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Extending Self-similarity for Fractional Brownian Motion 

Lance M. Kaplan and C.-C.  Jay Kuo 

Abstract-The fractional Brownian motion (fBm) model has proven to 
be valuable in modeling many natural processes because of its persis- 
tence for large time lags. However, the model is characterized by one 
single parameter that cannot distinguish between short- and long-term 
correlation effects. This work investigates the idea of extending self- 
similarity to create a correlation model that generalizes discrete fBm 
referred to as asymptotic fBm (afBm). Namely, afBm is parameterized 
by variables controlling short- and long-term correlation effects. We 
propose a fast parameter estimation algorithm for afSm based on the 
Haar transform, and we demonstrate the performance of this parameter 
estimation algorithm with numerical simulations. 

I. INTRODUCTION 
Many natural processes such as the cross-section of a mountain 

range, weather data, electrical measurements, and even man-made 
phenomena such as economic and traffic flow data have been ob- 
served to have significant correlation for large time lags [9], [13]. 
In fact, no exponentially decaying correlation model (e.g., finite- 
order ARMA models) can capture the long-term correlation structure 
of such processes. Fractal correlation models such as fractional 
Brownian motion (fBm) [I  11, discrete fractional Gaussian noise 
(dfGn) [ 1 I], and fractionally differenced Gaussian noise (fdGn) 
[4], [6] have been applied as correlation models for many natural 
processes. These models are characterized by a hyperbolic correlation 
decay as time lag grows, and the rate of hyperbolic decay is controlled 
by a single number known as the Hurst parameter. In other words, 
the Hurst parameter determines the persistence of the correlation as 
the time lag increases. 

Although fractal models have proven useful to distinguish the 
differences between many natural processes, these models are limited 
in the sense that the correlation for small time lags is completely 
determined by the Hurst parameter. As a result, the fractal model 
cannot find the differences between two process that have the same 
persistence but different correlation for time lags near zero. In 
an effort to design stationary correlation models that handle both 
short- and long-term correlations, Hosking proposed to consider 
filtered fractals such that fdGn is passed through a rational (i.e., 
ARMA) filter [6]. Deriche and Tewfik have implemented a maximum 
likelihood technique to estimate the parameters of the fdGn process 
and the ARMA filter [2 ] .  The algorithm is, however, computationally 
intensive. 

The shortcomings motivate us to generalize the fractal models 
by a different approach. We consider extending the idea of self- 
similarity that characterizes fBm and dfGn such that the variance of 
the increments of a process is related to a certain function of scale, i.e., 
the structure function, and we call the resulting processes the extended 
self-similar (ESS) processes. Because one can create a structure 
function parameterized to measure different correlation effects, the 
new ESS concepts should be useful for synthesis, classification, 
and segmentation of signals, textures, or landscapes. To show the 
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application of ESS processes, we consider an ESS-based model we 
refer to as a s y m p t o t i c p m  that has one parameter to control the short- 
term correlation and another parameter to control the persistence of 
a random signal. Fast Hurst parameter estimation algorithms for fBm 
processes based on the wavelet transform [7], [15] motivate us to use 
a wavelet transform for a fast parameter estimation of the asymptotic 
fBm model. 

This correspondence is organized as follows. The theoretical prop- 
erties of ESS processes appear in Section 11. Section I11 introduces 
asymptotic fBm and a parameter estimation algorithm. Finally, Sec- 
tion IV concludes the paper. 

11. EXTENDED SELF SIMILARITY 

A. Dejinition and Properties 

satisfies 
The ESS process is a zero-mean Gaussian process B f ( t )  that 

B f ( 0 )  = 0, 

and the following extended self-similar property: 

Note that when f(p) follows a hyperbolic law, i.e., f(p) = lp12w 
where 0 < H < 1, (2) reduces to the original self-similarity condition 
that defines an fBm process. The function f(p) is known as the 
structure function. Many of the properties of random processes with 
stationary increments and structure functions are well presented in 
[16]. The structure function reflects the growth of the variance of 
increments of a process as the incremental length (or scale) increases. 
(In this correspondence, the incremental length Ax is related to the 
scale m by Ax = C2“, where m = 0,1,2 ,... and C can be 
any positive real number. This notion of scale is consistent with the 
notion of scale in wavelet analysis.) 

We can use ( 1 )  and (2) to determine the correlation of the process 
B f ( t )  as 

The increments of the ESS process, i.e. X f ( k ;  Ax) = B f ( A x ( k  + 
1)) - Bf(A.rk), are stationary and have the correlation function 

When the structure function is hyperbolic, (4) gives the correlation 
function for dfGn. A nontrivial structure function and the correspond- 
ing parameterized version of (4) will be given as an example in 
Section 111-A. 

Many of the necessary and sufficient properties of the structure 
function are discussed in [8] and [16]. It should also be pointed out 
that the term “extended self-similarity” has been used in the area of 
turbulence physics to describe the hyperbolic relation between two 
different moments of the velocity increments for a given increment 
length [l]. Our use of extended self-similarity as expressed in (2) 
describes a totally different situation. 
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B. Discrete Haar Transform 
The "whitening" effect of the wavelet transform for many ESS 

processes allows for a fast parameter estimation algorithm. In this 
section, we consider the application of the Haar transform on the 
increments of ESS processes. We concentrate on the Haar transform 
because the extended self-similarity condition (2) actually describes 
the behavior of the variance of the approximation coefficients, and 
there exists a simple closed form that describes the relationship 
between the variance of the detail wavelet coefficients and the 
structure function when the discrete Haar transform is applied. In 
contrast, the variance progression for discrete wavelets of higher 
regularity can only be expressed as a complicated cascade of the 
convolutional product of the structure function and the wavelet filters. 

The discrete Haar transform provides a multiresolution decompo- 
sition of a discrete data sequence. Given the data sequence a o ( k )  
(i.e., the finest scale approximation to the continuous signal), the 
higher scale approximation coefficients a ,  ( k )  and detail wavelet 
coefficients d, ( k )  of the Haar transform are computed recursively by 

( 5 )  

(6) 

When the increments of an ESS process are put through the discrete 
Haar transform, the extended self-similarity property provides simple 
expressions of the correlation of the approximation and detail wavelet 
coefficients using the structure function as stated in the following 
theorem. 

Theorem 1: Let B f  ( k  ) be a realization of an ESS process with 
incremental length Ax and a0 ( k )  be the finest scale approximation 
of the increments of B f ( k ) .  Define the stochastic processes a,(k) 
and d, ( k )  to be the approximation and detail wavelet coefficients, 
respectively, of the Haar transform as given in (5) and (6). Then, the 
following hold: 

1 

1 

n m + l ( k )  = - ( n m ( 2 k )  +a,,(2k+ I)), 

d , + l ( k )  = -(a,(%) - a , ( 2 k +  1)). 

J"i 

J"i 

a) For fixed scale m,  the correlation of n , ( k )  is 

r a m ( k )  = 2 - " r Z y f ( k ; 2 ' " A s )  (7) 

where r,yf (I;) is given in (4). 
b) For fixed scale m, d , ( k )  is stationary, and the variance of 

d,(k)  is 

02 = r d , ( O )  = c 2 2 - " ( 4 f ( 2 " - l ~ s )  - f ( 2 " ~ x ) ) .  (8) 

Proof: Since a o ( k )  = X s ( k : A x ) ,  it is easy to see through (5)  
that 

2m-1 

* , ( k )  = 2 - 4 2  X f ( 2 m k  + i ;  A x )  = 2-" '2X f (k ;  2 " h )  
1=0 

and (7) follows. The stationarity of d, ( k )  is due to the fact that the 
process is derived by passing the stationary process a,-1 ( k )  through 
a linear filter. Then, (6) and (7) implies 

r d , , ( k )  = 2-" ' j2rXf(2ki  2 m - 1 A T )  

- r , y f ( 2 k +  1 ; 2 " - l ~ 2 )  - r s f ( 2 k  - I;Z"-'AZ)). 

By setting k = 0 and using (4), (8) follows. 0 
Although the Haar transform is not regular enough to effectively 

decorrelate fBm processes with H E ( 1 / 2 , 1 )  [3] ,  it was shown 
in [7] that the Haar transform can "whiten" fBm incremenfs for 
all H E (0.1). It turns out that the Haar transform can also 
effectively decorrelate ESS increments, that is, a technique originated 
in [12] and used by Tewfik and Kim in [14] can verify that the 
detail wavelet coefficients of the Haar transform have a correlation 
structure that decays faster than the original ESS increments as long 

as the correlation of the stationary ESS increments decay over time. 
Specifically, when the correlation structure of (4) is treated as a 
continuous function, the function will be continuously differentiable 
if the structure function is continuously differentiable. Based on [14], 
it can be argued that if a wavelet filter of regularity R is used 
for discrete wavelet transform (DWT) implementation ( R  = 1 for 
the Haar transform), the correlation of detail wavelet coefficients is 
bounded by 

If the structure function leads to increments that have some terms 
decaying exponentially and other terms decaying hyperbolically (e.g., 
fBm), the correlation of detail wavelet coefficients decays faster 
than that of original ESS increments because of (9). The faster 
decay for the exponential terms is due to the larger sampling 
period at higher scales, whereas the faster convergence of the 
hyperbolic terms was verified in [7]. The "whitening" effect of 
the Haar transform on increments of ESS processes will be verified 
in Section 111-A. Although there is decay in correlation of wavelet 
coefficients as the time domain overlap decreases, there is, however, 
significant correlation between coefficients of different scales with 
overlapping temporal support. As a result, the correlation structure 
of the stationary wavelet coefficients is usually banded. Examples of 
the banded structure will also be presented in Section 111-A. 

C. Discrete Processes 

When processing signals with the computer, a finite discrete set 
of data samples is all that can be considered. Thus, we have to use 
discrete correlation models. The ESS model provides a continuous 
model that can be sampled at intervals of Ax so that one only 
needs to know the correlation at integer multiples of Ax.  By 
considering sampled ESS processes, the increments with incremental 
length Ax are the finest resolution increments available and serve 
as the stationary building block of the sampled ESS process. For 
convenience, we will set Ax = 1 when discussing sampled ESS 
processes. It is easy to show that any stationary discrete process can 
constitute the increments of a discrete ESS process because summing 
the stationary processes X ( k ) ,  i.e., B ( k )  = X ( i ) ,  will create 
a nonstationary process with a well-defined correlation function. 

111. ASYMFTOTIC FBM 

A. Dejinition 
The goal is to find a model whose correlation decays asymptotically 

like a fractal but where the short-term correlations differ from the 
normal dfGn model. (It is worthwhile to comment that dfGn for 
0 < H < 1 / 2  is a different process than dfGn for 1 / 2  < H < 1 
and that we find it difficult to expand the dfGn for the two processes 
into the same extended model.) We propose the following structure 
function 

where 
2H + p(2  - 2 H )  
2H - p(2  - 2 H ) '  

A = 1 / 2  < H < I, -1 < p < G ( H ) .  

(11) 
It is shown in [SI that this structure function is well defined. A plot 
of G ( H )  is given in Fig. 1. Note that (10) does not provide a valid 
continuous ESS process because as s goes to zero, f ( s )  violates the 
positivity condition for variance. 
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Fig. 2. 
the same variance and same correlation at lag one. 

Comparison of the correlation for three different adfGn models with 

The resulting correlation function of the finest scale increments by 
(4) is 

The corresponding ESS increment model is called the asymptotic 
d f c n  (adfGn). The shape of the adfGn model is controlled by two 
parameters where p provides a transient correlation effect, whereas H 
introduces the long-term fractal structure. The coefficient A is chosen 
so that when p = 0, the model is simply dfGn, and when H = 1J2, 
the structure function provides AR( 1 j increments. Moreover, the cor- 
responding nonstationary discrete ESS model behaves asymptotically 
as fBm for coarse scales and will be referred to as asymptotic fBm 
(a"). The parameter p will smooth out the finer scales, and the 
parameter H controls the roughness of the process at coarser scales. 
Fig. 2 demonstrates how adfGn expands on AR( 1) and dfGn models 
by showing the correlation function for various values of p and H 
when the u2 = 1 and the correlations at lag one are equal. Plots of 
afBm at scales m = 3 and n7 = 0 are shown in Fig. 3 with p = 0.85 
and H = 0.65. Note that the realization at different scales is scaled 
in a similar way as in [I31 according to the H parameter, which 
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0 1 
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Distance 
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Fig. 3. 
(top) and m = 0 (bottom). 

Realiztion of afBm with p = 0.85 and H = 0.65 at scales m = 4 

to  20 30 40 50 60 

1% 

Fig. 4. Correlation decay of an adfGn process with p = 0.5 and H = 0.75. 

represents the asymptotic fractal structure. It is evident that the afBm 
realization is smoother at finer scales, whereas at coarser scales, the 
process is as rough as the fBm with the same value of H .  

The correlation decay of adfGn is evident in (12). The "whitening" 
effect of the Haar transform on an adfGn process is shown in 
Figs. 4-6. The figures also demonstrate the banded structure of the 
detail wavelet correlation matrix. 

B. Parameter Estimation 

The decorrelation of adfGn by the discrete Haar transform and the 
algorithms for fBm estimation presented in [7] and [15] motivates 
a simple parameter estimation algorithm that provides estimates of 
parameters p, H ,  and U' of the adfGn model. Suppose that given the 
input data ,If scales of the Haar transform can be computed, and for 
each scale m,  there are N(m)  Haar detail coefficients. Since the input 
data is assumed Gaussian (ESS processes are Gaussian by definition), 
the Haar coefficients are Gaussian, Then, using the assumption that 
the coefficients are uncorrelated, a log likelihood function based on 
the distribution of the wavelet coefficients is simply 

- 2  1 A4 
L ( p +  H ,  c') = -- N ( m )  [ 0% 5 + log(2su')] (13) 

n=l 
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Fig. 6.  
an adfGn process with p = 0.5 and H = 0.75. 

Experimental correlation matrix of the Haar wavelet coefficients of 

where 5: is the sampled variance of the Haar coefficients at scale 
m, and U: is provided by (8) for the adfGn structure function. Since 
the value of U* that maximizes (13) for fixed p and H is 

where @& is evaluated from (8) for U* = 1, then (13) can be reex- 
pressed as a function of p and H .  The parameter estimation algorithm 
is as follows. First, compute the Haar transform coefficients from the 
data sample. Then, calculate the sample variance of the coefficients 
at each scale, and maximize (13) (where (14) is substituted inside) 
over p and H by a steepest descent type of algorithm to obtain the 
estimates and I?. Finally, obtain U' through (14). The attractive 
feature of this algorithm is that it requires no matrix inversion. The 
estimation algorithm for filtered fractal presented in [2] is an estimate- 
maximize (EM) algorithm that requires the inversion of a N x A' 
matrix for every estimate step where N is the data length, and it 
can take many estimate steps for the EM algorithm to converge. The 
ESS models appear to provide a method to generalize a fBm that 
provides faster algorithms than filtered fractals. However, since the 
filtered fractal and adfGn models are different, the accuracy of the 
estimated parameters cannot be directly compared. 

C. Simulations 

To test the estimation algorithm for the adfGn, we created 64 
realizations of an adfGn of length 1024 samples with different 
parameters using the Cholesky decomposition technique [ 101 via the 
the Levinson recursion [5] ,  and we calculated estimates of H ,  p ,  

TABLE I 

OF adfGn WHERE U' = 1 AND H = 112, p = 0 ARE THE INITIAL ESTIMATES 
MEANS AND STANDARD DEVI~IONS FOR THE ESTIMATES OF THE PARAMETERS 

r True I1 1 
Parameters ~ I H I  

mean 
,8809 
- - 

- 
.7020 
__ .G434 
.5465 

- 

std I mean 

.0377 0.9597 &LE o?_I .0772 

.--"" , - 
- .1632 
- 
- .3452 

TABLE I1 
MEANS AND STANDARD DEVIATIONS FOR THE ESTIMATES OF THE PARAMETERS OF 

adfGn WHERE U' = 1 AND TRUE PARAMETERS ARE THE INITIAL ESTIMATES 

and U'. Table I shows the results with initial estimates H = 112 
and p = 0 (white noise), and Table I1 shows the results when 
the initial estimates are the parameter values used to generate the 
test data. We see from Tables I1 and I11 that the descent algorithm 
finds equally good estimates with the two different initial conditions 
for most cases. However, the steepest descent algorithm could find 
the wrong local minimum with certain initial estimates in some 
cases. Obviously, further study is necessary to find a smart way to 
circumvent the problem that the likelihood function is not convex. It is 
also interesting to note that the algorithm can find a better estimate for 
H than p .  One reason for this phenomena is that the fractal structure 
is consistent for all scales, whereas the exponential structure dies 
out into the Brownian structure at coarser scales. In other words, the 
fractal structure carries more information at the larger scales. Overall, 
the performance of the proposed parameter estimation algorithm is 
promising. 

IV. CONCLUSIONS 
The idea of extending the concept of self-similarity presents a 

much richer class of nonstationary process with stationary increments 
than mm.  The structure function concept provides new tools for 
signal and image modeling. Since every discrete ESS process can be 
represented at the finest available scale by a stationary process with 
an otherwise arbitrary correlation function, one can use the structure 
function to create nonstationary (the ESS process) or stationary (the 
ESS increment) models. In this correspondence, one possible structure 
function using two parameters, i.e., p and H ,  was introduced to 
show how short-term correlations can be added to the fBm model. 
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The whitening property of the discrete Haar transform is useful for 
creating a fast parameter estimation algorithm for the new model. 

A Simple Scheme for Adapting 
Time-Frequency Representations 

Douglas L. Jones and Richard G. Baraniuk 
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Abstract- We propose a simple, efficient technique for continuously 
adapting time-frequency and time-scale representations Over time. The 
procedure computes a short-time quality measure of the representation 
for a range of values of a free parameter and estimates the optimal 
parameter value maximizing the quality measure via interpolation. of turbulence physics. 
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I. INTRODUCTION 

Most time-frequency representations (TF” s) employ some kind 
of smoothing kernel, window, or filter to reduce noise and cross- 
components [l], [2]. The choice of kernel dramatically affects the 
appearance and quality of the resulting TFR. It has been shown that, 
according to several different measures of performance, the optimal 
kemel depends on the signal being analyzed [3]-[SI. Therefore, 
utilization of any fixed kemel severely limits the class of signals for 
which the resulting time-frequency representation can perform well. 

As an example, consider the signal shown in Fig. 1. It contains 
several narrow pulses, two sinusoids that overlap in time, and 
a Gaussian component. Fig. 2 illustrates three short-time Fourier 
transforms (STFT’s) of this signal computed using Gaussian windows 
of varying lengths. A short window (Fig. 2(a)) matches the pulse 
components well but smears the sinusoidal and Gaussian components 
in the frequency direction. A medium-length window (Fig. 2(b)) 
matches the Gaussian component well but smears the pulse and 
sinusoidal components in both the time and frequency directions. 
A long window (Fig. 2(c)) matches the sinusoidal components but 
smears the pulse and Gaussian components in the time direction. 
These figures illustrate the fundamental drawback of the STFT: It is 
impossible to obtain simultaneously good time and good frequency 
resolution using a single fixed window. The continuous wavelet 
transform [6] suffers from the same tradeoff, although in this case 
the tradeoff is a function of frequency. Moreover, a related tradeoff 
between time-frequency resolution and cross-term suppression applies 
to the kemel function in all bilinear (Cohen’s class) time-frequency 
representations. In short, no TFR employing a fixed window, wavelet, 
or kernel performs well for all signals. 

Due to this fundamental limitation of fixed windows or kernels, 
several researchers have developed signal-dependent or adaptive 
TFR’s (see [3]-[5], [7]-[9] and the references in [4]). These methods 
often exhibit performance far surpassing that of fixed-kernel repre- 
sentations; however, they are either very computationally expensive 
or perform only off-line, block analysis of short signals. Thus, a 
need exists for simple, time-adaptive, computationally efficient TFR’s 
suitable for real-time, on-line applications. 

This paper presents a new scheme for adapting a TFR with a single 
free parameter. Section I1 describes the optimization formulation, 
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