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1 Introduction

Let i be a positive integer and D be a non-empty, closed and convex subset of
H = Ri. Let also G : D −→ H be differentiable. The variational inequality
problem, denoted by A := V IP (D,G) involves finding a vector p ∈ D such
that

(y − p)TG(p) ≥ 0 for all y ∈ D. (1.1)

Many problems can be formulated as (1.1) using mathematical modeling
[1–10]. Such problems involve but not limited to equilibrium problems, con-
strained optimization problems complementarity and other problems [1–9].
One wishes to find a vector p satisfying (1.1) in explicit form, but this is
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seldomly possible. That is why, one employs a numerical method to generate
a sequence approximating p.

One of the most important methods is Newton’s defined for all n =
0, 1, . . . by

(y − xn+1)T (G(xn) +G′(xn)(xn+1 − xn)) ≥ 0 for all y ∈ D, (1.2)

where x0 is an initial point. That is xn+1 solve An = V IP (D,Gn), where
for all x ∈ D, Gn(x) := G(xn) + G′(xn)(x − xn). The convergence region
for Newton’s method using the Kantorovich theory [1, 2, 7] or Smale’s α
theory [9] or Wang’s γ− theory [2, 3, 10] is small in general. It turns out
that the convergence region can be extended using smaller Lipschitz, α, γ
constants than before [1–3,7, 9, 10] and without additional hypotheses. This
is the novelty of the present study. We achieve this goal by considering a
more precise convergence domain where the Newton iterates lie than in the
aforementioned studies. This way the resulting new constants are at least as
small leading to the following advantages for local convergence analysis:

(a) Larger ball of convergence.

(b) More precise distances ‖xn − p‖.

Therefore, the local convergence advantages lead to a greater choice of initial
guesses x0 and at least as few iterates to achiev a desired error tolerance.
Semi-local convergence analysis:

(a) Larger convergence region.

(b) More precise distances ‖xn − p‖.

(c) Better information about the solution.

That is the convergence domain is extended and again the number of iterates
is reduced.

These advantages are important in computational mathematics [1–10]
(see also Remark 2.8 and Remark 3.2). Our idea of restricted convergence
domains can be used to extend the applicability of other iterative methods
along the same lines [1–10].

Let p ∈ H and ρ > 0. Let U(p, ρ) be the open metric ball in H and let
Ū(p, ρ) be its closure. In the rest of the study G : D ⊆ H −→ H is a C2

mapping and by M̃:= 1
2
(M +MT ) for all M ∈ H ×H.

The rest of the paper is structured as follows. Section 2 contains the
local convergence whereas in Section 3 we study the semi-local convergence
analysis of the method (1.2).
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2 Local convergence

Some definitions and auxiliary results follow:

Definition 2.1. Let 0 < r < 1
γ0
, for some γ0 > 0. Let also w ∈ H be such that

G′(w) is positive definite. It is said that G satisfies the center γ0-criterion at
w in D ∩ U(w, r), if

‖G̃′(w)−1‖‖G′(x)−G′(w)‖ ≤ 1

(1− γ0‖x− w‖)2
− 1 for all x ∈ U(w, r).

(2.1)

We shall use the function g defined on the interval [0, 2−
√

2
2

) by g(t) =

1−4t+2t2. Clearly, function g is monotonically decreasing on [0, 2−
√

2
2

)). We
need an auxiliary result on positive definite matrices.

Lemma 2.1. Let 0 < r < r0 := 2−
√

2
2γ0

. Let also w ∈ H be such that G̃′(w)
is positive definite. Suppose that G satisfies the center γ0− criterion at w in
D ∩ U(w, r). Then, the following items hold G̃(x) is positive definite and

‖G̃′(x)−1‖‖G̃′(w)‖ ≤ (1− γ0‖x− w‖)2

2(1− γ0‖x− w‖)2 − 1
=

(1− γ0‖x− w‖)2

g(γ0‖x− w‖)
. (2.2)

for all x ∈ D ∩ U(w, r).

Proof. It follows from (2.1) that for all x ∈ D ∩ U(w, r)

‖G̃′(x)−1‖‖G̃′(x)− G̃′(w)‖ ≤ 1

(1− γ0‖x− w‖)2
− 1 < 1, (2.3)

since the right hand side inequality in (2.3) is equivalent to ‖x−w‖ < 2−
√

2
2γ0

which is true by the definition of r and r0. Hence, by [3, Lemma 2], G′(x)
is positive definite. Moreover, estimate (2.2) holds by (2.3) and the Banach
Lemma [1,3, 7].

Definition 2.2. Let 0 < r < r0. Let also w ∈ H be such that G̃′(w)−1 exists.
It is said that G satisfies the restricted γ̄-criterion at w in D ∩ U(w, r), if

‖G̃′(w)−1‖‖G′′(x)‖ ≤ 2γ̄

(1− γ̄‖x− w‖)3
for all x ∈ D ∩ U(w, r). (2.4)

Lemma 2.2. Let 0 < r < r0 and γ0 ≤ γ̄. Let also w ∈ H be such that G̃′(w)
is positive definite. Suppose that G satisfies the restricted γ̄− criterion at
w in D ∩ U(w, r). Then, G̃(x) is positive definite and (2.2) holds for all
x ∈ D ∩ U(w, r).
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Proof. We can write

G′(x)−G′(w) =

∫ 1

0

G′′(w + θ(x− w))(x− w)dθ. (2.5)

Using (2.4), (2.5) and the estimate connecting G̃′ with G′ (see [1, 3, 7])

‖G̃′(x)− G̃′(w)‖ ≤ ‖G′(x)−G′(w)‖, (2.6)

we obtain in turn that

‖G̃′(w)−1‖‖G̃′(x)− G̃′(w)‖
≤ ‖G̃′(x)−1‖‖G′(x)−G′(w)‖

≤
∫ 1

0

‖G̃′(w)−1‖‖G′′(w + θ(x− w))‖‖x− w‖dθ

≤
∫ 1

0
2γ̄‖x− w‖

(1− γ̄‖xθ − w‖)3
dθ =

1

(1− γ̄‖x− w‖)2
− 1, (2.7)

where xθ = w+ θ(x−w) for each θ ∈ [0, 1]. The preceding equality estimate
in (2.7) is standard [2, 3, 10]. The result now follows from Lemma 2.1.

The γ− criterion given in the literature [2, 3, 10] is:

Definition 2.3. Let 0 < r < 1
γ

for some γ > 0. Let also w ∈ H be such that

G̃′(w)−1 exists. It is said that G satisfies the γ-criterion at w in D∩U(w, r),
if

‖G̃′(w)−1‖‖G′(x)‖ ≤ 2γ

(1− γ‖x− w‖)3
for all x ∈ U(w, r). (2.8)

Remark 2.1. It follows from Definition 2.2, Lemma 2.2 and Definition 2.3
that

γ0 ≤ γ (2.9)

and for 2−
√

2
2γ0
≤ 1

γ
,

γ̄ ≤ γ. (2.10)

Notice that γ̄ depends on γ0. The definition of γ̄ was not possible before
using Definition 2.3. Therefore, if

2−
√

2

2γ0

γ ≤ γ0 ≤ γ, (2.11)

then γ̄ can replace γ in the local convergence results in [3].
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Let us define function ϕ on the interval [0, 1
γ
) by

ϕ(t) =

(
1− γ0t

1− γ̄t

)2
γ̄t

g(γ0t)
− 1.

We have ϕ(0) = −1 and ϕ(t) −→ +∞ as t −→ 1
γ̄

−
. Function ϕ has zeros in

the interval (0, 1
γ̄
) by the intermediate value theorem. Let r∗ = ψ(γ0, γ̄) be

the smallest zero. Notice that if γ0 = γ̄ = γ, then

ψ(γ, γ) = r1 :=
5−
√

17

4γ
≤ r∗. (2.12)

Define function ω on [0, 1
γ̄
)× (0,+∞)2 by

ω(t, γ0, γ̄) =

(
1− γ0t

1− γ̄t

)2
γ̄t

g(γ0t)
.

Then, we have that
ω(t, γ0, γ̄) ≤ ω(t, γ, γ). (2.13)

Hence, we arrive at:

Theorem 2.3. Suppose: p is a solution of A; G satisfies the restricted
γ̄−criterion at p in D ∩ U(p, r∗) and G′(p) is positive definite. Then, the
sequence {xn} generated for x0 ∈ U(p, r∗) by Newton’s method converges to
p so that

‖xn+1 − p‖ ≤ ω(‖xn − p‖, γ0, γ̄)‖xn − p‖ for all n = 0, 1, 2, . . . . (2.14)

Proof. We follow the proof in Theorem 3.1 in [3] but with the important
difference of using (2.1) instead of (2.8) to arrive at

|G̃′(xk)−1‖‖G̃′(p)‖ ≤ (1− γ0‖xk − p‖)2

g(γ0‖xk − p‖)
(2.15)

(instead of the less precise used in [3], since γ0 ≤ γ)

‖G̃′(xk)−1‖‖G̃′(p)‖ ≤ (1− γ‖xk − p‖)2

g(γ‖xk − p‖)
. (2.16)

Moreover, as in [3], we get

‖G̃′(p)−1‖‖G(xk)−G(p) +G′(xk)(p− xk)‖

≤ ‖G̃′(p)−1‖
∫ 1

0

∫ θ

0

‖G′′(p+ τ(xk − p))‖‖xk − p‖dτdθ

≤
∫ 1

0

∫ 1

θ

2γ̄

(1− γ̄τ‖xk − p‖)3
‖‖xk − p‖2dτdθ. (2.17)
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Then, from formula (3.8) in [3], (3.15) and (2.17) we obtain in turn that

‖xk+1 − p‖ ≤ ‖G̃′(xk)−1‖‖G(xk)−G(p)−G′(xk)(xk − p)‖

≤ (1− γ0‖xk − p‖)2

g(γ0‖xk − p‖)

∫ 1

0

∫ θ

0

2γ̄

(1− γ̄τ‖xk − p‖)3
‖‖xk − p‖2dτdθ

≤ (1− γ0‖xk − p‖)2

g(γ0‖xk − p‖)(1− γ̄‖xk − p‖)2

×
[
(1− γ0‖xk − p‖)2

∫ 1

0

∫ θ

0

2γ̄

(1− γ̄τ‖xk − p‖)3
‖‖xk − p‖2dτdθ

]
=

(1− γ0‖xk − p‖)2γ̄‖xk − p‖2

(1− γ̄‖xk − p‖)2g(γ0‖xk − p‖)
= ω(‖xk − p‖, γ0, γ̄)‖xk − p‖, (2.18)

which completes the induction for (2.14). Then, from the estimate

‖xk+1 − p‖ ≤ c‖xk − p‖ < r∗, (2.19)

where c = ω(‖xk − p‖, γ0, γ̄) ∈ [0, 1), we conclude that lim
k→∞

xk = p and

xk+1 ∈ U(p, r∗).

Remark 2.2. It follows from Remark 2.6 and Theorem 2.3 that (2.12) holds
and

ω(‖xk − p‖, γ0, γ̄) ≤ ω(‖xk − p‖, γ, γ). (2.20)

Hence, Theorem 2.3 improves Theorem 3.1 in [3] with advantages as already
stated previously.

3 Semi-local convergence

The semi-local convergence for Newton’s method uses majorizing sequences
and the majorizing function hδ due to Wang [10] for δ > 0. Let also b > 0.
Let function hδ on the interval [0, 1

δ
) be defined by

hδ(t) = b− t+
δt2

1− δt
(3.1)

and scalar sequences {rn}, {sn}, {tn} for all n = 0, 1, 2, . . . by

rn+1 = rn − h′γ0(rn)−1hγ̄(rn) (3.2)

sn+1 = sn − h′γ̄(sn)−1hγ̄(sn) (3.3)

tn+1 = tn − h′γ(tn)−1hγ(tn). (3.4)
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Sequence {tn} has appeared in the literature and is due to Wang [10]. Sup-
pose that for γ = δ

α0 := bγ ≤ 3− 2
√

2. (3.5)

Then, sequence {tn} is monotonically increasing and converges to

Rα :=
1 + α−

√
(1 + α)2 − 8α

4γ
. (3.6)

Suppose that
α := bγ̄ ≤ 3− 2

√
2. (3.7)

Then, again sequences {rn} and {sn} are monotonically increasing and con-
verge to

Rα0 :=
1 + α0 −

√
(1 + α0)2 − 8α0

4γ̄
. (3.8)

A simple induction argument shows that for n = 0, 1, 2, . . . , if γ0 ≤ γ̄ then

rn ≤ sn ≤ tn (3.9)

rn+1 − rn ≤ sn+1 − sn ≤ tn+1 − tn (3.10)

and
Rα0 = lim

n→∞
rn = lim

n→∞
sn = lim

n→∞
tn = Rα. (3.11)

Estimated (3.9), (3.10) are strict if γ0 < γ̄ < γ for all n = 2, 3, . . . and all
n = 1, 2, . . . , respectively. Moreover, notice that

α ≤ 3− 2
√

2 =⇒ α0 ≤ 3− 2
√

2. (3.12)

The reverse is not necessarily true, unless, if γ̄ = γ. Items (3.9)-(3.12) justify
the claims made in the introduction of this study.

Next, we show that (3.7), {rn} (or{sn}) can replace (3.5), {tn}, respec-
tively in the semi-local convergence analysis of Newton’s method given in
[3].

Theorem 3.1. Suppose: G̃′(x0)−1 exists for some x0 ∈ D; Let α0 = bγ̄ for
b := ‖G̃′(x0)−1‖‖G(x0)‖; G satisfies the restricted γ̄−criterion at x0 ∈ D0 :=
D ∩U(x0, Rα0); G′(x0) is positive definite; γ0 ≤ γ̄ and α0 ≤ 3− 2

√
2. Then,

the sequence {xn} generated by Newton’s method (1.2) starting from x0 exists
in U(x0, Rα0) remains in U(x0, Rα0) and converges to a solution p of A in
D0. Moreover, the following assertions hold

‖xn+1 − xn‖ ≤ sn+1 − sn (3.13)

and
‖xn − p‖ ≤ s∗ − sn. (3.14)
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Proof. We use induction as in Theorem 4.1 in [3]. The proof is similar to
the proof of Theorem 4.1 in [3] and the proof of Theorem 2.3 in the present
study. Using (3.15) (for p = x0) instead of (2.16) (for p = x0) used in [3], we
get

‖G̃′(xk)−1‖‖G̃′(x0)‖ ≤ (1− γ0‖xk − x0‖)2

g(γ0‖xk − x0‖)
. (3.15)

Moreover, we get in turn that

‖G̃′(x0)−1(G(xk)−G(xk−1)−G′(xk−1)(xk − xk−1))‖

≤ ‖G̃′(x0)−1

∫ 1

0

∫ θ

0

G′′(xk−1 + τ(xk − xk−1))(xk − xk−1)2dτdθ‖.

(3.16)

Then, by (3.2), (3.3) and (3.16), we obtain in turn that

‖xk+1 − xk‖ ≤ ‖G̃′(xk)−1‖‖‖G̃′(x0)‖

×‖
∫ 1

0

∫ θ

0

G̃′(x0)−1G′′(xk−1 + τ(xk − xk−1))(xk − xk−1)2dτdθ‖

≤ −h′γ0(rk)
−1

∫ 1

0

∫ θ

0

2γ̄(sk − sk−1)2dτdθ

(1− γ̄(‖xk−1 − x0‖) + τ‖xk − xk−1‖)3

≤ −h′γ̄(rk)−1

∫ 1

0

∫ θ

0

2γ̄(sk − sk−1)2dτdθ

(1− γ̄(‖xk−1 − x0‖) + τ‖xk − xk−1‖)3

≤ −h′γ̄(sk)−1h(sk) = sk+1 − sk, (3.17)

which completes the induction for (3.13). Estimate (3.13) implies that se-
quence {sn} is complete in Ri, so limk−→∞ xk = p ∈ Ū(x0, Rα0). G is a C2

mapping and xn+1 solves A for each n, so finally, estimate (3.14) follows from
(3.13) by standard arguments [2, 7].

Remark 3.1. (a) If γ0 = γ̄ = γ, Theorem 3.1 becomes Theorem 4.1 in [3].
Otherwise it constitutes an improvement (see also (3.9)-(3.12)).

(b) Clearly, if γ̄ ≤ γ0, then the result of Theorem 3.1 hold with γ0 replacing
γ̄. Examples where γ0 < γ̄ < γ can also be found in [2] in the more
general setting of a Banach space.

(c) The improvements in this study are obtained using the same or less
computational effort as in [3]. The evaluation of constant γ− involves,
in practice the evaluation of γ0 and γ̄ as special cases.
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(d) The sufficient convergence criteria for the semi-local case can be im-

proved even further, if D0 is replaced by D1 := D∩U(x1,
2−
√

2
2γ0
−‖x1−

x0‖). Then, the corresponding constant to γ̄ denoted by ¯̄γ can replace
γ̄ in the preceding results. Notice that ¯̄γ ≤ γ̄, since D1 ⊆ D0. In this
case we are still using initial data, since x1 depends on x0 and G.
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