Extending Persistence Using Poincaré and Lefschetz Duality

David Cohen-Steiner • Herbert Edelsbrunner • John Harer

Published online: 8 January 2009
© SFoCM 2008

Erratum to: Found Comput Math DOI 10.1007/s10208-008-9027-z

The authors would like to thank Paul Bendich for pointing out calculation mistakes in the proof of the Symmetry Theorem. The corrected version together with the modified introductory text is given below.

Symmetry As before, K is a triangulation of a d-manifold and f is defined by a real-valued function on the vertex set. We claim that duality implies that persistence is symmetric in the sense that f and $-f$ give the same diagrams up to reflections

[^0]and dimensions. However, this time we use the superscript R to indicate reflection across the minor diagonal, mapping a point (x, y) to $(-y,-x)$, and the superscript 0 to indicate reflection through the origin, mapping (x, y) to $(-x,-y)$.

Symmetry theorem For a real-valued function f on a d-manifold, we have

$$
\begin{aligned}
\operatorname{Ord}_{r}(f) & =\operatorname{Ord}_{d-r-1}^{R}(-f), \\
\operatorname{Ext}_{r}(f) & =\operatorname{Ext}_{d-r}^{0}(-f), \\
\operatorname{Rel}_{r}(f) & =\operatorname{Rel}_{d-r+1}^{R}(-f),
\end{aligned}
$$

for all dimensions r.

[^0]: Communicated by Konstantin Mischaikow.
 The online version of the original article can be found under doi:10.1007/s10208-008-9027-z.
 D. Cohen-Steiner

 INRIA, 2004 Route des Lucioles, BP93, Sophia-Antipolis, France
 H. Edelsbrunner (\boxtimes)

 Department of Computer Science, Duke University, Durham, NC, USA
 e-mail: edels@cs.duke.edu
 H. Edelsbrunner

 Geomagic, Research Triangle Park, NC, USA
 J. Harer

 Department of Mathematics and Center for Computational Science, Engineering and Medicine, Duke University, Durham, NC, USA

