

Extending the agile development process to develop
acceptably secure software
Citation for published version (APA):
Ben Othmane, L., Angin, P., Weffers, H. T. G., & Bhargava, B. (2013). Extending the agile development process
to develop acceptably secure software. (Computer science reports; Vol. 1306). Technische Universiteit
Eindhoven.

Document status and date:
Published: 01/01/2013

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 23. Aug. 2022

https://research.tue.nl/en/publications/00844de9-4b91-411a-b10b-8c330bf5b8e1

Technische Universiteit Eindhoven

 Department of Mathematics and Computer Science

Extending the Agile Development Process

to Develop Acceptably Secure Software

Lotfi ben Othmane, Pelin Angin, Harold Weffers and Bharat Bhargava

13/06

ISSN 0926-4515

All rights reserved

editors: prof.dr. P.M.E. De Bra

 prof.dr.ir. J.J. van Wijk

Reports are available at:

http://library.tue.nl/catalog/TUEPublication.csp?Language=dut&Type=ComputerScienceReports&S

ort=Author&level=1 and

http://library.tue.nl/catalog/TUEPublication.csp?Language=dut&Type=ComputerScienceReports&S

ort=Year&Level=1

Computer Science Reports 13-06

Eindhoven, July 2013

Extending the Agile Development Process to

Develop Acceptably Secure Software

Lotfi ben Othmane1, Pelin Angin2, Harold Weffers1, and Bharat Bhargava2

1 Laboratory for Quality Software, Department of Mathematics and Computer
Science, Eindhoven University of Technology, The Netherlands

{l.ben.othmane,h.t.g.weffers}@tue.nl
2 CERIAS and Computer Sciences, Purdue University, USA

{pangin,bbshail}@purdue.edu

Abstract. The agile software development approach makes developing
secure software challenging. Existing approaches for extending the agile
development process, which enables incremental and iterative software
development, fall short of providing a method for efficiently ensuring
the security of the software increments produced at the end of each it-
eration. This paper (a) proposes a method for security reassurance of
software increments and demonstrates it through a simple case study,
(b) integrates security engineering activities into the agile software de-
velopment process and uses the security reassurance method to ensure
producing acceptably secure–for the business owner–software increments
at the end of each iteration, and (c) discusses the compliance of the pro-
posed method with the agile values and its ability to produce secure
software increments.

Keywords: Agile software development, secure software, security assur-
ance cases.

1 Introduction

Developing secure software that continue to function correctly under malicious
(intended) attacks [1] requires integrating security engineering activities and
verification and validation gates into the development process. The security en-

gineering activities capture and refine protection requirements and ensure their
integration into the software through purposeful security design [2]. The verifica-
tion and validation gates ensure traceability [3] of analysis, design, coding, and
testing artifacts; which helps addressing the weakest link (i.e., least protected
point) problem [4] by ensuring completeness of the protection mechanisms.

The sequential software development approach suits the integration of the
security engineering activities, commonly used in sequence, and the use of ver-
ification and validation gates between the development stages: analysis, design,
coding, and testing. For example, Microsoft had a sequential software develop-
ment method that integrates security activities [5] [6].

2

In contrast, the iterative and incremental nature [7] of the Agile Software
Development (ASD) [8] approach enables developing software in regular inter-
vals, i.e., iterations, producing the software in increments. The iterative and
incremental nature of the ASD approach limits its ability to accommodate the
security engineering activities and the use of verification and validation gates.
The development process it employs does not fit the sequential use of the security
engineering activities and the set of verification and validation gates.

There are several challenges that limit the use of ASD for developing secure
software [9,10,11,12]. The proposed solutions for extending the ASD process to
produce secure software, e.g., [13,14,15] fall short of ensuring the security of
the increments produced in each iteration. It is also not possible to implement
all security requirements of software in the first iteration of the software and
perform all security verification and validation tasks, (e.g., OWASP verification
requirements [16]) during each iteration of the software.3

This paper proposes extending the agile development process to support
producing secure software increments. It addresses two questions:

1. How to efficiently ensure the security of software increments produced by
development iterations?

2. How to extend the agile development process to support security engineering
activities and produce acceptably secure software in each iteration?

We answer the first question through proposing a method for security reas-
surance of software increments. The common approach for security assurance is
to use checklists of security verifications (e.g., [16]) that require the verification
of all the security requirements for each software increment. We address the issue
through using security assurance cases [17]. The tree-like structure of assurance
cases supports efficient security reassurance of the software increments.

We answer the second question through extending the agile development
process with security engineering activities and use of the proposed security
reassurance method while preserving the ASD values.

In the following we provide an overview of the agile software development
approach, secure software development, and security assurance cases (Section 2),
discuss related work (Section 3), describe our method for security reassurance of
software increments (Section 4), propose a process for developing acceptably se-
cure software using the ASD approach (Section 5), discuss the proposed method
(Section 6) and conclude the paper (Section 7).

2 Background

This subsection gives an overview of the ASD approach, secure software devel-
opment and security assurance cases.

3 The problem, in our opinion, is similar to passing an elephant through the eye of a
needle.

3

2.1 Agile software development approach

Seventeen software developers met on February 2001 in the Wasatch Mountains
of Utah, USA, aiming to share their perceptions of software development [8].
They agreed on four values that the software methods they created share: indi-
viduals and interactions, working software, customer collaboration, and respond-
ing to change. They crafted a manifesto that includes these values and named
the approach they created the Agile Software Development approach.

The ASD approach is implemented by several methods including: Scrum
[18], Extreme Programming (XP) [19], Agile Modeling (AM) [20], and Feature-
Driven Development (FDD) [21]. It enables producing potentially shippable
working software at regular intervals [20](i.e., iterations), which enables provid-
ing customers with high value features (customer-valued product functionalities)
in a short time. It accommodates several classes of software, such as Web appli-
cations [22]. It applies a greedy-like approach with incomplete information for
selecting functionalities to develop.4 The approach relies on the use of patterns,
principles, and best practices for developing “good” software.

The agile approach has several advantages. First, it reduces the chance of
project failure because it enables early detection of gaps between business ex-
pectations and developer understanding. Second, it enables discovery of customer
needs rather than customer wishes since customers can see demos of the product
while being developed and adapt the requirements based on their needs. Third,
it enables early discovery of technical barriers since the developers experiment
their ideas and use the results to adapt the system architecture and work plan.

Fig. 1. The agile software development process. Fig. 2. CMM security engineering
process.

The ASD methods share a similar process, shown in Figure 1. The process
supports developing software in an iterative and incremental fashion. It has 3

4 The greedy approach (the term “greedy algorithm” is used in the literature) makes
the choice that looks best at the moment; that is, makes the locally optimal choice
with the hope to have an optimal solution [23].

4

phases (cf. [24]): inception, construction, and transition. The inception phase is
for defining the scope of the project and model of the initial architecture. The
construction phase is for developing the software in a set of iterations. For each
iteration, the business owner and development team determine the goal of the
iteration and select a set of user stories to achieve the goal. Then, they elicit the
requirements for the stories, update the design to address the requirements, and
code a software increment that addresses the requirements and is potentially
shippable. They demonstrate the user stories and review the team efficiency at
the end of the iteration. The transition phase is for integration testing and for
hardening the increment to make it ready as a release5 for use in a production
environment.

2.2 Secure software development

Secure software are developed using processes that integrate security activities
for capturing and refining protection requirements and for ensuring their inte-
gration into the software through purposeful security design [2]. A known refer-
ence model of engineering secure software is the System Security Engineering-
Capability Maturity Model (SSE-CMM) [25]. Figure 2 shows the Capability
Maturity Model (CMM) security engineering process (SSE-CMM). The process
has three sub processes: risk process, engineering process, and assurance process.
The risk process enables identifying threats to and vulnerabilities of a given sys-
tem along with their associated impacts and likelihood of occurrence [26]; that
is, their risks. The security engineering process supports determining and imple-
menting solutions to the threats. The security assurance process ensures that the
security features (high-level security requirements that express protection capa-
bilities of the software to mitigate the threats [27]), practices, procedures, and
architecture of software accurately mediate and enforce the security policy [2].
Security policies state the required protection of the information objects [28];
they are rules for sharing, accessing, and using information, hardware, and soft-
ware.

For instance, Figure 3 demonstrates that it is not possible to claim that a
software product mitigates a security risk unless all its components, together,
are verified to mitigate the risk.

2.3 Security assurance cases

Security assurance enables developing coherent objective arguments–which could
be reviewed–to support claiming that a software product mitigates its security
risks. A security assurance case [17], a semi-formal approach for security assur-
ance, is a collection of security-related claims, arguments, and evidences where
a claim, i.e., a security goal, is a high-level security requirement, an argument is
a justification that a set of (objective) evidences justify that the related claim
is satisfied, and an evidence is a result of a verification through, for example,

5 A software could have several releases.

5

Microsoft Bob: a Design Flaw

Microsoft Bob would pipe up when the program determined that the user was stuck
doing something. Bob’s most insecure function occurred when a user attempted three
times (unsuccessfully) to type in his or her password. Bob would pop up and proclaim:
“I see you have forgotten your password, please enter a new password.” Then the user
was allowed to change the password even though the user apparently had no idea of
the old one.

Microsoft Bob, Hacker’s friend.

Fig. 3. Example of (a possibly apocryphal story) security flaw [1].

security testing, source code security review, mathematical proofs, checking use
of secure coding standards, qualification of the developers in terms of training
on developing secure software (cf.[29]), etc.

Ensuring that software mitigates a security risk requires:

– ensuring that collected evidences indeed support the related claim. For ex-
ample, a source code static analysis of a Web application cannot justify
that the communication between a client and a Web server is secure–it only
supports the claim.

– having evidences that sufficiently justify the claims.6 For example, a verifica-
tion of compliance with standards for writing secure code [31] helps avoiding
source code vulnerabilities, such as buffer overflow [32], but does not justify
a claim that the code is free from source code vulnerabilities.

– evaluating and addressing conflicts and dependencies between both the claims
and the evidences.

A security assurance case has a tree structure, where the root is the main
claim, intermediate nodes are either sub-claims or arguments, and the leaves are
the evidences. A common way to represent assurance cases is to use the Goals-
Structuring Notation (GSN) [33]. Goals-Structuring Notation7 is a graphical
argumentation notation that represents each element of the assurance case and
the relationships between these elements. Figure 4 shows an example of security
assurance cases that uses GSN.

The main steps of creating a security assurance case (cf. [35,36]), in sequence,
are:

1. Identify the claims–decompose the claim “the software is secure” into sub-
claims such that satisfying the sub-claims induce satisfying the claim. The
sub-claims (which in turn become claims) could be iteratively subdivided,
until getting verifiable sub-claims.

6 Note that security is a system property [30].
7 GSNs could be traced back to McDermid’s work [34], but without the graphical
notations.

6

Fig. 4. Example of security assurance case using GSN.

2. Establish the context–specify additional information for claims, such as
definitions, reference to documents, explanations, and assumptions.

3. Identify the strategies–provide information on how a claim is decomposed
into sub-claims. The strategy could be explicitly described in the assurance
case or be implicit if no strategy is specified.

4. Identify evidences–collect the result of using the security evaluation tech-
niques, such as security testing and security review of source code to evaluate
the security countermeasures [27] used to eliminate or reduce the risk of the
threats to the software and achieve the related security goals.

5. Specify the arguments–show implicitly or explicitly that an evidence sup-
ports a claim. For example, the results of a security analysis tool may report
that the software has a set of code security vulnerabilities (e.g., buffer over-
flow). The argument describes that the “errors” are false positives and the
claim is satisfied.

There are two classes of security claims for software: business security claims
and technical security claims. Business security claims are security features that
implement protection mechanisms and are perceived by the customers, e.g., pro-
tection against unauthorized access and use of sensitive data, secure commu-
nication between a client and a server and enabling activities audit. Technical
security claims are coding and configuration best practices that aim to prevent

7

bypassing the security features. Examples are validation of all input data, use of
strong cryptography, handling all errors and exceptions, secure use of security
configuration, and checking existence of malicious code.

The two main advantages of security assurance cases over checklists are (a)
richness of argumentation and (b) completeness of decomposition. Security assur-
ance cases provide richness of argumentation because they record the evidences,
arguments, assumptions, and contexts that justify why the evaluator8 believes
that a claim is satisfied. For instance, it records all results generated by a code
security analysis tool, lists false positives and the arguments for ignoring them.
In contrast, checklists require to assert for each claim9 whether it is satisfied,
but does not justify how the evidence supports the related claim.

3 Related work

This section describes three approaches for extending the agile development
process or methods to enable developing secure software.

OWASP approach. The OpenWeb Application Security Project (OWASP) [13]
proposes developing evil user stories (hacker abilities to compromise the system),
and expressing them in a conversational style. An example for an evil story is: As
a hacker, I can send bad data in URLs, so I access data for which I’m not autho-
rized. The stories address authentication, session management, access control,
input validation, output encoding/escaping, cryptography, error handling and
logging, data protection, communication security, and HTTP security features.

The developers mitigate all applicable evil stories in every iteration and per-
form a security-focused code review at the completion of each iteration. Success-
ful completion of code review includes initial code review, addressing potential
issues found in the initial code review, and passing a re-review.

Microsoft approach. Sullivan [14,37,38] proposed integrating security-related
activities into the development life-cycle considering their required frequency of
completion. He divides the activities into three groups based on their required
completion frequency. The groups are: one-time activities, cycle security-related
activities, and bucket security-related activities. The one-time activities group
includes activities that are performed only once in each project, during the prepa-
ration phase. The cycle security-related activities group includes activities that
are performed in each iteration of the project. The bucket security-related ac-
tivities group includes one verification task, one design review task, and one
response planning task. Verification tasks include, for example, attack surface
analysis; design review tasks include, for example, review of code that uses cryp-
tographic operations; and response planning tasks include, for example, update
of security response contacts.

8 In general, an evaluator is a specialized professional who evaluates whether the
software complies with the requirements and how it does so.

9 Checklists use the term security requirement to mean a claim.

8

Risk-driven secure software development. Vähä-Sipilä [15,39] proposes a
risk-based approach for developing secure software. The method is based on
managing the security risks and implementing security solutions.

Managing security risks is reducing the risks of security threats, through
implementing security controls, to a level acceptable by the business owner.
The security threats include the threats related to the functionalities and the
architecture of the software (e.g., as a user, I do not want my data to be used
by anybody, except for processing my transaction), threats related to specific
user stories, and threats related to code vulnerability and data validation. The
risks of threats are reduced using security mechanisms, which are associated with
implementation and operation costs.

Implementing security solutions is transforming the security user stories into
functional user stories that implement security countermeasures to prevent, pro-
tect or detect threats. It also includes use of secure coding standards and security
assessment activities, such as testing the existence of vulnerabilities.

4 Security reassurance of software increments

Evolving software, through adding user stories, requires reassessing the security
assurance of the software. The reason is: the changes to the software components
could invalidate the evidences and claims of the security assurance case. For
example, evidences collected using a code security analysis tool become invalid
if new code is added to the software. Also, the claim “access control to files is
enforced” becomes invalid if the files become available in several locations.

The safe approach for assessing the security assurance of a new increment of
software is to discard the security assurance case of the previous increment and
perform a new security assessment for the new increment. However, performing
a new security assessment of software for each increment is not practical because
it is time consuming and has high cost. For instance, it is not possible to perform
the 121 verifications required by OWASP [16] for a Web application that has a
new increment every week.

We describe in the following our method for developing security reassur-
ance cases of software increments. First, we analyze the security verification
requirements of OWASP [16] and identify a set of common properties. Then, we
analyze the relationship between security assurance case elements and software
components. Next, we describe our method of security reassurance of software
increments. We also demonstrate the algorithm through a case study.

4.1 Analysis of security verification areas of OWASP

The Open Web Application Security Project developed a standard for evaluating
the security of Web applications [16]. We classified the 121 security verification
requirements of the standard based on classes of security assessment techniques,
locality (the assessment concerns specific components or all components of the
software), and automation (the assessment is automatic or manual). Table 1

9

Table 1. Analysis of the security verification areas of OWASP [16]

Security verification areas Assessment
technique class

Locality (Local/
Global)

Automation
(Automatic/
Manual)

Security architecture RA 4/2 1/5
Authentication RA/TFU 12/3 3/12
Session management RA/TFU 5/8 4/9
Access control RA/TFU 13/2 6/9
Input validation RA/TFU 8/1 4/5
Output encoding/ escaping RA 9/1 1/9
Cryptography RA 9/1 0/10
Error handling and logging RA/TFU 9/3 2/10
Data protection RA 6/0 0/6
Communication security RA/TFU 7/2 1/8
HTTP security RA 6/1 3/4
Security configuration RA 0/4 0/4
Malicious code search RA 2/0 0/2
Internal security RA 0/3 0/3

90/31 25/96

Note: We use the following abbreviation: RA for review and analysis and TFU for
testing of security features and their use.

shows the statistics that we obtained. Based on the analysis, we observe the
following:

– Assessment automation: We use assessment techniques to collect evidences.
These techniques are either manual (i.e., performed by humans) or auto-
matic (i.e., using tools and scripts). We observe that most of the security
verification requirements, 79%, require manual assessment.

– Evidence locality: Some evidences apply to only parts of the software (e.g.,
a component, a class) and others apply to the whole software. For instance,
verifying an authentication mechanism requires verifying only the web pages
and business logic that implement the security feature; there is no need
to assess all the software. The analysis shows that most of the verification
requirements, 74%, are local.

We also observe that claims have dependencies, e.g., an access control mech-
anism depends on the authentication mechanism. The main relationships among
2 claims A and B are:

A depends on B =⇒ B is a condition for A
A supports B =⇒ A is a condition for B
A implements B =⇒ A is a specialization of B
A abstracts B =⇒ A is a generalization of B
A conflicts B =⇒ satisfying A prevents satisfying B

10

Fig. 5. Conceptual model of the relationship between security assurance case concepts
and software development artifacts. (White rectangles model security assurance case
concepts, blue rectangles model software development artifacts and arrows model re-
lationships between two concepts.)

When analyzing the security verification requirements, we observed that
checklists do not help to easily identify all the divisions of claims. For instance
the requirement V7.5: “verify that cryptographic module failures are logged”
does not require that the logs are protected from unauthorized access, which
may be considered as a security flaw. In contrast, security assurance cases have
a tree-like structure, which simplifies identifying (known) sub-claims of a claim;
that is, they help ensure completeness of decomposition of claims.

4.2 Relationship between security assurance case elements and

software components

Figure 5 shows the conceptual model of security assurance cases for agile software
development. In this model, the project owner specifies the user stories and the
security policies. A user story describes a functionality valuable to the user of the
software [40]. A security policy states the required protection of the information
objects [28].

A security claim, i.e., a goal, specifies a capability of the system to protect,
prevent, detect, or deter a set of threats. For example, the security claim “prevent

11

unauthorized users from accessing and using the application” specifies that the
software prevents the threat “unauthorized access and use of the application.”
A claim could be decomposed into sub-claims using a decomposition strategy
and described using a context annotation.

Threats are mitigated by security countermeasures. A countermeasure is an
action, device, procedure, or technique that counters a threat by eliminating
or preventing it, by minimizing the harm it can cause, or by discovering and
reporting it so that corrective action can be taken [27]. Countermeasures are
related to user stories, e.g., a countermeasure is implemented by a set of user
stories. They are also related to arguments, e.g., secure coding could contribute
to the argument of the claim “minimum source code vulnerabilities.”

Implementing a user story may require adding new components,10 removing
components, and/or updating existing components–i.e., changing their structure
or behavior. These operations could invalidate the elements of the security assur-
ance case of the software, e.g., a claim becomes false. The invalidation of claims
and evidences depends on the application because changing a component may
or may not invalidate related evidences. Invalidate means “does not support”
for evidences and “is not true” for claims. The invalidation types are:

I1. Changes to a context could invalidate related claims. We formulate this
invalidation using the function:
Icl(Cx) = {Ci

l
}.

I2. Changes to a component could invalidate related evidences. We formulate
this invalidation using the function:
Iev(Co) = {Ei

v
}.

I3. Invalidation of evidences invalidates related claims. We formulate this inval-
idation using the function:
Icl(Ev) = {Ci

l
}.

I4. Claims could have relationships, such as dependency and conflict. Changes
to a claim could invalidate a related claim. We formulate this relationship
using the function:
Tcl(Cl) = {Ca

l
}.

We use symbols Cx for context, Co for component, Ev for evidence, Cl for
claim, Ci

l
for invalidated claim, Ei

v
for invalidated evidence, and Ca

l
for poten-

tially affected claim. We also use Icl(Cx) to denote a function that provides the
claims associated with the context provided as a parameter, Iev(Co) to denote
a function that provides the evidences associated with the component provided
as a parameter, Icl(Ev) to denote a function that provides the claims associated
with the evidence provided as a parameter, and Tcl to denote a function that
provides the claims related to the claim provided as a parameter.

Note also that invalidation of claims makes evidences associated to the claims
useless. Also, invalidation of claims and evidences makes associated arguments

10 A software component is a unit of composition (and is also subject to composition)
with specified interfaces and explicit context dependencies and can be deployed
independently [41].

12

Fig. 6. Architecture of the employees Web portal application.

Table 2. List of user stories.

Id User story

U1 As an HR officer, I want to create/view/update employee records.
U2 As an employee, I want to view and update my personal information.
U3 As an HR officer, I want to view and update employees’ holidays.

useless. (We do not discuss invalidation of arguments because the process is
straightforward.)

4.3 Methodology of security reassurance of software increments

The method of security reassurance of software increments needs to maintain
the security assurance cases. For instance, each assurance case shares a set of
artifacts with the security assurance case of the previous iteration. The security
assurance case of a new increment requires only new evidences for invalidated
claims or new claims.

An efficient method for security reassurance of software increments minimizes
the reassurance task, which requires minimizing the number and size of claims to
evaluate. We exploit the decomposition of software into a set of components and
we maintain the security assurance case based on changes to the components.

A software increment could affect the security assurance case in several ways:

– Case 1: New claim. The set of claims that need evaluation due to adding a
new claim includes the new claim, sub-claims, and parent claims–i.e., related
claims.

– Case 2: Context change. The set of claims that need evaluation due to
context change of a claim includes the claim and related claims.

– Case 3: Component update. Component update could invalidate evi-
dences and claims associated with the updated component and potentially

affects claims and evidences associated with components related to the mod-
ified component.11

11 We do not have rules to identify claims and evidences associated to the related
components that become invalid. It is for the security assessor to identify such cases.

13

Table 3. Relationships between the security claims.

Id Security claim Stakeholder Dependencies

C01 Prevent anonymous access to the software HR officer Supports C02
C02 Prevent unauthorized access and modifica-

tion of personal information
HR officer Depends on C01

C03 Inputs are validated Technical
C04 Reduced source code vulnerabilities Technical

– Case 4: New component. The set of claims that need evaluation due to
adding a new component includes claims related to the new component and
claims that could be affected by updating other components connected to
the new component–e.g., they have a dependency with the new component.

Note that in the worst case, an iteration invalidates all claims of the security
assurance case, which requires reevaluation of these claims and in the best case
it preserves all the claims of the previous iteration and evaluates the claims
associated with the new components integrated to the increment.

Note also that Vivas et al. [17] proposed a method for security assurance-
driven software development that focuses on relating the assurance cases to the
software through the development life-cycle (analysis, design, development, and
test). Our method relates the security assurance case to the software as it evolves
in increments.

4.4 Case study: Web portal for employees

In this section, we illustrate the use of our method for security reassurance of
software increments to assure the security of a simple employees Web portal.

Table 4. Relationships between presentation and business layer components.

Presentation Layer Action Business layer
class

Method

Login Input AuthenticationAuthenticate
CreateEmployee Input Employee setEmployee
ViewEmployee View Employee,

Holidays
getEmployee, getHolidays

UpdateEmployee View, Input Employee getEmployee, setEmployee
ManageHoliday View, Input Employee,

Holidays
getEmployee, getHolidays,
SetHoliday

ManageResour-ces Input, Search,
View

Resource setResource, findResource, ge-
tResource

AssignAccess-
Control

Input, View AccessControl setAccessControl, getAccess-
Control

14

Table 5. Impact of user stories on the components of the architecture.

User
story
Id

Affected components

U1 CreateEmployee (A), ViewEmployee (A), UpdateEmployee (A), Employee (A)
U2
U3 ViewEmployee (U), UpdateEmployee (U), Login (U), ManageHoliday (A), Hol-

idays (A)

U4 Login (A), Authenticate (A)
U5 Login(U), Resource (A), ManageResources (A), AccessControl (A), AssignAc-

cessControl (A)

We use the code “A” for adding a new component and “U” for updating an existing
component.

Description of the system The employees Web portal is a Web application
for viewing and updating employees’ personal information and holidays. The
security policies set by the business owner are: (1) each employee can view and
update his/her own personal information, and (2) HR officers can view and
update all employee records. The application is to be developed using Java and
run on an Apache Web server [42].

At the project inception the business owner and developers sketch the ar-
chitecture of the intended software as depicted by Figure 6 and identify the
initial user stories as provided in Table 2. They also identify the main security
claims, which are provided in Table 3. Table 4 shows the relationship between
the components of the presentation and business layers.

Building the security assurance case The security assurance case of the
application evolves as the developers implement the user stories and produce
software increments. We summarize the impacts of the user stories on the com-
ponents of the software in Table 5. The table includes, besides the user stories
of Table 2, a security user story for authenticating users (U4) and another for
controlling use of the application (U5).

In the following, we show in detail the evolution of the security assurance
case of the Employees Portal application through three development iterations.

Iteration 1. This iteration involves the development of the user story U1. The
top level security claim “the system is acceptably secure” is decomposed into
three sub-claims: C01, C03 and C04. The components of the increment are
the CreateEmployee, ViewEmployee, and UpdateEmployee Web forms and the
Employee class. Figure 7 shows the security assurance case of this iteration.

15

Table 6. List of evidences.

Id Description

E01.1 Results of deployment architecture review
E01.2 Successful tests with the authentication mechanism
E03.1.1 Successful tests for invalid input to CreateEmployee
E03.1.2 Code review results for CreateEmployee
E03.2.1 Successful tests for invalid input to ViewEmployee
E03.2.2 Code review results for ViewEmployee
E03.3.1 Successful tests for invalid input to UpdateEmployee
E03.3.2 Code review results for UpdateEmployee
E03.4.1 Successful tests for invalid input to Login
E03.4.2 Code review results for Login
E04.1.1 Code security analysis results for Employee
E04.2.1 Code security analysis results for CreateEmployee
E04.3.1 Code security analysis results for ViewEmployee
E04.4.1 Code security analysis results for UpdateEmployee
E04.5.1 Code security analysis results for Login
E04.6.1 Code security analysis results for Authentication

Fig. 7. Security assurance case for Iteration 1. (Table 6 describes the evidence codes.)

Claim C01 is satisfied by the evidence collected from a review of the software
deployment architecture, showing that the application is hosted on a desktop
accessed only by HR officers.

16

Fig. 8. Invalidated evidences upon the transition from Iteration 1 to Iteration 2. (Ta-
ble 6 describes the evidence codes.)

Claim C03 is satisfied because all input for the CreateEmployee, ViewEmplo-
yee, and UpdateEmployeeWeb forms are validated, hence the sub-claims: C03.1,
C03.2, and C03.3 are satisfied. This argument is supported by two forms of evi-
dences: results of code review for theWeb forms: CreateEmployee, ViewEmployee,
and UpdateEmployee; and security testing of the three Web forms with invalid
input handled successfully by the application.

Claim C04 is satisfied because its sub-claims C04.1, C04.2, C04.3 and C04.4,
which state that source code vulnerabilities were reduced as much as possible
for the Employee, CreateEmployee, ViewEmployee, and UpdateEmployee com-
ponents respectively, are satisfied. The claim is supported by the results from
the code security analysis tool run on the software components.

Iteration 2. This iteration involves implementing user story U2. The resulting
increment could be used by HR officers to create, view, and update employee
records and by employees to view and update their records. Implementing user
story U2 requires hosting the application on a server accessible by HR officers and
employees. The top level security claim is composed of the three sub-claims C01,
C03, and C04 as before. The change of the deployment architecture invalidates
the argument of evidence E01.1. An alternative approach to satisfy claim C01
(anonymous access to the software is prevented) is to develop an authentication
mechanism, which we formulate as security user story U4.

17

Fig. 9. Invalidated claims upon the transition from Iteration 1 to Iteration 2. (Table 6
describes the evidence codes.)

This iteration results in adding the Login and Authentication components
to the increment and updating the configuration files of the application to require
the user to be authenticated.

Figure 8 shows the invalidated evidences upon the transition from Iteration 1
to Iteration 2; the blue dashed circle is an invalidated evidence as a result of this
software increment. Two security claims of Iteration 1 are invalidated as a result
of invalidating the evidence. Figure 9 shows the changes to the claims using green
dashed rectangles. (We observe, from this exercise, that claims become invalid
as a result of invalidating supporting evidences or sub-claims.)

Figure 10 shows the updated security assurance case for Iteration 2. It in-
cludes new evidences, shown in dashed circles, and the new sub-claims shown in
dashed rectangles. Claim C01 is now supported by the evidence from successful
tests with the authentication mechanism implemented in addition to a review of
the deployment architecture. A sub-claim is added to claim C03 to ensure the
validation of input to the Login Web form. Sub-claims are also added to claim
C04 to ensure reduced source code vulnerability for the newly added Login and
Authentication components.

Note that the security claims for this iteration enforce user authentication to
gain access to the system, but do not ensure proper access control for the system
resources, i.e. do not distinguish between HR officers and regular employees for
authorizing specific actions.

18

Fig. 10. Security assurance case for Iteration 2. (Table 6 describes the evidence codes.)

Iteration 3. This iteration involves implementing user story U3. The resulting
increment could be used by HR officers to create/view/update employee records
and manage holidays, and by employees to view/update their records. In this
iteration, the top level security claim is composed of the three sub-claims: C02,
C03, and C04. (Claim C01 becomes a sub-claim of claim C02.) Claim C02 (Pre-
vent unauthorized access and modification of personal information) is satisfied
by implementing an access control mechanism, which we formulate as security
user story U5.

This iteration results in adding the ManageHoliday, Holidays, ManageResou-
rces, Resource, AssignAccessControl, and AccessControl components to the
increment and updating the CreateEmployee, ViewEmployee, UpdateEmployee
and Login Web forms to enforce the access control policies. Figure 11 shows the
invalidated evidences as a result of this increment in blue dashed circles, and
Figure 12 shows the invalidated claims in green dashed rectangles.

The security assurance case for this iteration extends that of the previous iter-
ation by adding sub-claims under C03 for the ManageHoliday, ManageResour-
ces and AssignAccessControl components; gathering new evidences for the
claims C03.1, C03.2, C03.3, C03.4; adding sub-claims under C04 for the Manage-
Holiday, Holidays, ManageResources, Resource, AssignAccessControl, and
AccessControl components; and gathering new evidences for the claims C04.2,
C04.3, C04.4, C04.5. The newly added claim C02 is supported by the already
existing claim C01 and evidences gathered from successful test scenarios for the
access control mechanism.

19

Fig. 11. Invalidated evidences upon the transition from Iteration 2 to Iteration 3.
(Table 6 describes the evidence codes.)

Note that although Figure 12 shows that most of the claims (10 out of 14
claims) require a new assessment, the evaluation task is limited because it con-
cerns only the changes related to the iteration. We believe that a more granular
management of security reassurance may help to localize better the effects of the
code modification and minimize the assessment effort.

5 Extending the agile software development process with

security engineering activities

The approach that we use to extend the agile development process is based on:
(1) redesigning the use of the security engineering activities (risk assessment,
engineering, and security assurance) to accommodate the iterative nature of the
agile software development process (see Subsection 2.1); (2) using our method
of security reassurance to reassure the security of software increments; and (3)
using a risk-based approach for selecting security threats that the software should
mitigate in each increment.

We extend the agile development process by integrating the security sub-
processes: risk assessment, engineering, and security assurance (see Subsection 2.2)
to the agile development process, and ensuring production of acceptably secure
software at each development iteration. Recall that acceptably secure software is
a software increment that demonstrates a set of security goals selected by the
business owner for the iteration.

20

Fig. 12. Invalidated claims upon the transition from Iteration 2 to Iteration 3. (Table 6
describes the evidence codes.)

Figure 13 depicts the new process, called agile secure software development

process. The description of the phases of the process follows.

5.1 Extending the inception phase.

We extend the inception phase with three activities: threat modeling, risk esti-
mation, and security goals identification, which are performed after scoping the
project, sketching the architecture, and identifying the main user stories. The
focus in this phase is on assessing the security risks to the software and not on
finding solutions that we may never use [43].

The threat modeling should be performed in a workshop with participation
of the developers, project owner, and a security expert. The team identifies
the threats relevant to the software, e.g., using misuse cases [44], and possible
violations of key security protection mechanisms, e.g., authorization and data
validation. Next, the developers provide their perception of the likelihood of
occurrence of the threats (the “chance” that an attacker exploits a weakness or
vulnerability and attacks the software) and the business owner provides his/her
perception of the severity of the impact of the threats–level of the damage of
a threat when successfully triggered. The likelihood and severity estimates are
combined for each threat to obtain its risk level [45].

The threats to the software are classified into security goals. The grouping
minimizes changes due to addressing other known security threats. The security

21

Fig. 13. Process for agile development of secure software.

goals take the form of claims for the assurance cases and are added as security
user stories to the project backlog.

5.2 Extending the construction phase

We extend the construction phase by adding a set of activities to enable produc-
ing “acceptably secure” software increments. At the beginning of each iteration,
the business owner defines “acceptably secure” software for the iteration; that is,
the security claims that the increment should satisfy. (The business owner takes
responsibility for choosing the threats to mitigate and accepting the impacts of
the remaining threats in each iteration or release.)

There are two types of user stories that the developers and business owner
could select from: functional user stories and security user stories. We discuss in
the following how to implement both.

Developing functional user stories. In addition to the regular software ac-
tivities required in the development of a user story (see Subsection 2.1), the
development team performs a risk assessment for the selected user stories and
develops security user stories to mitigate the threats they identify. The team
members need also to apply secure coding and data validation techniques [46]
to avoid source code vulnerabilities. For example, they need to carefully use
memory allocation and exception handling.

Developing security user stories. The steps are:

1. Elicit the security requirements–use a threat-based security requirements
eliciting process, such as Sindre and Opdahl method [47], to derive the se-
curity requirements related to the chosen security goal.

2. Develop security test scenarios–develop attack scenarios to test if the soft-
ware satisfies its security requirements. For example, they design experiments
for bypassing access data policy through performing a SQL injection attack.

22

3. Design a security feature for the user story–design a security feature that
implements the security requirements and that could be integrated to the
software architecture. The design transforms the security requirements ex-
pressed as constraints to a software behavior.

4. Develop the security feature–split the security feature into a set of user stories
and implement them.

5. Test the security feature–implement and execute the security test scenarios
to evaluate the compliance of the increment with the security requirements.
The team concludes that the software implements the security user story if
the results of the tests are positive.

Security assurance. We review, at the end of each iteration, the effects of
changing the context of “acceptably secure” (from the previous iteration) on the
security assurance case of the software. Then, we apply the security reassurance
of increments that we described in Subsection 4.3.

We note that we record the evidences collected from the test scenarios of
a security feature in the assurance case only when the security feature is fully
developed; the assurance case notation does not provide a simple way to record
partial satisfaction of a claim without ambiguity–in our opinion.

5.3 Extending the transition phase

We extend the transition phase with external review of the assurance case and
perform the automated security tests and analysis on all the software. The extra
tests aim to identify inconsistencies and increase the confidence in the security of
the software. The team could also perform security assurance tasks that require
extensive time and cost, only once, at this phase.

6 Discussion

This section discusses how the proposed method preserves agile development
values and produces secure software. It also lists the limitations of the method.

6.1 Preserving agile values

This subsection discusses how the proposed method preserves the agile values [8].

Individuals and interactions. The proposed method favors individuals and
interactions over processes and tools because several of the security engineering
activities are performed in collaboration between the developers and the busi-
ness owner. For instance, the threat modeling and risk estimation activities are
performed in workshops that include the developers and the business owner.

Working software. The proposed method favors implementing security mech-
anisms and uses a security assurance approach (i.e., security assurance cases)
that does not require extensive documentation, but rather connects the claims

23

to evidences that justify them. We consider the evidences as light documents
that record the results of the security assessment activities.

Customer collaboration. The proposed method considers the customer per-
spective of secure software instead of the attacker perspective. For instance, the
business owner, who represents the customers, collaborates with the develop-
ers in identifying the security threats and estimating the risks to the software.
He/She is also responsible for selecting the priority of achieving the security
claims.

Responding to change. The proposed method accommodates changes through
(a) identifying emerging threats related to user stories selected for implementa-
tion in a new increment and (b) reassuring the security of the new increment.

6.2 Producing secure software

The proposed method produces secure software from a risk management per-
spective. For instance, it integrates the security engineering sub-processes: risk
assessment, engineering, and security assurance. The sub-processes ensure identi-
fication of the threats to the software, engineering of security mechanisms for the
main threats as perceived by the business owner, and ensuring the implemented
security mechanisms mitigate the threats. The use of security assurance cases
builds confidence into the security of the software; it provides the arguments
justifying the evidences supporting the claims.

6.3 Limitations of the method

The proposed method has three main limitations. Their descriptions follow.

Limited scalability. The maintenance of the security assurance cases relies
on tracing the impacts of developing new user stories on the components of
the software, the evidences, arguments, and claims. The difficulty of tracing the
impacts grows very fast as the number of components of the software, the number
of claims, evidences, and arguments grow, which limits the use of the method.

We propose to address the issue through grouping the user stories and group-
ing the components of the software. This requires associating the claims, evi-
dences, and arguments to groups of user stories and groups of components. The
loss of granularity in specifying the relationships between the assurance artifacts
and the software artifacts limits the efficiency of the method because it increases
the number of claims, arguments, and evidences that could be affected by a
change to the components.12

Extra cost. The periodic security reassurance of software13 and the need to
reassess a set of claims increases the cost of security assurance. The cost is far

12 A change to a component, member of a group, requires assessing the claims and
evidences associated to all the components of the group instead of only the claims
and evidences associated to the component itself.

13 We perform a security reassurance at the end of each development iteration.

24

lower than reevaluating all the claims at the end of each iteration as it would be
required if we used check lists of security requirements.

The rework cost can be justified for the case of software that evolve based on
the needs of the customers–mainly produced by commercial companies. However,
it may not be justified if the security goals are all known in advance and the
software can be only released for use if all the goals are achieved. This occurs,
for example, for the case of safety-critical systems.

Requirement of high independence between the software components.

The method is based on the assumption of high independence between the com-
ponents of the software. The assumption limits the security reassurance of a
new increment to the reevaluation of a set of claims associated with the com-
ponents that have changed and the few claims that are associated with all the
components of the software.

The assumption is valid for software that have components-based [48] archi-
tecture or Service Oriented Architecture (SOA) [49] because they reduce the
number of connections between the components and are highly testable14 [50].

This assumption is strong for the general case. For instance, Ren et al. [51]
analyzed the impact of code changes on the tests of the functionalities of software
package, Daikon, which evolved over the period of a year. They found that, on
average, 52% of the tests are affected by the changes made in a week. The
statistics show the limitation of the efficiency of our approach for software that
have high dependency between the components. This requires more research to
analyze the impacts of software changes on the different kinds of security claims
and the efforts required to reevaluate invalidated claims.

7 Conclusion

This paper concludes that the agile software development approach does not pre-
vent ensuring the security of software increments produced at the end of each
development iteration. It proposes a method for security assurance of software
increments and integrates security engineering activities into the agile software
development process. The method enables ensuring the delivery of secure soft-
ware at the end of each iteration.

The method could be used by companies to iteratively and incrementally
improve the security of the software they produce by delivering “acceptably
secure” software that partially mitigates their associated threats–while ensuring
the validity of the security claims.

The main advantages of the approach are: (1) helping reduce the cost of
reassurance of software security, and (2) helping reduce the cost of mitigating
threats. The reason for the first advantage is: the development team could reuse
parts of the security assurance cases in the assessment of the new increments.
The reason for the second advantage is: the approach ensures that security goals
achieved in the early iterations of the development are preserved in the subse-
quent software increments.

14 easier to write tests that ensure the required properties

25

The main limitations of the current method are: (1) it applies to modular
software, where security claims are associated with specific components; (2) it
is not scalable enough; and (3) it does not consider security design principles–
such as the “fail safe” principal. Also, the current work simulates the method
on (fabricated) case studies. We plan in the future work to practice with the
method on real projects and address the three mentioned limitations.

References

1. McGraw, G.: Software Security: Building Security In. Addison-Wesley Software
Security Series. Addison-Wesley (2006)

2. CNSS Glossary Working Group: National information assurance (IA)
glossary. http://jitc.fhu.disa.mil/pki/documents/committee_on_national_

security_systems_instructions_4009_june_2006.pdf (June 2006) CNSS In-
struction No. 4009.

3. Gotel, O., Cleland-Huang, J., Hayes, J.H., Zisman, A., Egyed, A., Grnbacher, P.,
Dekhtyar, A., Antoniol, G., Maletic, J., Mder, P.: Traceability Fundamentals. In:
Software and systems traceability. Springer-Verlag London Limited (2012) 3–22

4. Grossklags, J., Johnson, B.: Uncertainty in the weakest-link security game.
In: Proc. of the First International Conference on Game Theory for Networks.
GameNets’09, Istanbul, Turkey (May 2009) 673–682

5. Lipner, S., Howard, M.: The trustworthy computing security development lifecycle.
In: Proc. of the 20th Annual Computer Security Applications Conference. ACSAC
’04, Tucson, AZ (March 2005) 2–13 Revised version.

6. Howard, M., Lipner, S.: The security development lifecycle: SDL, a process for
developing demonstrably more secure software. Microsoft Press Series. Microsoft
Press (2006)

7. Larman, C., Basili, V.R.: Iterative and incremental development: A brief history.
Computer 36(6) (June 2003) 47–56

8. Agile Alliance: Agile alliance. http://www.agilealliance.org/ (Sep. 2012)

9. Beznosov, K., Kruchten, P.: Towards agile security assurance. In: Proc. of the
2004 Workshop on New Security Paradigms. NSPW ’04, Nova Scotia, Canada
(Sep. 2004) 47–54

10. Wayrynen, J., Boden, M., Bostrom, G.: Security engineering and extreme program-
ming: an impossible marriage? In: Lecture Notes in Computer Science. Volume
3134., Calgary, Canada, Springer (Aug, 2004) 117–128 4th Conference on Extreme
Programming and Agile Methods.

11. Goertzel, K.M., Winograd, T.: Enhancing the development life cycle to produce
secure software. Technical Report DAN 358844, Defense Technical Information
Center (DTIC) (2008)

12. Goertzel, K.M., Winograd, T., McKinley, H.L., Holley, P., Hamilton, B.A.: Security
in the software lifecycle. http://www.cert.org/books/secureswe/SecuritySL.

pdf (August 2006) Draft version 1.2.

13. OWASP: Agile software development: Don’t forget evil user sto-
ries. https://www.owasp.org/index.php/Agile_Software_Development:

_Don%27t_Forget_EVIL_User_Stories (August 2011)

14. Sullivan, B.: Agile security; or, how to defend applications with five-day-long
release cycles. Black Hat, DC, (Jan. 2010)

http://jitc.fhu.disa.mil/pki/documents/committee_on_national_security_systems_instructions_4009_june_2006.pdf
http://jitc.fhu.disa.mil/pki/documents/committee_on_national_security_systems_instructions_4009_june_2006.pdf
http://www.agilealliance.org/
http://www.cert.org/books/secureswe/SecuritySL.pdf
http://www.cert.org/books/secureswe/SecuritySL.pdf
https://www.owasp.org/index.php/Agile_Software_Development:_Don%27t_Forget_EVIL_User_Stories
https://www.owasp.org/index.php/Agile_Software_Development:_Don%27t_Forget_EVIL_User_Stories

26

15. Vähä-Sipilä, A.: Product security risk management in agile product man-
agement. https://www.owasp.org/images/c/c6/OWASP_AppSec_Research_2010_

Agile_Prod_Sec_Mgmt_by_Vaha-Sipila.pdf (June 2010) accessed in May 2013.
16. Boberski, M., Williams, J., Wichers, D.: Owasp application security verifica-

tion standard 2009. https://www.owasp.org/images/4/4e/OWASP_ASVS_2009_

Web_App_Std_Release.pdf (June 2009)
17. Vivas, J., Agudo, I., Lpez, J.: A methodology for security assurance-driven system

development. Requirements Engineering 16(1) (2011) 55–73
18. Schwaber, K., Beedle, M.: Agile Software Development with Scrum. 1st edn. Pren-

tice Hall PTR, Upper Saddle River, NJ, USA (2001)
19. Martin, R.C.: Agile Software Development: Principles, Patterns, and Practices. 1

st edition edn. Prentice Hall PTR, Upper Saddle River, NJ, USA (2006)
20. Ambler, S.W.: The agile scaling model (ASM): adapting agile methods

for complex environments. ftp://ftp.software.ibm.com/common/ssi/sa/wh/n/

raw14204usen/RAW14204USEN.PDF (December 2009)
21. Palmer, S., Felsing, J.: A practical guide to feature-driven development. 1 edition

edn. The Coad series. Prentice Hall PTR (Feb. 2002)
22. Jazayeri, M.: Some trends in web application development. In: Proc. Future of

Software Engineering. FOSE ’07, Washington, DC, USA (May 2007) 199–213
23. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Greedy Algorithms. In: Introduc-

tion to algorithms. 2nd edn. MIT press (2001) 414–450
24. Ambler, S.W.: The agile system development lifecycle (SDLC). http://www.

ambysoft.com/essays/agileLifecycle.html (November 2006) accessed in May
2013.

25. International Organization for Standardization and International Electrotechnical
Commission: Information technology – systems security engineering – capability
maturity model (SSE-CMM) (2008)

26. Meier, J., Mackman, A., Wastell, B., Bansode, P., Taylor, J., Araujo, R.: Security
engineering explained. http://www.microsoft.com/en-us/download/details.

aspx?id=20528 (October 2005) accessed in May 2013.
27. Shirey, R.: Internet security glossary, version 2. http://www.ietf.org/rfc/

rfc4949.txt (aug 2007) RFC 4949 (Informational).
28. Kissel, R.: Glossary of key information security terms. http://csrc.nist.gov/

publications/nistir/ir7298-rev1/nistir-7298-revision1.pdf (February
2011)

29. Jackson, D., Cooper, D.: Where do software security assurance tools add value?
In: Workshop on Software Security Assurance Tools, Techniques, and Metrics.
SSATTM05, Long Beach, CA, National Institute of Standards and Technology
(NIST) (November 2005) 14–21 NIST Special Publication 500-265.

30. Bellovin, S.M.: Security as a systems property. Security & Privacy, IEEE 7(5)
(sept.-oct. 2009) 88

31. Software Engineering Institute - Carnegie Mellon University: Cert secure
coding standards. https://www.securecoding.cert.org/confluence/display/

seccode/CERT+Secure+Coding+Standards accessed on January 2013.
32. Cowan, C., Wagle, F., Pu, C., Beattie, S., Walpole, J.: Buffer overflows: attacks

and defenses for the vulnerability of the decade. In: Proc. DARPA Information
Survivability Conference and Exposition. Volume 2 of DISCEX ’00., Hilton Head,
SC (Jan. 2000) 119 –129

33. Kelly, T., Weaver, R.: The goal structuring notation–a safety argument notation.
In: Proc. Dependable Systems and Networks–Workshop on Assurance Cases, Flo-
rence, Italy (July 2004)

https://www.owasp.org/images/c/c6/OWASP_AppSec_Research_2010_Agile_Prod_Sec_Mgmt_by_Vaha-Sipila.pdf
https://www.owasp.org/images/c/c6/OWASP_AppSec_Research_2010_Agile_Prod_Sec_Mgmt_by_Vaha-Sipila.pdf
https://www.owasp.org/images/4/4e/OWASP_ASVS_2009_Web_App_Std_Release.pdf
https://www.owasp.org/images/4/4e/OWASP_ASVS_2009_Web_App_Std_Release.pdf
ftp://ftp.software.ibm.com/common/ssi/sa/wh/n/raw14204usen/RAW14204USEN.PDF
ftp://ftp.software.ibm.com/common/ssi/sa/wh/n/raw14204usen/RAW14204USEN.PDF
http://www.ambysoft.com/essays/agileLifecycle.html
http://www.ambysoft.com/essays/agileLifecycle.html
http://www.microsoft.com/en-us/download/details.aspx?id=20528
http://www.microsoft.com/en-us/download/details.aspx?id=20528
http://www.ietf.org/rfc/rfc4949.txt
http://www.ietf.org/rfc/rfc4949.txt
http://csrc.nist.gov/publications/nistir/ir7298-rev1/nistir-7298-revision1.pdf
http://csrc.nist.gov/publications/nistir/ir7298-rev1/nistir-7298-revision1.pdf
https://www.securecoding.cert.org/confluence/display/seccode/CERT+Secure+Coding+Standards
https://www.securecoding.cert.org/confluence/display/seccode/CERT+Secure+Coding+Standards

27

34. McDermid, J.A.: Support for safety cases and safety arguments using SAM. Re-
liability Engineering & System Safety 43(2) (1994) 111 – 127 Special issue on
software safety.

35. Goodenough, J., Lipson, H., Weinstock, C.: Arguing security - creating se-
curity assurance cases. https://buildsecurityin.us-cert.gov/bsi/articles/

knowledge/assurance/643-BSI.html (June 2012) accessed in May 2013.
36. Bloomfield, R.E., Guerra, S., Masera, M., Miller, A., Saydjari, O.S.: Assurance

cases for security. In: Workshop on Assurance Cases for Security, Arlington, VA
(June 2005)

37. Microsoft: Security development lifecycle for agile development.
http://www.blackhat.com/presentations/bh-dc-10/Sullivan_Bryan/

BlackHat-DC-2010-Sullivan-SDL-Agile-wp.pdf (June 2009) accessed in
May 2013.

38. Microsoft: Agile development using microsoft security development lifecycle. http:
//www.microsoft.com/security/sdl/discover/sdlagile.aspx (October 2012)
accessed in May 2013.

39. Vähä-Sipilä, A.: Software security in agile product management. http:

//www.fokkusu.fi/agile-security/Software%20security%20in%20agile%

20product%20management.pdf (2011) accessed in May 2013.
40. Cohn, M.: User Stories Applied: For Agile Software Development. pearson Edu-

cation, Inc., Boston, MA (2004)
41. Szyperski, C.: Component Software: Beyond Object-Oriented Programming. 2nd

edn. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (2002)
42. The Apache Software Foundation: Apache http server project. http://httpd.

apache.org/ accessed in May 2013.
43. Meier, J., Mackman, A., Wastell, B.: Walkthrough: Creating a threat model for a

web application. Technical report, Microsoft Corporation (May 2005)
44. Alexander, I.: Misuse cases: Use cases with hostile intent. IEEE Software 20(1)

(2003) 58–66
45. Stoneburner, G., Goguen, A., Feringa, A.: Risk management guide for information

technology systems – recommendations of the national institute of standards and
technology. http://csrc.nist.gov/publications/nistpubs/800-30/sp800-30.

pdf (2002) Special Publication 800-30, accessed in May 2013.
46. Software Assurance Forum: Secure coding. ftp://ftp.sei.cmu.edu/

pub/pruggiero/bsi-swa/1/SecureCoding_PocketGuide_v2%200_05182012_

PostOnline.pdf (May 2012) accessed in May 2013.
47. Sindre, G., Opdahl, A.L.: Eliciting security requirements with misuse cases. Re-

quirement Engineering 10(1) (January 2005) 34–44
48. Garlan, D., Shaw, M.: An introduction to software architecture. In: Advances

in Software Engineering and Knowledge Engineering. Volume 2. World Scientific
Publishing Company, New Jersey, NJ (1993) 1–39

49. Erl, T.: Service-Oriented Architecture: Concepts, Technology, and Design. Prentice
Hall PTR, Upper Saddle River, NJ, USA (2005)

50. Chivers, H., Paige, R.F., Ge, X.: Agile security using an incremental security archi-
tecture. In: Proc. of the 6th International Conference on Extreme Programming
and Agile Processes in Software Engineering. XP’05, Sheffield, UK (June 2005)
57–65

51. Ren, X., Shah, F., Tip, F., Ryder, B.G., Chesley, O.: Chianti: a tool for change
impact analysis of java programs. In: Proc. of the 19th Annual ACM SIGPLAN
Conference on Object-oriented Programming, Systems, Languages, and Applica-
tions. OOPSLA ’04, Vancouver, BC, Canada (October 2004) 432–448

https://buildsecurityin.us-cert.gov/bsi/articles/knowledge/assurance/643-BSI.html
https://buildsecurityin.us-cert.gov/bsi/articles/knowledge/assurance/643-BSI.html
http://www.blackhat.com/presentations/bh-dc-10/Sullivan_Bryan/BlackHat-DC-2010-Sullivan-SDL-Agile-wp.pdf
http://www.blackhat.com/presentations/bh-dc-10/Sullivan_Bryan/BlackHat-DC-2010-Sullivan-SDL-Agile-wp.pdf
http://www.microsoft.com/security/sdl/discover/sdlagile.aspx
http://www.microsoft.com/security/sdl/discover/sdlagile.aspx
http://www.fokkusu.fi/agile-security/Software%20security%20in%20agile%20product%20management.pdf
http://www.fokkusu.fi/agile-security/Software%20security%20in%20agile%20product%20management.pdf
http://www.fokkusu.fi/agile-security/Software%20security%20in%20agile%20product%20management.pdf
http://httpd.apache.org/
http://httpd.apache.org/
http://csrc.nist.gov/publications/nistpubs/800-30/sp800-30.pdf
http://csrc.nist.gov/publications/nistpubs/800-30/sp800-30.pdf
ftp://ftp.sei.cmu.edu/pub/pruggiero/bsi-swa/1/SecureCoding_PocketGuide_v2%200_05182012_PostOnline.pdf
ftp://ftp.sei.cmu.edu/pub/pruggiero/bsi-swa/1/SecureCoding_PocketGuide_v2%200_05182012_PostOnline.pdf
ftp://ftp.sei.cmu.edu/pub/pruggiero/bsi-swa/1/SecureCoding_PocketGuide_v2%200_05182012_PostOnline.pdf

Science Reports Department of Mathematics and Computer Science
 Technische Universiteit Eindhoven

If you want to receive reports, send an email to: wsinsan@tue.nl (we cannot guarantee the availability of the

requested reports).

In this series appeared (from 2009):

09/01 Wil M.P. van der Aalst, Kees M. van Hee, Compositional Service Trees

 Peter Massuthe, Natalia Sidorova and

 Jan Martijn van der Werf

09/02 P.J.l. Cuijpers, F.A.J. Koenders, Queue merge: a Binary Operator for Modeling Queueing Behavior

 M.G.P. Pustjens, B.A.G. Senders,

 P.J.A. van Tilburg, P. Verduin

09/03 Maarten G. Meulen, Frank P.M. Stappers Breadth-Bounded Model Checking

 and Tim A.C. Willemse

09/04 Muhammad Atif and MohammadReza Formal Specification and Analysis of Accelerated Heartbeat Protocols

 Mousavi

09/05 Michael Franssen Placeholder Calculus for First-Order logic

09/06 Daniel Trivellato, Fred Spiessens, POLIPO: Policies & OntoLogies for the Interoperability, Portability,

 Nicola Zannone and Sandro Etalle and autOnomy

09/07 Marco Zapletal, Wil M.P. van der Aalst, Pattern-based Analysis of Windows Workflow

 Nick Russell, Philipp Liegl and

 Hannes Werthner

09/08 Mike Holenderski, Reinder J. Bril Swift mode changes in memory constrained real-time systems

 and Johan J. Lukkien

09/09 Dragan Bošnački, Aad Mathijssen and Behavioural analysis of an I²C Linux Driver

 Yaroslav S. Usenko

09/10 Ugur Keskin In-Vehicle Communication Networks: A Literature Survey

09/11 Bas Ploeger Analysis of ACS using mCRL2

09/12 Wolfgang Boehmer, Christoph Brandt Evaluation of a Business Continuity Plan using Process Algebra

 and Jan Friso Groote and Modal Logic

09/13 Luca Aceto, Anna Ingolfsdottir, A Rule Format for Unit Elements

 MohammadReza Mousavi and

 Michel A. Reniers

09/14 Maja Pešić, Dragan Bošnački and Enacting Declarative Languages using LTL: Avoiding Errors and

 Wil M.P. van der Aalst Improving Performance

09/15 MohammadReza Mousavi and Proceedings of Formal Methods 2009 Doctoral Symposium

 Emil Sekerinski, Editors

09/16 Muhammad Atif Formal Analysis of Consensus Protocols in Asynchronous Distributed

 Systems

09/17 Jeroen Keiren and Tim A.C. Willemse Bisimulation Minimisations for Boolean Equation Systems

09/18 Kees van Hee, Jan Hidders, On-the-fly Auditing of Business Processes

 Geert-Jan Houben, Jan Paredaens,

 Philippe Thiran

10/01 Ammar Osaiweran, Marcel Boosten, Analytical Software Design: Introduction and Industrial Experience Report

 MohammadReza Mousavi

10/02 F.E.J. Kruseman Aretz Design and correctness proof of an emulation of the floating-point operations

 of the Electrologica X8. A case study

mailto:wsinsan@tue.nl

10/03 Luca Aceto, Matteo Cimini, Anna On Rule Formats for Zero and Unit Elements

 Ingolfsdottir, MohammadReza

 Mousavi and Michel A. Reniers

10/04 Hamid Reza Asaadi, Ramtin Khosravi, Towards Model-Based Testing of Electronic Funds Transfer Systems

 MohammadReza Mousavi, Neda Noroozi

10/05 Reinder J. Bril, Uğur Keskin, Schedulability analysis of synchronization protocols based on overrun without

 Moris Behnam, Thomas Nolte payback for hierarchical scheduling frameworks revisited

10/06 Zvezdan Protić Locally unique labeling of model elements for state-based model differences

10/07 C.G.U. Okwudire and R.J. Bril Converting existing analysis to the EDP resource model

10/08 Muhammed Atif, Sjoerd Cranen, Reconstruction and verification of group membership protocols

 MohammadReza Mousavi

10/09 Sjoerd Cranen, Jan Friso Groote, A linear translation from LTL to the first-order modal µ-calculus

 Michel Reniers

10/10 Mike Holenderski, Wim Cools Extending an Open-source Real-time Operating System with Hierarchical

 Reinder J. Bril, Johan J. Lukkien Scheduling

10/11 Eric van Wyk and Steffen Zschaler 1st Doctoral Symposium of the International Conference on Software Language

 Engineering (SLE)

10/12 Pre-Proceedings 3rd International Software Language Engineering Conference

10/13 Faisal Kamiran, Toon Calders and Discrimination Aware Decision Tree Learning

 Mykola Pechenizkiy

10/14 J.F. Groote, T.W.D.M. Kouters and Specification Guidelines to avoid the State Space Explosion Problem

 A.A.H. Osaiweran

10/15 Daniel Trivellato, Nicola Zannone and GEM: a Distributed Goal Evaluation Algorithm for Trust Management

 Sandro Etalle

10/16 L. Aceto, M. Cimini, A.Ingolfsdottir, Rule Formats for Distributivity

 M.R. Mousavi and M. A. Reniers

10/17 L. Aceto, A. Birgisson, A. Ingolfsdottir, Decompositional Reasoning about the History of Parallel Processes

 and M.R. Mousavi

10/18 P.D. Mosses, M.R. Mousavi and Robustness os Behavioral Equivalence on Open Terms

 M.A. Reniers

10/19 Harsh Beohar and Pieter Cuijpers Desynchronisability of (partial) closed loop systems

11/01 Kees M. van Hee, Natalia Sidorova Refinement of Synchronizable Places with Multi-workflow Nets -

 and Jan Martijn van der Werf Weak termination preserved!

11/02 M.F. van Amstel, M.G.J. van den Brand Using a DSL and Fine-grained Model Transformations to Explore the boundaries of

 and L.J.P. Engelen Model Verification

11/03 H.R. Mahrooghi and M.R. Mousavi Reconciling Operational and Epistemic Approaches to the Formal Analysis of

 Crypto-Based Security Protocols

11/04 J.F. Groote, A.A.H. Osaiweran and Benefits of Applying Formal Methods to Industrial Control Software

 J.H. Wesselius

11/05 Jan Friso Groote and Jan Lanik Semantics, bisimulation and congruence results for a general stochastic

 process operator

11/06 P.J.L. Cuijpers Moore-Smith theory for Uniform Spaces through Asymptotic Equivalence

11/07 F.P.M. Stappers, M.A. Reniers and Transforming SOS Specifications to Linear Processes

 S. Weber

11/08 Debjyoti Bera, Kees M. van Hee, Michiel A Component Framework where Port Compatibility Implies Weak Termination

 van Osch and Jan Martijn van der Werf

11/09 Tseesuren Batsuuri, Reinder J. Bril and Model, analysis, and improvements for inter-vehicle communication

 Johan Lukkien using one-hop periodic broadcasting based on the 802.11p protocol

11/10 Neda Noroozi, Ramtin Khosravi, Synchronizing Asynchronous Conformance Testing

 MohammadReza Mousavi

 and Tim A.C. Willemse

11/11 Jeroen J.A. Keiren and Michel A. Reniers Type checking mCRL2

11/12 Muhammad Atif, MohammadReza Formal Verification of Unreliable Failure Detectors in Partially

 Mousavi and Ammar Osaiweran Synchronous Systems

11/13 J.F. Groote, A.A.H. Osaiweran and Experience report on developing the Front-end Client unit

 J.H. Wesselius under the control of formal methods

11/14 J.F. Groote, A.A.H. Osaiweran and Ananlyzing a Controller of a Power Distribution Unit

 J.H. Wesselius Using Formal Methods

11/15 John Businge, Alexander Serebrenik Eclipse API Usage: The Good and The Bad

 and Mark van den Brand

11/16 J.F. Groote, A.A.H. Osaiweran, Investigating the Effects of Designing Control Software

 M.T.W. Schuts and J.H. Wesselius using Push and Poll Strategies

11/17 M.F. van Amstel, A. Serebrenik Visualizing Traceability in Model Transformation Compositions

 And M.G.J. van den Brand

11/18 F.P.M. Stappers, M.A. Reniers, Dogfooding the Structural Operational Semantics of mCRL2

 J.F. Groote and S. Weber

12/01 S. Cranen Model checking the FlexRay startup phase

12/02 U. Khadim and P.J.L. Cuijpers Appendix C / G of the paper: Repairing Time-Determinism in

 the Process Algebra for Hybrid Systems ACP

12/03 M.M.H.P. van den Heuvel, P.J.L. Cuijpers, Revised budget allocations for fixed-priority-scheduled periodic resources

 J.J. Lukkien and N.W. Fisher

12/04 Ammar Osaiweran, Tom Fransen, Experience Report on Designing and Developing Control Components

 Jan Friso Groote and Bart van Rijnsoever using Formal Methods

12/05 Sjoerd Cranen, Jeroen J.A. Keiren and A cure for stuttering parity games

 Tim A.C. Willemse

12/06 A.P. van der Meer CIF MSOS type system

12/07 Dirk Fahland and Robert Prüfer Data and Abstraction for Scenario-Based Modeling with Petri Nets

12/08 Luc Engelen and Anton Wijs Checking Property Preservation of Refining Transformations for

 Model-Driven Development

12/09 M.M.H.P. van den Heuvel, M. Behnam, Opaque analysis for resource-sharing components in hierarchical real-time systems

 R.J. Bril, J.J. Lukkien and T. Nolte - extended version –

12/10 Milosh Stolikj, Pieter J. L. Cuijpers and Efficient reprogramming of sensor networks using incremental updates

 Johan J. Lukkien and data compression

12/11 John Businge, Alexander Serebrenik and Survival of Eclipse Third-party Plug-ins

 Mark van den Brand

12/12 Jeroen J.A. Keiren and Modelling and verifying IEEE Std 11073-20601 session setup using mCRL2

 Martijn D. Klabbers

12/13 Ammar Osaiweran, Jan Friso Groote, Evaluating the Effect of Formal Techniques in Industry

 Mathijs Schuts, Jozef Hooman

 and Bart van Rijnsoever

12/14 Ammar Osaiweran, Mathijs Schuts, Incorporating Formal Techniques into Industrial Practice

 and Jozef Hooman

13/01 S. Cranen, M.W. Gazda, J.W. Wesselink Abstraction in Parameterised Boolean Equation Systems

 and T.A.C. Willemse

13/02 Neda Noroozi, Mohammad Reza Mousavi Decomposability in Formal Conformance Testing
 and Tim A.C. Willemse

13/03 D. Bera, K.M. van Hee and N. Sidorova Discrete Timed Petri nets

13/04 A. Kota Gopalakrishna, T. Ozcelebi, Relevance as a Metric for Evaluating Machine Learning Algorithms

 A. Liotta and J.J. Lukkien

13/05 T. Ozcelebi, A. Weffers-Albu and Proceedings of the 2012 Workshop on Ambient Intelligence Infrastructures

 J.J. Lukkien (WAmIi)

13/06 Lotfi ben Othmane, Pelin Angin, Extending the Agile Development Process to Develop Acceptably

 Harold Weffers and Bharat Bhargava Secure Software

	TITEL.PG13-06
	ISSN 0926-4515
	All rights reserved
	Computer Science Reports 13-06

	CSR-13-06
	TITEL.PG13-06
	ISSN 0926-4515
	All rights reserved
	Computer Science Reports 13-06

	Blanco
	CSR-13-06
	Extending the Agile Development Process to Develop Acceptably Secure Software
	Introduction
	Background
	Agile software development approach
	Secure software development
	Security assurance cases

	Related work
	Security reassurance of software increments
	Analysis of security verification areas of OWASP
	Relationship between security assurance case elements and software components
	Methodology of security reassurance of software increments
	Case study: Web portal for employees
	Description of the system
	Building the security assurance case

	Extending the agile software development process with security engineering activities
	Extending the inception phase.
	Extending the construction phase
	Extending the transition phase

	Discussion
	Preserving agile values
	Producing secure software
	Limitations of the method

	Conclusion

	Blanco
	PUBL.LS4csr 2009 tm

	PUBL.LS4csr 2009 tm

