
Extending SystemC to Support Mixed

Discrete-Continuous System Modeling and Simulation

 Alain Vachoux Christoph Grimm Karsten Einwich

 Microelectronic Systems Laboratory Professur Technische Informatik Design Automation Dept

 Swiss Federal Institute of Technology Universität Frankfurt Fraunhofer IIS/EAS

 Lausanne, Switzerland Frankfurt, Germany Dresden, Germany

 alain.vachoux@epfl.ch grimm@ti.informatik.uni-frankfurt.de karsten.einwich@eas.iis.fhg.de

Abstract—Systems on chip are more and more heterogeneous

and include software, analog/RF and digital hardware, and

non-electronic components such as sensors or actuators. The

design and the verification of such systems require appropriate

modeling means to deal with the increasing complexity and to

achieve efficient simulation. SystemC is providing a modeling

and simulation framework that supports digital (discrete)

hardware and software systems from abstract specifications to

register transfer level models. In the paper, we are proposing a

way to extend the capabilities of SystemC to support mixed

discrete-continuous systems by implementing a synchronous

dataflow (SDF) model of computation (MoC). The SDF MoC is

used to embed continuous-time behavior in SDF modules and

to support the synchronization with the existing SystemC

kernel. The paper presents an overview of the architecture and

the syntax of the proposed extensions and gives modeling

examples with simulation results.

I. INTRODUCTION

Systems on chip are more and more heterogeneous and
include software, analog/RF and digital hardware, and non-
electronic components such as sensors or actuators. The
design of such systems requires dealing with several design
formalisms or models of computation (MoC). A model of
computation defines a set of rules to mimic (model) a
particular behavior. Examples of MoCs are: the discrete-
event MoC, the finite state machine MoC, the dataflow
MoC, and the continuous-time MoC. The Ptolemy project
[1] developed a multi-MoC framework based on the Java
language that became a research reference when discussing
issues related to the design of heterogeneous systems.
SystemC is a set of C++ classes and methods that provides a
means to describe the structure and the behavior of
hardware/software systems from abstract specifications to
register transfer level (RTL) models [2]. SystemC currently
only supports the discrete-event MoC, but it is easily
extendable to support other MoCs. This paper reports on an
effort to extend SystemC to support the modeling and
simulation of continuous-time systems and mixed discrete-
event/continuous-time systems at different levels of

abstraction [6]. The paper is organized as follows. Section II
presents the context in which the presented extensions are
being developed. Section III details the architecture of the
extensions and the new syntax that has been added to
SystemC. Sections IV and V give two modeling examples
using the new syntax and show some simulation results.
Finally, conclusions are drawn in Section VI.

II. CONTEXT OF THE EXTENSIONS

The first set of targeted applications are signal
processing dominated applications that have a number of
specific characteristics. First, application behavior may be
described as signal-flow models, e.g. they may be
represented as directed graphs where nodes define signal
processing functions as input-output signal mappings and
arcs define the order in which the functions have to be
executed. Second, signals have either discrete or real values
sampled at equidistant discrete times. Sampling rates are
often order of magnitude larger than operating frequencies
in the system (over-sampled systems). Third, signal
processing functions may be described as input-output
functions (e.g. transfer functions), static non-linear or
dynamic linear behaviors.

The Synchronous Dataflow (SDF) model of computation
[3] is a natural candidate to model and simulate signal
processing applications. A dataflow model is a network of
concurrent processes communicating through unidirectional
unbounded FIFOs. Processes implement the functions
(computations) and produce/consume data tokens in FIFOs.
Synchronous dataflow models restrict the number of
consumed/produced tokens to be constant, so it is possible
to statically define an execution order for the processes with
bounded FIFO sizes. Single-rate SDF models consume and
produce one token at a time, while multi-rate SDF models
consume/produce tokens at various rates. For modeling
signal processing applications, tokens represent data
samples and sampling rate(s) are related to some global
clock. It is possible to implement the SDF MoC in SystemC
using the existing FIFO primitive channel [4]. However, the

SystemC kernel uses a dynamic scheduling and signal
handshaking between processes and so cannot exploit the
capability of SDF models to be statically scheduled. This
approach therefore leads to significant simulation overhead
as excessive context switching is generated. To overcome
this limitation, a recent work [5] developed extensions to
SystemC that implements the SDF MoC without requiring
the use of signal ports. Communication between SDF
modules is done through queue data structures and a number
of modeling guidelines have to be followed to properly
define the SDF model. The approach requires some
modifications of the SystemC simulation kernel. Execution
comparisons with the approach using SystemC FIFOs
showed up to 75% improvement in simulation time.

The approach presented in this paper uses specialized
SDF ports, signals and modules whose definitions are
inherited from existing SystemC declarations. Furthermore,
our approach does not require any change to the SystemC
simulation kernel and permits a static scheduling of SDF
modules before simulation. It should be stressed that the
work described in this paper is only one step towards
supporting continuous-time (CT) MoC and providing a
framework to seamlessly plug-in specialized CT solvers [6].

III. EXTENSION ARCHITECTURE & SYNTAX

The proposed extensions are developed using a layered
approach (Fig. 1).

Figure 1. Mixed SDF-DE MoC implementation.

The base layer is the existing SystemC 2.x simulation
kernel. The discrete-event (DE) MoCs available in SystemC
2.x are directly built on top of it. Continuous-time MoCs
can be added on the top of a synchronization layer which is
responsible of the coordination between the SystemC kernel
and specific continuous-time solvers, for example a linear
network (LN) solver (not discussed in this paper).

The SDF modeling formalism is based on a new kind of
module: the SDF module, which is defined as follows (the
sca_ prefix is used to denote new language elements):

SCA_SDF_MODULE(module-name) {
 // ports
 sca_sdf_in<type> port-name(s);
 sca_sdf_out<type> port-name(s);
 // SDF member functions
 virtual void attributes() { ... }
 virtual void init() { ... }
 virtual void sig_proc() { ... }

 virtual void post_proc() { ... }
 // constructor
 SCA_CTOR(module-name) { ... }
};

The SDF ports are bound to a new specific kind of
channel that supports SDF communication and a
sca_sdf_signal<type> declaration is available for defining
compositions of SDF modules. The attributes() function
allows for defining port attributes such as delay, sampling
rate, or time step. The init() function includes initialization
code that is executed just before simulation starts. The
sig_proc() function is the only mandatory function as it
defines the module’s behavior or function. The post_proc()
function allows for defining code that is executed once the
module’s function has been evaluated. Finally, the
SCA_CTOR constructor does not need to register the above
functions, but it may include some initialization code.

A SCA_SDF module is a primitive of the SDF MoC and
therefore cannot include submodules. The structural
composition of SCA_SDF modules can be done in a regular
SystemC SC_MODULE. Currently, a SCA_SDF module
cannot declare regular SystemC ports. A special port type
has to be used for communication with DE MoCs.

During elaboration, SDF modules are grouped into
dataflow clusters according to their connections. Modules in
dataflow clusters are then scheduled according to the signal
flow direction. In case of cyclic dependencies, delays of one
at least one sampling period must be added to “break” the
loops. It is assumed that the sampling period is at least two
times smaller than the smallest not negligible time constant
in the modelled system, so the effect of the delay should not
affect the simulation results.

IV. EXAMPLE 1: PLL SYSTEM

This example is used to illustrate the use of the proposed
SystemC extensions. A phase-locked loop (PLL) system
basically includes three components: a phase comparator, a
loop filter, and a voltage controlled oscillator (Fig. 2).

Phase

Comparator

(PHC)

Loop Filter

(LF)

Voltage Controled

Oscillator

(VCO)

()refv t

()ref tϕ ()pcv t

()ctrlv t()vcov t

()vco tϕ

Figure 2. Basic PLL system.

The PLL component is described in a regular
SC_MODULE and instantiates three SDF modules as
follows:

SC_MODULE(pll) {
 sca_sdf_signal<double> ref, pco, lpo, vcoo;

 phc i_phc(“phase comparator”);
 i_phc.in1(ref);
 i_phc.in2(vcoo);
 i_phc.out(pco);
 i.phc.kpc = 3.72; // gain
 lp1 i_lp1(“lowpass filter”);
 i_lp1.in(pco);
 i_lp1.out(lpo);
 i_lp1.fp = 112e3; // pole frequency
 vco i_vco(“voltage controlled oscillator”);
 i_vco.in(lpo);
 i_vco.out(vcoo);
 i_vco.out.set_delay(1); // feedback loop
 i_vco.kvco = 3e4; // sensitivity
 i_vco.fc = 7e6; // central frequency
};

Note the specification of a delay at the output port of the
VCO to allow a proper scheduling of the SDF cluster. The
model of the VCO is given next to illustrate a typical SDF
module:

SCA_SDF_MODULE(vco) {
 sca_sdf_in<double> in;
 sca_sdf_out<double> out;
 // parameters
 double gain, kvco, fc, vfc;
 // derived parameters
 double wc, kvcor;
 // SDF functions
 void init() {
 wc = 2.0*M_PI*fc; kvcor = 2.0*M_PI*kvco; }
 void sig_proc() {
 double tn = sc_time_stamp().to_seconds();
 double wvco = (wc + kvcor*(in.read() - vfc));
 out.write(gain*sin(wvco*tn)); }
 SCA_CTOR(vco) {}
 };

One testbench (Fig. 3) for the PLL model uses a
sinusoidal source at the same frequency as the central
frequency of the VCO. The sinusoidal source is described as
a SDF module and its output port time step attribute gets the
simulation time step value as:

src_sin.out.set_T(sc_time(1.0, SC_NS));

Figure 3. PLL simulation result: output of the lowpass filter.

This shows the initial transient of the VCO control signal and its return

back to the value generating the central frequency of the VCO.

V. EXAMPLE 2: PWM CONTROLLER

Compared with existing tools such as Simulink or SPW
which are applied at similar levels of abstraction, SystemC-
AMS supports as well a through-going refinement process
from an executable specification to different mixed-signal
architectures. Fig. 4 shows the block diagram of a PWM
control loop. Digital pulses of programmable width are
generated by a pulse former. The pulses result to an average
voltage UC in the power driver. The average voltage is
controlled by a PI controller which corrects the pulse width
depending on the desired voltage Uprog.

Figure 4. PWM Controller.

A. Executable Specification

In SystemC-AMS, the executable specification can be
given by a few lines of code that instantiate the blocks, and
connect them in the SDF model of computation. We assume
that the Voltage Uprog comes from a digital controller via a
bus interface. In order to validate the specification we use
very small time steps, and double signals:

// code extract
sca_sdf_signal<double> uc, dev, Uprog, corr, on_off;

busif bif1("bif1");
 bif1.out(Uprog);
 bif1.out.set_T(sc_time(0.005,SC_MS));
sca_s_pi_ctrl ctrl("ctrl");
 ctrl.x(deviation);
 ctrl.y(correction);
 ctrl.k=10.0; ctrl.T=10.0;
sca_spartial load("load"); // transfer function
 load.x(on_off);
 load.y(uc);
 load.add_pole(255, -1/0.05);
pulse_gen_de pulsegen1("pulsegen1");
 pulsegen1.in(correction);
 pulsegen1.out(on_off);

The behavior of each block is specified as abstract as
possible. For simulation of the transfer function sca_partial,
the component load uses explicitly solved equations. As an
example the code of the PI controller is given below.

// PI controller
SCA_SDF_MODULE(sca_s_pi_ctrl) {
 sca_sdf_in<double> x;
 sca_sdf_out<double> y;

0 120 µs

1.4

 void sig_proc() {
 sc_time now=simcontext()->time_stamp();
 sc_time t = now-last_change;
 last_change = now;
 state += x.read()*t.to_seconds();
 y.write(k * (T*state + x.read())); }
 SCA_CTOR(sca_s_pi_ctrl) {
 last_change = sc_time(0,SC_SEC);
 state = 0.0; }
 double k, T;
 protected:
 double state; sc_time last_change;
};

B. Computation accurate model

In order to evaluate different system architectures, one
can easily modify the MoC, signal types or parameters of
the model to mimic the behavior of the intended system. In
order to analyze a digital implementation of adder, PI
controller and pulse former, we use the signals of type
sc_int<bitwidth>, and time steps that are similar to the
sample frequency of an assumed digital implementation.

Figure 5. Time budgeting.

In order to evaluate timing of digital blocks, we add
delays to the output ports of each module (Fig. 5):

// code extract
sca_sdf_in< sc_uint<BW> > in;
void attributes() {
 out.set_delay(clocks); }

The resulting model describes important properties of an
architecture and permits a comparison of different variants.
Fig. 6 shows simulation results for different bit widths.

Figure 6. Comparison of different bit widths.

C. Interface accurate model and integration with HW and

SW design

For an implementation of an evaluated architecture
interface accurate models are required. An interface
accurate model provides all signals of the implementation. If
the PWM model is used for development of a SW system
that integrates a PWM, a transaction level interface to the
software is required. For this issue, we replaced the simple
model of the bus interface by a more complex one that uses
Master/Slave Library in order to model the bus protocol:

// code extract
// internal registers, symbolic names and address
sc_inslave<sc_uint<BW> > inline;
sc_outslave<sc_uint<BW> > outline;
#define RESET 0 // registers[0] resets controller
#define CONFIG_REG 1 // registers[1] stores config.
#define COEFF_k 2 // registers[2] stores k of PI ctrl.
sc_signal< sc_uint<BW> > registers[128];

The interface accurate model as well includes a
definition of a relation between the abstract size and a
physical size (UC) for the transition to a netlist in the analog
power driver.

VI. CONCLUSIONS

This paper presented an extension of SystemC to support
the modeling and the simulation of mixed discrete-
continuous systems that is based on the synchronous
dataflow model of computation. The approach is well suited
for signal processing dominated applications and integrates
seamlessly with the existing discrete-event simulation
kernel of SystemC. Efficient simulation is achieved thanks
to the clustering of dataflow modules and static scheduling.
The approach also supports the refinement process from
executable specifications to different mixed-signal
architectures. Work is under way to add another model of
computation supporting linear networks and linear dynamic
behaviors. Such models would be embedded in synchronous
dataflow clusters, hence extending the approach presented
in this paper.

REFERENCES

[1] J. Eker, et al., Taming heterogeneity - the Ptolemy approach, Proc. of
the IEEE , Volume: 91 , Issue: 1 , Jan. 2003, pp.127 - 144.

[2] T. Grötker, S. Liao, G. Martin, S. Swan, System Design with
SystemC, Kluwer Academic Publishers, 2002.

[3] E.A. Lee, D.G. Messerschmidt, Synchronous data flow, Proceedings
of the IEEE, vol. 75, no. 9, 1987.

[4] B. Niemann, F. Mayer, F. Javier, R. Rubio, M. Speitel, Refining a
High Level SystemC Model, in SystemC: Methodologies and
Applications, W. Müller and W. Rosenstiel Ed., Kluwer Academic
Publishers, 2003.

[5] H.D. Patel, S.K. Shukla, Towards A Heterogeneous Simulation
Kernel for System Level Models: A SystemC Kernel for Synchronous
Data Flow Models, Proc. of International Symposium of VLSI
Systems, IEEE Computer Society Press, 2004.

[6] A. Vachoux, C. Grimm, K. Einwich, SystemC-AMS Requirements,
Design Objectives and Rationale, Proc. 2003 Design Automation and
Test in Europe (DATE 2003), Munich, Germany, 2003.

256 cycles

t
A/D Conversion

adder
pi_controller

pulse_generator

Modeled by delay at
output ports!

