
Extending the Algebraic Framework of 
Query Processing to Handle Outerjoins 

Arnon Rosenthal 
David Reiner 

Computer Corporation of America 
Four Cambridge Center 

Cambridge, Massachusetts 02142 USA 
(617-492-8860) 

(Arpanet : {rosenthal, reiner)@cca-unix 
Usenet: ucb!decvax!cca!{rosenthal, reiner)) 

Abstract 

A crucial part of relational query optimiza- 
tion is the reordering of query processing for 
more efficient query evaluation. The reordering 
may be explicit or implicit. Our major goal in 
this paper is to describe manipulation rules for 
queries that include outerjoins, and views or 
nested subqueries. By expressing queries and 
processing Strategies in terms of relational 
algebra, one can use the ordinary mechanisms of 
query optimization and view substitution with a 
minimum of disrupt ion. We also 
aggregate operators, universal 
sorting. 

1. Introduction 

briefly examine 
quantifiers, and 

Relational query optimization is based on 
the fact that the order of evaluating predicates 
and joins is immaterial to the result of a query. 
A crucial part of optimization is the reordering 
(explicitly or implicitly) of query trees for 
more efficient query evaluation. Manipulation 
rules for these trees are straightforward. 

Our intent in this paper is to describe 
tree-manipulation rules for queries including 
outerjoins. We have succeeded in defining rules 
that can be added fairly straightforwardly to 
existing mechanisms for query optimization and 

Permission to copy without fee all or part of this material is granted 
provided that the copies arc not made or distributed for direct commercial 
advantage. the VLDB copyright notice and the title of the publication curd its 
date appear. and notict is given that copying is by permission of the Very Large 
Data Ease Endowment. To copy otherwise, or to republish, requires a fee 
and/or special petmission from the Endowment. 

Proceedings of the Tenth Internatlonal 

Conference on Very Large Data Bases. 
334 

view substitution. It is not necessary to add a 
new paradigm for treating queries with outer- 
joins. We also briefly examine aggregates, 
universal quantifiers, and sorting. 

We begin, in Section 2, with a short exposi- 
tion of familiar query processing algorithms, 
from the point of view of relational algebra. 
Queries may reference previously-defined views, 
and may include certain types of nested 
subqueries. The relational algebra point of view 
enables us to see clearly what must be done to 
process new algebraic operations during optimiza- 
tion. 

In Section 3, we define outerjoin and intro- 
duce several new operators needed to fully optim- 
ize queries that contain them. Extensions to 
process aggregate operators, more complex nested 
queries, universal quantifiers, and sorting are 
discussed in Section 4. 

2. Querv Processing 

In this section we give an overview of rela- 
tional query optimization from an algebraic point 
of view. [SMIT75! and [DAYA83bl took a similar 
approach to rearranging the operations in a 
query. See [KIM841 or [REIN82a] for a more 
detailed treatment of query optimization. 

A relational query may be represented as a 
tree, hav ing relations as leaves 
as internal nodes. For query 

! and operators 
optimization pur- 

poses, {multiway Cartesian product, selection, 
projection, union) is an easily manipulated set 
of operators. Most queries in SQL and QUEL 
(DATE811 map directly to a tree composed of these 
operators. For simplicity, we do not present 
simplification rules for moving union operators. 
Thus, our attention is restricted to conjunctive 
queries [DAYA83b 1. 

A query without nesting or references to 
views has at most one product node. Selections 
and projections are at the top of the tree, above 

Singapore, August, 1984 



the product. A multiway product plus its associ- 
ated selections is equivalent to a (multiway) 
join. Such a product does not imply any order 
for combining the relations. 

Multilevel tree structures (or “multilevel 
queries”) arise in several ways: 

- A query Q references a view V. Query modifi- 
cation modifies Q‘s query tree; the leaf for V 
is replaced by the tree for the query which 
defines V. (For simplicity, we assume rela- 
tions in V do not appear in Q.) 

- The query includes a nested subquery. (We 
consider only subqueries that do not reference 
the enclosing query. See [KIM821 and [LOHM84] 
for more general treatments.) 

- A parenthesization mechanism produces nested 
subquer ies that can be referenced from the 
enclosing query IDATE831. 

Since an access strategy uses only two-way 
joins, the query optimizer must choose an assoc i- 
ation. It first tries to reduce the number of 
product nodes, “flattening” the multilevel query 
tree ISTON751, tKIM821, 1~0~~841. It permits 
choice among a greater variety of join orders, 
including orders that are inconsistent with the 
nesting in the original multilevel query. 

The optimizer then (explicitly or impli- 
citly) generates operator trees in which each 
multiway product has been replaced by two-way 
products. Operators that reduce the size of the 
intermediate results (selections and projections) 
are then pushed down the trees as far as possible 
(subject to the laws of relational algebra 
[SMIT751). The choice among alternative query 
trees is made heuristically, or by using an 
explicit cost model. (See [REIN82bl for a com- 
parison of how various optimizers generate alter- 
natives and choose among them. > 

An algebraic exposition of query optimiza- 
tion needs to address: 

1. The tree flattening p recess. -- The flattening 
step moves operators (e.g., select and project) 
up through the higher product node or below the 
lower product node. When two product nodes 
become adjacent, we combine them. The multiway 
product offers greater freedom in generating 
reassociations. 

2. Generating reassociations. We have no changes 
to propose in the way an optimizer generates and 
tests alternative associations. Our algebraic 
transformations can be applied within: (a> an 
optimizer that chooses a tree by some heuristic, 
or (b) one that enumerates and examines trees one 
at a time [KOOI821, or (c> one that uses dynamic 
programming to optimize substructures common to 
several trees (e.g., a join of Rl and R2) 

Proceedings of the Tenth International 
Conference on Very Large Data Bases. 

335 

tSELI791, tROSE821. 

Figure 1 shows two equivalent product 
expressions that use different associations. Rl 
and R2 are joined. (Rl join R2), R3, and R4 are 
then joined in some unspecified order. 

1 SEL 

1 

SEL 

(a) W 

Figure 1. Splitting An M-Way Product Node 

3. Movtng unarv operators. The purpose of reas- 
sot iatlng is to obtain an efficient join order- 
ing . The sizes of intermediate results are then 
reduced by performing selections and projections 
as early as possible. Thus, one wishes to push 
such operators m the tree, while operators 
that increase the size of the out put should be 
moved UJ the tree and applied as late as possi- 
ble. 

Control can alternate between generating a 
new association and moving the unary operators. 
The combination of actions will be called unflat- 
teninK the tree. 

3. Extending Query Optimization to Outerioins 

3 .l Incorporatinq New Constructs 
into an Optimizer 

To integrate a new construct (e.g., Outer- 
join, Total, Unique, Generalization) into the 
query optimization process, one must: 

1. Add operators to the relational algebra so 
that the construct may be expressed algebra- 
ically . 

2. Determine useful operator-shuffling trans- 
formations in the extended algebra, so .the 
operators may be moved aside during flatten- 
ing, and moved around after the association 
has been chosen. 

The algebraic approach keeps the w=y 
optimizer’s logic from getting more complex as 
features are added. Rules for shuf f 1 ing newly- 
introduced operators are added without changing 
the already-established framework. 

Singapore, August, 1984 



We strive to keep all algebraic operators 
simple. Complex constructs are expressed a8 a 
composition of operators that have simple manipu- 
lation rulea. Thus, product (rather than join) 
is our primitive for combining relations, and 
outerjoins are built out of more elementary ein- 
gle task operators. 

and only the Preserved relation need8 to be 
explicitly materialized. 

Two sided outerjoins require a separate 
implementation. They sometime8 can be computed 
efficiently by merging the two relations being 
outerjoined. 

3.2 Outerioin Definition8 3.3 General Notat ions 

Information from two relations often must be 
comb ined in way8 different from standard rela- 
tional joins, to preserve information from one 
relation that is not matched by entries in the 
other. The “information-preserving join” or 
“outerjoin” permits this to be done [LACR761, 
tCODD791. 

R, S, T, Rl, R2, Z: Relation names. If a rela- 
tion name appears where a set of attribute8 is 
needed, we mean the at tribute8 of the rela- 
tion. 

attrib(R) : Attribute8 of relation R. 

attrib(RCS) : Attrib(R) intersect attrib(S). 
Proposals for extending SQL to handle outer- 

joins in SQL were presented in [CWWOI and 
[DATE83 I. The one-sided outerjoin of two rela- 
tions is expressed below in a syntax adapted from 
[DATE83 1 : 

Proj[R,Sl : The projection of R onto the attri- 
butes in S. Proj[R,Sl will mean the projec- 
tion of R onto the attribute8 in R-S. 

Select <output list> 
From Rl, R2 Preserve Rl 
Where P 

The result is the projection onto (output list> 
of 

(Rl joincon P) R2) U {(tl, null) 1 no 
tuple of the join included tl). 

Sel(P) (R) : Returns the tuples of R that satisfy 
predicate P. We reserve the term “aelection” 
for situations in which P is evaluated by 
looking at a single tuple. Operator8 that 
return a subset of the input relation will be 
called subsetting onerators. Examples include 
selections, Unique, and Omit (introduced 
later). 

The result consists of the join, p1US 
unmatched ‘tuples of RI padded with nulls. All 
tuplee of Rl appear in the result. R2 could be 
similarly preserved. If both relations are 
listed in the Preserve clause, the query result 
is a two-aided outerjoin, consisting of 

(Rl join(P) R2) 
U {(tl, null) 1 no tuple of the join included tl) 
U {(null, t2) 1 no tuple of the join included t2) 

An interesting u8e of two-8 ided 
appear8 in [DAYA83b I, where 

outer joins 
queries involving 

generalization8 are reduced to queries using the 
simpler operators of “aggregate” and outerjoin. 

query tree: As shown in the figures, a query 
tree i8 a relational algebra expression that 
represents a query. Each node of the tree 
represents a relation, either an input to the 
query, or a calculated result. We a8sume that 
each node ha8 a distinct name, generated 
either by a human (for base relations and 
View61 or by the system (for nested subqueries 
or system-generated tuple-variables). To sim- 
plify notation, we a8sume that if the query 
reference8 a relation twice, it u8e8 two dif- 
ferent namea. Attribute8 in a view will be 
given the same name a8 in their underlying 
relations. 

We provide syntax for m-operand outer- 
joins, since multiway outerjoins are not well- 
defined (DATE83 1. More complex expres 8 ion8 
involving outerjoins can be obtained by allowing 
Rl or R2 to be a view. 

3.4 Algebraic Definitions for Outer joins 

A straightforward implementation of the 
definition of outerjoin (i.e., using two or three 
queries to create the pieces of the union) is a 
poor processing strategy. Instead, one-s ided 
outerjoins are implemented by nested Ioops much 
like an ordinary join lDAYA83al. The join logic 
is modified so that if tl has not succe8sfully 
been joined, (tl ,null) is included in the result. 
There is no need to perform a separate 8et union, 

labelled nulls: In the original query, the 
allowable patterns of nulls are expressed by 
Preserve and by the query nesting. Opt imiza- 
tion can change the nesting. It causes 
partly-null tuples to be introduced, joined, 
and eliminated in a way that preserves the 
original query’s result. When manipulating 
the rearranged query tree, we must know which 
operand in the original query corresponds to 
each null. We then can ensure that all other 
attributes in the operand are assigned that 
same null. 

Proceedings of the Tenth lnternationsl 

Conference on Very Large Data Baw8. 
336 

Singapore, August, 1984 



Each relation for which a null tuple may 
be used is given a distinct labelled null. 
The null value assigned to attributes of R is 
denoted #R. The system is not required to 
retain the labels after query processing is 
completed. 

Aug<RI#S>: R U {the tuple (#S,...,#S)). 
Attrib(S) must contain attrib(R). The origi- 
nal tree for a query contains only augment a- 
tions of the form Aug<RI#R>. 

(PI/S): The relaxed predicate (P/#S) is defined 
“P OR (all attributes of S that appear in 

;Shave value #S)“. The as sot iated select ion, 
applied to R, is written Sel(PI#S)(R). 

dominates : For scalar values x and y, x #S- 
dominates y if x=y or x is nonnull and y is 
#S . For distinct tuples t’ and t, t’ #S- 
dominates t if for every attribute A, 
t’ .A #S-dominates t .A. 

A join that uses a relaxed predicate yields 
tuples not present in the outerjoin. The Omit 
operator below throws away dominated tuples. 

Omit<RI#S>: = (t in R I there is no t’ in R 
which #S-dominates t). 

We are now able to express an outerjoin algebrai- 
cally. The steps are: 

- Allow null tuples in one or both joined rela- 
tions (Augment). 

- Relax the join predicate when nulls crop-up in 
Cartesian products (relaxed selections). 

- Eliminate “dominated” tuples from the result 
(Omit). 

The query processor translates the one-sided 
outerjoin 

“Select <output-list > From Rl , R2 
Preserve Rl Where P” 

to the algebraic expression: 
Proj[Omit<Sel(PI#R2>(Rl X Aug<R2I#R2>) l#R2> 

loutput-list1 

For a two-sided outerjoins of Rl and R2 with 
join predicate P, the algebraic expression is: 

Proj[OmitGmit<Sel((P~#Rl)~#R2)> 
(Rl X Aug<R2l#R2> 1 #Rl> I #R2>, output-list] 

3.5 Examples 

Examples in this paper refer to the schema 
in Figure 2. Contracts are composed of Tasks, 

Proceedings of the Tenth international 
Conference on Very Large Data Bases. 

331 

which are staffed by (Fractions of) Employees. 

CONTRACT CNO ’ CNAME ’ BUDGET - 

TASK TN0 ’ TNAME ’ CNO - I 

STAFF TN0 ’ EMPNAME ’ FRACTION - I 

Figure 2. Relational Schema Used in Examples 
(Keys are underlined) 

A view defined by an outerjoin query is 
shown in Figure 3. The query tree that results 
when the view is referenced in a query is shown 
in Figure 4. The figures use the tree structure 
to determine operands, rather than mentioning 
them explicitly. The bar over a set of attri- 
butes indicates that the indicated attribute is 
pro jetted away. 

VIEW TS IS 
SELECT TASK.TNO, TNAME. EMPNAME. FRACTION, CNO 
FROM TASK, STAFF PRESERVE TASK 
WHERE TASKTNO = STAFF.TNO 

PROJ[STAFF.TNO] 

OMIT <#STAFF > 

SEL(TASKTN0 = STAFFTNOI#STAFF) 

X A AUG <#STAFF > 

TASK d b STAFF 

Figure 3. A View Containing An Outerjoin 

01: SELECT TNO, TNAME, EMPNAME 
FROM TS 
WHERE TNAME = ‘REPORT WRITER’ 

) PROJ[TS.CNO,FRACTlON] 

1 t SEL(TNAME = ‘REPORT WRITER’) 

0 PROJ[STAFF.TNO] 

(1 OMIT < #STAFF > 

(1 SEL(TASK.TNO = STAFF.TNO I#STAFF) 

AUG < #STAFF > 

TASK STAFF 

Figure 4. A Query to a View 
Containing an Outerjoin 

Singapore, August, 1994 



Figure 5 shows a more complicated query, in 
which the view is itself an operand of an outer- 
join. The query tree has three levels of nest- 
ing . The innermost level is the view TS from 
Figure 3. This is outerjoined with Contract to 
produce all available information about all con- 
tracts. Finally, we need another level to impose 
on the result a nonrelaxed predicate that is not 
part of any join. 

Note that if (Cname=“Database design work- 
bench”) had been included in the predicate defin- 
ing the outerjoin, it would have been relaxed 
w.r.t. #TS, permitting information on a con- 
tracts. One might argue that the query processor 
should recognize single-relation predicates and 
separate them from the outerjoin. But the parser 
would not be able to detect single-relation 
predicates within user-supplied code for a predi- 
cate. Query semantics should not depend on how 
the predicate is presented to the system. 

3.6 Flattening Rules 

The basic step in flattening a query tree is 
to combine two Cartesian product nodes (referred 
to as “HIGH” and “LOW”) that are separated only 
by unary operators. The process can be repeated 
to further flatten the query. The familiar query 
modification procedure [STON75] accomplishes this 
for query trees whose operators are product, pro- 
jection, or selection. Because the commutativity 
conditions for those operators were so clear, 
Stonebraker did not use a formal algebraic model 
of query processing to justify the algorithm. 

We flatten queries involving outerjoins, 
using an algorithm that extends iSTON751. First, 
operators between HIGH and LOW move up (Proj, 
Sel, Omit) or down (Aug). Some operators are 
modif ied as they move, to preserve the query 
result. Adjacent Cartesian product nodes then 
can be combined. 

The query in Figure 4 did not require flat- 
tening, as it had only one product node. The 
result of flattening the query in Figure 5 is 
shown in Figure 7. When an operator moves down 
from a view to an underlying relation, references 
to attributes are changed to use the names from 
the underlying relation. 

Flatteninn Algorithm: 

If an augmentation appears between HIGH and LOW, 
then : 

1. Move Aug below all projections, selections, 
and other operators above LOW, until it is 
immediately above LOW. The rules used are: 

1.1 Aug<Sel(P)(R)l#S) = Sel(PlvS>(Aug<Rl#S>). 

1.2 Aug<Proj[R,Zl 1 #S> = Proj[Aug<RI#S>, Zl. 

Proceedings of the Tenth International 

Conference on Very Large Data Bases. 

1.3 Omittiug<RItS> I#T> - Aug<Omit<Rt#T> t #S> 
if S and T are distinct. 

(The equalities in 1 and 2 assume that on each 
path in the tree, at most one Augment will be 
permitted to introduce each labelled null.) 

2. Move Aug below LOW, creating a new unifor- 
&y selection, denoted Unif(#S) (RI. This 
enforces the predicate “If any attribute in 
attrib(R&S) has value CS, all of attrib(R&S) 
have value 8s.” The rule is: 

Aug<Rl X R2 X . . . 1 #S> = 
Unif(%S)(Aug<RlI#S> X Aug<R2I#S> X . ..I 

Regardless of whether Aug appeared between HIGH 
and LOW: 

3. Move the selections, projections, and omits 
above HIGH. (This includes any uniformity 
selections created in rule 2.) Rules are: 

3.1 Sel(P)(Rl) X R2 = Sel(P)(Rl X R2). 

3.2 Proj[Rl,T] X R2 = Proj[Rl X R2, T U 
attrib(R2) I. 

3.3 If R2 does not include #S, then 
Omit<Rl l#S> X R2 = Omit CR1 X R2 I&> 

Otherwise, Omit<Rl I#S> X Omit(R2 I#S> = 
Omit<Rl X R21&i>. 

(The above rules are applied in reverse in the 
unf lattening process. For the reverse transfor- 
mation to be defined, Rl must include all neces- 
sary attributes for the select, project, or 
omit. 1 

3.7 Unf lattening Rules 

This section discusses how unary operators 
are moved to better positions after a multiway 
product node has been split. (The optimizer 
makes association decisions by splitting an m-way 
product node into two nodes, with k and (m-k+11 
inputs, for some k>l.) Operators that reduce the 
size of the result should be executed as early as 
possible. Thus, we push selections and projec- 
t ions down the tree. Operators that increase the 
size of the operand are moved upward (e.g., Aug). 
Where possible, simplifications are made and 
operators removed. 

The algorithm for moving operators down 
starts with the unary operator just above the 
product node (denoted X>. It attempts to take 
each operator (denoted op> currently above X and 
apply it instead to some input to the product. 
If there is an operator between op and X with 
which op does not commute , then leave op in 
place. 

Singapore, August, 1994 



Sometimes an operator that cannot move can 
be split into two operators, one of which can 
move down. For example, one may be able to move 
part of a projection below a join predicate or a 
Unique or Omit, if the attributes projected away 
are inessential. 

The detailed rules for moving unary opera- 
tors to the most advantageous positions are given 
below. Their results are illustrated in Figure 
7, which shows the result of unflattening the 
query of Figure 4, and in Figure 8, which shows 
the result of unflattening the query of Figure 6. 

Before the rules can be given, we need to 
restrict ourselves to well-behaved operators, 
namely subsetting operators which prefer non-null 
values to null values. A subsetting operator 
op(R) is #/S-monotonic if [(t is in op(R) and (t’ 
#S-dominates t)l implies that t* is op(R- 
{tl u {t’)). Unique and Omit are #S-monotonic. 

The most common kind of monotonic subsetting 
operator is select ion using an #S-monotonic 
predicate: A predicate pred is #S-monotonic if [t 
satisfies pred and t’ #S-dominates tl implies 
that t’ satisfies pred. Predicates that do not 
mention k?i are #S-monotonic (e.g., “Frac- 
tion=0.5”), If P is #S-monotonic, (P I#T) is #S- 
monotonic if #?I is different from #S. Other #S- 
monotonic predicates are “(T.A is not #S)” and 
also “(T.A is not null)“. 

Rules 4-6 below guide the operator movement. 
They are proved in [ROSE831. 

4. If op is #S-monotonic, then: 
Omit <op(R) 1 #S> = op(Omit<RI#S>). 

5. Proj[Omit<RI#S>, Tl = Omit<Proj[R,Tl I #s> 
if either: 
All deleted attributes are functionally 
dependent on attributes that are in T but 
not in S; OR 
(R represents a composition of projections 
and #S-monotonic operators applied to 
(Rl X R2), the projection preserves all 
attributes of Rl , and 
attrib(R&S) C attrib(R1) > . 

6. Rules from ordinary relational algebra are 
also used in unflattening [SMIT75]. 

6.1 Selections commute. 

6.2 Projections commute. 

6.3 Project commutes with selection, if the 
project does not discard an attribute 
needed by select. 

Proceedings of the Tenth International 

Conference on Very Large Data Bases. 

3.8 Simplifications 

The system can use other rules to make local 
or minor simplifications. Since all processing 
is done in the same tree model, one has consider- 
able flexibility in choosing the time to perform 
them. Some simplifications involving outerjoins 
are : 

Remove unnecessary augmentations: If Sel(P) 
appears above Aug<RI#S> and P is false for all 
tuples that contain #S for the attributes of R, 
then the null tuple cannot appear in the query 
output. The augmentation (and the corresponding 
Omit) can be removed. For example, if a query on 
TS includes a predicate (FRACTION=0.5), then only 
tuples with nonnull STAFF entries can satisfy the 
query. The operators Augment <#STAFF> and 
Omit<#STAFF> may in that case be removed. 

ioins: Remove unnecessary Suppose some relation 
R has no attributes in the output list, and none 
in any predicate except an outerjoin with a 
Preserved relation. Then R may be removed from 
the query. (However, the removal may change the 
number of duplicate tuples returned.) 

Remove unnecessary uniformity predicates: If the 
tree includes Unif(#S) (Aug<RI#S>), the unifor- 
mity predicate can be omitted. 

4. Handling Additional Constructs 

Aggregates: For aggregate operators (Max, 
Sum, Median, . ..>. it is easy to deduce the 
necessary transformation rules (or the fact that 
no transformation is permitted). For example, 
Unique commutes with Omit, with selections, and 
with Augment; it commutes with projection as long 
as a key survives the projection; it cannot move 
up through a product. 

Universal quantifiers: [KIM82 1 and 
[DAYA83a,bl point out that outerjoins may be used 
to process queries with universal quantifiers. 
([DAYA83al can produce better strategies for 
quantified queries than our general purpose rule, 
but he introduces considerable special-purpose 
machinery. ) 

Define a simple selection predicate 
Haspull to accept only tuples of R where all 
attributes of S have the value IS, Now 

“{x in Rl I for all y in R2, P(x,y>)” 
is equivalent to: 
Define View V as Select * From Rl, R2 Preserve Rl 

Where not P(R1 ,R2)1 
Select Rl.* From V Where Hasgull(#R2)(V) 

Singapore, August, 1984 

339 



5. Directions for Further Research 

Outer ioins : The conditions for moving opera- 
tors can be weakened somewhat, and perhaps sim- 
plif ied. 

The query processor must recognize monotonic 
predicates. For predicates defined over the 
algebra understood by the query processor, this 
is easy. If one wishes to extend a system pos- 
sessing outerjoins by adding predicates for new 
datatypes (e.g., time intervals, geometric 
regions), then the processor must be informed 
about the monotonicity of these predicates. 

Comnlex nested aueries: The operator tree 
model of queries would need considerabie exten- 
sion to handle nested queries which reference 
relations in the outer query. [LORM841 explores 
these issues. 

Sort and group by: An important line of 
research is to find a useful algebraic model for 
operators that are rather physical (e.g., Sort, 
access via index). One could then treat the 
rules for placing the physical operators as 
transformations on the query tree, reducing the 
amount of ad hoc code needed for physical optimi- 
zat ion. One would specify how each physical 
operator moves through select, project , product, 
aggregates, etc. Note that when sort order or 
grouping are considered, the order of a product’s 
operands affects the result. 

Group-by has already had considerable atten- 
tion. [OS201 considers algebraic properties of 
grouped relations, using algebraic rules to 
improve query processing. [CERI831 presents a 
relational algebra for partitioned relations. 

6. Cone lus ions 

An explicit algebraic framework makes it 
easy to extend a query optimizer to handle new 
semantic constructs. One first expresses the new 
ccnstructs with (possibly new) relational algebra 
Op.- . ctors. One can then specify the 
opcr5tors’ algebraic properties (which can be 
quite complex) independently of the algorithms 
for flattening and unflattening query trees. 

In the future, researchers will wish to add 
new datatypes and to use databases as a founda- 
tion for knowledge bases. The ability to add new 
constructs to the query language and to obtain 
powerful optimization will be important. Query 
processors will need to be extendible without 
major rewriting or changes to the conceptual 
framework. Our method of incorporating outerjoin 
into query optimization is an interesting , non- 
trivial example of that capability. 

Proceedings of the Tenth International 
Conference on Very Large Data Bases. 

7. References 

[CERI831 Ceri, S., and G. Pelagatti, “Correctness 
of Query Execution Strategies in Distributed 
Databases”, TODS, Vol. 8 No. 4, December 1983. 

[CRAM801 Chamberlin, D.D., “A Summary of User 
Experience with the SQL Data Sublanguage”, Proc. 
Int’l. Conf. on Databases, Aberdeen, Scotland, 
July 1980. 

[CODD79] Codd, E.F., “Extending the Database 
Relational Model to Capture More Meaning”, TODS, 
Vol. 4, No. 4, December 1979. 

[DATE~~~ Date, C.J., & Introduction to Database 
Svstems, Third Edition, Addison-Wesley, 1981. 

[DATE831 Date, C.J., “The Outer Join”, Proc. 
Second Intl. Conf . on Databases, Cambridge, Eng- 
land, September 1983. 

[DAYA83a] Dayal, U., “Processing Queries with 
Quantifiers: A Horticultural Approach”, PODS, 
Atlanta, Georgia, March 1983. 

[DAYA83bl Dayal, U., “Query Optimization in Mul- 
tidatabase Systems”, VLDB ‘83, Florence, Italy. 

(KIM821 Kim, W., “On Optimizing a SQL-Like Nested 
Query”, TODS, Vol. 7, No. 3, September 1982. 

[KIM841 Kim, W., D. Reiner, and D. Batory, eds., 
Querv Processing in Database Svstems, to be pub- 
lished by Springerzerlag in late 1984. 

[~00I821 Kooi, R., and D. Frankf orth , “Query 
Optimization in INGRES”, in tREIN82al. 

[l&R761 Lacroix, M., and A. Pirotte, “General- 
ized Joins”, SIGMOD Record Vol. 8, No. 3, Sep- --I 
tember 1976. 

(LOHM841 Lohman, G., D. Daniels, L. Haas, and R. 
Kistler, Selinger, P. , “Optimization of Nested 
Queries in a Distributed Relational Database”, in 
VLDB ‘84. 

[OSZOI Ozsoyogu, Z.M. and G. ozsoyoglu, “An 
Extension of the Relational Algebra for Summary 
Tables”, 2ond Int’l. Database Workshop, 

lREIN82al Reiner, D., ed., Database Engineering, 
Vol. 5, No. 3, September 1982. 

[REIN82bl Reiner, D., and A. Rosenthal, “Strategy 
Spaces and Abstract Target Machines for Query 
Optimization”, in IREIN82al. 

[ROSE821 Rosenthal, A. , and D. Reiner, “An Archi- 
tecture for Query Optimization”, SIGMOD, Orlando, 
Florida, June 1982. 

Singapore, August, 1984 

340 



[ROSE831 Rosenthal, A., and D. Reiner, “Proofs 
for Query Processing with Outerjoins and Views”, 
working paper, June 1983. 

[SELI79] Selinger, P.G., et al., “Access Path 
Selection in a Relational Database System”, SIG- 
NOD, Boston, Massachusetts, May 1979. 

[SMIT751 Smith, J.M., and P.Y.-T. Chang, “Optim- 
izing the Performance of a Relational Algebra 
Database Interface”, CACM, Vol. 18, No. 10, 
October 1975. 

iSTON M. Stonebraker, “Implementation of 
Integrity Constraints and Views by Query Modifi- 
cation,” ACM-SIGMOD Conf., 1975, 65-7. 

02: SELECT ALL 
FROM (SELECT CONTRACTCNO. CNAME, BUDGET, TNO, TNAME. EMPNAME 

‘FROM CONTRACT. TS PRESERVE CONTRACT 
WHERE CONTRACTCNO E TS.CNO) 

WHERE CONTRACT.CNAME = ‘DATABASE DESIGN WORKBENCH’ 

SEL(CONTRACT.CNAME I ‘DATABASE DESIGN WORKBENCH’) 

PROJ(TS.CNO,FRACTlON] 

OMlTc#TS> 

SEL(CONTRACT.CNO = TSCNOIITS) 

CONTRACT 

Figure 5. Initial Tree for a Query with Two Outerjoins 

Singapore, August, 1984 

Proceedings ot the Tenth International 

Conference on Very Large Data Bases. 
341 



) SEL(CON’NAME -‘DPXASASE DESIGN WORKBENCH’) 

’ 1 PROJ[TS.CNO,FRbCTlON] 

(1 OMlfcrls> 

I I SEL(CONTRACT.CNO = TS.CNOl#TS) 

OMITc#SWF> 

SEL(TAS~TNO = STAFl3NOl#TS.#~AFF) 

AU0 c #STAFF > 

CONTRACT STAFF 

Figure 6. Q2 During Flattening; Just Btfort Product Node8 art Combined 

I 
PROJ[STAFF.TNO] 

OMlTc#STAFF> 

SEL(TASK.TNO = STAFF.TNOI#STAFF) 

X A PROJ[TASK.CNOJ AUG c #STAFF > 

SEL(TNAME - ‘REPORT I;)/ yOJ;M 

Figure 7. Query Ql, After Unflattening 
(Large nodes indicate operators which have moved since the previous figure) 

(“TS.CNO” is renamed “TASK.CNO” when the projection is moved down) 

Procoadlngm ol ths Tenth lnttmttbntl 

Conftrtm on Very Ltrgt Dttt Btttt. 

Slngtptn, Augutt, 1984 

342 



0 PROJ[STAFF.TNO] 

OMlTc#STAFF> 

f 1 SEL(TASK.TNO = STAFF.TNOl#TS.#STAFF) 

0 UNIF(#TS) 

PROJ[TS.CNO] 

7 
SEL(CONTRACT.CNO = 
TASKCNOIWTS) 

SEL(CONTRACT.CNAME = 
‘DATABASE DESIGN WORKBENCH’) 

CONTRACT 

Proceedings of the Tenth International 

Conference on Very Large Data Sares. 

AUG <#STAFF > 

PROJ[FRACTION] 

STAFF 

Figure 8. Query 42, After Unflattening 

Singapore, August, 1994 

343 


