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Abstract

During the last years a number of space-time block codes have been proposed for use in multiple

transmit antennas systems. In this letter we propose a method to extend any space-time code constructed

for m transmit antennas to m p transmit antennas through Group-Coherent Codes (GCC). GCC make use

of very limited feedback from the receiver (as low as one bit). In particular the scheme can be used to

extend any orthogonal code (e.g. Alamouti code) to more than two antennas while preserving low decoding

complexity, full diversity benefits and full data rate.

Index Terms

Diversity, transmit diversity, space-time block codes, antenna array processing.

I. INTRODUCTION

Since the work of Alamouti [1], space-time block coding (STBC) has been an intensive area of research,

with several original design strategies having been put forward recently [2], [3], [4]. Because of the

decoding simplicity they offer, orthogonal design approaches have been in particular focus lately. However,

as was shown in [2], truly orthogonal full-rate designs offering full diversity (diversity order being equal

to the number of independent fading transmit/receive antenna pairs) for any arbitrary complex symbol

constellation are limited to the case of 2 transmit antennas. The data-rate or decoding simplicity must

then be sacrificed if the number of antenna is increased.

As we show here, simple alternative design solutions are possible that can exploit the limited feedback

data provided in an increasing number of standards (for example the WCDMA standard allows for

roughly one feedback bit per slot [5]). The majority of orthogonal STBC codes are designed assuming

the transmitter has no knowledge about the channels. Ideally, the transmitter could exploit channel state
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information (CSI) to improve the performance of the system substantially. For example, with complete

channel knowledge at the emitter data can be transmitted on the eigenvector related to the largest eigenvalue

[6] providing both a full diversity advantage combined with a transmit array (beamforming) gain. More

realistically, the feedback channel may allow only partial CSI to be returned to the transmitter in order to

save bandwidth. For instance quantized phases of the channels can be fed back, and in [7], [8] a method

to provide transmit diversity by taking account of the relative phases was introduced. The same symbols

are transmitted from all the transmit antennas but with different phase shifts. This technique in general

requires (M − 1) log2K bits of feedback where M is the number of transmit antennas and K denotes

the number of points in the uniformly quantized channel phase space. Other construction methods with

finite rate feedback are discussed in e.g. [9].

Despite the recent interest in orthogonal codes and the practically of feedback systems, research on

block codes with partial feedback is only beginning to gain attention. In this letter we suggest a simple

way to combine space-time block codes over groups of antennas to ensure the full diversity advantage

from arbitrary number of transmit antenna at full rate. The idea is based on the concept of group-coherent

code construction. If a full diversity code is available for m antennas, then group-coherent codes can be

constructed for m p (p ≥ 2) antennas exhibiting m p orders of diversity and full rate by making use of as

low as p− 1 bits of feedback encoding certain channel-related phase information described in this paper.

Importantly, we show that if we start from an orthogonal design, the extension fully preserves the simple

decoding structure permitting a low decoder complexity. The key argument for using group-coherent codes

is that an exact block design providing orthogonal decoding can be obtained at a loss of rate (in the form

of feedback) largely inferior to the loss of rate incurred by the best available non-feedback orthogonal

codes found in for example [2] [10] and [11].

II. SYSTEM DESIGN

We first consider a system with m transmit antennas and a single receive antenna. The transmitting

antennas are assumed to be placed sufficiently apart from each other so that symbols transmitted from each

antenna follow different uncorrelated paths to the receiver. We assume that the receiver can estimate the

channels from each transmit antenna h = [h1 h2 ... hm]T and has perfect knowledge of h. The channel

gains are modeled as complex Gaussian with zero mean and unit variance hi ∼ C(0, 1). For a setup with

m p transmit antennas we further assume that a limited feedback link is available from receiver to the

transmitter in the form of a minimum of p− 1 bits per frame/channel coherence period.
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A. STBC for m transmit antennas

Consider a block code matrix C (of size T rows (time-slots) and m columns (transmitters)) and linear

in the input modulation symbols (collected in vector s) and their conjugates. Let us denote the received

signal over T symbol durations by ŷ = Ch+n, where n is the noise vector, which is usually conveniently

denoted as y = Hs+n. H is the equivalent channel matrix containing linear combinations of the channels

and their conjugates. The transformation for orthogonal codes between ŷ and y would typically require

possible conjugation operations on ŷ to obtain y and/or splitting of the symbol components in real and

imaginary parts. A general discussion on this transformation and when the equivalence between these two

representations holds is given in [12].

Assuming the code to be an orthogonal design, we have H∗H = 1
mαI, α =

∑m
i=1 |hi|2, exhibiting

m-th order diversity. For instance decoding can be performed through simple matched filtering using

H∗, ŝ = 1
H∗HH∗y. In the case of orthogonal block codes and PSK modulation this has been shown to

be equivalent with ML decoding. The terms on the diagonal reflect the SNR at the receiver if they are

normalized by a constant factor E
P where E is the total transmit energy and P the noise power.

Full-rate orthogonal codes providing full diversity for complex symbols only exist for m = 2 and

extensions of these to a larger number of antennas is an important issue. Non full-rate orthogonal codes

providing full diversity for any number of transmit antennas have been constructed in [2]. It is known for

instance that the best available orthogonal design with 4 antennas can only be 3/4 rate, which implies

that a full fourth order diversity is obtained at the price of 25% reduction in rate.

B. Group-coherent codes for m p antennas

We next build an extension method to utilize STBC on a larger number of antennas which replaces the

bandwidth rate loss of orthogonal STBC by a marginal loss in the form of feedback, while still preserving

full performance.

We start by presenting a simple design for group-coherent codes. Assuming we have an orthogonal

space-time block code C for m transmit antennas, a code for m p antennas, where p is an integer ≥ 2,

may be constructed as:

Dl =
1√
p

[C b1C b2C ... bp−1C], l = 1, 2, ..., 2p−1. (1)

The columns in the matrices represent the antennas while the rows in matrices still refer to the time slots.

We assume bi ∈ {−1, 1} and each biC, i = 1, .., p− 1 can therefore take two forms, C or −C, yielding

a total of 2p−1 different possible realizations of Dl. A discussion over possible further expansion is found

in [13]. The factor 1√
p ensures proper normalization of D. For convenience we also define b0 = +1.
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If a particular Dl structure is implemented then the channel vector h contains m p coefficients and can

be written in a split form of p subsets h = [hT1 ... hTp ]T , where the k’th (k = 1, .., p) group of channels

is associated with the k’th subblock in Dl.

The feedback information from the receiver is now defined as the index l in Dl which will determine

which version of code to implement for transmission. Clearly, the original code C for m antennas consists

of m columns while the new variants Dl contains p times as many columns. The same symbols as by

the original code are now transmitted from p antennas simultaneously, with the possibility of different

signs. Figure 1 displays a schematic construction of the system. Although the codes Dl do not satisfy

the requirements for an orthogonal design as set in [2], we next show two properties of group-coherent

codes addressing respectively the (low) complexity decoding and the diversity performance. Our first result

demonstrates that a linear combination of linear orthogonal designs provides a design which inherits the

simplified decoding structure of the orthogonal block code C:

Proposition 1: For any combination of b1, b2, ..,bp−1 Dl is an orthogonal linear design in the sense

that matched-filter-based decoding can be applied.

Proof: Transmitting via Dl, the receiver notices

ŷ =
1√
p
Dlh + n

which is equivalent to

ŷ =
1√
p

[C b1C ... bp−1C]h + n.

Writing out with the subsets of channel h = [hT1 ... hTp ]T we arrive to

ŷ =
1√
p

(Ch1 + b1Ch2 + ...+ bp−1Chp) + n

=
1√
p
C(h1 + b1h2 + ...+ bp−1hp) + n = Cĥ + n. �

The transmission is thus equivalent to using the block code C over the virtual channel ĥ consisting of

linear combinations of subsets h1, ..., hp. On average, using a group code with randomly selected bi will

not improve upon the performance offered by the original m-antenna code, however, using the feedback

information from the receiver on which code matrix Dl to employ can ensure that the symbols repeated

on groups of p antennas always add up coherently at the receiver.

More generally when the number of antennas is scaled from m to m p and the coding strategy proposed



5

in (1) is used then the receiving party observes:

ŷ =
1√
p
Dlh + n =

1√
p

(Ch1 + b1Ch2 + b2Ch3 + ..+ bp−1Chp) + n

which can be written as

y =
1√
p

(H1 + b1H2 + ...+ bp−1Hp)s + n =
1√
p
Rs + n (2)

where Hi contains channel coefficients corresponding to hi. From Proposition 1 we know that transmission

with Dl is comparable to employment of code C. The corresponding channel matrix R is therefore

orthogonal (up to a scalar multiplication) assuming the conditions put forward in [12] are satisfied, and

decoding can be based on using R∗ on y. The inner channel product R∗R leads to:

R∗R =

p∑

i=1

H∗iHi +

p∑

i,j=1,i6=j
bi−1bj−1H∗iHj . (3)

p factors of form H∗iHi = 1
mαiI, αi =

∑mi
j=m(i−1)+1 |hj |2, offer the total m p orders of diversity. Writing

out the diagonal elements in full we come to:

(R∗R)i,i =
1

m
(

m p∑

i=1

|hi|2 + β). (4)

where β originates from terms of form H∗iHj , introducing ”interference” between channels

hm(i−1)+1, ..., hmi and h∗m(j−1)+1, ..., h
∗
mj . By collecting the anti-symmetrical factors together, real valued

β can be written out as:

β =

m(p−1)∑

i=1

bx i−1
m(p−1)

ybx i+m−1
m(p−1)

y(hih
∗
i+m + hi+mh

∗
i )

+bx i−1
m(p−1)

ybx i+2m−1
m(p−1)

y(hih
∗
i+2m + hi+2mh

∗
i )

+...+ bx i−1
m(p−1)

ybx i+(p−1)m−1
m(p−1)

y(hih
∗
i+(p−1)m + hi+(p−1)mh

∗
i ). (5)

xy represent rounding off downwards to the nearest integer.

The second key property now follows:

Proposition 2: Using the coding strategy from (1) on an m p antenna system, then p − 1 bits of

feedback are sufficient to assure

(R∗R)i,i ≥
1

m

m p∑

i=1

|hi|2, (6)

i.e. to guarantee a diversity order of m p.

Proof: For p = 1 (no feedback) the result clearly holds. We now follow an inductive approach and assume
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the group-coherent code for m (p− 1) transmitters offers full diversity with p− 2 bits of feedback. The

enlarged system (2) for m p transmitters (p ≥ 2) can then be written as

√
p y = (H1 + b1H2 + ...+ bp−2Hp−1)s + bp−1Hps +

√
pn

= (R1 + bp−1Hp)s +
√
pn (7)

where R1 is self-defineable. The inner channel product gives:

(R∗1 + bp−1H
∗
p)(R1 + bp−1Hp) =

R∗1R1 + H∗pHp + bp−1(R∗1Hp + H∗pR1). � (8)

From our assumption we already know R∗1R1 provides m (p − 1) orders of diversity and consequently

selecting an appropriate value of either +1 or −1 for bp−1 is sufficient to make proposition 2 hold.

C. Feedback bit selection

The inductive argument of the second proposition also provides an efficient method to find suitable

values of b1, ..., bp−1 which can offer full diversity. At each iteration, starting from b1 one would select

bp−1 = −sign(R∗1Hp + H∗pR1) and then proceed with the next block.

As an alternative approach, the p− 1 bits for feedback bi may be selected according to:

Dl = arg max
bi|h

β, l = 1, 2, ..., 2p−1 (9)

i.e. an exhaustive search can be used. If p ≥ 3 then for certain channel realizations, several selections of

the coefficients may return positive values for β. In this case the particular selection giving the largest β

through (9) may be preferable, as it would provide the largest array gain but at additional computational

complexity than the inductive search.

D. Non-orthogonal block codes

The approach presented above may also be applied with full-rate non-orthogonal block codes [3], [12].

These codes typically introduce interference elements which appear on the non-diagonal elements of the

corresponding inner channel matrix H∗H. The diagonal terms on the other hand still follow the identical

structure as in orthogonal codes and the results presented in this article would therefore still apply. This

design construction assures that the time-delay of non-orthogonal codes, which increases very rapidly with

growing number of transmitters, is kept at a low level.
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III. EXAMPLE AND SIMULATIONS

We next provide a simple example to demonstrate how these techniques may be applied to a four

transmitter antenna system. An one bit feedback scheme may be constructed by extending any orthogonal

space-time block for m antenna to 2m transmit antennas.

Starting from the Alamouti code we have:

C =
1√
2


 s0 s1

−s∗1 s∗0


 . (10)

Group-coherent codes for 4 transmitters are then directly obtained from (1) by setting p = 2, which gives

D1 =
1√
2

[C C] =
1

2


 s0 s1 s0 s1

−s∗1 s∗0 −s∗1 s∗0


 , (11)

D2 =
1√
2

[C −C] =
1

2


 s0 s1 −s0 −s1

−s∗1 s∗0 s∗1 −s∗0


 . (12)

With Alamouti the receiver will over two time frames observe ŷ = Ch + n, or y = Hs + n (where the

second observation in ŷ has been conjugated to obtain y) where

H =
1√
2


 h1 h2

h∗2 −h∗1


 . (13)

D1 or D2 is the code used over four transmitters, giving the equivalent channel matrices

R1̂ =
1

2
(H1 + H2) =

1

2


 h1 + h3 h2 + h4

h∗2 + h∗4 −h∗1 − h∗3


 , (14)

R2̂ =
1

2
(H1 −H2) =

1

2


 h1 − h3 h2 − h4

h∗2 − h∗4 −h∗1 + h∗3


 . (15)

Looking at the hermitian squares of the decoding matrices we observe that interference has been introduced

on the diagonal:

R∗
1̂
R1̂ =

1

4


 α̂1 0

0 α̂1


 , α̂1 =

4∑

i=1

|hi|2 + β (16)

and the interference factor

β = h1h
∗
3 + h∗1h3 + h2h

∗
4 + h∗2h4. (17)
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Transmitting with D2, β in R∗2R2 will exhibit the opposite sign:

R∗
2̂
R2̂ =

1

4


 α̂2 0

0 α̂2


 , α̂2 =

4∑

i=1

|hi|2 − β. (18)

In the scheme, the receiver computes (17) and feeds back +1 if (17) ≥ 0 or −1 if (17) < 0, whichever

maximizes/returns a positive value. If the feedback bit is then used to select the appropriate code at the

receiver and the transmitter with a positive β, the resulting code permits orthogonal decoding and achieves

fourth order diversity. In addition there is some array gain (about 1.5dB, see below) since |β| > 0 with

probability one. Note that from a pure bandwidth point of view, the loss due to feedback is negligible

compared to the loss (25%) in the best known orthogonal design for 4 antennas.

Figure 2 displays a simulation under a QPSK constellation with quasi-static flat Rayleigh fading. The

cases considered include single transmitter and single receiver (full-rate), the Alamouti scheme with two

transmitters (full-rate) and the curve for an ideal fourth order diversity system. These are compared against

a feedback based group-coherent code for four transmitters offering full-rate. The one-bit feedback strategy,

as detailed in example 1 is simulated, demonstrating the full diversity and limited array gain. The energy

of the setup is kept at a constant level as the number of emitters grow. We also assume perfect knowledge

of the channels at the receiver and also zero-delay in the feedback. The transmitter thus always picks the

correct version of the code for transmission.

IV. CONCLUSIONS

This letter proposes a method to extend space-time block codes with the aid of limited feedback.

Compared to traditional feedback based diversity methods the new technique requires fewer bits of

feedback and provides significant rate efficiency than orthogonal block codes with no feedback.
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Fig. 1. Schematic description of group-coherent codes



11

0 5 10 15 20 25 30
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB) per symbol

B
E

R

Fig. 2. From worst to best: No diversity (1tx, 1rx); Alamouti (2tx, 1rx); ideal fourth order diversity (4tx, 1rx); Proposed code with
1 bit feedback (4tx, 1rx)


