
cannot run ahead until it knows the work that is assigned to
its R-stream. Nevertheless, dynamic scheduling often results
in increased communication and data migration overheads,
both of which can potentially be reduced by slipstream exe-
cution mode. Our study shows an average performance gain
of 12% for the four dynamically-scheduled benchmarks.

OpenMP, with its relative ease of use, opens the door to
have more shared memory applications. Slipstream execu-
tion mode can extend the scalability of those applications
on CMP-based multiprocessors, by applying additional pro-
cessors to reduce communication overheads. This research
demonstrates that a combination of OpenMP and slipstream
code can benefit both programmers and end users, improving
the performance of portable parallel applications.

References

[1] NAS Parallel Benchmarks. http://www.nas.nasa.gov/NAS/-
NPB.

[2] Omni OpenMP Compiler Project. http://phase.etl.go.jp/-
Omni/.

[3] OpenMP specifications. http://www.openmp.org/specs/.
[4] M. Annavaram, J. Patel, and E. Davidson. Data Prefetching

by Dependence Graph Precomputation. 28th Int’l Symp. on
Computer Architecture, July 2001.

[5] R. Balasubramonian, S. Dwarkadas, and D. H. Albonesi. Dy-
namically Allocating Processor Resources Between Nearby
and Distant ILP. 28th Int’l Symp. on Computer Architecture,
July 2001.

[6] J. Bircsak, P. Craig, R. Crowell, Z. Cvetanovic, J. Harris,
C. A. Nelson, and C. D. Offner. Extending OpenMP for
NUMA machines. In Proceedings of the 2000 ACM/IEEE
conference on Supercomputing (CDROM), page 48. IEEE
Computer Society Press, 2000.

[7] J. Collins, D. Tullsen, and H. Wang. Dynamic Speculative
Precomputation. 34th Int’l Symp. on Microarchitecture, Dec.
2001.

[8] J. Dundas and T. Mudge. Improving Data Cache Performance
by Pre-executing Instructions Under a Cache Miss. Int’l Con-
ference on Supercomputing, July 1997.

[9] K. Z. Ibrahim, G. T. Byrd, and E. Rotenberg. Slipstream Exe-
cution Mode for CMP-Based Multiprocessors. 9th Int’l Conf.
on High-Performance Computer Architecture, Feb. 2003.

[10] J. Kahle. Power4: A Dual-CPU Processor Chip. Micropro-
cessor Forum, Oct. 1999.

[11] K. Kusano, S. Satoh, and M. Sato. Performance Evaluation
of the Omni OpenMP Compiler. Lecture Notes in Computer
Science, 1940:403, 2000.

[12] J. Labarta, E. Ayguadé, and J. Oliver. New OpenMP Di-
rectives for Irregular Data Access Loops. Second European
Workshop on OpenMP, Sept. 2000.

[13] C.-K. Luk. Tolerating Memory Latency through Software-
Controlled Pre-Execution in Simultaneous Multithreading
Processors. 28th Int’l Symp. on Computer Architecture, pages
40–51, July 2001.

[14] L. Meadows. Extending OpenMP to Improve Scalability for
Numerical Codes. Workshop on OpenMP Applications and
Tools, Aug. 2002.

[15] J. Merlin. Distributed OpenMP: Extensions to OpenMP for
SMP Clusters. Second European Workshop on OpenMP,
2000.

[16] D. Nikolopoulos, E. Artiaga, E. Ayguadé, and J. Labarta.
Exploiting Memory Affinity in OpenMP through Schedule
Reuse. 3rd European Workshop on OpenMP (EWOMP’01),
Sept. 2001.

[17] M. Rosenblum, E. Bugnion, S. Devine, and S. A. Herrod. Us-
ing the SimOS Machine Simulator to Study Complex Com-
puter Systems. Modeling and Computer Simulation, 7(1):78–
103, 1997.

[18] A. Roth and G. S. Sohi. Speculative Data-Driven Multi-
threading. 7th Int’l Conf. on High-Performance Computer
Architecture, pages 191–202, Jan. 2001.

[19] K. Sundaramoorthy, Z. Purser, and E. Rotenberg. Slipstream
processors: Improving both Performance and Fault Toler-
ance. In Architectural Support for Programming Languages
and Operating Systems, pages 257–268, 2000.

[20] C. Zilles and G. Sohi. Execution-based Prediction Using
Speculative Slices. 28th Int’l Symp. on Computer Architec-
ture, July 2001.

