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The connectionistmodel of category learning known as
ALCOVE (Kruschke, 1992) is one of the most successful
and widely used formal models in cognitive psychology.
Although there are some category learning effects that
ALCOVE does not capture without modification or ex-
tension (e.g., Kruschke & Erikson, 1995), its original for-
mulation remains a simple and powerful account of a wide
variety of categorization behavior. The most significant
shortcoming of ALCOVE is that, as originally noted by
Kruschke (1992, p. 40), “ALCOVE applies only to situa-
tions for which the stimuli can appropriately be repre-
sented as points in multidimensional psychological simi-
larity space.” Within cognitivepsychology, it has oftenbeen
argued (e.g., Tversky, 1977) that many important stimu-
lus domains are not amenable to spatial representation,
but instead require a featural approach to representation.
Motivated by a concrete example of a domain in which
ALCOVE fails, apparentlybecause of its spatial representa-
tion, the goal of this article is to extendALCOVE to accom-
modate stimulus domains that are represented in terms of
the presenceor absence of a set of discrete domain features.

THE ALCOVE MODEL

In this section,we summarize the way in which ALCOVE
internally represents a stimulus set, categorizes a presented

stimulus, and then learns from externally provided feed-
back that specifies whether or not the categorization deci-
sion was correct. A more detaileddescription of ALCOVE
may be found in Kruschke (1992).

Categorization
Stimulus representation. The spatial representations

used by ALCOVE locate each of the n stimuli at a point in
an m dimensionalspace, as determinedby multidimensional
scaling or some other equivalentprocedure. We denote the
representativepoint for the ith stimulusby fi = ( fi1 , . . . , fim).

Stimulus comparison. On each categorization trial, a
stimulus is presented to ALCOVE, and its attention-
weighted distance to each of the other stimuli is calcu-
lated. Although ALCOVE has been applied successfully
to both integral and separable stimulus domains, we re-
strict ourselves to describing the separable case, since our
concern is with the extension of ALCOVE to featural rep-
resentations of stimuli. Any stimulus domain amenable to
a featural characterization seems likely to contain dimen-
sions that can be attended to individually, and may be re-
garded as separable within Garner’s (1974) framework.

Accordingly, if the ith stimulus is presented, its distance
to the jth stimulus, denoted dij, is given by the attention-
weighted city-block distance between their representative
points:

(1)

where ak is the attention weight applied to the k th dimen-
sion.

Generalizationgradient.The distancesbetween the pre-
sented stimulusand the otherstimuli are then transformed to
similarities, denoted sij, using the exponential decay rela-
tionship advocated by Shepard (1987):

d a f fij k ik jk
k
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The ALCOVE model of category learning, despite its considerable success in accounting for human
performance across a wide range of empirical tasks, is limited by its reliance on spatial stimulus rep-
resentations. Some stimulus domains are better suited to featural representation, characterizingstim-
uli in terms of the presence or absence of discrete features, rather than as points in a multidimensional
space. We report on empirical data measuring human categorization performance across a featural
stimulus domain and show that ALCOVE is unable to capture fundamental qualitative aspects of this
performance. In response, a featural version of the ALCOVE model is developed, replacing the spatial
stimulus representations that are usually generated by multidimensional scaling with featural repre-
sentations generated by additive clustering. We demonstrate that this featural version of ALCOVE is
able to capture human performance where the spatial model failed, explaining the difference in terms
of the contrasting representationalassumptions made by the two approaches. Finally, we discuss ways
in which the ALCOVE categorizationmodel might be extended further to use “hybrid” representational
structures combining spatial and featural components.
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(2)

where s is a specificity or resolution parameter associated
with the exponential function.

Response probabilities.After calculatingthese similar-
ities, ALCOVE forms response strengths for each of the
possible categories.These are calculated using associative
weights maintained between each of the stimuli and the
categories. The response strength for the x th category, rx ,
is given by the similarity-weighted sum of all of the asso-
ciative weights to that category:

(3)

where wxj is the associative weight from the jth stimulus
to the x th category.

From the response strengths, ALCOVE generates re-
sponse probabilities using the choice rule (Luce, 1963;
Shepard, 1957):

(4)

where f is a mapping parameter.

Learning
Having produced probabilities for each of the various

possible categorization responses, ALCOVE is provided
with feedback from an external source. This takes the
form of a set of so-called humble teacher values, one for
each category, defined as

(5)

Two learning rules are then applied, both derived by seek-
ing to minimize the error measure:

(6)

using a simple gradient descent approach to optimization.
Associative learning.The associativeweights between

the stimuli and response categories are adjusted using the
learning rule:

(7)

where lw is the associative learning rate parameter.
Attentional learning. Simultaneously, the attention

weights for each dimension of the representational space
are adjusted using the learning rule:

(8)

where la is the attentional learning rate parameter.

EXPERIMENT

In developing a category learning experiment to ex-
plore ALCOVE’s abilitieswith a featural stimulusdomain,

we were guided by a representational observation made
by Choi, McDaniel, and Busemeyer (1993). After examin-
ing the performance of ALCOVE on a set of stimuli vary-
ing along the inherently ordinal dimensions of size and
number, represented using the spatial approach, they com-
mented that “although this coding seems reasonable for
size and number dimensions, it may not work well for
color and shape dimensions. (Are triangles and hexagons
psychologically twice distant from each other as they are
from squares?)” (p. 423). Intuitively, Choi et al. questioned
the compatability of ALCOVE, because of its reliance on
spatial representation, to deal with a domain built from
discrete, nominal“features” rather than continuous,ordered
“dimensions.”

Previous studies (Kruschke, 1992; Nosofsky, Gluck,
Palmeri, McKinley, & Glauthier, 1994) have examined the
ability of ALCOVE to model category learning data from
the seminal experimental task introduced by Shepard,
Hovland,and Jenkins (1961), which involveswhat might be
regarded as a “featural” stimulus domain. This task mea-
sured human performance across a series of category
structures that divided eight stimuli evenly between two
categories. The stimuli were generated by exhaustively
varying three binary dimensions such as {black, white},
{small, large}, and {square, circle}. Althougha compelling
case has been made (Kruschke, 1992) that ALCOVE can
capture human category learning on this task, it is also the
case that the binary-featured domain happens to be read-
ily amenable to spatial representation. By introducing an
arbitrary ordering for each of the feature values, the stim-
ulus domain can be represented as the vertices of a cube
under a distance-basedsimilarity model. This form of rep-
resentation would not, however, have been possible if a
third shape, “triangle,” had been introduced.This is not to
say that a spatial representationwould not be possible, but
it would need to be a different sort of spatial representa-
tion, which may or may not be suited to modeling human
categorization behavior. On the basis of these ideas, we
chose to examine ALCOVE’s performance by using a fea-
tural stimulus domain obtained by exhaustively combin-
ing the set of three colors {red, green, blue} with the set
of three shapes {square, circle, triangle}, giving a total of
nine stimuli.

The particularcategory structures we used divided three
stimuli intoonecategoryand the remainingsix into the other.
The fact that a different number of stimuli is assigned to
each category is inconvenient, because it potentially in-
troduces issues concerning the base rate of presentation
for each category. Obviously, however, it is not possible to
split nine stimuli into two categories evenly, and other ex-
perimental variations (such as introducing three possible
category responses) seemed to constitutemore radical de-
partures from the successful methodologyof Shepard et al.
(1961).

An analysis of the different category structures with
three and six stimuli, allowing for isomorphisms arising
from color or shape feature permutation, revealed that
there are only four possible types. An example of each of
these four category types is shown in Figure 1, in which
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the stimulus domain is arranged by forming an outer tri-
angular groupingbased on shape and arranging the colors
within these groupings. For each of the four category
types, those stimuli belonging to the smaller category are
indicated in bold.

Generating a Spatial Representation
Method

Subjects. Twenty volunteers served as subjects for collecting the
similarity data. There were 19 males and one female, with ages rang-
ing from 25 to 52 years.

Procedure. Each subject rated the similarity of all 9 3 8/2 = 36
possible pairs of stimuli, presented in a random order, on a 5-point
scale. For each presentation of a stimulus pair, the left/right display
ordering was also randomly assigned. The final similarity matrix,
shown in Table 1, was obtained by averaging across subjects and
made symmetric by transpose averaging.

Results
A metric multidimensionalscaling algorithm,using the

Levenberg–Marquardt approach to nonlinear least squares
optimization (More, 1977), was used to generate the city-
block spatial representation. A particular feature of this
multidimensionalscaling algorithm is that it automatically
determines the appropriate dimensionality of the final so-
lution. This is achieved by using the Bayesian information
criterion (Schwarz, 1978) to balance improvements in
data fit with increased model complexity, as described by
Lee (2001a). Figure 2 shows the pattern of change in data
fit and the Bayesian information criterion across repre-
sentational spaces with different numbers of dimensions.

What these results show is that a four-dimensional spatial
representation, explaining 98.8% of the variance in the
data, constitutesan appropriate balance between the num-
ber of dimensions used and the level of data fit achieved.

The coordinate locations of each stimulus for each di-
mension of this solution are detailed in Table 2, and an at-
tempt to depict the representational space graphically is
made in Figure 3. Plotting Dimension 1 with Dimension 2
shows the subspace of the representation that deals with
the different colors of the stimuli. Effectively, each stimulus
of the same color is located at the same point in this sub-
space, and the red, green, and blue clusters are arranged in
a triangle. This two-dimensional spatial configuration al-
lows each of the three color types to be represented as (ap-
proximately) equally similar to the remaining two colors.
Plotting Dimension 3 with Dimension 4 reveals the same
representational strategy with respect to the shape com-
ponent of the stimulus domain. In this subspace, all of the
stimuli with the same shape are located at the same point,
and the same triangle configuration is evident.

Category Learning
Method

Subjects. Twenty-two volunteers served as subjects. There were
14 males and 8 females, with ages ranging from 21 to 48 years.

Procedure. Each subject was required to learn an instance of all
four category structures, and the order in which the different struc-
tures were encountered was chosen randomly. At the beginning of
the category learning task, the perceptual display features were also
randomly assigned to the logical representational features, as were
the two category labels, “X” and “Y,” so that either could correspond

Figure 1. The four different category structures.
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to the smaller category. This meant, for example, that one category
within the Type 1 structure learned by a particular subject could be
{red circle, red square, red triangle}, {red circle, blue circle, green cir-
cle}, or any of the four other possibilities, and this category could be
labeled “X” or “Y.”

The stimuli were presented in a series of blocks, each of which in-
volved the presentation of nine stimuli. Successive pairs of these
blocks were constrained to contain exactly two presentations of each
stimulus, but the ordering of their presentation within these two
blocks was random. Upon presentation, subjects were required to
provide a category response using the mouse within approximately
5 sec. Feedback was then provided for approximately 3 sec by show-
ing the correct category label before the next stimulus was pre-
sented. This process continued until subjects reached a criterion of
36 consecutive correct responses, or until a total of 50 presentations
of each stimulus had been made. Following Nosofsky et al. (1994),
subjects who reached criterion were deemed to have learned the cat-

egory structure, and error-free performance for the remaining blocks
was assumed.

Results
The way in whichhumans learned the four categorystruc-

tures, summarizedbyaveragingtheerrorprobabilitiesacross
subjects, is shown in Figure 4. The averaged data suggest
thatType 1 was learnedmost quickly, and with the fewest er-
rors, Type 3 was the next most easily learned, and Types 2
and 4 were the most difficult to learn.

To examine the extent to which the ordering of the av-
eraged learning curves is supported by the underlying in-
dividual subject data, standard errors for each of the aver-
aged error probabilitiesat each trial block were calculated
and used to generate90% confidence intervals. In Figure 5,

Table 1
The Final Similarity Matrix for the Stimulus Domain

red red red green green green blue blue blue
circle square triangle circle square triangle circle square triangle

red circle –
red square .613 –
red triangle .638 .625 –
green circle .500 .088 .063 –
green square .050 .550 .050 .613 –
green triangle .063 .050 .500 .638 .663 –
blue circle .525 .063 .050 .500 .125 .100 –
blue square .100 .525 .088 .075 .563 .088 .600 –
blue triangle .088 .050 .488 .088 .038 .538 .588 .650 –
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Figure 2. The pattern of change of the Bayesian information criterion (left-hand scale, solid line),
and percentage variance explained (right-hand scale, broken line) measures for spatial representa-
tions with different dimensionalities, obtained from the similarity data.
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these confidence intervals are shown as error bars on the
averaged data for the two cases of interest. In Figure 5A
the curves for Types 1, 2, and 3 are shown, and in Fig-
ure 5B the curves for Types 1, 3, and 4 are shown. In both
cases, over the learning trials spanned by Blocks 2, 3, 4,
and 5, where the bulk of the learning takes place, there is
strong separation between the learning curves.

Since each subjectlearnedeach of the four categorystruc-
tures, it is also possible to conduct a within-subjectsanaly-
sis, comparing the differences in the number of errors
each subject made at each point in the learning curve. In
terms of the evident ordering in Figures 4 and 5, the im-
portantcomparisonsare between Types3 and 1, Types 2 and

3, and Types 4 and 3. For an individual subject to display
the same learningorder as the aggregateddata, the first cat-
egory type in each of these three comparisons should in-
volve more errors, and hence the difference should be pos-
itive. In Figure 6, the difference scores calculated for these
three comparisons are summarized, and frequency his-
tograms are shown for the within-subjectsdifference scores
across each trial block. In each case, it can be seen that the
vast majority of error differences are positive.Coupledwith
the analysis across subjects averaged learning curves, this
within-subjects analysis provides strong evidence for as-
serting that the subjects learned the Type 1 category struc-
ture most easily, then Type 3, and then Types 2 and 4.

Table 2
The City Block Multidimensional Scaling Representation of the Stimulus Domain

Stimulus Dimension 1 Dimension 2 Dimension 3 Dimension 4

red circle 20.261 20.071 20.205 20.054
red square 20.259 20.114 0.000 0.107
red triangle 20.261 20.074 0.205 20.054
green circle 0.254 20.080 20.204 20.050
green square 0.254 20.114 0.000 0.108
green triangle 0.254 20.079 0.205 20.054
blue circle 20.013 0.169 20.206 20.054
blue square 20.001 0.182 0.000 0.108
blue triangle 20.004 0.181 0.205 20.054
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Figure 3. The four-dimensional spatial representation of the stimulus domain, shown in terms of
two subspaces. The left panel plots Dimensions 1 and 2, which capture the variation relating to color.
The right panel plots Dimensions 3 and 4, which capture the variation relating to shape.
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Fitting Spatial ALCOVE
To examine the abilityof ALCOVE to model human cat-

egory learning, we performed multivariable optimization
across the four free parameters, lw , la , s, and f, using the
sum-squared deviation from the human block error prob-
abilities as the objective function. The optimization ap-
proach we used combined a global grid search with local
tuning based on sequential quadratic programming (see,
e.g., Gill, Murray, & Wright, 1981), and returned parame-
ter values of lw = 0.21, la = 0.01, s = 14.0, and f = 2.84,
with an associated sum-squared deviation of 0.048. The
learning curves produced by ALCOVE with these parame-
ter values are shown in Figure 7. Note that the evident or-
dering of the learning curves is different from that shown by
the human subjects in Figure 4. The final attentionweights
for each of the four category types are listed in Table 3.

This sort of analysis,which examines the degree to which
ALCOVE is able to produce learning curves that are
“close” to the human curves, provides one measure of its
ability to capture human performance. There are a num-
ber of difficulties, however, with this approach, relating to
issues of model complexity. For example, nothing in our
optimizationapproach guarantees that best-fitting param-
eter values will not lie in unstable regions of the parameter
space.That is, it is possible that small changes to the param-
eter values used to generate Figure 7 may result in large
differences in the learning curves produced by ALCOVE.
From a general model theoretic standpoint (e.g., Kass &
Raftery, 1995; Myung & Pitt, 1997), models that require
a precise tuning of parameter values to explain data are

complicated, and shouldbe rejected in favor of simpler ac-
counts. Indeed, many quantitative measures of model
complexity, such as the Laplacian approximation (see
Kass & Raftery, 1995, p. 777), explicitly measure the ro-
bustness of a model’s fit to the data across the region of the
parameter space surrounding the best-fitting parameter
values. Accordingly, one way to address the model com-
plexity issue would be to evaluate ALCOVE against the
human data by using a measure that incorporatesboth data
fit and model complexity components, such as those de-
scribed by Kass and Raftery (1995) or Myung, Balasubra-
manian, and Pitt (2000).1

An alternative approach that effectively sidesteps the
detailed considerationof data fit and complexity is to eval-
uate a model in terms of its ability to capture fundamen-
tal qualitative features of the constraining data. Without
wishing to make the point too strongly, we note that there
is some merit in Rutherford’s assertion: “If your experi-
ment needs statistics, you ought to have done a better ex-
periment.” In particular, if there is a strong qualitativetrend
that characterizes human performance in a cognitive task,
then models of that cognitive task should exhibit the same
behavior. A goodexampleof evaluatingALCOVE using this
sort of approach is providedby Kruschke (1992) in relation
to the Shepard et al. (1961) task, where it is shown that the
attention learningmechanism allows ALCOVE to capture
the orderingof the learningcurves for the six category types.

A similar constraint is supplied by the ordering of the
human learning curves for the present task, shown in Fig-
ure 4, and examined more closely in Figures 5 and 6. For
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Figure 4. Averaged human performance on the four categorization tasks.
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ALCOVE to capture human performance, it must be able
to display the ordering Type 1, then Type 3, and then
Types 2 and 4. As is shown in Figure 7, ALCOVE does not
do this when using the best-fitting parameter values. In
fact, as part of a more general survey of the parameter
space, we were unable to find any combination of para-

meter values that allowed ALCOVE to learn Type 3 more
easily than Types 2 and 4.

Discussion
An examinationof the concrete examplesof the four cat-

egory structures shown in Figure 1 suggests that this de-
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Figure 5. Averaged human performance, with 90% confidence intervals, for the category
structures (A) Type 1 (bottom), Type 3 (middle), and Type 2 (top); and (B) Type 1 (bottom),
Type 3 (middle), and Type 4 (top). Note that the data in these figures are the same as those dis-
played in Figure 4.
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ficiency may be caused by the spatial representation
ALCOVE uses. The Type 1 category structure is easily
learned because it allows the nine stimuli to be “collapsed”
into three groups of three, collecting together the circles,
squares and triangles. The Type 3 category structure
would benefit from a more complicated form of represen-
tational collapse, which brought together the features red
and blue, effectively reducing the problem to six nodes,
rather than nine. Meanwhile, neither the Type 2 nor the
Type 4 encourages any form of representational collapse.

For the Type 3 category structure, however, there is no
way for ALCOVE to manipulate the spatial representation
to bring together the features red and blue. As is clear from
Figure 3, the only way to align the red and blue stimuli is to
reduce the attention weights for Dimension 1 to zero, but
this manipulationhas the unwanted side effect of aligning
the green stimuli, and makes it impossible to learn the cat-
egory structure. The way in which ALCOVE attempts to
overcome this fundamental difficulty is made clear by the
best-fittingspecificityparameter value. The value s = 14.0
corresponds to an extremely sharp generalization gradi-
ent, meaning that ALCOVE is effectively using local,
rather than distributed, stimulus representation. Intu-
itively, this means that each of the different category types
is being learned by establishing appropriate associative
weights to apply to local regions of the spatial representa-
tion. The small best-fitting attention learning rate of la =
0.01 shows that ALCOVE does not use selective attention
to provide more significant levels of generalization. In
other words, because the dimensionalstructure of the spa-
tial representation is not well suited to learning the cate-
gory structures throughprocesses of selectiveattentionand
generalization, the best-fitting parameter values indicate
that ALCOVE uses a less compelling learning strategy
based on establishing associative weights.

For this reason, the final attention weights shown in
Table 3 are not very informative. In particular, they do not
reflect the outcome of an attention-based learning strat-
egy. For each category type, the extent to which the final
attentionweights differ from the starting point of equality
tends to reflect the number of learning trials involved.
Since ALCOVE modifies its attention weights only when
it makes an incorrect categorization,greater change is ev-
ident for the more difficult category types.

More importantly, the ordering of the learning curves
shown in Figure 7 is readily explained in terms of the “local
learning” process. For Type 1, those stimuli that belong to
the smaller category are similar stimuli within the original

spatial representation. In other words, the appropriate cat-
egory structure is largely already captured by the stimulus
representation,meaning that the categorization task is rea-
sonably easy to accomplish even without attentional learn-
ing. There is less consistency, however, for the Type 2 cat-
egory structure, because the stimuli in the smaller
category are less similar to each other. This similarity de-
creases further for Type 3, because there is one less feature
in common across the stimuli in the smaller category. Fi-
nally, the Type 4 category structure is least well captured
by the spatial representation. This pattern of correspon-
dences, under the learning approach used by ALCOVE
with the best-fitting parameter values, leads to the ordering
Type 1, then Type 2, then Type 3, and finally Type 4, as is
evident in Figure 7.

A complication for this analysis is that the featural per-
mutation of Type 3 that required “red” and “green” to be
collapsed could be accomplished using the spatial repre-
sentation,whereas the “green” and “blue”permutationsuf-
fers the same difficulty as “red” and “blue.” In this sense,
the model fitting results presented in Figure 7 may be jus-
tified as representing the dominantbehavior of the model.
More fundamentally, it seems theoretically implausible
that different featural permutations lead to different cate-
gory learningperformance, and there is no evidence in the
collected data to support such an assertion. In particular,
as Figure 5 shows, the human learning of Type 3 is not sig-
nificantly more variable than that of Types 2 or 4, despite
the fact that all category structures were tested across all
of the permissible perceptual display permutations.

The general conclusion, therefore, is that the inabilityof
ALCOVE to learn the four category structures in the same
order as humans may arise not because of a fault of
ALCOVE per se, but because of its reliance on spatial rep-
resentation. The fact that the spatial representation is an
accurate and intuitively reasonable description of the stim-
ulus domain, explaining 98.8% of the variance in the data
using an interpretable structure, gives some suggestion
that the difficulty lies in a fundamental incompatibility
between the representational assumptions embodied by
the spatial approach and those used by humans. For this
reason, it is worth examining the ability of an ALCOVE-
like model, using stimulus representations generated ac-
cording to the alternative featural approach, to model the
category learning data. Although it remains entirely plau-
sible that modifications to the process used by ALCOVE
might be able to account for the learning order (e.g.,
Erickson & Kruschke, 1998; Kruschke & Blair, 2000;

Table 3
The Final Attention Weights Applied to the Stimulus

Dimensions, for Each of the Four Category Structures

Category Dimension 1 Dimension 2 Dimension 3 Dimension 4
Structure (Color) (Color) (Shape) (Shape)

Type 1 0.213 0.198 0.364 0.225
Type 2 0.159 0.073 0.340 0.429
Type 3 0.111 0.010 0.310 0.569
Type 4 0.304 0.076 0.280 0.339
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Kruschke & Johansen, 1999), there is a sense in which a
simple representational change would constitute a more
direct and elegant solution.

FEATURAL STIMULUS
REPRESENTATIONS

The distinctionbetween spatial and featural approaches
to mental representationalmodelinghas been a classic one
in cognitivepsychology. The spatial approach adopted by
ALCOVE represents stimuli as points in a multidimen-
sional space, whereas the featural approach represents
stimuli in terms of the presence or absence of a number of
discrete (often binary) features. It has frequently been ob-
served (e.g., Carroll, 1976, p. 440; Tenenbaum, 1996, p. 3;
Tversky, 1977, p. 328) that the nature of spatial represen-
tation means that it is better suited to domains where stim-
uli vary continuously along a relatively small number of
dimensions, whereas the discrete nature of the featural ap-
proach makes it more appropriate for modeling domains
where stimuli are defined in terms of a set of properties or
features.

The Contrast Model
For stimulus domains where discrete featural represen-

tations are deemed to be appropriate, it is necessary to de-
velop an analogue of the distance-based approach to mea-
suring stimulus similarityused with spatial representations.
This analogue is provided by Tversky’s (1977) contrast
model, which assumes that the similarity between two
stimuli is a function of their common and distinctive fea-
tures. Formally, the similarity takes the form

(9)

where fi > fj denotes the features common to the i th and
j th stimuli, fi 2 fj denotes the features present in the i th, but
not the j th, stimulus, and F ( ? ) is some monotonically in-
creasing function. By manipulating the positiveweighting
parameters u, a, and b, different degrees of importance
may given to the common and distinctivecomponentsin as-
sessing stimulussimilarity. In particular,Tversky and others
(e.g., Carroll & Corter, 1995; Gati & Tversky, 1984; Res-
tle, 1961;Sattath & Tversky, 1987) have placed some em-
phasis on the two extreme alternatives of the contrast
model obtained by setting u = 1, a = b = 0, which results
in a purely common features model of similarity, or setting
u = 0, a = b = 1, which results in a purely distinctive fea-
tures model.

In terms of developinga featural extension to ALCOVE,
it is natural to ask whether a common or distinctive fea-
tures approach to similarity (or some balance between the
two) should be used in place of the distance measures used
for spatial representations. In answering this question, it is
important to distinguish between the two different roles
distancemeasuresplay in measuringsimilarity in ALCOVE.
One role is to underpin the generation of stimulus repre-
sentations,since the primary aim of techniquessuch as mul-
tidimensionalscaling is to model the distancerelationsspec-

ified by similarity data. The second role is to serve in the
generation of stimulus similarities during the categoriza-
tion of a presented stimulus. Within the spatial represen-
tational approach of ALCOVE, the same distance metric
is used for both types of similarity.

It is, however, widely recognized (e.g., Goodman, 1972;
Nosofsky, 1986; Rips, 1989; see Goldstone, 1994, for an
overview) that similarity is not a unitary phenomenon,and
the way in which it is measured may change according to
different cognitive demands. As Goldstone, Medin, and
Halberstadt (1997) haveargued:“The aggregateof evidence
suggests that similarity is not just simply a relationbetween
two objects; rather, it is a relation between two objects and
a context” (p. 238). In particular, there is considerableem-
pirical evidence for context dependency when featural
similarities are generated according to the contrast model
(e.g., Gati & Tversky, 1984; Ritov, Gati, & Tversky, 1990;
Sattath& Tversky, 1987),with the general conclusionbeing
that “the weighting of common and distinctive features is
context dependent, but these variations are systematic
rather than random” (Ritov et al. 1990, p. 40).

Of specific concernhere is the suggestionthat the two con-
texts involved in ALCOVE—the generation of similarity
judgments, and the generation of category responses—
involve different processes when dealing with featural
stimulus representations. Gati and Tversky (1984) have
argued that different task demands can induce significant
changes on the relative weighting of common and distinc-
tive features. In particular, they proposed that “judgments
of similarity focus on common features whereas judg-
ments of dissimilarity focus on distinctive features” (Gati
& Tversky, 1984,p. 367; see also Markman, 1996).On this
basis, it would seem likely that a common features approach
to similarity should be used to extract a domain represen-
tation from similarity data, whereas a distinctive features
approach should be used when categorizing a presented
stimulus. It is worth examiningeach of these claims in more
detail.

In terms of feature extraction from similarity data, it is
known that the distinctive features approach is formally
equivalent to the common features approach when com-
plementary features are present (cf. Sattath & Tversky,
1987). This means that, when a feature belongingto a sub-
set of stimuli is identified,another feature belonging to all
of the other stimuli is implied, and all of the stimuli that
do not have the feature are consequently made relatively
more similar. As previously argued by Lee (1998), this is
sensible in the (relatively rare) case of “global” domain
features, but prevents the extraction of “local” domain fea-
tures. For example, consider the featural modeling of the
abstract conceptual properties of the numbers 0, 1, . . . , 9
(see Shepard, Kilpatrick, & Cunningham, 1975; Tenen-
baum, 1996). It would be possible, under the distinctive
approach, to find features corresponding to “even num-
bers” and “odd numbers,” because they are complemen-
tary. The feature corresponding to “multiples of three,”
however, is unlikely to be found, since its complement (the
numbers 0, 1, 2, 4, 5, 7, and 8) does not correspond to any
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feature. As Lee went on to argue, a common features model
of stimulus similarity is needed to extract these sorts of fea-
tures from similarity data.

In terms of the categorizationprocess requiring the dis-
tinctive features approach, insight is providedby consider-
ing the category learning task studied by Shepard et al.
(1961). As noted earlier, the key observation is that this
stimulus domain is equallywell represented using both the
spatial and featural approaches.A small, black square, for
example, is just as well conceived as a stimulus with the
features “small,” “black,” and “square” since it is a point in
a three-dimensional space (the vertex of a cube) that cor-
responds to the extremes values of “small,” “black,” and
“square” along stimulusdimensionsof “size,” “color,” and
“shape.” Since ALCOVE is able to capture the learningdif-
ferences between the six category structures found empir-
ically, the implicationis thata featural extensionof ALCOVE
should reduce to the standard spatial version for this stim-
ulus domain. In looking to achieve this equivalence,an ex-
amination of the learning rule for the attention weights
(Equation 8) shows that their attention weight learning is
entirely driven by those stimuli that are different from the
presented stimulus on each dimension, which provides
strong evidence in favor of using the distinctive feature
model of stimulus similarity.

Taken together, these arguments suggest that the re-
quirements of extracting features from similarity data and
adapting attention weights during category learning are
fundamentallydifferent. By treating the common and dis-
tinctive features measures of stimulus similarity as spe-
cializations of the overarching contrast model, it is possi-
ble to satisfy these different demands.Under the established
framework provided by the contrast model, it is natural to
use the common features measure when it is needed for
generating stimulus representations, and a distinctive fea-
tures measure when it is needed for category learning.

Additive Clustering
The obviousmeans of extractingfeatural representations

from similarity data, using a common features approach,
is by applying additive clustering techniques (Shepard &
Arabie, 1979). These techniques find a set of domain fea-
tures and assign a saliency weight to each so that the ob-

served similarity between a pair of stimuli is approxi-
mated by the sum of the weights of the clusters common
to both stimuli. Formally, if the presence or absence of the
k th feature in relation to the ith stimulus is defined as

(10)

and the k th feature is assigned a saliency weight ak , then
the similarity between the ith and jth stimuli is given by

(11)

where c is an additive constant, corresponding to a “uni-
versal” feature that is shared by every stimulus.

As a concrete example of an additive clustering repre-
sentation, Table 4 presents the results of analyzingRosen-
berg and Kim’s (1975)similaritydata for kinshipterms.This
representation was generated by using a modified version
of the algorithm described by Lee (2002), based on a sto-
chastic hill-climbingapproach to combinationaloptimiza-
tion. As with the multidimensional scaling algorithm de-
scribed earlier, the particular strength of this algorithm is
that it uses an additive clustering version of the Bayesian
informationcriterion (Lee, 2001b) to balance the compet-
ing demands of maximizing data fit while minimizing
model complexity.

The representation itself explains92.8% of the variance
in the data using 10 features and the universal feature con-
taining all stimuli. There are features relating to which
generationeach kinship term belongs,whether or not they
are once removed, and their gender. The important point
is that each of these three perspectives “cuts across” the
other two, and demands a clustering model that allows ar-
bitrary patternsof overlapbetween clusters.Only with over-
lappingclusters, for example, can the kinship term brother
belong to the clusters that correspond to the features sib-
ling, nuclear family, and male. Because it allows the nec-
essary flexibility, additiveclustering is able to generate an
accurate representation of the kinship stimulus domain
using a relatively small number of features.

This representation of the kinship stimulus domain, to-
gether with a wide range of others generated by additive
clustering (e.g., Lee, 1999;Shepard & Arabie, 1979),would
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Table 4
10-Cluster Representation of Kinship Data

Stimuli in Cluster Weight

brother sister 0.391
father mother 0.372
daughter son 0.370
granddaughter grandfather grandmother grandson 0.366
aunt uncle 0.330
nephew niece 0.326
aunt cousin nephew niece uncle 0.277
aunt daughter granddaughter grandmother mother niece sister 0.269
brother father grandfather grandson nephew son uncle 0.268
brother daughter father mother sister son 0.208

Additive constant 0.062
Variance explained 92.8%
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appear to be suitable featural counterparts to the multidi-
mensionallyscaled spatialrepresentationsused by ALCOVE.
Given that the ALCOVE model was developed specifi-
cally for use with spatial representations, however, it is
necessary to make some modifications before it is able to
accommodate featural representation. In the next section,
we develop a featural version of ALCOVE, identifyingthe
changes that need to be made within the framework we
used to describe the original ALCOVE.

A FEATURAL VERSION OF ALCOVE

Stimulus Representation
The featural representations,as generatedbyadditiveclus-

tering, take the form of binary membership variables fik , de-
noting whether or not the ith stimulus has the k th feature
(see Equation10), and a set of saliencyweights(w1 , . . . , wK)
for the K features.

Stimulus comparison. The original ALCOVE model
calculates the distance between each stimulus and the pre-
sented stimuli, using the known locations of the represen-
tative points and the metric structure of the space. Al-
though featural representations have neither spatial
locations nor metric structure, generalizing the notion of
distance from spatial to featural representation is rela-
tively straightforward. All that is required is the selection
of an appropriate functional form, F ( ? ), in the contrast
model (Equation 9) under a distinctive features parame-
terization u = 0, a = b = 1. Following the lead taken by ad-
ditive clustering under the common features approach, a
simple additive functional form seems reasonable.

In this way, featural distancemay be defined as the sum
of the weights of the features that differ between two stim-
uli, as follows:

(12)

where ak now denotes the saliency of the k th feature.
The notion of saliency for featural representation cor-

responds to the notion of dimensional attention for spatial
representation.Accordingly, it is appropriate for each fea-
ture initially to have the attentionweight prescribed by the
additive clustering solution, rather than simply assuming
all featural saliencies to be equivalent at the beginning of
category learning.2 During the course of category learn-
ing, these attention weights are modified according to the
category structure being presented, with features that dis-
tinguish between categories becoming highly weighted
and irrelevant features receiving little or no attention.The
initial attentionweightings, therefore, reflect only the a pri-
ori expectationregarding the salienceof each feature, based
on the evidence provided by the similarity data.

Generalizationgradient.The originalALCOVE model
converted stimulus distances into stimulus similarities,
using an exponentialdecay function.As presented in Shep-
ard (1987), however, the theoretical basis for this rela-
tionship relies on probabilisticgeometry and is inherently
spatial. This means that the use of the exponential decay

function for featural representations cannot be based on
Shepard’s (1987) results.

Fortunately, however, Russell (1986; see also Gluck,
1991) has provided theoretical analysis of generalization
gradients across featural representations, which uses the
same approach as Shepard (1987), finding that stimulus
similarity still decays exponentially with respect to feat-
ural distance. As Shepard (1994) summarized, the change
to featural representations“still yields an exponential type
of falloff of generalization with distance, where distance
is now defined in terms of the sum of the weights of the
features that differ between the two objects” (p. 25). This
means that stimulus similarity may be calculated as

(13)

Response probabilities. Once these similarities have
been found, the use of featural representation does not re-
quire any change to the way ALCOVE generates response
strengths

(14)

or response probabilities

(15)

Learning
Once the featural versionof ALCOVE has generated cat-

egory response probabilities for a presented stimulus, the
same “humble teacher” values are used:

(16)

and the same error measure is defined:

(17)

Associative learning. Because the method of response
generation was not affected by the use of featural represen-
tations, there is no need to alter the associativelearningrule:

(18)

Attentional learning. The change to the way stimulus
similarity is expressed for featural stimuli (Equation 13)
does, however, warrant a change to the attention learning
rule. It now becomes

(19)

It is important to understand that, in purely computa-
tional terms, this learning rule does not differ from the
spatial version (Equation 8). This is a consequence of the
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fact that, as noted by Nosofsky (1991, pp. 103–105), the
featural distance measure (Equation 12) is identical to the
spatial distancemeasure (Equation 1) for binary variables,
and hence the featural similarity measure (Equation13) re-
duces to the spatial similarity measure (Equation 2). Con-
ceptually, however, it is often useful to distinguishthe rep-
resentational interpretations demanded by the spatial and
featural approaches. For example, conceiving of featural
representationsas the vertices of a hypercubecan be coun-
terproductive,since the intuitivenotion of spatial distance
does not correspond to stimulus dissimilarity under any
model of stimulus similarity that uses common features.

Comparing Spatial and Featural ALCOVE
The most striking property of the featural ALCOVE

model is how little it differs from the established spatial
ALCOVE model. Stimulus similarities are generated
across featural representations in a way that is conceptu-
ally different, but computationallyequivalent, to the spatial
approach. The same applies to the learning rules, which
can be thought to have differences in form, but not in sub-
stance. Indeed, the only real difference, in terms of the way
ALCOVE learns to categorize stimuli, is that attention
weightsare maintainedfor each stimulusfeature, rather than
each stimulus dimension.

The fundamental difference between the two models,
however, is the representationaldifference. Using additive
clustering to generate a featural representationof the stim-

ulus domain, rather than multidimensionalscaling to gen-
erate a spatial representation,leadsALCOVE to understand
the structure of the stimulus domain in an entirely new
way. Given the plausibleargument that ALCOVE’s failure
to capture human performance on the categorization task,
presented earlier, may have been due to limitations in the
spatial representationof the domain, it is clearly worth ex-
amining the capability of the featural version.

THE EXPERIMENT REVISITED

Featural Stimulus Representation
To generate a featural representation of the color and

shape domain, the additiveclusteringalgorithmpreviously
used for the kinship domain was applied to the averaged
similarity data given in Table 1. Figure 8 shows the pattern
of change of data fit and the Bayesian information crite-
rion as extra clusters are added to the featural representa-
tion. A clear minimumin the Bayesian informationcriterion
is evident at the point where six clusters are used, indicat-
ing that this representationconstitutes the appropriatebal-
ance between accuracy and simplicity.

The structure of this representation, which explains
99.3% of the variance in the data, is given in Table 5. Each
of the clusters is readily interpreted in terms of its defin-
ing feature, and these are the specific colors and shapes
from which the stimuli were constructed. Interestingly, the
saliency weights of the features suggest that subjects as-
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signed relatively greater emphasis to common color, as
opposed to common shape, in the judgment of the simi-
larity between stimuli.

Fitting Featural ALCOVE
We fit the featural ALCOVE model using the same mul-

tivariable optimizationapproach previously applied to the
spatial version. The parameter values returned were lw =
0.12, la = 0.09, s = 6.90, and f = 2.85, and had an associ-
ated sum-squared deviationof 0.022. The learning curves
produced by the featural version of ALCOVE, using the
best-fitting parameter values, are shown in Figure 9, and
the final attention weights for the features in each of the
category structures are given in Table 6. The important as-
pect of the learning curves is, of course, that the data ex-
hibit the same ordering as the human data. In particular, the
Type 3 category structure is learned more quickly than
Types 2 and 4.

Once again, there is no guarantee that the parameter val-
ues found to generate Figure 9 lie in a stable region of the
parameter space.As with the spatialALCOVE model, how-
ever, extensive simulation showed that the learning orders
are largely insensitive to parametric variation. Across a
broad range of parameter values, the featural ALCOVE
model learned Type 3 more easily than Types 2 or 4, which
were approximately equally difficult.

Discussion
The best-fitting specificity parameter value of s = 6.90

for the featural ALCOVE model is less than half of the

corresponding value for the spatial ALCOVE model, and
the attention learning rate of la = 0.09 is much higher.
This indicates that the use of featural representations al-
lowed the featural ALCOVE model to use selective atten-
tionand generalizationprocesses to learn the categorystruc-
tures. In particular, the prior analysis of the poor
performance of the spatial ALCOVE model presented ear-
lier suggestedthat, to learn Type 3 more easily than Types 2
and 4, the ability to group the features “red” and “blue”
may play an important role. The final attention weights
shown in Table 6 demonstrate how featural ALCOVE
achieves this representational manipulation. Of the color
features, only “green” maintains a nonzero attention
weight, meaning that the color of each stimulus is effec-
tively reduced to the distinction “green” or “not green.” In
this way, the colors red and blue are treated as one, and the
Type 3 category structure is able to be learned more eas-

Table 5
The Additive Clustering Representation of the Color

and Shape Stimulus Domain

Stimuli in Cluster Interpretation Weight

green circle, green square, green triangle green 0.602
red circle, red square, red triangle red 0.590
blue circle, blue square, blue triangle blue 0.577
red square, green square, blue square square 0.510
red triangle, green triangle, blue triangle triangle 0.473
red circle, green circle, blue circle circle 0.473

Additive constant 0.073
Variance explained 99.3%
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ily than Types 2 and 4, both of which require attention to
all six features.

Meanwhile, featural ALCOVE achieves the representa-
tional collapse required to learn the Type 1 category struc-
ture by reducing attentionweights for the color features to
zero, effectively attending only to stimulus shape. It is in-
teresting to note that the “circle” feature that defines the
smaller category (Figure 1) is given relatively greater at-
tention that the other two shape features.

GENERAL DISCUSSION

Human performance on the color and shape task, as
characterized by the order in which the different category
structures are learned, provides a strong constraint for any
model of category learning.The ALCOVE model,when re-
lyingon a spatial stimulus representation, is unable to pro-
duce the same learning order. A slightly modified version
of ALCOVE, however, designed to accommodate featural
representations, reliably produces the correct ordering.
This finding provides strong evidence in favor of the need
to represent the color and shape domains using discrete
features, rather than continuous dimensions, and demon-
strates the utility of generalizing ALCOVE to consider
both types of stimulus representation.

Perhaps the fact that change to featural stimulus repre-
sentation demanded few changes to the category learning
processes used by ALCOVE should not be surprising.
ALCOVE evolved from successful models of category
learning (Medin & Schaffer, 1978; Nosofsky, 1984) and
has been demonstrated to be empirically successful in its
own right. In addition, the processes used by ALCOVE
are both simple and directly interpretable in terms of basic
principles of category learning (Kruschke, 1993). For this
reason, one might expect that ALCOVE, with minor mod-
ifications,would be capable of dealing with any reasonable
form of stimulus representation. The fact that ALCOVE
was originally cast in spatial terms need not imply that it
is better suited to spatial or featural representations.

An interestingfuture applicationof the featuralALCOVE
model involves transfer effects, particularly those involv-
ing positive transfer to novel values along a previously rel-
evant dimension. These effects would seem to require a
featural representation that captured the “higher order” re-
lationships between features, recognizing, for example,
that “red” and “blue” are both colors, but that “square” is
not. The representational freedom afforded by additive
clustering models makes it well suited to generating these
sorts of hierarchical feature structures, while still main-

taining the possibility of overlapping features. There is
even the possibility of using an extended form of additive
clustering that is built on the full contrast model of simi-
larity, rather than just relying on its common features spe-
cial case. Whether the featural ALCOVE model devel-
oped here displays the appropriate transfer effects using
more sophisticated featural representations is a worth-
while topic for future investigation.

Thinking in a similar vein, we suspect ALCOVE could
be modified to deal with richer stimulus representations
than are allowed by either the spatial or the featural ap-
proaches. These two representational formalisms can be
viewed as being at the extremes of a representational con-
tinuum, and many stimulus domains would probably ben-
efit from a representation that combines aspects of both.
As Carroll (1976) argued: “Since what is going on inside
the head is likely to be complex, and is equally likely to
have both discrete and continuous aspects, I believe the
models we pursue must also be complex, and have both
discrete and continuouscomponents” (p. 462). There does
not seem to be any barrier preventinga modified ALCOVE
model from using stimulus representation structured in
terms of this hybrid spatial-featural approach. Indeed, we
would suggest that the “distance” between stimuli repre-
sented as points in a multidimensional space, and having
a number of saliency-weightedfeatures, is simply the sum
of the metric spatial distance between them and the
weights of their distinctive features. Using this measure,
stimulus similarities could be calculated, and appropriate
learning rules derived for a very general model of category
learning. The main difficulty would seem to be the devel-
opment of a technique to fulfill the role of multidimen-
sional scaling and additive clustering by generating these
hybrid representations. There are techniques for combin-
ing spatial representation with the partitioningclusterings
they reveal (e.g., DeSarbo, Howard, & Jedidi, 1991), but
we know of no general hybrid technique that affords the
full flexibility of both multidimensionalscaling and addi-
tive clustering.

In the meantime,however, allowingthe ALCOVE model
of category learning to use featural representations sig-
nificantly extends the type of stimulus domain to which it
can be applied.Many stimuli are appropriatelyrepresented
in continuous coordinate spaces, but many others are bet-
ter described in terms of the presence or absence of dis-
crete features. Being able to apply the ALCOVE model to
both types of representations enhances its generality, and
may offer fresh insights into the fundamental cognitive
process of categorization.

Table 6
The Final Attention Weights Applied to the Stimulus Features,

for Each of the Four Category Structures

Category Feature 1 Feature 2 Feature 3 Feature 4 Feature 5 Feature 6
Structure (green) (red) (blue) (square) (circle) (triangle)

Type 1 0.000 0.000 0.000 0.225 0.552 0.224
Type 2 0.177 0.146 0.179 0.145 0.175 0.178
Type 3 0.401 0.000 0.000 0.353 0.148 0.098
Type 4 0.169 0.167 0.164 0.169 0.167 0.169
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NOTES

1. It is worth noting that some of the more easily applied measures in
this class, such as the Bayesian information criterion (Schwarz, 1978),
would not be suitable, since they are insensitive to the complexity effects
caused by the functional form of parametric interaction (Myung & Pitt,
1997).

2. The use of equal initial attention weights in the spatial ALCOVE
model is justified, however, since the representations generated by mul-
tidimensional scaling implicitly encode dimensional saliencies by using
different degrees of extension along the various spatial dimensions.
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