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Extending Quality Metrics to Full Luminance Range Images

Tunç Ozan Aydın a Rafa l Mantiuka Hans-Peter Seidela

aMPI Informatik, Stuhlsatzenhausweg 85 , Saarbrücken, Germany;

ABSTRACT

Many quality metrics take as input gamma corrected images and assume that pixel code values are scaled
perceptually uniform. Although this is a valid assumption for darker displays operating in the luminance range
typical for CRT displays (from 0.1 to 80 cd/m2), it is no longer true for much brighter LCD displays (typically
up to 500 cd/m2), plasma displays (small regions up to 1000 cd/m2) and HDR displays (up to 3000 cd/m2).
The distortions that are barely visible on dark displays become clearly noticeable when shown on much brighter
displays. To estimate quality of images shown on bright displays, we propose a straightforward extension to the
popular quality metrics, such as PSNR and SSIM, that makes them capable of handling all luminance levels
visible to the human eye without altering their results for typical CRT display luminance levels. Such extended
quality metrics can be used to estimate quality of high dynamic range (HDR) images as well as account for
display brightness.

Keywords: Image Quality Metric, JND, CSF, HDR, SSIM, PSNR, luminance masking

1. INTRODUCTION

Most of the commonly used quality metrics do not take into account the brightness of display devices. Such
metrics take as input 8-bit code values (luma∗ or gamma corrected pixel values) and assume that they are
perceptually uniform, regardless of how bright or dark the display is. However, the visibility of distortion can
increase significantly as the display gets brighter. Taking into account the effect of display brightness is especially
important for the new LCD TVs, whose peak brightness (over 500 cd/m2) exceeds five or more times the typical
peak brightness of a CRT display.

Accounting for luminance effects is also important for high dynamic range (HDR) images. They store linear
radiance or luminance maps, instead of 8-bit gamma-corrected code values. The difference between luminance or
radiance values has little correspondence with the actual visible difference, since the eye is sensitive to luminance
ratios rather than absolute luminance values, the property sometimes referred as the luminance masking. There-
fore, the PSNR measure computed on luminance or radiance maps have little correspondence with the actual
image quality. In this paper we explain how absolute luminance values can be converted to an approximately
perceptually uniform encoding, which in turn can give meaningful quality predictions when used with the image
quality metrics that operate on pixel values.

In this paper we discuss how the perceived image quality is affected by the actual luminance levels. We
propose an extension to a pair of well-known quality metrics in the form of a transfer function, referred as
perceptually uniform (PU) encoding. The PU encoding transforms luminance values in the range from 10−5 to
108 cd/m2 into approximately perceptually uniform code values. The resulting code values are passed to the
quality metric instead of gamma corrected RGB or luma values. The proposed PU encoding is derived from the
contrast sensitivity function (CSF) that predicts detection thresholds of the human visual system for a broad
range of luminance adaptation conditions.
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∗Luma is a new word proposed by the NTSC in 1953 to prevent confusion between the Y
′ component of a color signal

and the traditional meaning of luminance. While luminance is the weighted sum of the linear RGB components of a
color video signal, proportional to intensity, luma is the weighted sum of the non-linear R

′
G

′
B

′ components after gamma
correction has been applied, and thus is not the same as either intensity or luminance. Source: http://www.wikipedia.org/



The PU encoding is designed so that it is backward-compatible with the sRGB non-linearity within the
dynamic range of a CRT display. Consequently, the quality metrics using PU encoding show similar behaviour
as the original metrics for CRT displays. We test the proposed PU encoding with two widely used visual quality
measures: the Peak Signal to Noise Ratio (PSNR)1 and the more sophisticated Structured Similarity Index
Metric (SSIM).1

2. PREVIOUS WORK

Objective visual quality metrics either model luminance masking (effect of luminance of the detection threshold)
explicitly and include it in their processing, or implicitly, assuming that input code-values are “gamma-corrected”
and thus perceptually linearized. The former group includes Sarnoff VDM,2 PDM,3 DVQ,4 VDP,5 HDR-VDP6

and many other metrics that model Human Visual System (HVS). These metrics, however, due to their com-
plexity, difficult calibration, on-going standardization effort or lack of freely available implementation, are not
as popular as the latter group of metrics, which includes arithmetical and structural metrics. Two such popular
metrics are peak signal-to-noise ratio (PSNR):

PSNR(x, y) = 20 log10
D

MSE(x,y) MSE(x, y) = 1
N

∑N

i=1(xi − yi)2 (1)

and structural similarity index metric (SSIM):1

SSIM(x, y) = l(µx, µy)
α

c(σx, σy)β s(σx, σy)γ (2)

where x and y are pixel values in reference and distorted images, D is the dynamic range, µ and σ are the mean
and standard deviations of the corresponding input images. The final quality measure SSIM is a weighted
combination of the luminance comparison function l, contrast comparison function c and structure comparison
function s. These metrics rely on the perceptual linearity of input pixel values xi and yi, which should account
for luminance masking. In the following sections we show that this is reasonable assumption for CRT displays,
but it is less accurate for much brighter LCD displays. This is especially the case when the same “gamma”
function is used for both a bright and a regular display. Finally, such metrics cannot be applied directly to HDR
images.

The proposed PU encoding in conceptually similar to the DICOM Grayscale Standard Display Function,7

but is intended to handle a larger dynamic range. The proposed encoding is an adaptation of the color space
used for HDR image and video encoding8 for quality metrics that ensures backward-compatibility with the sRGB
color space.

3. DISTORTION VISIBILITY ON REGULAR AND BRIGHT DISPLAYS

The effect of luminance level on the sensitivity of the human visual system is often referred as luminance masking.
Figure 1 shows the Campbell-Robson contrast sensitivity chart for two different background luminance levels.
For the best viewing, the figure should be viewed on an LCD display of about 200 cd/m2 and the display function
close to the sRGB non-linearity. The solid lines denote the contrast sensitivity of the HVS, which is the contrast
level at which the sinusoidal contrast patterns become invisible. Even though the same scales were used for both
left and right plots, the CSF is shifted upwards (higher sensitivity) and right (towards higher spatial frequencies)
for the brighter pattern. This shows that we are more likely to notice contrast changes, if the stimuli is brighter,
as is the case of a brighter display.

But it is not clear if this observation for simple sinusoidal pattern can be assumed valid for complex images.
Consequently, we cannot assume that a difference in sensitivity due to image brightness results in a difference
in quality assessment. To verify this, we performed a subjective quality evaluation of distorted images shown on
the displays of different brightness.

Our 16 test subjects were within the ages 23–48, all with near perfect or corrected vision. Each subject was
presented a reference and distorted image side by side for 10 seconds. After that interval, a blank screen was
displayed and the subjects were asked to assess the quality of the distorted image with respect to the reference on
a 5 point scale, where higher values indicate better quality. Subjects were given the opportunity to view the image
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Figure 1.

Contrast sensitivity function (CSF) of the human eye in dark (left) and bright (right) viewing conditions. Arrows
labelled as ∆Sens. and ∆Freq. denote the amount of difference in magnitude and frequency of the peak sensitivity
between the dark and bright cases.
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Figure 2.

Quantization errors of sRGB encoding for maximum luminance 80cd/m2 (left) and 1000cd/m2 (right), in com-
parison to contrast versus intensity (cvi) function of the human visual system. The discrepancy between the
slopes of both functions is large, especially for the bright case.

pair again for additional 10 second intervals until deciding on the image quality. A set of distorted test images
was generated by applying 3 types of distortions (random pixel noise, gaussian blur and JPEG compression) at
2 levels (high and low) to 3 images. Each image pair was shown on a Brightside DR-37P HDR display, which
simulated either a regular (1–100 cd/m2) or a bright display (10–1000 cd/m2). The simulated displays had the
same response as an actual LCD display (measured with a Minolta LS-100 luminance meter), only the absolute
luminance levels were shifted for the bright display. The order of trials were entirely randomized and each image
was shown 2 times to ensure subject reliability

Our experimental setup and grading scale is adopted from ITU-T Rec. P.910 standard.9 We determined the
mean quality value for the regular display as 3.15, and for the bright display as 2.85, indicating that subjects
tend to perceive the quality of distorted images to be lower on the bright display. In other words, distortions
of the same type and with the same magnitude are more annoying when the overall brightness of the image
is higher. An evaluation of the data with the ANalysis Of VAriance (ANOVA) method resulted in an F-value
of 20.57 and the corresponding p-value ≪ 0.05 for the display brightness parameter, showing that the effect of
display brightness to perceived quality is statistically significant.



4. WEBER-FECHNER LAW AND LUMINANCE MASKING

Figure 1 reveals that the threshold contrast ∆y/y is different for dark and bright stimuli. This is contrary
to the commonly assumed Weber-Fechner law, which would require that the ratio ∆y/y stays constant. This
observation is better illustrated on the contrast versus intensity (cvi) plot shown in Figure 2. The cvi function
indicates the threshold contrast (y-axis) at particular luminance adaptation level (x-axis). The region where
such contrast is constant, and the Weber-Fechner law holds (∆y/y = const.), can be found for luminance values
greater than approximately 500 cd/m2. For lower luminance levels the detection threshold rises significantly.
This indicates that the Weber-Fechner law is in fact very inaccurate model of luminance masking for the range
of luminance shown on typical displays (from about 0.1 cd/m2 to 100-1000 cd/m2).

5. SRGB NON-LINEARITY AND DETECTION THRESHOLDS

The compressive non-linearity (transfer function) used in the sRGB color space10 accounts not only for the
response of a typical CRT, but also partly for the drop of the HVS sensitivity for dark luminance levels. The
sRGB non-linearity has the form:

l(L′) =







(

L′+0.055
1.055

)2.4

if L′ > 0.04045
L′

12.92 otherwise
(3)

where L is the trichromatic value (for simplicity we assume luminance) normalized by the peak display luminance
and L′ is the “gamma-corrected” luma value. In Figure 2 we plot the peak quantization errors due to 8-bit coding
of L′, assuming the peak display luminance of 80 cd/m2 on the left (CRT) and 1000 cd/m2 on the right (bright
LCD or Plasma). We compute the peak quantization errors as

e(L′) =
1

2

max |l(L′±1) − l(L′)|

l(L′)
(4)

but plot them in the luminance domain (L), instead of luma domain (L′), to compare different displays. The
slopes of the error quantization functions give closer match to the cvi function for the darker display (80 cd/m2),
suggesting that the sRGB has better perceptual uniformity for CRT displays. The slopes start to deviate much
stronger for brighter displays, making perceptual uniformity of the sRGB non-linearity for LCD and Plasma
displays questionable.

Another observation that we can make in Figure 2 is that the quantization errors of 8-bit code value encoding
are actually larger than the detection threshold of the human eye. This means that when we display a smooth
gradient on a display driven by 8-bit input, we can see contouring artifacts. This is true even for darker displays,
but is more noticeable for bright displays, where the discrepancy between encoding quantization errors and the
cvi gets larger. Such contouring artifacts could be easily hidden by adding random noise to the gradient (spatial
or temporal dithering). For the same reason, medical displays are usually driven by signals of 10- or more bits
to reduce the quantization errors to an undetectable level.

6. DETECTION THRESHOLDS IN COMPLEX IMAGES

Before we can derive a perceptually uniform encoding, we need to estimate contrast detection thresholds as
a function of pixel luminance. Many aspects of complex images, such as spatial frequency, orientation and
masking pattern, can significantly rise the detection threshold. Figure 3 illustrates how the sensitivity (inverse of
the contrast detection thresholds) changes with spatial frequency and adapting luminance. Since the perceptually
uniform encoding is a function of pixel value, we need to reduce all these factors except adapting luminance La,
and assume that they will be taken into account by the actual quality metric. To ensure that the estimated
detection threshold is always conservative, we choose the value that corresponds to the maximum sensitivity for
each factor we want to reduce. Therefore, we define our cvi function as:

cvi(L, La) =
(

max
x

[CSF (La,x) MA(|L − La|)]
)

−1

(5)
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Figure 4. Continous line - cvi function for different adapta-
tion levels; Dashed lines - contrast detection thresholds for
fixed adaptation and varying background luminance. Refer
to the text for the description of function t.

Figure 5. A specular highlight on a piece of metal captured using multi-exposure technique. The exposure time decreases
from left to right. The rightmost image reveals the reflection of a lamp, which is not visible to the human eye in the
actual setup.

where the CSF is the contrast sensitivity function and x corresponds to all the parameters (spatial frequency,
orientation, stimuli size, etc.) except adapting luminance La and the background luminance L. The MA()
function estimates the loss of sensitivity due to maladaptation, as explained below. We use the CSF function
from Daly’s VDP,5 as it is valid for a large range of luminance values (both photopic and scotopic viewing).

To properly utilize the cvi function, it is important to distinguish between the adapting luminance, La, and
the background luminance, L. When viewing a complex scene the human eye can adapt locally to small regions.
For example our eyes are in one state of luminance adaptation when looking outside a window on a sunny day,
and in a different state when looking at the interior of a room. However, the eye is hardly ever perfectly adapted
for each tiny luminance patch in a scene. For example, when looking at bright specular reflections, we usually
cannot see the reflected features of a light bulb or the sun, since we are adapted to the diffuse light reflected from
an object, rather than the tiny specular spot. Figure 5 shows that such tiny features are in fact reflected, but we
usually don’t see them. The situation when the eye is maladapted has been studied in so-called probe-on-flash
experiments,11 in which a threshold stimuli on a background was briefly flashed, thus bypassing the adaptation
process. The typical characteristics measured in such experiments are shown in Figure 4. The plots were derived
by combining the typical cvi function with an S-shaped photoreceptor response curve, as done by Irawan, et al.12

To make our extension spatially independent and possibly compatible with the sRGB non-linearity, we make
two simplifying assumptions about the luminance adaptation process. Firstly, we assume that there is a minimum
luminance level to which the eye can adapt, La−min. When viewing complex images, the darkest areas are usually
affected by the glare (light scattering in the eye’s optics), therefore the minimum luminance level that reaches
the retina and to which the eye can adapt is elevated. Secondly, we assume that the eye is perfectly adapted for



all luminance levels above La−min, that is the adapting luminance is equal the luminance of the pixel (La = L).
The second assumption results in the most conservative estimates of the contrast detection thresholds (refer to
Figure 4). Our final estimates of the detection thresholds are:

t(L) = cvi(L, max(L, La−min)). (6)

7. PERCEPTUALLY UNIFORM ENCODING

The goal of perceptually uniform encoding is to ensure that the distortion visibility is approximately uniform
along all encoded values. This is achieved when the differentials of such encoding are proportional to the detection
thresholds. The easiest way to find such mapping from the detection threshold estimates t (Equation 6) is to
use the following recursive formula:

fi = fi−1 (1 + t(fi−1)) where f : L′ −→ L, i ∈ [2 · · ·N ] (7)

where f1 is the minimum luminance we want to encode (10−5 cd/m2 in our case) and N is selected so that
fN is larger than the maximum luminance to be encoded (1010 cd/m2). Note that cvi(L) · L gives an absolute
detection threshold in cd/m2. The values of fi give the luminance value associated with particular luma value
i, that is the inverse mapping from luma to luminance. To find a forward mapping function, which we denote
with PU : L −→ L′ , we use the values of f as a lookup table and find the nearest (or interpolated) index i for
a given luminance value L. For a more complete mathematical formulation of this problem, refer to8 or.13

Ideally, we would like our PU encoding to be backward-compatible with the sRGB non-linearity (Equation 3),
meaning that it should result in similar luma values within the dynamic range of a CRT display, while still
retaining perceptual uniformity. We achieve this by minimizing the squared difference between both encodings
within the range 0.1 − 80 cd/m2 with respect to three parameters m, s and La−min:

80
∑

L=0.1

(

(s PU(L, La−min) + m) − l−1(L)
)2

(8)

where the summation is performed for 256 logarithmically distributed luminance values L, l−1(L) is the inverse
of Equation 3, and PU(L) is the inverse of Equation 7. The result of such fitting together with the sRGB
non-linearity is shown in Figure 7. The fit is not perfect, as the sRGB non-linearity does not fully agree with the
cvi function. Note that neither of the parameters m and s affect our initial assumption since the differentials of
the PU encoding are still proportional to the detection thresholds. The parameter s can be understood as the
absolute sensitivity factor, which in fact varies among observers. By performing the optimization we implicitly
assume the same sensitivity as the sRGB encoding. The other parameter m adjusts the absolute encoding
response to fit to sRGB.

We store the resulting PU encoding as a look-up table, rather than trying to fit an analytic function. A look-up
table offers better accuracy and is usually faster to compute than power or logarithmic functions approximating
such encodings. We provide the look-up table and the matlab code for the PU encoding at http://www.mpii.
mpg.de/resources/hdr/fulldr_extension/.

The data flow diagram of the extended metrics is given in Figure 6. Similar to non-extended metrics, the
input is a pair of reference and distorted images. Both images are converted to display luminance values using
the response function of the display on which the images are viewed. Next, the PU encoding transforms the
luminance values into perceptually uniform pixel values. At the final quality assessment step, no modification
on the metric part is necessary since the PU encoding merely provides perceptually uniform pixel values, which
was the metric’s assumption in the first place (Section 2).

8. VALIDATION: BACKWARD COMPATIBILITY

We validate the compatibility of the PU encoding with the sRGB non-linearity by comparing the extended and
non-extended metric responses for a set of images viewed on a CRT display (0.1 − 80cd/m2). The test set of
distorted images is generated by converting the reference images to display luminance values and applying a



Figure 6.

Data flow diagram of the extended metrics for typical 8-bit images. Pixel values are converted to luminance and
re-encoded with PU encoding before quality assessment.
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Figure 7.

The best fit of PU encoding to sRGB within the range 0.1 − 80 cd/m2 in a least squares sense. Resulting curve
is shown along the entire dynamic range (left), and only within the range that is considered for optimization
(right).

Figure 8.

Sample images from our validation test set. We consider random pixel noise (left), gaussian blur (center) and
JPEG compression (right) as distortion types.



Figure 9.

Backward-compatibility with sRGB encoding. The average PSNR (left) and SSIM (right) responses of PU
encoded images for different distortion types provides a good match to corresponding sRGB encoded images.

Figure 10.

Image quality on bright display. The pixel values of sRGB encoded images are the same for both regular
(1−100cd/m2) and bright (10−1000cd/m2) displays. PU encoding successfully accounts for the effect of display
brightness.

distortion which can be either of the following types: random pixel noise, gaussian blur or JPEG compression
(Figure 8). Each type of distortion is applied to 3 reference images at 2 different levels. The image luminance is
converted to pixel values using sRGB and PU encodings, and the quality of the distorted images in both cases are
assessed by PSNR and SSIM. Figure 9 shows the average responses for both extended and non-extended metrics
separately for each type of distortion. We observe that the match between the responses is not exact, since our
optimization procedure does not result in a perfect fit of PU encoding to sRGB non-linearity (Figure 7). Still,
the difference between extended and non-extended metric responses are quite low (< 1 dB for PSNR and < 0.01
for SSIM), indicating that they can be used interchangeably for typical CRT dynamic range if small deviations
in metric responses are acceptable.

9. QUALITY ASSESSMENT FOR BRIGHT DISPLAYS

The subjective experiment in Section 3 revealed that distortions of the same type and magnitude appear more
annoying on a bright display than a regular one. In this section we show that the extended metrics can correctly
predict this effect, while non-extended metrics fail to do so. In parallel with the subjective study, we simulate
the brightness of an LDR image on two hypothetical displays: a regular (1 − 100 cd/m2) and a bright display
(10 − 1000 cd/m2), both with the same dynamic range (1 : 100). The resulting luminance values from both
display models are transformed to perceptually uniform pixel values with the proposed encoding.

In Figure 10, we compare the metric predictions for sRGB encoded images side by side with the extended
metric responses for both display models. Note that the pixel values generated by sRGB non-linearity are exactly



Figure 11.

Data flow diagram of the extended metrics for HDR images. HDR images are scene referred and store luminance,
which is directly converted to percepually uniform pixel values by the PU encoding

the same for both displays, and consequently the quality estimates are also the same. On the other hand, quality
of the PU encoded images viewed on the bright display are noticeably lower than the quality of the same images
viewed on the regular display, in agreement with the outcome of our subjective experiment.

10. QUALITY ASSESSMENT OF HDR IMAGES

Unlike 8-bit images that store gamma corrected code values tailored towards particular display devices, the
content of an HDR image is related to the actual photometric characteristics of the scene it depicts, which in
turn directly correspond to physical luminance. In order to get meaningful responses from PSNR and SSIM
when comparing a pair of HDR images, physical luminance of both images need to be converted to perceptually
uniform pixel values. The use of sRGB encoding for HDR images brings in an ambiguity in the choice of the
white point value. The straightforward approach of setting the white point to the maximum luminance of the
image generally results in suppression of details in dark image regions. Instead, the logarithmic function is a
simple and often used approximation of the HVS response along the entire visible luminance range. Although
logarithmic encoding adheres to the Weber-Fechner law (Section 4), it provides a very coarse approximation
and does not predict the loss of sensitivity for the low light conditions. These shortcomings can be avoided
by employing the PU encoding to generate perceptually uniform pixel values for HDR images. The data flow
of the extended “HDR metrics” is shown in Figure 11. Since HDR images already contain physical luminance
information, the use of a diplay model is not necessary.

11. CONCLUSION

We proposed an extension to two popular image quality metrics, namely PSNR and SSIM, that makes them
capable of handling all luminance levels visible to the human eye, without altering their response at the dynamic
range of a typical CRT display. Our extension consists of transforming image luminance to perceptually uniform
pixel values, that are optimized to fit gamma correction non-linearity within the range from 0.1 to 80 cd/m2 in
a least squares sense. The proposed extension does not impose any changes on the quality metric part. Another
consequence of this modularity is that it can potentially be applied to any quality metric that takes gamma
corrected pixel values as input.

In the future, we would like to validate the metric responses for HDR images through subjective experiments.
We are also interested in exploring the application of our extension to other quality metrics.
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