
Extending Sensor Networks into the Cloud using

Amazon Web Services

Kevin Lee1, David Murray1, Danny Hughes2,3, Wouter Joosen3

1School of Information Technology, Murdoch University,

Murdoch 6150, Western Australia, Australia

{Kevin.Lee, D.Murray}@murdoch.edu.au

2 Department of Computer Science and Software Engineering,

Xi’an Jiaotong-Liverpool University,

Suzhou Industrial Park, Suzhou, China,

Email: daniel.hughes@xjtlu.edu.cn

3 Distrinet, Katholieke Universiteit Leuven,

3001 Leuven, Belgium

Email: wouter.joosen@cs.kuleuven.be

Abstract—Sensor networks provide a method of collecting
environmental data for use in a variety of distributed appli-
cations. However, to date, limited support has been provided
for the development of integrated environmental monitoring
and modeling applications. Specifically, environmental dynamism
makes it difficult to provide computational resources that are
sufficient to deal with changing environmental conditions. This
paper argues that the Cloud Computing model is a good fit
with the dynamic computational requirements of environmental
monitoring and modeling. We demonstrate that Amazon EC2
can meet the dynamic computational needs of environmental
applications. We also demonstrate that EC2 can be integrated
with existing sensor network technologies to offer an end-to-end
environmental monitoring and modeling solution.

I. INTRODUCTION

The use of Sensor Networks allow data from the physical

world to be collected from an array of devices at different

locations. This environmental data is collected and transmitted

through a number of sensor nodes to a gateway and from there

to the modelling back-end. Aggregation and pre-processing is

often performed to reduce power consumption before data is

transmitted to the application user. Applications which use data

from Sensor Networks include environmental monitoring [1],

medical computing [2] and industrial automation [3].

Sensor Networks consist of a number of nodes, often called

motes, which cooperate to complete their task of collecting

raw data and returning this to the application back-end. Motes

generally consist of a small footprint embedded board with a

low-power general purpose CPU, small amount of memory,

small solid state storage and a limited power source. They

include a variety of interconnects to external storage, network

connectivity and of course the sensor(s) themselves. Motes

may be programmed using a low-level programming language

to do only a single task or may run a minimal Operating

System such as TinyOS [4], which supports multiple tasks.

A key shortcoming in current sensor network approaches is

a lack of elasticity in both sensing resources and computational

resources.

• Despite recent advances, the cost of deploying, managing

and maintaining sensor network infrastructure remains

a key barrier to the use of Wireless Sensor Networks

(WSN) technologies, especially for applications with a

short life-cycle. Furthermore, as argued in [5], we believe

that exposing sensing resources using a cloud-like model

is a promising approach to promoting re-use in this

domain.

• In terms of computational resources, environmental mon-

itoring and modeling applications are typically tightly-

coupled with their environment and have unpredictable

computational demands. For example: during the extreme

flooding in Europe in 2006, large scale Grid Computing

resources had to be manually re-purposed to run flood

modeling software and connected to live sensor data in

order to provide timely flood predictions [6]. Computa-

tional resources have been similarly re-allocated on an

emergency basis to support modeling of hurricanes and

oil spills [7].

This paper proposes that the elastic computation model pro-

vided by the Cloud is well suited to meeting the unpredictable

computational demands that are generated by environmental

sensing and monitoring applications. Specifically, we demon-

strate through evaluation that Cloud Computing resources

are sufficiently elastic to deal with the unpredictable loads

generated by real-world sensing applications. Furthermore, we

demonstrate that it is feasible to connect resource constrained

sensor nodes directly to the extensible computational resources

offered by the Cloud.

The remainder of this paper is structured as follows. Section

II provides a background of the areas of Sensor Networks

and Cloud Computing. Section III discusses the benefits of

integrating the domains of Sensor Networks and Cloud Com-

puting. Section IV presents a strategy for providing elastic

computational capacity for environmental modelling applica-

tions using the Amazon Elastic Computing Cloud service.

Section V describes a proposed architecture for an integrated

environmental monitoring and modelling system. Finally, Sec-

tion VI presents some conclusions and future work.

II. BACKGROUND

This section provides an overview of the technologies

relavent to this paper. Section II-A provide a background on

Sensor Networks. Secton II-B provide a background on Cloud

Computing and the Amazon Web Services suite of Cloud

Computing services.

A. Sensor Networks

Wireless Sensor Networks (WSN) are composed of tiny

computers knows as motes with embedded CPUs, low-cost

sensors and low-power radios [8]. These motes form self-

organizing networks that are capable of sensing and reacting

to the physical world. To date, the WSN research community

has primarily focused upon providing in-network support for

sensor network application.

These research efforts have resulted in a variety of

special-purpose Operating Systems for sensor nodes includ-

ing TinyOS [4], Contiki [9], Squawk [10] and Lorien [11].

The research community has also been very active in the

development of programming abstractions for wireless sen-

sor networks include specialized component models such

as NesC [12], OpenCom [13] and LooCI [14] along with

macro-programming approaches such as TinyDB [15] and

Kairos [16].

The research community has also been prolific in developing

networking support for WSN at all levels of the network stack

from the link-layer [17], [18] to application-level network-

ing [1]. IP-based networking approaches include uIPv6 [19]

and 6LowPAN [20] are particularly promising as they allow

for seamless integration of sensing resources into distributed

applications and the cloud.

A key shortcoming of current research efforts is a lack of

consideration of the WSN back-end. Sensor networks rarely,

if ever, operate in isolation and are much more commonly

connected to back-end modeling infrastructure. Examples from

real world sensor-network deployments include computational

models of flooding [1], pollution [21] and hurricanes [7]. Cur-

rently, developers implement and connect to back-end compu-

tational facilities in an ad-hoc manner, with little development

support available. The situation is further complicated by the

necessity of elastic computation, which is required to deal with

environmental dynamism in the face of emergency events.

Currently, there is little or no support for modeling com-

putational elasticity for sensing applications. Subsequently,

emergency situations such as the April 2010 oil spill in the

Gulf of Mexico necessitate manual re-tasking of computational

facilities together with application refactoring [7].

This paper advocates the implementation of environmental

sensor network models using the extensible computational

resources that are available in the Cloud. It argues that sensor

network applications should be able to directly extend or

contract available modeling capacity provided in the cloud.

The remainder of this paper demonstrates that current cloud

facilities offer ample elasticity to deal with environmental

modeling workloads and establishing a direct connection to

these resources is feasible even in resource constrained WSN

environments.

B. Cloud Computing

The concept of Cloud Computing has received a lot of

attention in recent years [22]. Cloud Computing is funda-

mentally an evolution of distributed systems technologies such

as Cluster Computing [23] and Grid Computing [24]. At its

simplest, Cloud Computing is the provision of generic com-

puting services over the Internet. There are many competing

definitions of exactly what constitutes Cloud Computing [25],

however, a broad consensus suggests that all Cloud Computing

platforms include:

• Abstracted or virtualized resources.

• Elastic resource capacity.

• Programmable self-service interface.

• Usage-based pricing model.

Practically, Cloud Computing offers access to raw virtu-

alized resources, high level support services and complete

turnkey applications. Because of their wide scope and the

public availability of Cloud Computing services; growth has

been dramatic. There are many providers of Cloud Comput-

ing resources including: Google AppEngine [26], Rackspace

Cloud [27], Slicehost [28] and Salesforce [29]

Amazon is a leading provider of flexible Cloud Computing

resources with its Amazon Web Services (AWS) [30] suite

of offerings, including the Elastic Computing Cloud (EC2),

Simple Storage Service (S3) and higher level services such

as SimpleDB and MapReduce. Amazon Web Services can be

accessed through using web browser or client application tools.

More directly they can be accessed using either the REST

or SOAP protocols via the Amazon-supported APIs for Java,

PHP, Ruby and .Net. Specifically:

• EC2: provides support for the dynamic instantiation and

configuration of virtual machine instances.

• S3: provides support for creating and managing an ex-

tensible storage space for any kind of data.

• SimpleDB: provides support for setting up simple rela-

tional databases that allow developers to store and query

data without needing to manage the database.

• Elastic MapReduce: provides support for performing

data-intensive tasks with minimal setup and management

overhead.

Together, the AWS suite of services provides rich support

for the creation and management of elastic computation facil-

ities. Section III will discuss how Cloud Computing resources

can be leveraged in an elastic environmental monitoring and

modeling scenario.

III. INTEGRATING SENSOR NETWORKS INTO THE CLOUD

Our previous work argued that making WSN-based re-

sources available via the Cloud to promote the integration of

sensor data with Internet applications will reduced the cost of

WSN infrastructure [5]. We refer to this vision as the Tangible

Cloud, a brief overview of which is provided in Section III-A.

This paper adds to our previous work by (i.) demonstrating

Cloud Computing’s capacity for supporting elastic sensing

and modeling applications and (ii.) showing that it is feasible

for sensor nodes to use and manage the proposed Cloud-

based extensible modeling resources. The argument for this

architecture is provided in Section III-B.

A. Exposing Sensor Resources in the Cloud

The provision of sensing resources in the Cloud extends the

current domain of Cloud Computing to include the physical

world. We refer to this vision as the Tangible Cloud [5].

As first class entities in the Cloud, sensor network devices

can be used together with 3rd party Cloud resources. For

example, the developer of an environmental monitoring and

modeling application might compose sensing resources from

the Tangible Cloud with storage and computational resources

from the traditional Cloud. Section III-B explores how WSN

resources can connected to the cloud.

B. Exploiting Cloud Resources in WSN Environments

As argued in the introduction, the research community

has created a rich suite of in-network technologies includ-

ing specialized programming paradigms [12], [14], network

support [19], [17], Operating Systems [9], [4], [11] and

middleware [31], [32]. However, development support ends at

the network gateway, leaving the WSN developer to implement

ad-hoc solutions in terms of modeling and analyzing data

gathered from the WSN.

The implementation of back-end modeling resources can be

particularly problematic due to the tight-coupling of sensing

applications with their environment. Consider a flood mod-

eling and warning application that makes use of live sensor

data. During standard system operation, the timeliness of flood

predictions may not be critical. However, when a flood occurs,

the need for timely flood warnings increases. Using traditional

computational technologies, extending computational capacity

may require the manual allocation of additional resources and

refactoring of the modeling application itself. In an elastic

system such as the Cloud, it is possible to incrementally

increase available computational power to meet application

demands in a more fine-grained manner.

Section IV demonstrates how this elasticity can be realized

using Amazons AWS Cloud resources and quantifies the

degree of this elasticity. Section V then demonstrates that it

is possible to directly connect sensor nodes to the proposed

modeling resources.

IV. ELASTIC COMPUTATIONAL CAPABILITIES FOR

ENVIRONMENT MODELLING

A. Realising Computational Elasticity in Amazon EC2

This section discusses the use of Amazon EC2 for realising

computational elasticity.

1) EC2 Architecture: Amazon’s Elastic Compute Cloud

(EC2) is, at its most basic, a web-service that allows its users

to launch and manage Linux and Windows virtual machine

instances hsoted on Amazon’s computing resources. Virtual

machines can be managed using a web-based console but also

directly using SOAP or RESTful mechanisms which makes it

possible to manage instances from any client that can issue

HTTP/1.1 requests.

The process of launching instances on EC2 is the same

using any of the management interfaces, as follows:

• An Amazon Web Service account must be created,

enabling the user to pay for resources based on usage.

• An Amazon Machine Image (AMI) must be chosen.

These are the operating system images that become

instances when launched. Normal and micro instances are

available at a variety of CPU and Memory configurations.

There are a large amount available, including those pre-

pared by Amazon, by third-parties and those that can be

built by the user, for example, to host a specific model.

• Key pairs should be created that allow secure connec-

tions to be made to the instance.

• A security group should be defined that specifies what

services can be accessed on the instances and who can

access them.

• Launching of the instance takes place. Once the instance

is setup a user can connect to it (e.g. using SSH) and

configure it for the required application scenario.

The web-services API allows these tasks to be completed

programmatically using standard HTTP calls with short XML

descriptions or HTTP Queries. The most lightweight of these

being HTTP Queries using the RESTful paradigm. For exam-

ple, to list all available Ubuntu AMIs the HTTP Query would

be the following:

http://ec2.amazonaws.com/

?Action=DescribeImages

&User.1=ubuntu

&...auth parameters...

This returns an XML document listing all the available

Ubuntu AMIs along with specific details such as a description

of the AMI, device mappings and kernel version. Instances

can be started using simple a HTTP Query as follows:

http://ec2.amazonaws.com/

?Action=RunInstances

&ImageId=ami-e480aa90

&MaxCount=1

&MinCount=1

&KeyName=gsg-keypair

&Placement.AvailabilityZone=eu-west-1b

&...auth parameters...

Similarly, any operation involving the EC2 service can be

controlled using either HTTP Query or SOAP. Therefore,

the Amazon EC2 service has in-built support for lightweight

configuration of Cloud resources using open standards.

2) Using EC2 to Support Dynamism: The Amazon EC2

service has built-in support for dealing with dynamic loads

through the use of auto scaling. Auto scaling allows user-

defined triggers to automatically control the launching and

shutting down of instances. Users define groups, with associ-

ated triggers that will automaticaly scale EC2 resources based

on bandwidth or CPU utilisation.

To provide the data for triggers, the Amazon CloudWatch

service is configured to monitor the usage of the instance

group. Cloudwatch measures the required metics such as

bandwidth and/or CPU utilisation. A trigger is configured to

respond to an increase in utiltisation through the use of two

parameters:

• Period is the interval at which Amazon CloudWatch

monitors the resource usage.

• BreachDuration is the amount of time the metric is

required to be above the trigger point before starting

another instance.

By adjusting the Period and BreachDuration parameters, the

auto scaling can be used to respond rapidly to small changes

in load or to only respond based on longterm trends in load

changes. The actual values used will depend on the user’s

value of the performance improvement versus the cost increase

associated with provisioning more resources. The following

example defines a new autoscaling group with a maximum

of 10 instances and sets the scaling algorithm to increase the

number of instances when the CPU utilization reaches 50%

for more than 300 seconds.

http://autoscaling.amazonaws.com/

?AutoScalingGroupName=sensorappn

&LaunchConfigurationName=e480aa90

&MinSize=0

&MaxSize=10

&Cooldown=0

&AvailabilityZones.member.1=eu-west-1b

&Action=CreateAutoScalingGroup

http://autoscaling.amazonaws.com/

?AutoScalingGroupName=sensorapn

?TriggerName=50percent

&MeasureName=CPUUtilization

&Statistic=Average

&Namespace=AWS/EC2

&Period=50

&LowerThreshold=0

&LowerBreachScaleIncrement=-1

&UpperThreshold=50

&UpperBreachScaleIncrement=1

&BreachDuration=300

&Action=CreateOrUpdateScalingTrigger

The EC2 Autoscaling service is AMI agnositic as it is

only concerned with provisioning resources based on the

load present on the autoscaling group. In order to use EC2

auto scaling successfully, the AMI and application must be

designed to support parallel computation and instance replica-

tion.

As discussed in Section II-A, the environmental models

which use sensor network-derived data are inherently parallel

and would thus benefit from using cloud resources. As well as

the application, the AMIs must also be configured to support

load-balancing.

When increasing the number of instances for an application

the current instance and state is not just replicated, instead,

fresh AMIs are instantiated and data directed to them using

the load-balancing algorithm. Therefore, to effectively support

load-balancing, the AMI must be customised to support the

application. This can be completed in two ways:

• Configure an AMI to contain the application setup ready

to receive data.

• Configure the AMI to retrieve the application specifi-

cation from Amazon’s Simple Storage Service (S3) on

instantiation and setup the application.

Using both these methods, the Amazon AutoScaling service

will be able to balance the load across multiple instances;

increasing and descreasing the number of instances as neces-

sary. The auto scaling services can then direct data across the

multiple instances. The method used depends on the flexiblity

needed by the application.

B. Quantifying Elasticity of Amazon EC2

To evaluate if Amazon EC2 can effectively load-balance

when subjected to dynamic loads; the following experiment

was performed.

1) Experiment Setup: A single AMI was prepared using

Ubuntu 10.04 as the base Operating System and a default

install of Apache 2.2.14. This AMI was stored on Amazon

Simple Storage Service (S3) ready to be instantiated by EC2.

A single instance of this AMI was instantiated on a standard

machine type m1.large which has 4 64-bit EC2 Computer

Units and 7.5GB of memory. No location preference was

given for this or any of the EC2 instances used to ensure

the availability of resources. Amazon CloudWatch was turned

on to enable the collection of statistics from the instance.

An Amazon AutoScaling group was created and config-

ured, with load-balancing enabled, to monitor instance and

scale depending on CPU utilization. The low CPU utilization

threshold was set to 25% and the high utilization to 40%. The

AutoScaling service was configured to increment or decrement

the number of EC2 instances when these values are breached

for more than two minutes.

To evaluate how Amazon EC2 AutoScaling responded to

dynamic load, two further EC2 instances were used to provide

load. Each was of standard type m1.xlarge, which has 8 64-bit

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80
 0

 10

 20

 30

 40

 50

 60

 70

 80
Lo

ad
 A

pp
lie

d
(N

um
be

r
of

 C
on

cu
rr

en
t R

eq
ue

st
s

pe
r

se
co

nd
)

A
va

ila
bl

e
C

ap
ac

ity
 (

E
C

2
C

om
pu

tin
g

U
ni

ts
)

Time (Minutes)

Load Applied (Number of Concurrent Requests per second)
Available EC2 Computing Units

Fig. 1. Number of Available Amazon Compute Units with Increasing Load
Applied being Applied

EC2 Computer Units and 15GB of memory. To provide load,

the HTTP load testing and benchmarking tool Siege (version

2.69) was used to provide a constant measured load. Siege can

be configured to perform a set amount of concurrent requests

to a server on a target machine. For this experiment, applied

load was simulated by using HTTP to request a small amount

of server-side computation. These loads were directed at the

DNS of the load-balancer, which forwarded the requests to

selected instances.

2) Experiment Results: For this experiment the load applied

is started at the level of 10 concurrent requests per second,

then increased every 10 minutes over 80 minutes. The level of

the load applied, the actual CPU usage on each instance, the

number of instances available and transaction statistics were

recorded.

Figure 1 illustrates the number of Amazon compute units

that are available at any point during the experiment. It shows

that as load was increased (left y-axis), the number of instances

made available (right y-axis) by the Auto Scaling service also

increased to handle the load. Using the Amazon Auto Scaling

support, the instances appear to start almost instantly after the

scaling trigger fires. The results show that, after the initial

excessive load was applied there was always enough capacity

available for the load applied. Furthermore, the increase in

resource availability closely matches that of the applied load.

Figure 2 illustrates the average CPU usage on all virtual

machines as the load was increased. It shows that, after the

initial increase in load, the auto scaling and load balancing

services successfully maintain balanced CPU usage across

all available instances. The variance bars in Figure 2 show

the fluctuating load between instances. The load balancer

periodically increases and decreases load to different compute

units.

To provide context, repeating this experiment with only a

single instance results in a CPU utilization of 100% within 3

minutes. This CPU utilization was maintained for the length

 0

 20

 40

 60

 80

 100

 0 20 40 60 80

A
ve

ra
ge

 C
P

U
 lo

ad
 (

A
cr

os
s

al
l E

C
2

un
its

)

Time (Minutes)

Average CPU load (Across all EC2 units)
Variation in CPU load

Fig. 2. Average CPU Usage on all amazon compute units over time

of the experiment whilst dropping an increasing number of

connections. Conversely, providing enough CPU-capacity to

meet the peak demand thoughout the experiment would have

wasted energy and financial resources.

The Amazon load-balancing algorithm appears to unevenly

deliver load to instances. Instead of load being evenly dis-

tributed, resulting in similar CPU usage on each note, load

was sometimes unevenly distributed, resulting in sporadic CPU

usage. This is illustrated in the variance of load in Figure 2. It

is also observed that the load-balancer performs load-balancing

based on source IP rather than per-connection. This must be

considered when designing the use of EC2 resources into a

large application scenario.

3) Summary: This experiment illustrates that Cloud Com-

puting services can be used to provide computation to suppport

dynamic load in scenarios such as those used to process data

collected by sensor networks. Furthermore, obtaining, config-

uring and utilising these resources is simple, straightforward

and relatively cheap. Using standard web-service technologies

and open pricing makes this a viable for accessing computation

resources.

V. TOWARDS AND INTEGRATED ENVIRONMENTAL

MONITORING AND MODELLING SYSTEM

This paper has made the case for the integration of sensor

networks with the Cloud. We have shown, through experi-

mentation, that existing Cloud Computing services such as

Amazon’s EC2 are sufficiently elastic to support the dynamic

demands of real-time environmental monitoring and modeling

solutions. This section shows how these features can be

exploited using a prototypical implementation built using the

LooCI WSN component model [14] and Amazon EC2 [30].

Figure 3 illustrates an overview of the architecture of our

prototype. Components of the system are bound together

through bindings of service provision (interfaces) and service

requirement (receptacles). Interfaces are denoted by lines

ending in balls, and receptacles are denoted by lines ending in

EC2
Instance

Control

GATEWAY

TIER

CLOUD

TIER

SENSOR

TIER

Model

Proxy

Model

Instance C

Model

Instance B

Control

Model

Instance A

Sensor

Data
REPORT

DATA

CONTROL

MODEL

REPORT

DATA

CONTROL

MODEL

Fig. 3. System Overview

cups. Component bindings are shown as relationships between

the interfaces and receptacles and are realized practically

through the LooCI Event Bus [14]. SOAP bindings are shown

as relationships between the EC2 instance control, model

instances and model proxy. This implementation has three

key tiers of functionality; Section V-A describes the Sensor

Tier, Section V-B describes the Gateway Tier and Section V-C

describes the Cloud Tier architecture. Finally, Section V-D

introduces the API for the model.

A. The Sensor Tier Architecture

At the Sensor Tier, environmental data is gathered on low-

power sensor nodes running the LooCI [14] middleware. Sens-

ing functionality is realized using generic LooCI components

which are bound over a loosely-coupled event-bus. Both the

data and control plane are accessible in-network over the event

bus as the model proxy offers LooCI interfaces to control the

extensible model and report data. This eleminates the need

to provide in-network SOAP/REST adapters and thus lowers

overhead.

B. The Gateway Tier Architecture

At the Gateway Tier, the Model Proxy acts as a bridge,

allowing LooCI sensing components to parameterize the ex-

tensible model over the event bus via SOAP-based EC2 func-

tionality. Additionally, the model proxy relays environmental

sensor data from the sensor network to the most optimal

model instance. Model selection may be based upon a range

of load balancing techniques, however, this is outside of the

scope of this paper. This process is transparent to the sensing

components and the application developer allowing for simple

elasticity in computation.

C. The Cloud Tier Architecture

In the Cloud Tier, an extensible model is realized as an

Auto Scaled set of EC2 instances. Each model is implemented

in LooCI and therefore may connect directly to the model

proxy over the event bus. Model functionality is encoded in a

pre-configured EC2 AMI image as described in the previous

section and when the existing pool of instances approaches a

CPU utilization trigger, a new instance may be dynamically

instantiated. Once it is instantiated, a reference is passed to the

model proxy, which includes the instance in the Model pool,

providing new capacity. Capacity may also be added manually.

D. API for the Model Proxy

The model proxy exposes a standard Java API for gateway

applications and a distributed version of this same API over

the in-network LooCI event bus. It is infeasible to reproduce

the full API here, thus we focus upon the model control and

data relay methods.

Model Control Methods:

• modelRef startExtensibleModel()

This method starts a new extensible model, which begins

with a single model instance, returning a unique model-

Ref (the IP address of the first instance) which is used to

identify this model.

• stopExtensibleModel(modelRef)

This method stops all model instances belonging to

the unique extensible model identified by the parameter

modelRef.

• setExpandThreshold(cpuLevel)

This method sets the CPU utilization at which another

model instance should be added to the extensible model.

• setContractThreshold(cpuLevel)

This method sets the CPU utilization at which redundant

model instances should be removed from the extensible

model.

• setBreachDuration(duration)

This method sets the breach duration the CPU utilization

must be above ot below before the instances should be

added or removed.

• incrementCapacity(modelRef)

This method manually expands the specified extensible

model with a single additional EC2 instance.

• decreaseCapacity(modelRef)

This method manually contracts the specified extensible

model by removing a single additional EC2 instance.

Data Relay Methods:

• report(sensorData, modelRef)

This method sends the specified sensor data to one of the

instances that comprises the extensible model identified

by modelRef. A range of load balancing algorithms may

be applied to ensure a uniform load is generated.

VI. CONCLUSIONS AND FUTURE WORK

This paper has argued for the integration of sensor networks

and Cloud Computing to support the dynamic loads that are

generated by environmental applications. It has demonstrated

how sensor networks can be combined with Cloud Computing

to allow the offloading of resource-intensive tasks to the Cloud.

An experiment was performed to show that the elastic nature of

Amazon EC2 can support the dynamic loads provided by these

applications. We have also provided an architecture that shows

how existing sensor network technologies can be integrated

with Cloud Computing.

Our future work will focus on building a proof-of-concept

application that uses extensible Cloud-based modeling re-

sources to provide reliable identification of suspect vehicles

in variable traffic situations. In this scenario, the Cloud will

be used to host image analysis models that are capable of

identifying suspect vehicles that police officers are searching

for. As traffic increases, more models will be launched to

provide a mechanism that can reliably identify suspect vehicles

even in high volumes of traffic.

ACKNOWLEDGMENTS

We acknowledge the support of Amazon Web Services for

providing Cloud Computing resources for this research under

their AWS in Education grant scheme.

REFERENCES

[1] Hughes D., Greenwood P., Coulson G., Blair G., Pappenberger F., Smith
P., and Beven K. An experiment with reflective middleware to support
grid-based flood monitoring. In in Wiley Inter-Science Journal on

Concurrency and Computation: Practice and Experience, vol. 20, no

11, November 2007, pp 1303-1316, 2007.

[2] Stankovic J. A., Cao Q., Doan T., Fang L., He Z., Kiran R., Lin S.,
Son S., Stoleru R., and Wood A. Wireless sensor networks for in-home
healthcare: Potential and challenges. In in proc. of Workshop on High

Confidence Medical Devices Software and Systems (HCMDSS), 2005.

[3] Pohl A., Krumm H., Holland F., Stewing F. J., and Lueck I. Service-
orientation and flexible service binding in distributed automation and
control systems, 2008.

[4] Philip Levis, Sam Madden, Joseph Polastre, Robert Szewczyk, Alec
Woo, David Gay, Jason Hill, Matt Welsh, Eric Brewer, and David
Culler. Tinyos: An operating system for sensor networks. In in Ambient

Intelligence. Springer Verlag, 2004.

[5] K Lee and D. Hughes. System architecture directions for tangible
cloud computing. In International Workshop on Information Security

and Applications (IWISA 2010), in Qinhuangdao, China, October 22-

25, 2010.
[6] Paul Smith, Danny Hughes, Keith J. Beven, Philip Cross, Wlodek Tych,

Geoff Coulson, and Gordon Blair. Towards the provision of site specific
flood warnings using wireless sensor networks. In Meteorological

Applications, Special Issue: Flood Forecasting and Warning, volume

16, number 1, pages 57–64, 2009.

[7] Faith Singer-Villalobos. Scientists produce 3-d models of
bp oil spill in gulf of mexico using ranger supercomputer,
univeristy of texas at austin press release, available at
http://www.utexas.edu/news/2010/06/03/tacc ranger oil spill/. June
2010.

[8] Alan Mainwaring, David Culler, Joseph Polastre, Robert Szewczyk, and
John Anderson. Wireless sensor networks for habitat monitoring. In
WSNA ’02: Proceedings of the 1st ACM international workshop on

Wireless sensor networks and applications, pages 88–97, New York,
NY, USA, 2002. ACM.

[9] A. Dunkels, B. Grönvall, and T. Voigt. Contiki - a lightweight and
flexible operating system for tiny networked sensors. In Workshop on

Embedded Networked Sensors, Tampa, Florida, USA, November 2004.

[10] Doug Simon, John Daniels, Cristina Cifuentes, Dave Cleal, and Derek
White. The squawk java virtual machine, sun microsystems, 2005.

[11] Barry Porter and Geoff Coulson. Lorien: a pure dynamic component-
based operating system for wireless sensor networks. In MidSens ’09:

Proceedings of the 4th International Workshop on Middleware Tools,

Services and Run-Time Support for Sensor Networks, pages 7–12, New
York, NY, USA, 2009. ACM.

[12] David Gay, Philip Levis, Robert von Behren, Matt Welsh, Eric Brewer,
and David Culler. The nesc language: A holistic approach to networked
embedded systems. In PLDI ’03: Proceedings of the ACM SIGPLAN

2003 conference on Programming language design and implementation,
pages 1–11, New York, NY, USA, 2003. ACM.

[13] G. Coulson, G. Blair, P. Grace, F. Taiani, A. Joolia, K. Lee, J. Ueyama,
and T. Sivaharan. A generic component model for building systems
software. In ACM Transactions on Computer Systems, pp 1-42, Vol. 26,

No. 1, 2008.
[14] D. Hughes, K. Thoelen, W. Horre, N. Matthys, S. Michiels, C. Huygens,

and W. Joosen. Looci: A loosely-coupled component infrastructure for
networked embedded systems. In in the proceedings of the 7th Inter-

national Conference on Advances in Mobile Computing & Multimedia

(MoMM09), December, 2008.
[15] Samuel R. Madden, Michael J. Franklin, Joseph M. Hellerstein, and

Wei Hong. Tinydb: an acquisitional query processing system for sensor
networks. ACM Trans. Database Syst., 30(1):122–173, 2005.

[16] Ramakrishna Gummadi, Nupur Kothari, Ramesh Govindan, and Todd
Millstein. Kairos: a macro-programming system for wireless sensor
networks. In SOSP ’05: Proceedings of the twentieth ACM symposium

on Operating systems principles, pages 1–2, New York, NY, USA, 2005.
ACM.

[17] Joseph Polastre, Jason Hill, and David Culler. Versatile low power media
access for wireless sensor networks. In SenSys ’04: Proceedings of the

2nd international conference on Embedded networked sensor asystems,
pages 95–107, New York, NY, USA, 2004. ACM.

[18] Chunsheng Zhu, Yuanfang Chen, Lei Wang, Lei Shu, and Yan Zhang.
Smac-based proportional fairness backoff scheme in wireless sensor
networks. In IWCMC ’10: Proceedings of the 6th International Wireless

Communications and Mobile Computing Conference, pages 138–142,
New York, NY, USA, 2010. ACM.

[19] Dogan Yazar and Adam Dunkels. Efficient Application Integration in IP-
based Sensor Networks. In Proceedings of ACM BuildSys 2009, the First

ACM Workshop On Embedded Sensing Systems For Energy-Efficiency

In Buildings, Berkeley, CA, USA, November 2009.
[20] Jonathan W. Hui and David E. Culler. Extending ip to low-power,

wireless personal area networks. Internet Computing, IEEE, 12(4):37–
45, July-Aug. 2008.

[21] Wataru Tsujita, Akihito Yoshino, Hiroshi Ishida, and Toyosaka Mori-
izumi. Gas sensor network for air-pollution monitoring. Sensors and

Actuators B: Chemical, 110(2):304 – 311, 2005.
[22] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic. Cloud

computing and emerging it platforms: Vision, hype, and reality for
delivering computing as the 5th utility. Future Gener. Comput. Syst.,
25(6):599–616, 2009.

[23] Rajkumar Buyya. High performance cluster computing / edited by

Rajkumar Buyya. Prentice Hall PTR, Upper Saddle River, N.J. :, 1999.
[24] I. Foster and C. Kesselman. Concepts and architecture. In I. Foster

and C. Kesselman, editors, The Grid 2: Blueprint for a New Computing

Infrastructure. Morgan Kauffman, San Francisco, second edition, 2004.
[25] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner. A break

in the clouds: towards a cloud definition. SIGCOMM Comput. Commun.

Rev., 39(1):50–55, 2009. 1496100.
[26] Eugene Ciurana. Developing with Google App Engine. Apress, Berkely,

CA, USA, 2009.
[27] Rackspace. the rackspace cloud. http://www.rackspacecloud.com, 2010.
[28] Slicehost. Slicehost cps hosting. http://www.slicehost.com, 2010.
[29] Salesforce. Salesforce crm. http://www.salesforce.com, 2010.
[30] Amazon. Amazon web services. http://aws. amazon.com, 2010.
[31] Christophe Huygens, Danny Hughes, Bert Lagaisse, and Wouter Joosen.

Streamlining development for networked embedded systems using mul-
tiple paradigms. IEEE Software, 27:45–52, 2010.

[32] S. Hadim and N. Mohamed. Middleware: middleware challenges and
approaches for wireless sensor networks. Distributed Systems Online,

IEEE, 7(3):1 –1, mar. 2006.

