
Extending Promela and Spin 
for Real Time 

Stavros  Tripakis* 
Costas  C o u r c o u b e t i s  *t 

ABSTRACT The efficient representation and manipulation of time infor- 
mation is key to any successful implementation of a verification tool. We 
extend the syntax and semantics of the higher level specification language 
Promela to include constructs and statements based on the model of timed 
Bfichi automata [2]. We implement these extensions on top of the verifica- 
tion tool Spin. 

1 Introduction 

Promela [8] is a language for the specification of  interactive concurrent sys- 
tems. Such systems consist of  a finite number  of  separate components, which 
act  independent ly  one from another ,  and interact  th rough  the exchange of 
messages over message channels. A large par t  of these systems, including 
communica t ion  protocols ,  asynchronous  circuits, traffic or flight controllers, 
and  rea l - t ime  opera t ing  systems can be character ized as real-time systems. 
This  character iza t ion comes from the following two observations : 

1. the  correct  funct ioning of  those systems depends on the t imely coor- 
dinat ion of  their interact ing components  ; and, 

2. informat ion  is available about  the time delays encountered during the 
opera t ion  of  sys tem processes. 

The  first observat ion is crucial when t ry ing to ensure tha t  the system meets  
its requirements.  The  second one can be used to develop a more  efficient 
sys tem : knowing with cer ta inty some facts about  the delays in a sys tem 
can lead to concluding tha t  a number  of  behaviors are impossible, and 
therefore,  can be ignored dur ing sys tem design. 

Tradi t ional  formalisms for tempora l  reasoning deal only with the qualita- 
tive aspect  of  t ime, t ha t  is, the order of certain system events 1. However, 

*Department of Computer Science, University of Crete, Heraklion, Greece, and In- 
stitute of Computer Science, FORTH 

tPartially supported by the BIZA ESPRIT project REACT. 
tAn example of a qualitative time property is : "the green light is never switched on 
after the red one and before the orange one" 



330 

real-t ime systems often demand for a quantitative aspect of time, tha t  
is, taking into consideration the actual distance in time of certain system 
events 2. Hence our motivation to extend Promela for real time. We con- 
sider time as dense, i.e., an unbounded (although finite) number of events 
can occur between two successive time moments. 

An untimed Promela program consists of a collection of components 
which interact asynchronously. Optionally, a special component can be 
specified, (called the never-claim) which interacts with the rest of the 
system synchronously, and models the complement of the desired system 
behavior. In the absence of the never-claim, wrong behaviors are coded ex- 
plicitly into the components in terms of non-progress conditions. In either 
case, the correctness of the system can be reduced to a language--emptyness 
problem. 

Our verification method consists in considering emptyness of timed B~chi 
automata (TBA) [6, 2] which are B/ichi automata extended with a finite 
number of clocks. Based on a timed Promela specification, we construct 
the equivalent (modulo operational semantics) TBA, and then check if the 
timed language of the latter is empty. 

The work described in this document has been, first of all, to extend the 
syntax and semantics of untimed Promela for docks and time information. 
We call this extended language Real-Time-Promela (RT-Promela) .  Next, 
we have implemented the TBA verification procedure on top of Spin [9], 
obtaining RT-Spin, a tool for the verification of RT-Promela  programs. 
Care has been taken, so that  the TBA analysis is absolutely compatible 
with the existing search algorithms used in untimed Spin. Finally, one of 
our contributions has been the description of a formal semantics of both 
untimed and RT-Promela,  based on untimed and timed transition systems, 
respectively. 

The rest of this document is organized as follows. Section 2 is a short 
overview of t imed languages and automata.  In section 3 we review Promela, 
give its operational semantics in terms of transition systems, and define 
the verification problem in the untimed case. RT-Promela  is presented in 
section 5 in the same manner : syntactic extensions, semantics in terms 
of t imed transition systems, verification reduced to language emptyness. 
In the appendix, we also describe trace semantics for individual untimed 
and RT-Promela  processes, and show how one can derive the semantics of 
the complete specification in a compositional way. Experimental results are 
presented in section 6. 

~An example of a quantitative time property is : "the orange light will always be 
switched on at least 5 time units after the red one, followed in at most 0.5 time units 
by the green one" 



331 

2 Timed languages and timed Biichi automata 

A Bfichi a u t o m a t o n  (BA) is a nondeterminis t ic  finite-state machine A -- 
(E, S, Tr ,  So, F) .  Z is the  input  alphabet ,  S is the set of  states,  So the set 
of  initial states,  and  F the  set of accepting states. T r  E S x Z x S is the 
t rans i t ion  relation. If  (s, a, s') C T r  then A can move from s to  s '  upon  
reading a. 

A trace or input  word is an infinite sequence a = ala2.. . ,  ai E Z, while a 
run  over a is an infinite sequence so ~-4 sl ~-~ ...,so E So,(si ,a~+l,S~+l)  
Tr ,  i = 0, 1, .... A run  r is said to  be accepting iff there exists a s tate  f E F 
such t h a t  f appears  infinitely often in r. The  language C.(A) of A is the  set 
of  all t races  a such tha t  A has an accept ing run over a. 

A t imed t race  or  word is a pair  (a, ~'), where a is a t race and  r is a t ime se- 
quence, i.e., an infinite sequence r l ,  r2, ..., T~ ~ R +. We only consider str ict ly 
increasing, non-zeno  t ime sequences, i.e., T~ < TiT 1 and Vt E R3i, ri > t. 
This ensures t ha t  t ime progresses, t ha t  is, does not  converge to  a bounded  
value a. A t imed language is a set of  t imed traces. 

A T B A  is a tuple  A -- (Z, S, Tr ,  So, F, C) ,  where E, S, So and F are as 
in a BA,  and C is a finite set of  clocks. A t ransi t ion in T r  has the  form 
( s , a , s ' , R , # ) ,  where R C C are the  clocks to be reset to  zero, and # is a 
clock constraint (or guard), t h a t  is, a boolean conjunct ion of  a toms of  the 
f o r m y  < k , k  < y , x - y  < k a n d k < x - y  for two c locksx ,  y C C ,  and  
an integer cons tant  k E N. 

Given a t imed  word (a, r ) ,  A starts  at a state So E So at  t ime 0. All the 
clocks of  A are active, initialized to  zero, and increase at  the same rate.  
At  t ime r l  the symbol  a l  is read and the  a u t o m a t o n  takes a t rans i t ion  
fro = ( s o , a l , S l , R l , # l ) ,  only if the  values of the clocks satisfy #1. The  
t rans i t ion  is ins tantaneous,  t h a t  is, no clocks change, except f rom the ones 
belonging in R1 which are reset to zero. At  t ime T2 a new input  symbol  is 
read,  the next  t rans i t ion  is chosen, and so on. 

More formally, a run (~, ~) of  a T B A  over a t imed word (a, T) is an  infinite 

sequence (so,vo) ~ ( s l , v l )  ~2,~2 ...,v~ E RlCl such t h a t  so E So ,Vx  e 
C, Vo(x) = 0, and Vi = 1,2, ..., (8 i - l , q i , s i ,R . i , l i i )  E Tr ,  (vi-1 +ri  - r i - 1 )  
Izi, and Yi = Y i - l [R i  := 0] 4. If  such a run  exists, then (0r, T) is t iming 
consistent.  (a, v)  is accept ing iff it is t iming consistent and there exists a 
s tate  f E F such t h a t  f appears  infinitely often in a. The  t imed language 
s  of  A is the set of  all t imed traces (a, T) such tha t  A has an accept ing 
run  over (a, v). Languages  accepted by T B A  are called t imed regular. I t  
is shown t h a t  t hey  are closed under  union and intersection, bu t  no t  under  
complement  [1]. 

SAn example of a zeno time sequence is 0, 1/2, 3/4, 7/8, .... 
4The vector vi is called a clock valuation, v[R := 0] is the valuation p~ such that 

Vx E R,~,'(x) = 0 and Vx E C \ R,v'(x) = v(x). For t e R, v + t  is v' such that 
Vx E C, vl(x) ~- v(x) + t .  Finally, we write v E # if v satisfies ~. 



332 

The synchronous product of two TBA A1 and A~ is a TBA A = A1 | 
such that  s -- s A s 

3 Untimed Promela 

3.1 Language  s u m m a r y  

Promela 5 programs consist of processes, message channels, and variables. 
A specification in Promela consists in two parts : the system specification 
part (system, for short) and the property specification part (the never- 
claim, which is optional). In the first, a number of process types are de- 
dared which are then instantiated into real processes at run time. A process 
(usually init) can create other processes (of a certain type) by means of the 
run statement. Processes execute their statements asynchronously, except 
in the case of atomic statements, or rendez-vous handshakes. 

The syntax of the never-claim is just like any other process. However, 
at most one never claim can be present in the specification. Moreover, it 
should not participate in the execution of the system, but rather monitor 
it. By this we mean that  every statement inside a claim is interpreted as a 
condition, and should not have side effects (i.e., send or receive messages, 
set global variables, execute run statements etc.). Since the system and the 
claim operate synchronously, the latter can observe the system's behavior 
step by step, and catch errors. 

3.2 The  Prome la  seman t i c s  

The operational semantics of an untimed Promela program P will be spec- 
ified in terms of a transition system iTS), i.e., a (possibly infinite) graph 
T = (Q,-~), where Q is the set of nodes, and --+c_ Q • Q the set of 
edges. For matters of simplicity, we consider a known number of processes 
Po,P1, ...,Pro which are active right from the start. By convention, P0 will 

be the never claim, if specified, otherwise, P0 de f { do:: skip od }. 
The state of the system is completely described by the contents of chan- 

nels and memory (global and local variables), as well as the control location 
of each active process Pi. Let gv (resp. lvi) be the vector representing the 
current values of global variables (resp. local variables of Pi), and li be the 
location of Pi. The location just after the opening bracket { (resp. just 

e t  I 
before the closing bracket }) is starti (resp. endi). We write li-~l i iff there 
is a statement st from li to l~. The variable vectors after executing st are 
st[gv] and st[lv~]. 

5The reader can refer to [8, 9, 10] for a complete presentation of untimed Promela. 



333 

So, s tates  of  Q are of  the form q = ( l o , l l , . . . , l m , l v o , l v l , . . . , l v m , g V ) .  A 
l l ~ l "  of Pi is enabled at q iff l~ = li and : s t a t emen t  _~__~ 

1. ei ther  s t i  is an  assignment,  skip, or condit ional  s ta tement  satisfied at 
q ;  

2. or  st i  is an  asynchronous  send (resp. receive) to a non-full (resp. f rom 
a non-empty)  channel ; 

3. or  s t i  is a rendez-vous send and there exists a rendez-vous receive 
I " ~ "  . I = lj l~:41~ such t h a t  l~ . 

s t  ! 

Then,  t r  = (q, q') E m  iff there exists a s ta tement  l o l l  o of P0 enabled at 
q, and  : 

1. e i ther  there exists a s ta tement  li I i of Pi enabled at q such tha t  
q' = ( l~, ..., l~, ..., l,~, sto[lvo], ..., st,[lvi], ..., lvm, sti[sto[gv]]) ; 

. 
s t .  I s t ,  I 

or there exists a rendez-vous pair  li::41i, lj:i$lj enabled at q such tha t  
q' = (l~, ..., l~, ..., l~, ..., Ira, sto[lvo], ..., sti[lv4, ..., st~ [lv~], ..., lvm,  gv ' ) ,  
where gv'  = sti[stj[sto[gv]]]) ; 

3. or no s ta tement  of  any process P i , i  > 0 is enabled at q (such a state 
is called a deadlock one) and q ' =  (l~, ...Ira, sto[lvo], . . . lvm, sto[gv]) 6 

The  initial s ta te  of  T is q0 = (s tar to ,  ..., s t a r t m ,  lvio nit, ..., .v  init, gvini t ) .  A 
path  of T is a sequence qo, ql, . . ,  such tha t  (qi, qi+l) E-+. 

3 . 3  V e r i f i c a t i o n  i n  u n t i m e d  P r o m e l a  

The  correctness  cri teria of P are implied by the various types of  analysis 
per formed using the tool Spin. Locat ions can be optionally labeled as end, 
accept, or  progress. For a s tate  q = ( lo , l l , . . . , Im , . . . ) ,  we define end(q)  = 
{li I l i  = end~ or l~ is labeled as end }, and accept(q)  = {l~ { li is labeled as 
accept  }. A deadlock state q is called valid iff Vi = 1, .., m ,  li E end(q) .  We 
say t h a t  P is : 

1. deadlock free iff all deadlock states are valid ; 

. w-cor rec t  iff for each infinite pa th  p, if ql, ...qk is the set of  s tates  
appear ing  infinitely m a n y  t imes in p, then Vi = 1, ..., k,  accept(qi)  = 0 
(i.e., there  is no  cycle passing by a locat ion labeled as accept). 

6This case corresponds to Promela's claim-stuttering semantics. 



334 

4 Time extensions 

stmnt : := 
timed_stmnt ::= 

I 
I 

/~ ::---~ 
ineq : : -  

clock ::= 
op ::= 

Here are some examples of t imed statements : 

when{x < 4, x >_ 2} reset{x} 
when{z < 1, y > 1} reset{x, z} 
when{x[i] = =  1} 

4.1 Syntax 

First of all, we add the type clock to the declarations of Promela variables. 
Clock variables can be scalar or arrays, and are declared globally 7. Here 
is an example of the declaration of clocks : 

clock x, y, z[5]; 
Next, each statement is expanded with an optional time part ,  according 

to the following grammar rules : 

untimed_stmnt I timed_stmnt 
'when' ' { ' /~  ' } '  untimed_stmnt 
'reset' ' { '  R ' } '  untimed.stmnt 
'when' ' { '  # '}~ 'reset' ' { '  R ' } '  untimed_stmnt 
clock ',' R 
ineq ', '  # 
clock op int I clock op clock '+~ int 
x,y,z E C I x '[' expr ']' 

,<, i ,>,  i , < = ,  i , >= ,  i , - - ,  

B!mymesg ; 
a = a tb  ; 
goto error ; 

The guard/~ is interpreted as the conjunction of the inequalities it consists 
of, e.g., "when {x < 4, x > 2}" stands for "when {x < 4 A x >_ 2} ' .  There 
is no way to express disjunctions using a single statement. Instead, one 
should use a branching nondeterministic statement, like : 

if 
:: when{x < 4} reset{x} stmnt_part 
:: when{x >_ 2} reset{x} stmnt_part 
fi 

The reason for the above restriction will be clear in section 5, where we 
discuss our verification methodology. 

4.2 The RT-Promela  Semantics 

The semantics of a RT-Promela  program P is a timed TS (TTS) (Q~, - ~ ) .  
States of Q~ are of the form (q, u) where q is as in section 3.2 and y is a 
clock valuation. A timed statement (st, R, #) is enabled at (q, v) if st is 

7The reason for this is that the clock-space dimension cannot change at run time. 



335 

enabled at q and v E #. The transition relation ---~ contains two types of 
transitions : 

1. Action transitions, ((q, v), (q', v')) (defined as in section 3.2). Each 
such transition is associated with a pair (resp. triple) of timed state- 
ments (sto, Ro, #o), (sti, Ri, #i) (resp. and (sty, R~, #j)) which are en- 
abled at (q,~,) (this implies v E #0 A#iA#j ) .  Let R be RoURi (resp. 
Ro U Ri U Rj). Then, y' = v[R := 0]. 

2. Time transitions, ((q, v), (q, v + 5)), for 5 E JR+. 

The initial state of T is (qo, 0), 0 = (0 .... ,0) E ]RI+ el. The correctness crite- 
ria of a RT-Promela program are identical to those defined in section 3.2 
except that  instead of T we consider (QT, __+T). 

5 Verification using RT-Promela 

Our aim is to reduce the verification of the correctness criteria of RT- 
Promela programs to verification of TBA emptyness, following the ap- 
proach of [5]. For a RT-Promela program P, we define two TBA A~ and 
A~ ~ one for each correctness criterion. 

5.1 The TBA defined from a RT-Promela program 

Then, A~ de__~ (Q, Q, Tr, {qo}, F, C), where Q, qo are as in section 3.2, C is 
the set of declared clocks, F = {q I accept(q) ~ 0}, and (q, a, q~, R, #) E Tr 
i f f a  = s  a n d #  = # o A # ~ , R = R o U R i  ( o r # o A # i A # ~ , R o U R ~ U R j ,  
respectively, in the case of a rendez-vous handshake). 

Similarly, A~ ~ de=f (Z', Q u {end}, Tr', {qo}, F ' ,  C), where E' = Q u 
{aend}, F' = (end}, and end ~ Q. Tr' is obtained by adding to Tr a a 
transition (q, aend, end, 0, true) for each invalid deadlock state q, plus the 
loop (end, aend, end, 0, true). 

The following follows directly from the above definitions. 

T h e o r e m  5.1 * P is deadlock free iff f-(A~ ~ = O. 

�9 P is w-correct iff s  = 0. 

Let s be a timed language s Its untimedprojeetion is defined as unt(s = 
{a I 3v s.t. (a, r) e ~:}. Then, unt(F.) = 0 iff 1: = 0 [1]. Thus, it suffices to 
check the emptyness of unt(s176 and unt(s 

T h e o r e m  5.2 [[1]] For each TBA A there exists a BA U accepting unt(f(A)).  

Intuitively, U will also have an extended state space, each state (q, a) con- 
taining, apart from the state q of A, the set a of all possible clock valuations. 



336 

The latter is generally infinite, due to dense time. To represent such a set, 
the valuation space RlOl is partit ioned into a finite number of equivalence 
classes. Two members u and u j of a class c~ are equivalent in the sense 
that ,  if v belongs to an accepting run (s0,u0) ~1,~1 (sl,ul) ~2,~ ... ~,~ 
(s~, y) ~'~fl'~+~ (S~+l, U~+l)..., then it can be substituted by v j, which gives 

another accepting run (so, u0) ~ ' ~  (sl, vl) ~2'~ ... ~"~ (s~, v') v,~:r~+~ 
(s~+l, u~+ 1)..., so that  the untimed projections of the two runs are the same. 

5.2 Checking emptyness  e]flciently 

Checking whether s = 0 is reduced to a reachability analysis (depth- 
first search) seeking loops which pass by accepting states. The state space 
of U is constructed on-the-fly, i.e., during the dfs. Notice that  if Q is finite, 
then the state space of U is also finite, since the set of equivalence classes 
Ca is finite. Therefore, termination is ensured. 

Each control state q can be visited up to ]Ca] times. This number depends 
on the number of clocks and the constraints, and can be quite large. Thus, 
we would like to be able to do the analysis in terms of unions of equivalence 
classes. Such a union is called a clock region, noted CR. Our goal is to find 
an efficient way to represent clock regions. 

A very popular representation uses difference bounds matrices (DBMs) [6]. 
DBMs are inexpensive as far as storage is concerned. Moreover, they are 
simple and require low-cost operations. Briefly, a DBM is a square ma- 
trix which describes a very simple system of linear inequalities, of the 
same form as time constraints, tha t  is, x op k, or x op y + k, where op 
E {<,  >,  <,  >, =},  and k is a positive integer constant. Assuming the di- 
mension of a matr ix D to be n • n, the set of vectors u E R n which satisfy 
the corresponding inequalities will be denoted u(D). This set is convex. 
Then, the idea is to represent a clock region CR by a DBM D, so that  
v(D) = CR. At each step during the reachability analysis, a new DBM 
is computed by transforming the old one. For this, we use a small num- 
ber of low-cost operations described briefly below. The reader can refer to 
appendix 1.3 for the precise definitions. 

The intersection of two DBMs corresponds to the intersection of their 
regions. The time-elapse transformation yields a new DBM which contains 
all time-successor valuations of the old one, by letting an arbitrary amount 
of time (possibly zero) elapse. The clocks-reset transformation yields a new 
DBM where some clocks are reset to zero. 

In general, more than one DBMs can be used to represent the same set 
of dock valuations. This is due to the fact that  the bounds found in certain 
inequalities are not "strict" enough. Nevertheless, it is possible to obtain the 
canonical form of a DBM, which is its unique, "minimal" representative. 
Let cf(D) denote the canonical form of a DBM D, and D1, D2 be two 
different matrices. Then : v(D1) = v(D2) ~:~ cf(D1) = cf(D2). 



337 

The use of canonical form reduces the test  for equality of two matrices 
to a test  for the equality of their canonical forms. This is in turn reduced, 
at  the implementat ion level, to a test  for pointer equality, since all DBMs 
are usually stored in a hashing table. The rest of the DBM operations are 
also simplified by the use of canonical forms. 

During the series of transformations,  it is possible tha t  the resulting 
DBM does not "cover" exactly a clock region. Indeed, a clock region is a 
union of equivalence classes, which is not always convex, while the region 
represented by a mat r ix  always is. In tha t  case the matr ix  can be enlarged 
to include as many  points of the region as possible, resulting in a canonical 
representat ion s. This process is called maximization. For a DBM D, and 
the maximized one, max(D)  the following property holds for all other DBM 
D ~ : 

(Vc~ ( a n  u(D) ~ 0 r ~ n u(D') ~ 0)) ~ u(D') C u(max(D)),  
where a ,  as usual, denotes an equivalence class. 

To prove the correctness of our approach, let us define another  au toma-  
ton, called the DBM automaton, denoted ADBM. This plays the same role 
as U, following exactly the same runs as A does, and keeping track of the 
possible clock positions at each step. 

For a TBA A = (E, Q, Tr, Qo, F, C), we define ADBM de__f (•, Q,, Tr' ,  Q'o) 
such tha t  : 

�9 the states of ADBM are of the form (q, D), where q E Q and D is a 
DBM ; 

�9 the initial states of ADBM are of the form (q0,Do), where q0 6 Q0 
and Do is the DBM such tha t  u(Do) = {0} ; 

ADBM has a transit ion ((q, D), a, (q', D'))  iff (q, a, q', R, #) 6 Tr, and 
D '  is obtained by D by the following sequence of DBM transforma- 
tions : 

D,  6 ) D ~ , u ~ D u ~ D c] [n:=~] D~ ~na~ DmaX = D'. 

In the above sequence,, ~ ~ represents the t ime-elapse transformation,  tha t  
is, Vu E u(D), ~ > O, u + ~ E u(DS). , ~ ) represents the intersection with 

the constraint #, tha t  is, Vu E u(DU), u satisfies #. [n:=~] represents the 
clock resets, tha t  is, Vu E u(D~ x E R, u(x) = O. Finally, ma~ represents 
the maximizat ion process. Intuitively, the whole series of t ransformations 
corresponds to the fact that ,  being in a state, the system lets the t ime pass 
first (this can be zero time) and then executes a s ta tement  instantaneously, 

s i t  is not wrong to add these extra points, since each one of them is equivalent with 
at least one point in the matrix, thus satisfies exactly the same properties regarding the 
evolution of the system in time. 



338 

moving to another state. In order for the transition to be taken, the time 
constraints must be satisfied. At the same moment, a number (possibly 
zero) of clocks are reset to zero. 

Not all paths which are discovered during the reachability analysis are 
valid. Indeed, the presence of time gives meaning only to those infinite 
executions for which time progresses without bound (recall non-zeno timed 

traces, defined in section 2). A run of ADBM, r ---- (80, Do) ~ (Sl, D1) ~-~ ... 
over a trace q, is progressive iff for each clock x E C : 

1. t he re  are infinitely many i 's such that  D~ satisfies (x -- 0) V (x > cx), 
where cx is the maximum constant that  appears in an inequality of 
the form x op c~ in the specification ; 

2. there are infinitely many j ' s  such that  Dj satisfies x > 0. 

6 Examples 

We have implemented the method described above on top of the tool Spin, 
developed for the validation of concurrent systems [8], by G. J. Holzmann. 
We have extended Spin to  RT-Spin, which performs reachability analysis 
on the DBM automaton, using as input an RT-Promela  program. 

We have tested our implementation using a number of examples. We 
now present three of them. The first one models a simple system of three 
processes representing a train, a gate, and a controller. The second is a real-  
time mutual-exclusion protocol, due to Fischer [15]. Both these examples 
have been taken from [3]. The third has to do with a general-purpose ATM 
switch [17, 12]. It has been taken from [14], where it has been treated using 
the selection/resolution model [13] and the tool RT-Cospan [18]. 

The systems consist of a number of components, modeled as TBA. R T -  
Promela offers the possibility to use local and global variables, as well as 
channels. We take advantage of this, and we end up with less components 
than those described in the original models. For example, we do not need 
a special automaton to model the global variable in the mutual-exclusion 
protocol. 

The alphabet  of each TBA is a set of events, Automata  synchronize 
their actions through shared events. Such an event can occur provided it is 
enabled in every automaton whose alphabet includes the event. Whenever 
necessary, synchronization in RT-Promela  is done using rendez-vous. 

6.1 Modeling the systems using RT-Promela 

Train, Gate, Controller (TGC) : 

This example deals with an automatic controller tha t  opens and closes 
a gate at a railway track intersection (see figure 1). Whenever the train 



339 

~ 
approach : ~ x i  

e x i y  x:=O in 

x < 5 ~.,,~ >2? 
.~ OUt 

Train 

/#~ approach_l" ~ 

raise [ [ lower 
z<l L ~ffiffil? 

f ~ "~ exit f ~ "h 

Controller 

lower ~ :  
y:=O : q 

up down 
l<y< 17 

ral$O 
- y:=0 

Gate 
w < K / ~  down 

G down w.'=O ~ 
up w<K? 

J up, down 

Monitor ~ K  ? 

FIGURE 1. Train, Gate, Controller 

enters the intersection it sends an approach signal at least two minutes in 
advance to the controller. The controller also detects the train leaving the 
intersection and this event occurs within five minutes after it s tar ted its 
approach�9 The gate responds to lower and raise commands by moving down 
and up respectively within certain time bounds. The controller sends a 
lower command to the gate exactly one minute after receiving an approach 
signal from the train. It commands the gate to raise within one minute of 
the train 's  exit from the intersection. 

The purpose of the verification is to ensure the following safety prop- 
er ty  0 : whenever the gate goes down, it is moved back up within a certain 
upper t ime bound K.  Notice that  this implies that  the gate will eventually 
come up again. Although this is not immediate from the above property, 
liveness conditions that  are associated with each automaton ensure that  
in every infinite trace, process Gate passes infinitely often from state q0, 
therefore executing infinitely often the transition q3 -+ q0 which sets the 
gate up. Returning to the safety property, the automaton Monitor models 
precisely the negation of it, as was explained in section 2. The property is 
satisfied iff the integer constant K is greater than 6. 

9A safety property can be formulated as "never will...". For example "never will 
processes 1 and 2 be found at their critical sections at the same time" 



340 

( 
xffiO 
crit-- 

I = q 
yi:=0 

xffii ]yi < D B 
�9 ~ y i : = O  

J--yi > dC q ~ ,  ) 

Pl  

FIGURE 2. Timed mutual exclusion 

Timed Mutual Exclusion : 

In this protocol, there exist n processes P1,-. . ,Pn, as shown in figure 2. 
A process Pi is initially idle, but  at any time may begin executing the 
protocol provided the value of a global variable x is 0. Pi then delays for 
up to AB time units before assigning the value i to x. It may enter its 
critical section within ~c time units provided the value of x is still i. Upon 
leaving its critical section, it reinitializes x to zero. Global variable crit is 
used to keep count of the number of processes in the critical section. The 
auto-increment (auto-decrement) of the variable is done simultaneously 
with the test (reset of x to zero)�9 This is modeled in RT-Promela  using 
atomic sequences. We need to verify that  no two processes are ever in their 
critical sections at the same time. The property is satisfied iff A s  > ~c. 

A remark needs to be made concerning synchronization between more 
than two processes�9 In this case, two or more channels are necessary. The 
trick is to build a chain reaction of receive/send atomic moves in order to 
propagate the system event to all processes. The method is presented in 
appendix 1.2 through an example. 

Veri .lying the round-trip delay of an ATM switch : 

An ATM switch is a chip used as part  of the Asynchronou~ Transfer Mode 
network protocol for Broadband Interactive Services Data Networks (B-  
ISDN)o It  consists of four input and four output  links, each one of 400 
Mbits/sec bandwidth. In ATM, information is transferred in cells of fixed 
length (53 bytes)�9 These cells are routed using virtual circuits 1o (VCs), 
which have different priorities. The flow-control mechanism uses a special 
packet called token, which signals to the sender that  the receiver is ready to 
accept a new high-priority cell�9 Each chip has a flow-control buffer storing 
the incoming tokens, as well as a cell buffer, used to store the incoming 
high-priority cells. 

1~ exist also virtual paths, which are collections of VCs, but will be ignored, 
since the chip itself cannot distinguish them from VCs 



341 

I v i 

~ fl~vard o~ll lo e, hip C ~ CHIPB i 

I CELL BUFFER 

FIGURE 3. Two ATM switches 

In our simplified example, we assume two adjucent chips, A and B (fig- 
ure 3). We are interested in computing the round-trip delay. This is defined 
in [17, 12] as "the delay between the start of two consecutive transmissions 
of cells of the highest priority", since the chips deal with VCs of different 
priorities. We make two assumptions : 

1. Chip A has always a high priority cell waiting to be transmitted to 
B. 

2. A high priority cell which is sent from B to C is not flow-controlled 
by C, tha t  is, chip C is always ready to receive it from B. 

The first hypothesis allows us to ignore the cell buffer of chip A, while 
the second allows us to ignore the flow-control buffer of B. The timing 
assumptions of the system are the following : 

1. each chip operates on a cycle of 54 clock ticks, that  is, between any 
two packet transmissions, there is a delay of exactly 54 ticks ; 

2. the delay between the selection of the next packet to be send and its 
transmission is between 4 and 10 ticks ; 

3. the transmission of a token takes between 11 and 33 ticks ; 

4. the transmission of a high priority cell takes exactly 3 ticks ; 



342 

K states transitions DBMs time memory  
5 (erroneous) 26 33 21 0.2 0.8 

7 (correct) 32 34 23 0.1 0.9 

TABLE 1. R~sults of train, gate, controller 

Based on the above assumptions, we prove tha t  the round- t r ip  delay is 
never greater  than  108 clock ticks, while it cannot be less than  54 ticks. 
In other words, at most  one low priority packet gets t ransmi t ted  between 
any two successive transmissions of high priority cells. The specification in 
R T - P r o m e l a  can be found in appendix 1.1. 

6.2 Proving safety properties 
We used three different methods to verify the properties of the systems 
above. In the case of TGC,  the monitor  process moves to an error state 
marked with an accept label, where it stays forever. We ran the valida- 
tor  with the "-a"  option to search for acceptance cycles. Notice tha t  in 
this simple case, maximization wasn ' t  necessary. Performance results are 
presented in table 2. 

The specification of fischer's mutual-exclusion protocol includes a never 
claim monitoring the system and announcing an error if it finds out tha t  
more than  one processes are in the critical section. We verified the correct- 
ness of the protocol when AB = 1, 5c = 2 for up to 4 processes, while in 
the case of 5 the validator refused to terminate.  On the other hand, the 
erroneous case (AB = 2, 5c = 1) is very little affected by the size of the 
problem, since the error is found and announced early on. We managed  
to ran the wrong case for more than  23 processes. Performance results are 
shown in table 2 11 

Finally, for the ATM switch, we make use of a clock RT which keeps 
count of the round- t r ip  delay, and test  the value of the dock each t ime a 
new high-priori ty cell is sent. I f  RT is between 54 and 108, it is reset to 
zero and the system continues normally. If  the clock is strictly less than  54 
or greater  then 108, the error is announced. Performance results are shown 
in table 2. 

Time is measured in seconds, and memory  in megabytes.  

11 The erroneous version is noted with ,. Non-termination is noted with _L. The num- 
bers in parentheses are those obtained up to the point where the program has been 
stopped. 



343 

H N I version ] 
~23 I * 

5 * 

4 . 

3 , 

2 * 

states transitions DBMs time 
327 352 172 10.1 
93 'i00 46 0.1 

• • (1,269,690) • ~(1,724) 
80 86 39 0.1 

43,490 1,869 ' 3 7 . 5  28,254 
67" 32 0.1 

974 127 0.4 
54 

72 
i,385 

58 
70 54 

17 
13 

0.1 
I 

m e r e .  

1.7 
0.9 

..L" (6) 
0.8 
2.2 
0.8 
1.2 

'"0.8 
0.8 

TABLE 2. R~-sults of Fischer's mutual-exclusion protocol 

I "" states I transitions DBMs I time I mem~ I 
435 I 619 510 I 2.6 I 1.5 I 
TABLE 3. Results of round-trip delay verification 

7 Conclusions 

We have presented the theory and practice of the extensions made to Pro- 
mela to include real-time semantics. The extended language, RT-Promela, 
allows for a special kind of global variables, which represent the clocks of 
the system. The statements of the language can contain simple linear con- 
straints which restrict the possible values of a dock, or the relative values of 
two docks. This changes the executability semantics of a statement, which 
can which can be executed only if, in addition to the restrictions imposed 
by standard Promela, the constraints do not come against the current state 
of the clocks. The execution of a statement can affect a clock by resetting 
it to zero. 

The semantics of a specification in RT-Promela are given in terms of 
timed transition systems. The problem of verification is reduced to checking 
if the set of all possible valid paths (that is, the language of the system) is 
empty. 

This time model permits the specification of a large class of real-time 
systems. We illustrate its power by three examples, which have been already 
considered in the bibliography, thus, allow for comparisons. 

Put t ing docks in an untimed specification usually increases the size of the 

model states transitions DBMs time memory 
untimed 1,298 3,314 0.2 1 

timed 19,197 47,180 1,225 14 2.3 

TABLE 4. R~sults of leader-election protocol 



344 

state space. There are cases where timing constraints restrict the number of 
possible behaviors of the system, thus creating less states than the untimed 
model. However, most of the times, the size is significantly increased, up 
to one or two orders of magnitude, as it is shown in table 2, where we 
compare the results obtained by an exhaustive dfs performed on an untimed 
and a timed model of the leader-election protocol [7]. 

Consequently, future work mainly concerns the research for methods of 
reduction. The size of larger examples makes their analysis prohibitive. 
The new version of untimed Spin implements the partial-order method 
presented in [16, 11]. It would be interesting to see whether this reduction 
preserves time properties, and under which conditions. Apart from the 
above, older methods for on-the-fly minimization of the state space exist [4] 
and should be also tried out. 

8 REFERENCES 

[1] R. Alur. Techniques for Automatic Verification of Real-Time Systems. 
PhD thesis, Stanford University, 1991. 

[2] R. Alur, C. Courcoubetis, and D. Dill. Model-checking for real-time 
systems. In Proceedings of the 5th Symposium on Logic in Computer 
Science, pages 414-425, Philadelphia, June 1990. 

[3] R. Alur, C. Courcoubetis, D. Dill, N. Halbwachs, and H. Wong-Toi. 
An implementation of three algorithms for timing verification based 
on automata emptiness. In RTSS 1992, proceedings, 1992. 

[4] R. Alur, C. Courcoubetis, D. Dill, N. Halbwachs, and H. Wong-Toi. 
Minimization of timed transition systems. In CONCUR 1995, pro- 
ceedings. Lecture Notes in Computer Science, Springer-Verlag, 1992. 

[5] C. Courcoubetis, D. Dill, M. Chatzaki, and P. Tzounakis. Verifica- 
tion with real-time COSPAN. In Proceedings of the Fourth Workshop 
on Computer-Aided Verification, Lecture Notes in Computer Science. 
Springer-Verlag, 1992. 

[6] D. Dill. Timing assumptions and verification of finite-state concurrent 
systems. In Proc. Workshop on Computer Aided Verification, CA V89, 
Grenoble, June 1989. Lecture Notes in Computer Science, Springer- 
Verlag. 

[7] Dolev, Klawe, and Rodeh. An O(n log n) unidirectional distributed 
algorithm for extrema finding in a circle. J. of Algs, 3:245-260, 1982. 

[81 G.,]. Holzmann. Design and Validation of Protocols. Prentice-Hall, 
1990. 



345 

[9] G.J. Holzmann. Basic spin manual. Technical report, AT&T, Bell 
Laboratories, 1994. 

[10] G.J. Holzmann. What's new in spin. Technical report, AT&T, Bell 
Laboratories, 1995. 

[11] G.J. Holzmann and Doron A. Peled. An improvement in formal ver- 
ification. In Proceedings of the 7th International Conference on For- 
mal Description Techniques, FORTEg~, Berne, Switcherland, october 
1994. 

[12] M. Katevenis, S. Sidiropoulos, and C. Courcoubetis. Weighted round- 
robin cell multiplexing in a general purpose ATM switch chip. IEEE 
JSAC, 9(8):1265-1279, 1991. 

[13] J. Katzenelson and B. Kurshan. S/r: A language for specifying proto- 
cols and other coordinating processes. In Proe. 5th Ann. Int'l Phoenix 
Con]. Comput. Commun., IEEE, 1986. 

[14] N. Lambrogeorgos. Verification of real-time systems: a case study of 
discrete and dense time models, 1993. Available only in greek. 

[15] L. Lamport. A fast mutual exclusion algorithm. ACM Transactions 
on Computer Systems, 5(1):1-11, 1987. 

[16] Doron A. Peled. Combining partial order reductions with on-the-fly 
model checking. In Proceedings of the 6th fnternational Conference 
on Comptuter Aided Verification, CA V94, Stanford, California, june 
1994. 

[17] S. Sidiropoulos. A general purpose ATM switch, architecture and 
feasibility study, 1991. 

[18] P. Tzounakis. Verification of real time systems: The extension of 
COSPAN in dense time, 1992. 

Acknowledgments 
We wish to thank Gerard Holzmann for providing numerous answers re- 
garding the implementation, as well as for attentively reading the paper 
and making useful remarks. 



346 

1 Appendix 

1.1 Mutual exclusion in RT-Promela 

#define N 5 / *  number of processes * /  
#define deltaB 1 
#define deltaC 2 
#define ErRoR assert(0) 
clock y[N]; 
int x, crit; 

proctype P ( byte id ) 
{ 

do :: 
reset{y[id]} x==O - >  
when{y[id]<deltaB} reset{y[id]} x=id-I-1 - >  
atomic{ when{y[id]>deltaC} x==id-I-1; crit-I--I-; } - >  
atomic{ x=O; c r i t - - ;  } 

od 
} 

never{ 
skip - > / *  to let the processes be activated * /  
do 

:: cr i t> l  - >  ErRoR 
:: else 

od 

init { 
byte proc; 
atomic { 

crit = O; 
proc = 1; 
do 
:: proc _< N - >  

run P ( proc%N ); 
proc = proc-I-1 

:: proc > N - >  break 
od 



347 

1 .2  M u l t i - w a y  s y n c h r o n i z a t i o n  in  R T - P r o m e l a  

Assume t h a t  four processes  wish to  synchronize on the  signal sync. T h e n  
we have  to  use th ree  rendez-vous  channels  and  the  following specification : 

chan A,B,C = [0] of  { byte }; 
proctype Pl 0 { ... q l :  A ! sync  - > ... } 
proctype P2 0 { ... q2:  atomic { A?sync - > B!sync } ... } 
proctype P3 0 { ... q3:  a t o m i c  { B?sync  - > C!sync  } ... } 
p r o c t y p e  P4 0 { ... q4:  C?sync  - > ... } 

In  the  case of  synchroniza t ion  of t imed  s ta tements ,  the  cons t ra in ts  and  
resets  of  all of  t h e m  are g rouped  together ,  as if it were a single s t a t emen t  
execu ted  ins tantaneously .  

1 .3  D B M s  

DFIMs 

We consider  the  class C?Z of convex po lyhedra  in RIcl which can be defined 
by  a set  of  integer  cons t ra in ts  on clocks and  clock differences. I f  we identify 
a new fictit ious clock x0 with  the  cons tant  value O, the above  cons t ra in ts  
can be represen ted  as bounds  on the  difference between two clock values. 
For ins tance,  x < 5 can  be expressed as x - x0 < 5, and x > 5 as x0 - x < 
- 5 .  Fur the rmore ,  we can in t roduce  ec as a bounding  value, to  represent  
inequali t ies  of  the  form x < y (we write x - y < oc), and  - c ~  to  express  
fa l se  (we wri te  x - y < - c o ) .  Thus,  we can restr ict  ourselves to  uppe r  
bounds  wi thou t  loss of  generality.  More  precisely, each inequal i ty  can be 
expressed  as : xi - x j  < k or x i --Xj ~_ k, for some integer k, or xi - x j  < or 
or xi - xj  < -oc .  

A D B M  is an (n + 1) x (n + 1) m a t r i x  D,  whose e lements  (called bounds) 
are of  the  fo rm : dij = (r, # ) ,  r �9 R U  {ec}, # �9 { < , < } .  D represents  
the  po lyhed ron  of  R n consist ing of  all points  t h a t  sat isfy the  inequal i ty  
xi - x j  ~ r,  where  dij = (r, ~ ). 

Canonicalization 

The re  are poss ib ly  m a n y  DBMs  defining the  same clock region, because  
some of  the  uppe r  bounds  need not  be t ight  12. For example ,  {xl < 2, x l  > 
1,x2 < 5} can be  represented  by  any ma t r i x  D such t h a t  do1 = ( - 1 ,  _< 
), do2 = (0, <) ,  dlo = (2, <) ,  d2o = (5, < ) ,  and  d12 e {(2, < ) ,  (2, _ ) ,  (3, < 
), (3, <_),...}, 421 �9 {(4, < ) ,  (4, _<), (5, <) ,  (5, <) ,  ...}. 

Then ,  the  idea is to  represent  D in a canonical form, where  all uppe r  
bounds  axe as "t ight"  as possible.  We denote  this canonical ma t r i x  cf(D).  
Dill [6] showed t h a t  cf(D) can be c o m p u t e d  f rom D by apply ing  an all-pairs 

12Bounds are ordered lexicographically (< is taken to be strictly less than __), that 
i s :  (r, # )  < (r', # ') i~ (r < r ')  v (r = r '  ^ # = <  ^ # '  =<).  



348 

shortest-path algorithm. Moreover, canonicalization leads to easy tests for 
equality and emptiness of clock regions. A matrix D represents an empty 
region if a negative-cost cycle (i.e., ( -c~,  <)) appears during the computa- 
tion of cf(D). 

Elapse of time 

As time elapses, clock differences remain the same, since all docks increase 
at the same rate. Lower bounds do not change either since there are no 
decreasing clocks. Upper bounds have to be canceled, since an arbitrary 
period of time may pass. Let C R  be the clock region represented by DBM 
D, and C R  6 the one represented by D ~ Then : 

410 = (co, <) for all i = 1, 2, ..., IV I 
d4. = dij otherwise 

~3 

Then it is easy to see that  for each equivalence class a such that  a A C R  ~ 0, 
if a '  is a time successor of a then a ~ A C R  6 ~ 0. 

Intersection and union 

Let D and D' be DBMs for C R  and CR ' .  The intersection C R A C R  ~ (resp. 
union C R  U C R  ~) is represented by the matrix D n (resp. D u) such that  
Vi, j , d n. .,~ = m i n  { dij , d~j } (resp. dP.~ = m a x  { dij , d~j } ). 

Clock resets 

Let C R  be the clock region represented by DBM D, and R C_ C. Then 
C R [ R  := 0] is represented by D ~, defined as follows : 

d~o = d0~ = (0, <_) if i E R 
d~j = dji = (oo, <) if i e R and j e C \ R 
d~j : dji = (0, <) if i, j e R 
d~j = dji otherwise 

Maximization 

Let cijl, ..., c~jm be an increasing sequence of bounds, where ~j  = (rk, #k)  
corresponds to an atom x~ - xj #krk appearing in the program (if no such 
atom exists, let m = 1, ci 1 = (oo, <)). For a DBM D, if m a x ( D )  = D' ,  

t 
then d~j = c'k',3, such that  dlj < ~j ,  Vi < k, ~j  < d~j, and Vl' > k, d~j < ~ j .  


