
EXTENDING PARTIAL ISOMETRIES

SÃLAWOMIR SOLECKI

Abstract. We show that a finite metric space A admits an extension to a

finite metric space B so that each partial isometry of A extends to an isom-

etry of B. We also prove a more precise result on extending a single partial

isometry of a finite metric space. Both these results have consequences for

the structure of the isometry groups of the rational Urysohn metric space

and the Urysohn metric space.

1. Introduction

Let A be a metric space. By a partial isometry of A we mean an isometry
between two subsets of A. A total isometry, i.e., a partial isometry with domain
and range equal to A, is called simply an isometry.

In the paper, we answer certain questions which were identified by Henson
and by Kechris and Rosendal and which were motivated by, on the one hand,
analogies between finite graphs and finite metric spaces and, on the other hand,
by problems concerning properties of isometry groups. We prove results of the
following three sorts:

1. Given a finite metric space A, we extend it to a finite metric space B

so that each partial isometry of A extends to an isometry of B (Theo-
rem 2.1 in Section 2).

2. Given a finite metric space A and a partial isometry p on it, we extend
A to a finite metric space B so that p extends to an isometry p̃ of B and
A and p̃M (A), for some M ∈ N, are, in a precise sense, “independent”
from each other (Theorem 3.2 in Section 3).

3. We deduce from the results in points 1 and 2 properties of the isometry
groups of the rational Urysohn metric space and the Urysohn metric
space (Corollaries 4.1, 4.4–4.3 in Section 4).

For more background information the reader should consult the beginning
paragraphs of the subsequent sections. Here we recall a couple of definitions
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which will be useful throughout the paper. The Urysohn metric space U is the
unique separable metric complete space such that each finite (in fact, separable)
metric space embeds isometrically into U and each isometry between two finite
subsets of U extends to an isometry of U [10]. We call a metric space rational
if all the distances between points are rational numbers. Let U0 be the rational
Urysohn space, that is, the unique rational metric space which contains an
isometric copy of any finite rational metric space (universality) and has the
property that any isometry between two of its finite subsets extends to an
isometry of the whole space (ultrahomogeneity). For more information on it
see [4].

2. Extending all partial isometries

In the present section, we will be concerned with the following question:
Given a finite metric space A, does there exist a finite metric space B con-

taining A such that each partial isometry of A extends to an isometry of B?
The problem above came up independently in two different contexts. Pestov

proved in [9] that each finite metric space A can be embedded via an approxi-
mate isometry into another finite metric space B so that each partial isometry
of A approximately extends to an isometry of B. (For the precise meaning of
“approximate” see [9].) Hrushovski [3] showed that each finite graph A can be
isomorphically embedded into another finite graph B so that each partial auto-
morphism of A extends to an automorphism of B. Noticing affinities between
these two results, Henson asked the question above; positive answer to it would
strengthen Pestov’s theorem by removing “approximate” and would give the
full analogue of Hrushovski’s theorem for metric spaces. The second situation
in which the same problem surfaced was the study of conjugacy classes of el-
ements of Polish groups carried out by Kechris and Rosendal [5]. In fact, as
pointed out by them, an affirmative answer to this question would have conse-
quences for the structure of the conjugacy classes of elements of the isometry
groups of the rational Urysohn metric space. These consequences, in turn, have
remarkably strong implications for other aspects of the structure of this group
(see Corollary 4.3).

In the theorem below, we show that the answer to the question is indeed in
the affirmative. (I was informed that A. Vershik announced also proving this
theorem.) To prove it we will use the main result of [2]. For model theoretic
notation and terminology the reader may consult the first section of [7].

Theorem 2.1. Let A be a finite metric space. There exists a finite metric space
B such that A ⊆ B as metric spaces and each partial isometry of A extends to
an isometry of B.
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Moreover, B can be found so that the distances between points in B belong
to the additive semigroup generated by the distances between points of A.

Proof. Without loss of generality we assume that A has at least 2 elements.
Let d be the metric on A. Let D be the set of all positive distances between
elements of A, that is,

D = {d(a, b) : a, b ∈ A and a 6= b}.
For r ∈ D let Rr be a binary relation. Consider the finite relational language
L consisting of all Rr with r ∈ D.

A configuration α is a sequence r0, r1, . . . , rn of elements of D with the prop-
erty

n∑

i=1

ri < r0.

Note that since D is finite and consists of positive numbers, there are only
finitely many configurations.

For a configuration α consisting of r0, r1, . . . , rn ∈ D, let Mα be the L-
structure with n + 1 distinct elements x0, x1, . . . , xn and such that

Mα |=
(
Rr0(x0, xn) and Rr0(xn, x0)

)

Mα |=
(
Rri(xi−1, xi) and Rri(xi, xi−1)

)
for 1 ≤ i ≤ n

and with no other relations Rr holding between pairs of elements of Mα. Let T
consist of all Mα for a configuration α. Then T is a finite family of L-structures.

A metric space X with a metric σ is made into an L-structure by letting
X |= Rr(x, y) precisely when σ(x, y) = r for r ∈ D and x, y ∈ X. Note that
each isometry of X is an automorphism of X as an L-structure and each partial
isometry of X is a partial automorphism. Using the triangle inequality, one
easily shows that if a metric space X is considered as an L-structure, then for
Mα ∈ T there is no weak homomorphism h : Mα → X. (Recall that h is a weak
homomorphism if for x, y ∈ Mα, Mα |= Rr(x, y) implies X |= Rr(h(x), h(y)) for
all r ∈ D.) We say that X is T -free.

Notice also that since D includes all positive distances from A, any partial
automorphism of A as an L-structure is a partial isometry of A. Let U be the
Urysohn metric space. We isometrically embed A into U and extend each partial
isometry of A to an isometry of U. Thus, we embedded A as a substructure of
a T -free L-structure U and we extended each partial automorphism of A to an
automorphism of U. By [2, Theorem 3.2, p.1994], there exists a finite T -free L-
structure C such that A is a substructure of C and each partial automorphism
of A extends to an automorphism of C. If p is a partial automorphism of A,
let p̃ be its extension to an automorphism of C. We assume that the partial
automorphism with empty domain is extended to the identity function on C.
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We say that a sequence c0, . . . , cn ∈ C is a chain between c0 and cn if for
each 1 ≤ i ≤ n there exists r ∈ D with

C |= (
Rr(ci−1, ci) and Rr(ci, ci−1)

)
.

Notice that the relation on x, y ∈ C “there is a chain between x and y” is
symmetric and transitive.

Let B consists of all c ∈ C for which there exist chains between all elements
of A and c. Since D contains all positive distances between elements of A, for
distinct a, b ∈ A, a, b is a chain as is b, a. Thus, the inclusion

(1) A ⊆ B

follows. (We use here the fact that A has at least 2 elements.) Moreover, it also
follows that if there exists a chain between an element c of C and some element
of A, then there exist chains between c and all elements of A, that is, c ∈ B.
We will deduce from it that

(2) if p is a partial isometry of A, then p̃(B) = B.

Since we are dealing with finite sets, it will suffice to show p̃(B) ⊆ B. If p is the
partial isometry with empty domain, p̃ is the identity, and there is nothing to
prove. Let p be a partial automorphism of A with non-empty domain. Pick a
point ā in the domain of p. Fix b ∈ B in order to show that p̃(b) ∈ B. We can fix
a chain ā = c0, c1, . . . , cn = b is between ā and b. Since p̃ is an automorphism
of C, p̃(ā) = p̃(c0), p̃(c1), . . . , p̃(cn) = p̃(b) is a chain between p̃(ā) = p(ā) ∈ A

and p̃(b). Thus, there is a chain between p̃(b) and some element of A, therefore,
p̃(b) ∈ B.

Define a metric ρ on B by letting ρ(a, b) be 0 if a = b and otherwise be the
infimum of the quantities

r1 + · · ·+ rn

where for some chain c0, c1, . . . , cn between a and b we have

(3) C |= (
Rri(ci−1, ci) and Rri(ci, ci−1)

)
for all 1 ≤ i ≤ n.

By definition of B, ρ is defined on all pairs a, b of elements of B. Moreover, ρ

is clearly a metric. For each partial isometry p of A, p̃ ¹ B maps B to B by (2).
In fact, p̃ ¹ B is an isometry of B with ρ since the image of a chain under p̃ and
p̃−1, which are automorphisms of C, is a chain. Of course, p̃ ¹ B extends p. By
(1) we have A ⊆ B. It remains to check that ρ restricted to A coincides with
d, that is, ρ(a, b) = d(a, b) for any distinct a, b ∈ A. The inequality ≤ is clear
since a, b is a chain. To see the other inequality, assume towards contradiction
that ρ(a, b) < d(a, b). This allows us to fix a chain c0, c1, . . . , cn ∈ C between a

and b and ri ∈ D for 1 ≤ i ≤ n so that

r1 + · · ·+ rn < d(a, b)
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and (3) holds. Then the sequence d(a, b), r1, . . . , rn is a configuration. Let us
call it α. We then have a weak homomorphism from Mα to C (whose range is
{c0, . . . , cn}) which contradicts the fact that C is T -free.

The moreover part of the theorem is clear from the definition of ρ. ¤

3. The case of one partial isometry

In this section, we deal with the situation when a single partial isometry p

on a finite metric space A is given. We show in Theorem 3.2 how to embed A

into a finite metric space B in such a way that p extends to an isometry p̃ of B

so that for some M ∈ N, A and p̃M (A) are as “independent” from each other
as possible. The problem of finding this type of extension in special case came
up in the work of Kechris and Rosendal [5]. In fact, in Corollaries 4.1 and 4.4,
we show how this extension theorem translates into properties of the isometry
groups of the rational Urysohn metric space and the Urysohn metric space.

We recall a definition of an amalgam of two metric spaces. Let A,B, C be
finite metric spaces and let f1 : A → B and f2 : A → C be isometric embeddings
and let d1 and d2 be the metrics on B and C, respectively. We allow here A to
be empty in which case f1 and f2 are the empty functions. The amalgam of B

and C over (A, f1, f2) is defined as follows. Take the disjoint union of B and
C and identify f1(a) with f2(a) for any a ∈ A. Call the quotient set D. There
are natural injections g1 : B → D and g2 : C → D. Define a metric d on D by
transferring d1 from B to g1(B) by g1 and d2 from C to g2(C) by g2 and by
defining d(g1(b), g2(c)) for b ∈ B and c ∈ C as follows:
if A 6= ∅, d(g1(b), g2(c)) = min{d1(b, f1(a)) + d2(f2(a), c) : a ∈ A};
if A = ∅, d(g1(b), g2(c)) = diam(B) + diam(C).
We leave it to the reader to check that d is well defined and that it is a metric.

The following lemma is the reason for importance of the amalgam. Its proof
is straightforward and is left to the reader.

Lemma 3.1. Let a metric space D be the amalgam of B and C over (A, f1, f2).
Let g1 : B → D and g2 : C → D be the natural isometric embeddings. Let
φ : A → A be an isometry and let ψ1, ψ2 be partial isometries of B and C,
respectively, extending f1◦φ◦f−1

1 and f2◦φ◦f−1
2 , respectively. Then g1◦ψ1◦g−1

1

and g2 ◦ ψ2 ◦ g−1
2 have a common extension to a partial isometry of D.

Let A be a finite metric space, let D,E ⊆ A, and let p : D → E be a partial
isometry of A. We say that x ∈ A is a cyclic point of p if pn(x) ∈ D for each
n ∈ N. An x ∈ A which is not cyclic is called acyclic. By Z(p) we denote the
set of all cyclic points of p.

Theorem 3.2. Let a finite metric space A and a partial isometry p of A be
given. There exist a finite metric space B with A ⊆ B as metric spaces, an
isometry p̃ of B extending p, and a natural number M such that
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(i) p̃2M = idB;
(ii) if a ∈ A is acyclic, then p̃j(a) 6= a for all 0 < j < 2M ;
(iii) A ∪ p̃M (A) is the amalgam of A and p̃M (A) over (Z(p), idZ(p), p̃

M ¹
Z(p)).

Moreover, the distances in B are in the additive semigroup generated by the
distances in A.

Remark 3.1. Point (iii) above is a concise formulation of the following statement:
A ∩ p̃M (A) = Z(p), p̃M ¹ Z(p) = idZ(p), and if d is the metric on A and ρ is
the one on B, then, for a1, a2 ∈ A, ρ(a1, p̃

M (a2)) is equal to 2diam(A) or
min{d(a1, z) + d(z, a2) : z ∈ Z(p)} depending on whether Z(p) is empty or not.
Note that the last of these three conditions implies the first one.

Proof of Theorem 3.2. Let ∆ = diam(A), and let δ be the minimal value of
d(x, y) with x 6= y, x, y ∈ A. Put Z = Z(p).

Let D, E ⊆ A and let p : D → E be a partial isometry of A. Let M be a natu-
ral number whose value will be chosen later. Consider X = {0, . . . , 2M−1}×A.
We start with defining an equivalence relation ≡ on X. For (x,m), (y, n) ∈ X,
let (x,m) ≡ (y, n) if there exists r ≥ 0 such that pk(x) ∈ D for all 0 ≤ k < r,
pr(x) = y, and n + r = m mod 2M or the same condition holds with the roles
of x and y interchanged. It is easy to see that this is an equivalence relation.
(Note that we can take r = 0 so (x,m) ≡ (x,m).) Set B = X/ ≡.

Define now a function P : X → X by letting

P (x, n) = (x, n + 1 mod 2M).

It is easy to see that P respects the relation ≡. Let p̃ be the function induced
by P on B = X/ ≡.

We describe now a metric ρ on B. If [x,m] and [y, n] are two equivalence
classes of ≡, define ρ([x,m], [y, n]) to be the minimum of 2∆ and the sums of
the following sort

(4)
k−1∑

i=0

d(xi, yi+1)

where x0 = x, xk = y, n0 = m, nk = n, and for some numbers 0 ≤ ni < 2M ,
for 0 ≤ i ≤ k, (yi, ni−1) ≡ (xi, ni) for all 1 ≤ i ≤ k. Note that the sum in
(4) is equal to 0 precisely when xi = yi+1 for all 0 ≤ i ≤ n − 1 which implies
that (x, m) ≡ (y, n). This shows that the function ρ is well defined on B (it
does not depend on the choice of the representatives (x,m) and (y, n)) and that
ρ([x,m], [y, n]) = 0 implies [x, m] = [y, n]. It is straightforward to check that
[x,m] = [y, n] implies ρ([x,m], [y, n]) = 0, that ρ is symmetric and that it fulfills
the triangle inequality. Thus, ρ is a metric on B. It is also easy to see that p̃ is
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an isometry. Notice also that the distances with respect to ρ are in the additive
semigroup of the distances with respect to d.

We define a function h : A → B by h(x) = [x, 0]. We will prove below that,
with an appropriate choice of M , h is an isometry. In particular, it is one-to-one
and it is easy to see that if we identify A with h(A) ⊆ B, then p̃ extends p.
Point (i) is immediate from the definition of P . To see (ii), fix 0 ≤ j < 2M and
assume that p̃j([x, 0]) = [x, 0]. This implies that (x, j) ≡ (x, 0) so

pj(x) = x or p2M−j(x) = x.

In the first case, we of course have pi(x) ∈ D for all 0 ≤ i < j and in the second
case pi(x) ∈ D for all 0 ≤ i < 2M − j. Since x is acyclic, it follows that j = 0
or 2M − j = 0, which proves (ii).

It remains to show that h is an isometry and that (iii) holds. Both these
arguments require computations with the metrics ρ and d which will be done in
Claims 1 and 2 below. The following notion will be useful. For 0 ≤ m < 2M ,
we call a sequence x0, x1, . . . xk ∈ A together with r1, . . . , rk ∈ Z an m-chain
between x and y if x0 = x, xk = y,

∑k
i=1 ri = m mod 2M and, if ri > 0, then

xi, p(xi), . . . , pri−1(xi) ∈ D, and, if ri < 0, then xi, p
−1(xi), . . . , pri+1(xi) ∈ E.

It is easy to see that the definition of ρ([x, 0], [y, m]) can be reformulated as

(5) min(2∆, min
k−1∑

i=0

d(xi, p
ri+1(xi+1)))

where the second minimum is taken over all m-chains between x and y.
Let x0, x1, . . . , xk, r1, . . . , rk and y0, y1, . . . , yl, q1, . . . , ql be two m-chains be-

tween x and y. Define the second one to be shorter than the first one if

(6)
l−1∑

i=0

d(yi, p
qi+1(yi+1)) ≤

k−1∑

i=0

d(xi, p
ri+1(xi+1))

and either l < k or l = k, ql = 0 and rk 6= 0.
Now we can state the first claim. In order to prove it, however, we need to

specify the value of M . If x ∈ A is cyclic, let mx be smallest n > 0 with pn(x) =
x. If x ∈ A is acyclic, let nx = min{n ≥ 0 : pn(x) 6∈ D}+max{n : p−n(x) ∈ D}.
Let M be a positive natural number divisible by all the mx’s for cyclic x ∈ A

and such that

(7) (M −max{nx : x ∈ A, x acyclic})δ > (max{nx : x ∈ A, x acyclic})2∆

with the convention that max ∅ = 0.

Claim 1. Let x0, x1, . . . , xk, r1, . . . , rk be an m-chain between x and y which
cannot be made shorter. Then the following three conditions hold:

(a) if some xi with 1 ≤ i ≤ k is cyclic, then x1 is cyclic and (k = 1 or (k = 2
and r2 = 0));
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(b) pri+1(xi+1) 6= xi for all 1 ≤ i ≤ k − 1;
(c) ri ≥ 0 for all 1 ≤ i ≤ k or ri ≤ 0 for all 1 ≤ i ≤ k.

Proof of Claim 1. (a) Let xi be cyclic and i ≥ 1. We assume that the
conclusion of the implication stated in (a) fails and show how to define an m-
chain between x and y which is shorter than x0, x1, . . . , xk, r1, . . . , rk. Define
the new m-chain as follows:
if 2 ≤ i,

y0 = x0, . . . , yi−2 = xi−2, yi−1 = xi, yi = xi+1, . . . , yk−1 = xk,

q1 = r1, . . . , qi−2 = ri−2, qi−1 = ri−1 + ri, qi = ri+1, . . . , qk−1 = rk,

if k = i + 1 and rk 6= 0,

y0 = x0, . . . , yi−1 = xi−1, yi = p−ri+1(xi), yk = xk,

q1 = r1, . . . , qi−1 = ri−1, qi = ri + ri+1, qk = 0,

and if k − 2 ≥ i,

y0 = x0, . . . , yi−1 = xi−1, yi = p−ri+1(xi), yi+1 = xi+2, . . . , yk−1 = xk,

q1 = r1, . . . , qi−1 = ri−1, qi = ri + ri+1, qi+1 = ri+2, . . . , qk−1 = rk.

Note that since xi is cyclic, pj(xi) is defined for each j ∈ Z, so the definitions
above make sense. Clearly they define m-chains from x to y. It is obvious from
their definitions that to show that the new m-chain is shorter than the old one,
it suffices to check relation (6). In the first case (2 ≤ i), this amounts to the
following calculation (with the last equality following from p being an isometry)

d(yi−2, p
qi−1(yi−1)) = d(xi−2, p

ri−1+ri(xi))

≤ d(xi−2, p
ri−1(xi−1)) + d(pri−1(xi−1), pri−1+ri(xi))

= d(xi−2, p
ri−1(xi−1)) + d(xi−1, p

ri(xi)).

In the other two cases, we have

d(yi−1, p
qi(yi)) = d(xi−1, p

ri(xi)).

Moreover, if k = i + 1 and rk 6= 0,

d(yi, p
0(yk)) = d(p−ri+1(xi), xi+1) = d(xi, p

ri+1(xi+1))

where the last equality follows from p being an isometry. If i ≤ k − 2, we have

d(yi, p
qi+1(yi+1)) = d(p−ri+1(xi), pri+2(xi+2))

≤ d(p−ri+1(xi), xi+1) + d(xi+1, p
ri+2(xi+2))

= d(xi, p
ri+1(xi+1)) + d(xi+1, p

ri+2(xi+2))

the last equality following from the fact that p is an isometry. Thus, in either
of these two cases (k = i + 1 and rk 6= 0 or i ≤ k − 2) we see that (6) holds.
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(b) This point is obvious. If the condition fails for some 1 ≤ i ≤ k − 1,
to construct an m-chain between x and y shorter than x0, x1, . . . , xk, r1, . . . , rk

simply take yj = xj if j ≤ i − 1, yj = xj+1 if j > i − 1, qj = rj if j ≤ i − 1,
qi = ri + ri+1, and qj = rj+1 if k − 1 ≥ j > i.

(c) It is obvious that ri 6= 0 for all 1 ≤ i ≤ k − 1 since otherwise yj = xj ,
rj = pj for j < i and yj = xj+1, rj = pj+1 for i ≤ j ≤ k − 1 would define an
m-chain between x and y shorter than x0, x1, . . . , xn, r1, . . . , rn. Now assume
towards contradiction that ri > 0 and ri+1 < 0 for some 1 ≤ i ≤ k − 1. (The
other case is dealt with in a similar manner.) If ri ≤ |ri+1|, define an m-chain
between x and y by letting

y0 = x0, . . . , yi−1 = xi−1, yi = xi+1, . . . , yk−1 = xk

q1 = r1, . . . , qi−1 = ri−1, qi = ri + ri+1, . . . , qk−1 = rk.

Then we have

d(yi−1, p
qi(yi)) = d(xi−1, p

ri+ri+1(xi+1)) ≤ d(xi−1, p
ri(xi)) + d(xi, p

ri+1(xi+1))

which justifies (6) showing that the new m-chain is shorter than x0, x1, . . . , xn,
r1, . . . , rn. Note that pri+ri+1(xi+1) makes sense since 0 ≥ ri + ri+1 ≥ ri+1.

If ri ≥ |ri+1| > 0, define the chains in the case k = i + 1 and in the case
k−2 ≥ i exactly as in point (a) in the analogous cases. Note that the definition
yi = p−ri+1(xi) makes sense since 0 ≤ −ri+1 ≤ ri and it is assumed that
pj(xi) ∈ D for all 0 ≤ j < ri. It is easy to see that what is defined here are
m-chains between x and y. The calculations from point (a) show that the new
m-chains are shorter than the old ones. The claim follows.

We say that the distance ρ([x, 0], [y, m]) is realized on an m-chain x0, . . . , xk,
r1, . . . , rk between x and y if

ρ([x, 0], [y, m]) =
k−1∑

i=0

d(xi, p
ri+1(xi+1)).

In particular, the second minimum in (5) is less than or equal to 2∆.

Claim 2. Assume that the distance ρ([x, 0], [y, m]) is realized on an m-chain
x0, . . . , xk, r1, . . . , rk between x and y. Then one of the following two conditions
holds:

(a) x1 is cyclic and (k = 1 or (k = 2 and r2 = 0));
(b)

∑n
i=1 |ri| < M .

Proof of Claim 2. It is clear that the relation between m-chains of being
shorter does not have cycles, therefore if a distance is realized on a chain,
it is realized on a chain which cannot be made shorter. Thus, the m-chain
x0, x1, . . . , xk, r1, . . . , rk between x and y cannot be shortened. Therefore, by
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Claim 1, it suffices to show that the assumption that all xi with 1 ≤ i ≤ k − 1
are acyclic and conditions Claim 1(b),(c) imply Claim 2(b). Notice that

(8) k max{nx : x ∈ A} < M

since otherwise by Claim 1(b) and (7)

ρ([x, 0], [y, m]) =
k−1∑

i=0

d(xi, p
ri+1(xi+1)) ≥ (k − 1)δ

≥ (
M

max{nx : x acyclic} − 1)δ > 2∆

contradicting ρ([x, 0], [y, m]) ≤ 2∆. By Claim 1(c), we can assume ri ≥ 0 for
all 1 ≤ i ≤ k. (The case ri ≤ 0 for all 1 ≤ i ≤ k is handled similarly.) Each xi

acyclic and therefore 0 ≤ ri ≤ nxi whence by (8)
k∑

i=1

ri ≤ k max{nx : x acyclic} < M

and Claim 2 follows.
We check now that h is an isometry which amounts to proving that

ρ([x, 0], [y, 0]) = d(x, y).

Note that since x0 = x, x1 = y and r1 = 0 is a 0-chain between x and y,

ρ([x, 0], [y, 0]) ≤ d(x, y) < 2∆

holds obviously and implies that ρ([x, 0], [y, 0]) is realized on a 0-chain. Fix
such a 0-chain x0, x1, . . . , xk, r1, . . . , rk between x and y.

If Claim 2(a) holds for this chain, then we have r1 =
∑k

i=1 ri = 0 mod 2M ,
hence mx1 |r1 and therefore pr1(x1) = x1. If k = 1, we get d(x0, p

r1(x1)) =
d(x0, x1) = d(x, y). If k = 2, since r2 = 0, we have

d(x0, p
r1(x1)) + d(x1, p

r2(x2)) = d(x0, x1) + d(x1, x2) ≥ d(x, y).

Thus, d(x, y) ≤ ρ([x, 0], [y, 0]).
If Claim 2(b) holds, then, since

∑k
i=1 ri = 0 mod 2M , we get ri = 0 for each

1 ≤ i ≤ k. Thus,
k−1∑

i=0

d(xi, p
ri+1(xi+1)) =

k−1∑

i=0

d(xi, xi+1) ≥ d(x0, xk) = d(x, y),

and we are done.
To check point (iii), we need to prove that p̃M ¹ Z = idZ and to compute

ρ([x, 0], [y, M ]). (See the remark following the statement of Theorem 3.2.) For
x ∈ Z, p̃M (x) = pM (x) = x since mx divides M .

Now we compute ρ([x, 0], [y, M ]). If this distance were realized on an M -chain
x0, x1, . . . , xk, r1, . . . , rk between x and y fulfilling Claim 2(b), then

∑n
i=1 ri =
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M mod 2M leads to a contradiction. Thus, if the distance is realized on an
M -chain, the chain fulfills Claim 2(a). We have now two situations: either Z is
empty or not.

Assume first that Z = ∅. Since there are no cyclic points, ρ([x, 0], [y, M ]) is
not realized on an M -chain fulfilling Claim 2(a). Thus, it is equal to 2∆.

Assume now Z 6= ∅. If an M -chain x0, x1, . . . , xk, r1, . . . , rk realizes the dis-
tance ρ([x, 0], [y,M ]), then x1 is cyclic and either k = 1 or k = 2 and r2 = 0.
In either case r1 = M mod 2M whence M divides r1 and so mx1 divides r1.
Therefore, pr1(x1) = x1. If k = 1, y is cyclic and

ρ([x, 0], [y,M ]) = d(x0, x1) = d(x, y).

If k = 2, it follows that

ρ([x, 0], [y,M ]) = min(2∆, min{d(x, x1) + d(x1, y) : x1 ∈ Z})
= min{d(x, x1) + d(x1, y) : x1 ∈ Z}

as required. ¤

Remark 3.2. The definition of the set underlying the metric space B and of p̃

draws on ideas which are already present in Mackey’s construction of induced
action [6, p.190] (see also [1, 2.3.5]). In the context of extensions of partial
isomorphisms of finite graphs, a similar definition was used by Hrushovski in
[3]. The new ingredients here are the choice of M , the definition of the metric
on B and the arguments concerning it.

4. Consequences for isometry groups

The present section contains derivations from Theorems 2.1 and 3.2 of prop-
erties of the structure of conjugacy classes of the isometry groups of the rational
Urysohn metric space and the Urysohn metric space (Corollaries 4.1 and 4.4).
These properties have broader consequences as described in Corollaries 4.3 and
4.5.

Let G be a Polish group and let n ∈ N. By the diagonal action of G on Gn

we understand the action

G×Gn 3 (g, (h1, . . . , hn)) → (gh1g
−1, . . . , ghng−1) ∈ Gn.

This is a generalization of the conjugacy action of G on itself which we obtain
by setting n = 1 in the above definition. Slightly abusing the notation, we will
write gh̄f for (gh1f, . . . , ghnf) where g, f ∈ G and h̄ = (h1, . . . , hn) ∈ Gn. We
say that h̄ ∈ Gn is cyclically dense for the diagonal action of G on Gn if for
some g ∈ G, {gkh̄g−k : k ∈ N} is dense in Gn. A point h̄ ∈ Gn is generic for
the diagonal action of G on Gn if its orbit with respect to this action is a dense
Gδ.
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If X is a Polish metric space, by Iso(X) we denote the group of all isometries
of X with the pointwise convergence topology. With this topology Iso(X) is a
Polish group with composition as group operation. If A ⊆ X, by IsoA(X) we
denote the closed subgroup of Iso(X) consisting of all the elements which fix
each point in A.

Corollary 4.1. Let A ⊆ U0 be finite. For each n ∈ N the diagonal action of
IsoA(U0) on IsoA(U0)n has a point which is cyclically dense and generic.

We start with a lemma.

Lemma 4.2. Let A ⊆ U0 be finite and let n ∈ N. Assume that φ̄ ∈ Iso(A)n and
χ ∈ Iso(A) are given. Then there exist f̄ ∈ Iso(U0)n and h ∈ Iso(U0) extending
φ̄ and χ, respectively, such that

{hmf̄h−m : m ∈ N} = {ḡ ∈ Iso(U0)n : ∃m ∈ N ḡ ¹ An = χmφ̄χ−m}.

Proof. The corollary is derived from Theorems 2.1 and 3.2 by a back-and-forth
argument. An isometry between two finite subsets of a U0 will be called a finite
isometry. Recall that for a finite isometry p, Z(p) stands for the set of all cyclic
points of p, that is, points x for which pi(x) is defined for all i ∈ N.

The inclusion ⊆ holds for any isometric extensions of φ̄ and χ. Therefore, we
construct such extensions f̄ and h so that the opposite inclusion holds. In fact, it
suffices to make sure that for any n-tuple of finite isometries γ̄ extending φ̄ there
is m ∈ N with hmf̄h−m extending γ̄. By the standard back-and-forth inductive
argument, we construct f̄ and h by producing n-tuples of finite isometries φ̄k

and finite isometries χk, k ∈ N, such that f̄ is the common extension of all the
φ̄ks and h is the common extension of all the χks. The inductive step, which
produces φk and χk or φ̄−1

k and χ−1
k depending on whether k is even or odd, is

equivalent to the following:
Assume we are given x ∈ U0 and a finite isometry χ′ with Z(χ′) = A. Assume

that φ̄′ and γ̄ are n-tuples of finite isometries and that both extend φ̄. Then we
can find a finite isometry χ′′ extending χ′ and an n-tuple of finite isometries φ̄′′

extending φ̄′ such that the domains of χ′′ and of each component of φ̄′′ contain
x, Z(χ′′) = A and, for some M ∈ N, φ̄′′(χ′′)−M extends (χ′′)−M γ̄.

We accomplish it as follows. Let A1 be the union of {x} and the domains and
ranges of χ′ and of the components of the n-tuples γ̄ and φ̄′. Use Theorem 2.1 to
find an extension of φ̄′ to φ̄′′1 ∈ Iso(A2)n with A1 ⊆ A2 and with A2 finite. (Note
that by Theorem 2.1 we can find a finite rational metric space A2 isometrically
embedding A1 as above. By universality and ultrahomegeneity of U0 with re-
spect to finite rational metric spaces, we can assume that A1 ⊆ A2 ⊆ U0.) Now
use Theorem 3.2 to find a natural number M and a finite isometric extension
χ′′1 : B → B of χ′ with A2 ⊆ B. (Again universality and ultrahomogeneity of
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U0 are used here.) Define

χ′′ = χ′′1 ¹
⋃

0≤i≤M−1

(χ′′1)
i(A2).

The function φ̄′′1 is defined on An
1 while (χ′′1)

−M γ̄(χ′′1)
M is defined on (χ′′1(A1))n

(by Theorem 3.2(i)). In particular, both these functions contain Z(χ′)n = An

in their domains. The restriction of φ̄′′1 to An is equal to φ̄ as is, by Theo-
rem 3.2(iii), the restriction (χ′′1)

−M γ̄(χ′′1)
M to Z(χ′)n = An. Let φ̄′′ be an n-

tuple of finite isometries which is a common extension of φ̄′′1 and (χ′′1)
−M γ̄(χ′′1)

M

and which exists by Theorem 3.2(iii) and Lemma 3.1. Also by Theorem 3.2(ii),
we have Z(χ′′) = Z(χ′). Now φ̄′′ and χ′′ are as required. ¤

Proof of Corollary 4.1. Fix n and consider the diagonal action of IsoA(U0) on
IsoA(U0)n. It is easy to see that cyclically dense elements, once they exist, form
a dense Gδ. Thus, it suffices to prove the existence of a cyclically dense element
and, separately, the existence of a generic element.

The existence of a cyclically dense element is just a special case of Lemma 4.2
with φ̄ being the n-tuple of the identity maps on A and χ being the identity
map on A.

Theorem 2.1 implies the existence of a generic element by the methods of [5,
Theorem 5.2]. A proof of this implication with A = ∅ is included in the remarks
following Theorem 5.2 in [5]. The following simple argument derives the case
of arbitrary finite A from the particular case A = ∅. Let C be a comeager orbit
in Iso(U0)n. Pick h̄ ∈ C ∩ IsoA(U0)n. Then for some g0 ∈ Iso(U0)

{gg0h̄g−1
0 g−1 : g ∈ IsoA(U0)n}

is contained in IsoA(U0)n and non-meager in it. It follows that h̄0 = g0h̄g−1
0

is in IsoA(U0)n and its orbit with respect to the diagonal action of IsoA(U0) is
non-meager. Since by (i) this action has a dense orbit, each non-meager orbit
is in fact comeager, hence a dense Gδ by Effros’ theorem (see [1, 2.2.2]). ¤

The authors of [5] define a Polish group G to have ample generics if for each
n ∈ N the diagonal action of G on Gn has a generic element. So, Corollary 4.1
implies that Iso(U0) has ample generics. As shown in [5, Section 5] existence of
ample generics in a Polish group has strong consequences for the structure of
the group. The following corollary is an immediate consequence of Corollary 4.1
and [5, Theorems 5.7, 5.9, 5.21].

Corollary 4.3. The Polish group Iso(U0) has the following properties:

(i) any subgroup of it of index < 2ℵ0 is open;
(ii) it is not the union of countably many cosets of non-open subgroups,

in particular, it is not the union of a countable sequence of non-open
subgroups;
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(iii) any homomorphism from it to a topological separable group is continu-
ous.

Let U be the Urysohn metric space. Since by [4, Lemmas 6.19, 6.20] the
isometry group of U0 embeds into the isometry group of U as a dense subgroup,
Corollary 4.1 implies the following result.

Corollary 4.4. All the diagonal actions of Iso(U) have cyclically dense ele-
ments.

Remark 4.1. The proof from [4] and the proof of Corollary 4.1 yield also that,
given a finite subset A of the Urysohn metric space U, the diagonal actions of
the group IsoA(U) have cyclically dense elements. For other Polish groups with
this property see [5, Theorem 1.10] and the references quoted in that paper.

Remark 4.2. Kechris and Rosendal [5, Theorem 1.2] and, independently, Glas-
ner and Pestov proved a precursor to Corollaries 4.1 and 4.4. They showed that
Iso(U0) and Iso(U) have elements with dense conjugacy classes.

An interesting consequence of Corollary 4.4 which strengthens, for metric
groups, a theorem of Morris and Pestov [8] was pointed out to me by Alekos
Kechris. By [11] Iso(U) is a universal Polish group, that is, each Polish group
is isomorphic to a closed subgroup of it. Now Corollary 4.4 for the diagonal
action with n = 1 implies immediately that Iso(U) is topologically 2-generated,
that is, there are two elements of it which generate a dense subgroup. Thus,
we obtain Corollary 4.5 below. This result implies that each metric separable
group is contained in a metric separable topologically 2-generated group. This
is a topological analog of the classical Higman–Neumann–Neumann theorem
and was proved by a very different method by Morris and Pestov [8, Corollary
1].

Corollary 4.5. There exists a universal Polish group which is topologically
2-generated.
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