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ABSTRACT 
Machine learning (ML) methods have become powerful, predictive tools in a wide range of 
applications, such as facial recognition and autonomous vehicles. In the sciences, computational 
chemists and physicists have been using ML for the prediction of physical phenomena, such as 
atomistic potential energy surfaces and reaction pathways. Transferable ML potentials, such as 
ANI-1x, have been developed with the goal of accurately simulating organic molecules 
containing the chemical elements H, C, N, and O. Here we provide an extension of the ANI-1x 
model. The new model, dubbed ANI-2x, is trained to three additional chemical elements: S, F, 
and Cl. Additionally, ANI-2x underwent torsional refinement training to better predict molecular 
torsion profiles. These new features open a wide range of new applications within organic 
chemistry and drug development. These seven elements (H, C, N, O, F, Cl, S) make up ~90% of 
drug like molecules. To show that these additions do not sacrifice accuracy, we have tested this 
model across a range of organic molecules and applications, including the COMP6 benchmark, 
dihedral rotations, conformer scoring, and non-bonded interactions. ANI-2x is shown to 
accurately predict molecular energies compared to DFT with a ~106 factor speedup and a 
negligible slowdown compared to ANI-1x. The resulting model is a valuable tool for drug 
development that can potentially replace both quantum calculations and classical force fields for 
myriad applications. 
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Introduction 
The application of machine learning (ML) methods in chemistry is rising in popularity due 

to success in areas such as robotic chemical synthesis1, drug and materials prediction2,3, and 
quantum mechanical property prediction4,5. The latter area of research aims to provide high 
accuracy predictions of quantum mechanical (QM) reference calculations, while maintaining a 
computational cost comparable to classical force fields. ML-based property predictors have been 
employed to predict molecular atomization energies5–7, forces8–10, potential energy surfaces6,11–20, 
atomic partial charges21,22, dipoles, and quadrupoles20,23 with accuracies greatly surpassing 
classical physics-based techniques. Some researchers have shown that models can be trained to 
multiple properties simultaneously.24 The speed, accuracy, and transferability of ML property 
predictors promises to revolutionize the computational design of drugs and materials by bridging 
the speed vs. accuracy gap between quantum mechanics and classical methods.  

Many ML methods have been developed with the aim of predicting an atomistic potential 
energy surface for a variety of applications, e.g. geometry optimization or molecular dynamics 
simulations. ML potentials for both materials19,25–27 and biological11,20,28 (organic) systems have 
been published. Two classes of methods have been proposed for learning the potential energy of 
organic molecules: dedicated ML potentials and transferable ML potentials. Dedicated ML 
potentials are designed to describe the potential energy surface of a single system or a small class 
of systems using as little QM reference data as possible. These models tend to provide highly 
accurate energies and forces for molecules with a relatively low number of degrees of freedom. 
For dedicated ML potentials, QM calculations are required prior to any application. Therefore, the 
effective computational scaling of dedicated models is that of the underlying QM method, making 
their use in applications to large biological systems, e.g. proteins and large drug molecules, 
intractable. The added time for QM data generation also makes such models unfeasible for high 
throughput studies on databases of small molecules.  

Transferable ML potentials aim to accurately simulate an entire class of molecules, with 
the objective of avoiding direct QM calculations prior to an application. That is to say, once the 
model has been trained it can be applied to a multitude of systems with no new QM calculations 
being needed. This yields a linear scaling method in most cases. Current transferable methods for 
organic molecules work by generating a very large and highly diverse dataset of molecular 
conformations from small molecules as a training dataset. Model locality is employed to ensure 
that training to small systems yields extensibility to larger systems. Much of chemistry admits a 
nearsightedness principle. As a consequence, we can often achieve both linear scaling in system 
size, and extensible potentials. The overall philosophy behind transferable models is to provide 
enough data diversity during the learning process that the model is trained only once and is forced 
to learn the local atomic physics at play, rather than only describing the potential energy surface 
in a limited subset of atomic configuration space. While transferable ML potentials are vastly more 
general than dedicated ML potentials, they tend to be somewhat less accurate, on the order of 
chemical accuracy (1 kcal/mol error) or better in near ambient conditions. However, for many 



practical applications the level of accuracy achieved by transferable ML potentials is more than 
sufficient to provide quantitative results.29–32 

The ANAKIN-ME (ANI) method11 is one example of a technique for building transferable 
neural network-based molecular potentials. The key components of ANI models are the dataset 
and Behler and Parrinello type descriptors33 with a modified symmetry function.11 The ANI-1 
dataset34 (used to train the ANI-1 potential) was built from 57,000 small CHNO containing 
molecules perturbed into 22 million randomly selected molecular conformations. Test cases 
showed ANI-1 to be chemically accurate compared to reference density functional theory (DFT) 
ωB97X/6-31G* calculations. However, random normal mode sampling is based on a harmonic 
approximation, which lead to sparse coverage of chemical space, e.g. torsion space. In response, 
an active learning algorithm using query by committee (QBC) for selecting new data was 
employed to automatically diversify the dataset23. This QBC method uses the disagreement of an 
ensemble of models to accurately predict energies for a given molecule. When poorly described 
structures are identified, QM data is generated for these conformations. A massive search of 
conformational space was carried out using this QBC active learning algorithm resulting in the 
ANI-1x potential. Due to the vastness of chemical space, the early proof of concept ANI-1x dataset 
only sampled molecules with a limited number of atomic elements: H, C, N, and O. While these 
four elements cover a large swath of interesting organic chemistry, further expansion and 
diversification of this dataset will lead to even greater applicability. 

In this study, we extended the previously developed ANI model using our automated active 
learning algorithm to include the elements S, F, and Cl. These specific elements are chosen because 
of their ubiquitous applicability, for example in protein simulation and small molecule drug design. 
The resulting potential, ANI-2x, is chemically accurate compared to reference DFT calculations 
in multiple test cases. These test cases include the original COMP6 benchmark35 (with C, H, N, 
and O containing molecules) combined with a new sister version, COMP6v2, which contains all 
seven chemical elements (C, H, N, O, S, F, and Cl). The applicability of the ANI-2x potential on 
relaxed torsion scans involving the new chemical elements and on a small drug-like molecule 
conformer search are shown. Interaction energies were also predicted by ANI-2x and compared to 
reference DFT calculations. The ANI-2x potential is available for free on our GitHub repository 
package integrated with the atomic simulation environment (ASE) library 
[https://github.com/isayev/ASE_ANI]. 
 

Methods 
Building a database of S, F, Cl containing molecules 
The database of molecules used to build the active learning-based ANI-2x training dataset is 
composed of molecules from a variety of sources, including the GDB-1136,37 database, the 
CheMBL38 database,  and the s66x839 benchmark. The GDB-11 dataset contains an enumeration 
of chemically feasible organic molecules containing the heavy elements: C, N, O, and F. From this 
database, we combinatorically replaced the chemical symbols O with S and F with Cl for all 
molecules containing up to 8 non-hydrogen atoms. From the ChEMBL38 database,  molecules 



containing S,  F,  and Cl were sampled. Also, conformers of amino acids and di-peptides containing 
S were randomly generated using the Rdkit40 chem informatics package. These sampling 
techniques mirror those used in building the ANI-1x dataset35. 
In the results section below, we commonly show the mean absolute error (MAE) and root mean 
squared error (RMSE) as measure of accuracy of various properties. The properties we measure 
are the relative energies of molecular conformers, the force components acting on atoms, the 
absolute potential energies, and errors for various geometric features such as bonds, angles and 
torsions. For each test set all calculations were performed using the DFT functional ωB97X with 
the 6-31G* basis set, using Gaussian 09 and Gaussian 16. All ANI-2x optimizations were 
performed using the LBFGS algorithm as implemented in the atomic simulation environment 
(ASE) Python package. 
 
Active-learning in chemical space 
The active-learning process used in this work directly mirrors that of the active learning process 
published in the development of the ANI-1x and ANI-1ccx potentials.29,35 Therefore, we point all 
interested parties to this work for a detailed description of the active learning processes. The 
primary difference in this work’s process is that all molecules sampled during active learning, 
except for the s66x8 non-bonded interaction sampling, were required to contain S, F, or Cl. To 
generate non-equilibrium conformations we employed dimer sampling, normal mode sampling, N 
trajectory molecular dynamics sampling, and ML driven torsion sampling in all iterations of active 
learning. A detailed description of these methods is provided in our earlier work.29,35 As with the 
ANI-1x active learning process, only small molecules are searched in early iterations with 
molecule size increasing as the process proceeds. In the end, more than 50 active learning cycles 
were carried out yielding a dataset of 4,695,707 molecular conformations from 13,405 chemical 
isomers. Combined with the original ANI-1x dataset and torsion refinement dataset from the ANI-
1ccx work, the final ANI-2x dataset consists of 8.9 million molecular conformations. 
 
Active-learning torsion refinement 
As previously presented in our work developing the ANI-1ccx potential35, we carried out an active 
learning torsion refinement on a randomly selected subset of molecules from the ChEMBL drug 
molecule database38,41. In the development of ANI-2x, 250 SMILES strings were selected at 
random and then embedded into 3D space using the RDKit cheminformatics package. A rotatable 
torsion was selected at random for each molecule. If a torsion contained hydrogens or was a 
member of a ring, then it was not selected. During the active learning cycles, the latest version of 
the ANI potential ensemble was used to relax the selected torsion every 10 degrees, resulting in 
36 conformations. All conformations that have an ensemble disagreement over a set threshold were 
selected and normal modes were computed using the ANI ensemble. Four data points were then 
generated using normal mode sampling (as presented in our previous work11), and QM calculations 
were performed for each then added to the training dataset. This process is referred to as “torsional 



refinement”. A torsional refinement was carried out during each iteration of the active learning 
process. 
 
Active-learning non-bonded interaction refinement 
To improve sampling of non-bonded interactions we use the s66x842 benchmark to generate 
training data. s66x8 contains eight structures along the dissociation path of 66 C, H, N, and O 
containing dimer systems. Such systems must be sampled to improve the accuracy of non-bonded 
interactions since these dimers represent the smallest systems containing their respective 
interaction. This active learning cycle was bootstrapped from the ANI-1x dataset and potential. 
We first generate normal modes using DFT for each of the eight structures along the path. We then 
use normal mode sampling to generate random structures along the path of dissociation for each 
dimer. We carried out 26 active learning cycles to generate 195,291 conformations of random 
dimers. 
 
Active-learning for improved bulk water 
A novel type of sampling was employed to improve the ANI-2x description of bulk water. Water 
molecules with random position and orientation were placed within a bounding box with random 
edge lengths. The density of these systems was restricted to be between 0.8 and 1.20 g/cm3. The 
resulting box of water molecules was optimized using the current ANI potential and LBFGS, as 
implemented in the Atomic Simulation Environment43 package. NVT molecular dynamics 
simulations were then carried out using the latest ANI potential. Every 5 time steps the simulation 
was paused, and the box was broken into N small clusters, where N is the number of water 
molecules in the box. The N clusters were generated by taking all waters within 6 Å from the 
center of the Nth water. A random selection of waters was then deleted from each cluster until 
between 2 and 15 molecules remained. Finally, the active learning selection process was carried 
out, and QM calculations were performed for any selected clusters. The ensemble disagreement 
used for selection was 𝜌=0.32 kcal/mol/atom1/2. When any single cluster has an ensemble 
disagreement larger than 3𝜌 the simulation is terminated. This termination criteria helps prevent 
highly unphysical configurations from forming during the simulation. During each iteration of the 
ANI-2x active learning process 10 random boxes of water were sampled as described above. 
 
Force training 
ANI-2x was trained to molecular energies and forces. The forces predicted by the model are the 
analytical derivatives of the molecular energies, assuring that energy is conserved when running 
simulations. Force training was not used during the active learning process due to the increased 
computational costs associated with training the model to forces. However, a force-trained model 
predicts at the same computational speed as a model trained to just energies when predicting 
energies and forces. This force training was done with the intent to improve model accuracy during 
molecular dynamics. ANI-2x was trained using the loss function: 



𝐿 = 1𝑁∑[(𝐸̂𝑖 − 𝐸𝑖)2 + 𝑙0𝑀𝑖∑(𝑓𝑖𝑗 − 𝑓𝑖𝑗)2𝑀𝑖
𝑗=1 ]𝑁

𝑖=1  

Where 𝐸̂𝑖 and 𝑓𝑖𝑗 are the energies and forces predicted by any for a given molecule, 𝐸𝑖 and 𝑓𝑖𝑗 are 

the QM energy and forces. 𝑙0is chosen to balance the force and energy terms during training and 
a value of 0.1 is used for ANI-2x. N is the number of systems and M is the atoms per system. 
When training a model, the derivative of the loss function must be taken with respect to all weights 
in the model. The loss function involves forces, and thus involves the derivative of the energy with 
respect atomic positions. To train the model, we require the gradient of the loss function with 
respect to the model parameters. In other words, we require second derivatives of the energy. 
Frameworks such as Tensorflow or Pytorch can perform iterated back propagation, and thus 
automate the procedure of calculating the gradient of the loss function. Such a code transformation 
would be extremely challenging to perform on our CUDA/C++ implementation of ANI. For this 
reason, a finite differentiation is used to approximate the model’s forces during training.  
 
Results and discussion 

To illustrate the utility of the ANI-2x potential, we have conducted case studies mimicking typical 
molecular modeling applications: a) molecular dynamics simulations, b) potential energy scans, c) 
conformer search and ranking, d) challenging benchmark COMP6v2 database developed in this 
work, and e) accuracy of non-bonded interactions from existing benchmarks. For MD simulations 
we selected the GSK1107112A (CHEMBL1527187) compound as a real-life industrial compound 
open sourced with the GSK Tuberculosis Screening campaign44. It contains all atomic elements 
(C, H, N, O, S, F, Cl) considered in this work. For the 2D potential energy scans we selected four 
molecules (bendamustine, cysteine-dipeptide, DDT and hexafluoroacetone) that provide diverse 
structures containing both sulfur and halogens. For the conformer search program we selected 20 
molecules from the recent benchmark set of low energy conformer evaluations45. This collection 
includes drug-like ligands used to access performance of conformer generating methods like 
OMEGA or ETKDG. 
 

Torsion Profiles 

The Genentech torsion benchmark46 was used to assess the ability of the ANI-2x model to 
predict  torsion profiles. This benchmark consists of 62 molecules containing H, C, N, O, F, Cl, 
and S. For each molecule in the test set, 36 conformations were generated by rotating one of the 
bonds in 10-degree increments. Each structure was then optimized, and energies were computed 
to produce relaxed torsion profiles at various levels of theory. The reference data are the 
CCSD(T)/CBS calculations provided by Sellers et al46. The error between ANI-2x, our reference 
DFT, and OPLS3 against CCSD(T)/CBS are shown in Table 1. ANI outperforms OPLS3 and has 
only slightly higher error than its reference DFT.  
To validate the predictive performance of ANI-2x on real-world molecules, 2D torsion profiles 
were computed for four different systems containing some combination of the chemical elements 



C, H, N, O, S, F, and Cl. Two dihedrals were chosen for each molecule and rotated in ten-degree 
increments in turn to create a 36 by 36 dihedral profile of the molecules, 1296 structures in total 
per molecule. The resulting structures were then optimized with our reference level of theory, 
freezing the appropriate dihedrals along the rotation path. Each structure optimized with DFT 
was then reoptimized with ANI-2x. 

Method MAE RMSE 

DFT 0.35 0.50 

ANI-2x 0.42 0.59 

OPLS3 0.66 1.02 

Table 1. MAE and RMSE between ANI-2x, ωB97X/6-31G*, and OPLS3 against CCSD(T)/CBS on the Genentech torsion 
benchmark46. 

 

 

 

 

 

 

 

 

 



Figure 1. Relaxed 2D torsion profiles for ANI-2x (left) and DFT (right).  Two dihedrals (shown in bold) were rotated in ten-degree 
increments about one another to generate the confirmations to be optimized with DFT. Each confirmation was optimized with the 
appropriate dihedrals frozen, then those structures where again optimized with ANI-2x. The bonds composing the scanned dihedrals 
are bolded in the second column and the third and fourth columns show the MAE and RMSE of the relative energies in kcal/mol 
between ANI and DFT.  
 

This was done so that the time-consuming QM optimizations could be performed in parallel and 
to assure that the structures generated from each method, DFT and ANI-2x, were in the same local 
minimum. Very minor differences in potential energy surfaces can lead to large differences in final 
structures, especially when using two different optimizers and starting from conformations far 
from the desired minima. The results of these scans are shown in Figure 1. DFT optimizations of 
the cysteine dipeptide were performed using the Gaussian 0947 software package while DDT, 
hexafluoroacetone, and bendamustine DFT optimizations were performed using Gaussian 1648. 
ANI-2x accurately predicts the location of the minima and maxima for all four molecules. For 
DDT, hexafluoroacetone, and bendamustine, ANI shows sub-chemical accuracy. ANI shows 
greater error on the cysteine dipeptide, but the energy range covered by the scan is much greater 
for the dipeptide than for the other three systems. In the SI, FS3 shows a 2D plot of ANI-2x’s error 
on each molecule compared to the ensemble standard deviation of the 2x model. The standard 
deviation is divided by the square root of the number of atoms in the system to account for error 
cancelation between the individual atomic networks. This standard deviation is used as a measure 
of uncertainty for the ANI-2x model, where high standard deviation/sqrt(N) means the model is 
less reliable. It is important to note that this uncertainty metric is not the same as a conventional 

Name Molecule MAE RMSE Scan (Left:ANI Right:DFT) 

Cysteine-Dipeptide 

(25 atoms) 

 

1.75 2.55 

 

DDT 

(28 atoms) 

 

0.53 0.70 

 

Hexafluoroacetone 

(10 atoms) 

 

0.08 0.11 

 

Bendamustine 

(44 atoms)  

0.50 0.66 

 



error bar and does not say how far or close to the true answer ANI-2x is, but rather how familiar 
the network is with the type of system it is being applied to. 
 For the four 2D torsions shown, ANI-2x performs remarkably well, especially considering 
the number of chemical elements and total number of atoms in these systems. Larger systems such 
as the cysteine dipeptide can experience a higher error overall since error grows with the number 
of atoms. This produces the following per atom error cancellation corrected MAE for each of the 
four torsion scans: 0.35, 0.10, 0.03, 0.08 kcal/mol/atom^{-1/2}. Since many publications on ML 
potentials present results as uncorrected per atom MAE we also provide these results: 0.07, 0.02, 
0.01, 0.01 kcal/mol/atom. However, we stress that the latter metric of comparison is unreliable 
since larger systems will experience more error cancellation and will thus appear to have a 
significantly lower error.  
 

Conformer search and ranking 

Optimizing molecules using higher levels of theory, such as coupled cluster, is often 
impractical due to the high cost of force calculations with these methods. For this reason, MP2 is 
often used to optimize molecules before using other methods for energy calculations due to its 
relatively accurate forces and efficiency. However, even MP2 is too costly to perform high 
throughput conformer searches across large datasets. Classical force fields and semi-empirical 
methods are often employed to siphon through molecules to find the best candidates for drug 
development before performing costly QM calculations. Unfortunately, because of the limited 
accuracy of such methods, this often leads to several false negatives and missed candidates as well 
as wasted computational time on false positives.  

A test set of 20 molecules was used to determine how well ANI-2x predicts the relative 
energies of different local minima for druglike molecules. These molecules were taken from the 
test set used in recent work on validating force fields by Kanal, Keith, and Hutchinson45. We 
choose the 7 molecules with the highest and 13 molecules with the lowest conformer relative 
energy correlation between empirical methods and DFT B3LYP ground truth. The SMILES strings 
for each of these molecules was embedded in 3D space using the Rdkit40 software package and a 
conformational search was performed to generate between 10 and 35 conformations of each 
molecule. We used an earlier version of the ANI model during the conformational search to 
optimize each conformer to ensure that each conformation was near a different, unique, local 
minimum. These conformations were then optimized with ANI-2x, PM6, MMFF94, ωB97X/6-
31G*, and MP2/cc-PVTZ. We compared the optimized geometries predicted by each method with 
the MP2 optimized structures. These results are shown in Table 2.  

Single point calculations were then carried out on each of the ANI-2x optimized structures 
using DFT and on the DFT optimized structures using ANI-2x. We then determined the R2 
correlation and Spearman rank of relative conformer energies predicted/computed by ANI-2x, 
PM6, MMFF94, and ωB97X/6-31G* and compared with those obtained with MP2. The same 
comparison was also carried out between ANI-2x and ωB97X. These results are shown in Table 
3. In Table 3 ANI@DFT refers to the single point energies of ANI-2x and DFT on the structures 



optimized by DFT, DFT@ANI refers to the single point energies of ANI-2x and DFT on the 
structures optimized by ANI, and ANI_DFT refers to the ANI single point energies on the ANI 
optimized structures with the DFT single point energies on the DFT optimized structures. All MP2 
calculations were performed using the Orca software package49, and all MMFF94 calculations 
were performed using the Open Babel software package50. Mean absolute error and root mean 
square error are reported for each method compared to MP2 and between ANI-2x and DFT. Errors 
reported represent the errors in the relative energies between all conformations of each molecule.  

ANI-2x shows lower error compared to MP2/cc-PVTZ for both relative energy and 
optimized geometry than both PM6 and MMFF94, without needing to rely on any specific atom 
typing or connectivity information. Not surprisingly, ANI-2x shows better correlation compared 
to ωB97X in the ANI@DFT and DFT@ANI comparison than in the ANI_DFT, because in the 
latter the energies being compared come from different structures. The speed and high correlation 
of ANI-2x with QM methods make it a useful tool for conformer scoring and for generating 
structures to be further optimized with levels of theory beyond DFT. As an example of the speed 
of the ANI model, the average time for ANI-2x to perform a single point calculation on any of the 
conformations was ~0.02 seconds compared to 552 seconds with ωB97X/6-31G*. While it’s 
important to note that these calculations were done using different hardware (ANI-2x on a GPU, 
DFT on a CPU), we believe this illustrates the potential of ANI-2x for large scale and high 
throughput studies. We have shown that ANI-2x is capable of outperforming both semi-empirical 
and classical methods while still operating several orders of magnitude faster than QM methods. 
 

Property DFT ANI-2x PM6 MMFF94 

Bond length MAE (A) 0.0050 0.0053 0.015 0.0076 

Angles MAE (Degree) 0.19 0.28 0.66 0.48 

Torsion MAE (Degree) 3.36 5.41 11.15 5.28 

RMSD (A) 0.30 0.43 0.69 0.44 

 

Table 2. Geometry comparison of the optimized structures predicted by DFT, ANI, PM6, and MMFF94 with the optimized 
structures predicted by MP2. 
 
 
 
 
 
 
 



 
Table 3. Mean spearman rank, R2 correlation, MAE, and RMSE of relative conformer energies predicted by DFT, ANI, PM6, and 
MMFF94 compared with those obtained with MP2. Mean absolute error (MAE) and root mean square error (RMSE) are computed 
across all conformers of all molecules. ANI@DFT compares the single point energies of ANI-2x and DFT on the structures 
optimized by DFT. DFT@ANI compares the single point energies of ANI-2x and DFT on the structures optimized by ANI. 
ANI_DFT compares the ANI single point energies on the ANI optimized structures with the DFT single point energies on the DFT 
optimized structures.  

 
COMP6v2 

The COMP6 benchmark from our recent work on applying active learning techniques to 
build general-purpose ML potentials35 has been extended in this work to include the chemical 
elements S, F, and Cl. This benchmark is now referred to as COMP6v2. Figure 2 shows the relative 
energy between all conformers (∆𝐸), the absolute potential energy (E), and the force component 
(F) accuracy of ANI-2x on the combined COMP6v2 benchmark. In COMP6v2 the GDB10to13 
set has been split into GBD10to11 and GDB12to13. All GDB sets, excluding GDB12to13, have 
been augmented to contain S, F, and Cl.  The DrugBank test set has also been augmented to include 
these new atomic elements. The tripeptide test set now includes cysteine and methionine, both of 
which contain sulfur. The numbers of molecules and conformers in COMP6v2 is provided in the 
supplemental information TS8. 

The errors shown in Figure 2a, Figure 2b, and Figure 2c are for conformations restricted to 
within 200 kcal/mol from the nearest energy minima for a given molecule. This energy range is 
significantly higher than the energy range of conformers visited in room temperature MD 
simulations. Varying this range allows us to gauge the performance generality of a potential for 
simulations at a specific temperature. For example, if we restrict this range to 30 kcal/mol then the 
dataset corresponds to the conformer space visited in near ambient temperature dynamical 
simulation. In Figure 2a, within the 200kcal/mol energy range, most of the benchmarks achieve 
sub-chemical accuracy (1 kcal/mol) errors, while total energy errors (Figure 2b) tend to be larger 
due to bias error for different molecules. However, for many applications which depend on 

 Comparison to MP2 Comparison to DFT 

Metric DFT ANI-2x PM6 MMFF94 ANI@DFT DFT@ANI ANI_DFT 

Mean R2 0.79 0.68 0.35 0.52 0.83 0.83 0.74 

Mean 

spearman 
0.86 0.75 0.45 0.56 0.86 0.87 0.77 

MAE  

(kcal/mol) 
1.23 1.91 2.96 3.83 1.68 1.90 1.96 

RMSE 

(kcal/mol) 
2.01 2.67 3.78 5.17 2.20 2.51 2.62 



torsional energy barriers and relative populations of conformers, only accurate relative energies 
are required. Another trend to note here  
 

 

Figure 2. a,b,c) Errors for molecules within 200 kcal/mol from the minima compared to DFT reference data from the updated 
COMP6 benchmark for the chemical elements C, H, N, O, S, F, and Cl. d,e,f.) Relative conformer energy range considered vs. 
mean absolute error (MAE) of relative energy, total energy, and forces over the entire updated COMP6 benchmark.    

 

 



 

Figure 3. Energies (shifted to the mean) and force magnitudes along with corresponding errors for a 25ps NVT molecular 
dynamics (MD) trajectory using the Langevin thermostat at 300K. This figure represents the final 25ps of a 1.5ns MD simulation 
in vacuum. The drug ligand GSK1107112A was chosen as an example because it contains all atomic elements (C, H, N, O, S, F, 
Cl) considered in this work. Energies were shifted to the mean energy over the trajectory. Black shows the DFT computed 
properties, green is the ANI-2x computed properties, and red is the absolute difference between the values. 

is that the error grows as the number of atoms per molecule grows, for a given benchmark. This 
trend is expected with atomistic ML potentials since each atomic energy prediction has an error 
associated with it. 

Figures 2d-2f show that as the relative energy range of conformers in the test set is 
reduced, the overall error drops. This phenomenon can be explained by the fact that near 
equilibrium conformers represent the average over the entire dataset due to the sampling 
techniques used, i.e. MD sampling and normal mode sampling. This fact is important to 
remember as it can lead to misconceptions that the errors shown on full benchmarks considering 
a high energy range doesn’t necessarily represent the error obtained in room temperature 
simulation.51 

Molecular Dynamics Trajectory 

For a machine learning-based potential to be applicable in molecular dynamics (MD) 
simulations it must represent a mathematical potential and ensure conservation of energy and 
momentum. By construction, ANI models are guaranteed to be conservative to numerical 
precision. Furthermore, to achieve meaningful sampling time scales the potential must be 
computationally efficient.  As a first step, we investigate the feasibility of applying the ANI-2x 
model in MD simulations by generating an MD trajectory of the GSK1107112A compound. This 
is a much more challenging task than traditional error evaluation, as it requires a sampling of the 
vast configuration space and computing dynamical observables. We then ran single point DFT 



calculations on the final 25 ps of the simulation to calculate the energy and forces according to our 
reference level of theory, ωB97X-6-31G*.  

Figure 3 provides energy and force magnitudes along with errors for the final 25 ps of a 
1.5 ns NVT MD simulation. The simulation used a time step of 0.4 fs and the thermostat was set 
to a temperature of 300K. This trajectory shows the applicability of ANI-2x to MD simulations for 
systems containing the chemical elements C, H, N, and O as well as S, F, and Cl. Energy errors 
compared to DFT reference calculations for the provided portion of the trajectory are 0.86/ 1.10 
MAE/RMSE in kcal/mol. This error represents chemical accuracy for a molecule that was not 
explicitly added to the training dataset. Force magnitude errors are 2.03/2.96 MAE/RMSE in 
kcal/mol/Å. The simulation ran for 1.5 ns and the final 25 ps were chosen to show that even after 
long timescale simulations, ANI-2x is still sampling structures that agree well with reference DFT. 
The ANI potential took approximately 12.0 GPU hours to run the 3.75 million steps require for 
the 1.5 ns simulation in the NeuroChem package (https://github.com/isayev/ASE_ANI). At 27 
atoms, this system is too small to saturate the GPU for peak efficiency, therefore, efficiency will 
grow with larger system sizes. The DFT calculations for the final 25 ps (2500 frames of the 
trajectory) took 192 CPU core hours. 
 
Non-bonded interactions 

Two datasets were chosen to show that ANI-2x accurately predicts non-bonded interaction 
energies. The X40 dataset was obtained from the Benchmark Energy and Geometry Database52. It 
consists of noncovalent complexes that participate in a variety of interaction types, such as London 
Dispersion, dipole-dipole interactions, and hydrogen bonds2. Only the systems containing C, H, 
N, O, F, and Cl were used in this study; those containing I and Br were omitted. The second dataset 
was taken from work done by Thomas A. Halgren in 1996 to measure the performance of MMFF94 
for intermolecular interactions53, primarily hydrogen bonds.  Avogadro54 was used to create the 
systems, using the same bond distances as the literature. Structures containing charged species 
were excluded in these tests. The following elements were used in the Halgren dataset: C, H, N, 
O, S, and F. 

Each dataset was optimized using ANI-2x and the energy was calculated using the same 
potential. The same was done for DFT. The interaction energy is defined as the difference between 
the energy of the complex (EAB) and the sum of the energies of the individual molecules (EA + EB) 
at the same geometries as in the dimer complex (eq. 1).  This is the common approach in the field 
(not including deformation energy in the interaction energy) because it allows for the contribution 
to the total energy from nonbonded interaction to be studied independently of the molecules’ other 
properties.  

 
IE=EAB - (EA + EB)                                                       (1) 

 
Table 4 shows the MAE and RMSE of the interaction energies calculated with ANI-2x and DFT. 
The results in this table do not include deformation energy. Error metrics of interaction energies 



with deformation energy included are shown in the SI TS5. SI TS6 provides a deeper look into the 
X40 dataset, showing the error metrics for each interaction type, and how many systems were 
provided for each. It was found that the interaction type with the highest error is hydrogen bonding. 
However, when comparing these values, it is important to note, the Halgren data set is larger in 
size and contains a more diverse set of systems with only hydrogen bonds, where the X40 dataset 
is smaller and contains a large range of interaction types, with only 8 systems representing the 
hydrogen bond. To reduce the errors across separate interaction types, more strategic dimer 
sampling is necessary. Table 4 also shows the same error metrics for the X40 dataset comparing 
ANI and DFT to CCSD(T)/CBS energy values. ANI shows a lower error than DFT compared to 
CCSD, however the values are comparable. This shows that ANI-2x can be substituted for DFT 
when studying these types of systems.  

 
 

 

Error 

Metric 

 

ANI vs. 

DFT 

Halgren 

 

ANI 

vs. 

DFT 

X40 

ANI vs. 

CCSD(T) 

(X40) 

DFT vs. 

CCSD(T) 

(X40) 

MAE 1.24 1.51 1.7 1.9 
RMSE 1.77 2.44 2.4 2.7 

 
 
Table 4. MAE and RMSE comparing ANI-2x to DFT interaction energies for the X40 dataset and the dataset from Halgren, as 
well as the MAE and RMSE of the interaction energies calculated by ANI-2x and DFT compared to CCSD(T)/CBS calculations 
from the X40 dataset. All in kcal/mol 

 

Discussions and Concluding Remarks 
Continued development of new and improved deep learning molecular potentials promises 

to change the way molecular simulation is conducted for years to come. As these potentials 
improve, their range of applicability grows. The presented ANI-2x potential provides chemically 
accurate energy predictions for molecules containing seven atomic elements (H, C, N, O, S, F, Cl) 
within the thermal applicability range of interest to bio-chemists and computational drug designers. 
It has been tested across a wide range of applications relevant to drug development on diverse test 
sets. When compared to trusted QM methods, ANI-2x shows similar accuracy to DFT and 
outperforms MMFF94 and PM6 for conformer scoring. Another model has been developed by 
Stevenson et al. using a similar methodology (Schrodinger-ANI) that incorporates S, F, Cl, and 
P55. Although ANI-2x shows slightly higher error on the Genentech torsion benchmark than 
Schrodinger-ANI, we believe the inclusion of force training and the diverse sampling techniques 
used when training ANI-2x makes better suited for applications such as molecular dynamics. Still, 
Schrodinger-ANI is further evidence that general-purpose machine learning models can be 
extended to new chemical elements without sacrificing accuracy on previously sampled systems. 



The ANI-2x potential retains the same computational scaling as classical force fields, 
providing a 106 speedup over the DFT level it has been trained against. Further, the addition of 
more atomic species has a negligible impact on the overall numerical speed of ANI potentials, 
despite O(N2) growth in the size of the atomic environment descriptors. Parameterization to new 
chemical elements has been shown to have no noticeable negative impact on the accuracy of ANI-
2x. In fact, the addition of molecules containing new chemical elements to the training set can 
improve the model’s accuracy by increasing the diversity of chemistry in the training dataset.  

Looking forward, the addition of long range interactions by combining ANI-2x and ML-
based charge models, such as the Affordable Charge Assignment (ACA)56 model, can provide 
corrections to missing long range interactions. Further studies need to be carried out with models 
such as HIP-NN6, AIMNet24, and Schnet19 to determine if iterative long-range information transfer 
scheme provides advantages in the realm of general-purpose potentials, and to quantify those 
advantages vs. overall computational cost. To further increase the applicability of general-purpose 
ML potentials, techniques and datasets need to be developed to allow the models to describe more 
than just singlet spin and neutral charge states. 
Small molecule force field development is a challenging, labor intensive effort and cannot be easily 
automated. Force fields are usually developed by large consortia of academic and industrial groups 
working together over an extended period of time to parametrize a model addressing a particular 
class of problems. The ANI-2x potential developed in this work as well as other ML potentials 
provide an appealing alternative approach to traditional methods. The ANI methodology, coupled 
with active learning data sampling, provides a systematic approach to generating such methods. It 
drastically reduces the human effort required for fitting a force field, it automates the method 
development and provides systematic improvement. Using a neural network, as universal 
approximators, does not require one to choose a functional form. These capabilities will 
dramatically accelerate development of new models, while also producing more accurate force 
fields with clear dependencies on reference QM data and tools for uncertainty quantification. 
 
Associated Content 

Supporting Information 
Breakdown of the conformer scoring results for each molecule. MAE and RMSE for nonbonded 
interaction energies including deformation energies for the X40 dataset and a breakdown by 
interaction type for the Halgren dataset. A box-and-whisker plot comparing DFT, ANI-2x, and 
OPLS on the Genetech torsion benchmark. A comparison of ANI-2x’s error and ensemble standard 
deviation. The hyperparameters and network architecture used to train ANI-2x. A description of 
the COMP6v2 benchmark. 
 
Funding 

A.E.R. thanks NSF CHE-1802831 and O.I. thanks NSF CHE-1802789. This work was partially 
supported by the LANL Laboratory Directed Research and Development (LDRD) and the 
Advanced Simulation and Computing Program (ASC) programs. We acknowledge computer time 



on the CCS-7 Darwin cluster at LANL. JSS was partial supported by the Center for Nonlinear 
Studies (CNLS) and the Nicholas C. Metropolis Postdoctoral Fellowship. This work was 
performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User 
Facility operated for the U.S. Department of Energy (DOE) Office of Science. The authors 
acknowledge Extreme Science and Engineering Discovery Environment (XSEDE) award 
DMR110088, which is supported by NSF grant number ACI-1053575. This research in part was 
done using resources provided by the Open Science Grid57,58 which is supported by the award 
1148698, and the U.S. DOE Office of Science. This work was performed, in part, at the Center for 
Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. DOE Office 
of Science. We gratefully acknowledge the support and hardware donation from NVIDIA 
Corporation and express our special gratitude to Jonathan Lefman.  
 
Notes 

The authors declare no competing financial interest. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



References 

 

(1)  Granda, J. M.; Donina, L.; Dragone, V.; Long, D. L.; Cronin, L. Controlling an Organic Synthesis 
Robot with Machine Learning to Search for New Reactivity. Nature 2018, 559, 377–381. 
https://doi.org/10.1038/s41586-018-0307-8. 

(2)  Gómez-Bombarelli, R.; Wei, J. N.; Duvenaud, D.; Hernández-Lobato, J. M.; Sánchez-Lengeling, 
B.; Sheberla, D.; Aguilera-Iparraguirre, J.; Hirzel, T. D.; Adams, R. P.; Aspuru-Guzik, A. 
Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules. ACS 
Cent. Sci. 2018, 4 (2), 268–276. https://doi.org/10.1021/acscentsci.7b00572. 

(3)  Popova, M.; Isayev, O.; Tropsha, A. Deep Reinforcement Learning for de Novo Drug Design. Sci. 
Adv. 2018, 4 (7), eaap7885. https://doi.org/10.1126/sciadv.aap7885. 

(4)  Behler, J. Representing Potential Energy Surfaces by High-Dimensional Neural Network 
Potentials. Journal of Physics Condensed Matter. 2014, p 183001. https://doi.org/10.1088/0953-
8984/26/18/183001. 

(5)  Faber, F. A.; Hutchison, L.; Huang, B.; Gilmer, J.; Schoenholz, S. S.; Dahl, G. E.; Vinyals, O.; 
Kearnes, S.; Riley, P. F.; Von Lilienfeld, O. A. Prediction Errors of Molecular Machine Learning 
Models Lower than Hybrid DFT Error. J. Chem. Theory Comput. 2017, 13 (11), 5255–5264. 
https://doi.org/10.1021/acs.jctc.7b00577. 

(6)  Lubbers, N.; Smith, J. S.; Barros, K. Hierarchical Modeling of Molecular Energies Using a Deep 
Neural Network. J. Chem. Phys. 2018, 148 (24), 241715. https://doi.org/10.1063/1.5011181. 

(7)  Gastegger, M.; Schwiedrzik, L.; Bittermann, M.; Berzsenyi, F.; Marquetand, P. WACSF—
Weighted Atom-Centered Symmetry Functions as Descriptors in Machine Learning Potentials. J. 
Chem. Phys. 2018, 148 (24), 241709. https://doi.org/10.1063/1.5019667. 

(8)  Glielmo, A.; Sollich, P.; De Vita, A. Accurate Interatomic Force Fields via Machine Learning with 
Covariant Kernels. Phys. Rev. B 2017, 95 (21), 214302. 
https://doi.org/10.1103/PhysRevB.95.214302. 

(9)  Botu, V.; Batra, R.; Chapman, J.; Ramprasad, R. Machine Learning Force Fields: Construction, 
Validation, and Outlook. J. Phys. Chem. C 2017, 121 (1), 511–522. 
https://doi.org/10.1021/acs.jpcc.6b10908. 

(10)  Kruglov, I.; Sergeev, O.; Yanilkin, A.; Oganov, A. R. Energy-Free Machine Learning Force Field 
for Aluminum. Sci. Rep. 2017, 7, 8512. https://doi.org/10.1038/s41598-017-08455-3. 

(11)  Smith, J. S.; Isayev, O.; Roitberg, A. E. ANI-1: An Extensible Neural Network Potential with DFT 
Accuracy at Force Field Computational Cost. Chem. Sci. 2017, 8 (4), 3192–3203. 
https://doi.org/10.1039/C6SC05720A. 

(12)  Han, J.; Zhang, L.; Car, R.; E, W. Deep Potential: A General Representation of a Many-Body 
Potential Energy Surface. Commun. Comput. Phys. 2017, 23, 629–639. 

(13)  Behler, J. Constructing High-Dimensional Neural Network Potentials: A Tutorial Review. Int. J. 
Quantum Chem. 2015, 115 (16), 1032–1050. https://doi.org/10.1002/qua.24890. 

(14)  Jiang, B.; Li, J.; Guo, H. Potential Energy Surfaces from High Fidelity Fitting of Ab Initio Points: 
The Permutation Invariant Polynomial - Neural Network Approach. Int. Rev. Phys. Chem. 2016, 
35 (3), 479–506. https://doi.org/10.1080/0144235X.2016.1200347. 

(15)  Gassner, H.; Probst, M.; Lauenstein, A.; Hermansson, K. Representation of Intermolecular 
Potential Functions by Neural Networks. J. Phys. 1998, 102 (24), 4596–4605. 

(16)  Morawietz, T.; Sharma, V.; Behler, J. A Neural Network Potential-Energy Surface for the Water 
Dimer Based on Environment-Dependent Atomic Energies and Charges. J. Chem. Phys. 2012, 136 
(6), 064103. https://doi.org/10.1063/1.3682557. 

(17)  Kolb, B.; Zhao, B.; Li, J.; Jiang, B.; Guo, H. Permutation Invariant Potential Energy Surfaces for 
Polyatomic Reactions Using Atomistic Neural Networks. J. Chem. Phys. 2016, 144 (22), 224103. 
https://doi.org/10.1063/1.4953560. 

(18)  Handley, C. M.; Popelier, P. L. A. Potential Energy Surfaces Fitted by Artificial Neural Networks. 
J. Phys. Chem. A 2010, 114 (10), 3371–3383. https://doi.org/10.1021/jp9105585. 



(19)  Schütt, K. T.; Sauceda, H. E.; Kindermans, P. J.; Tkatchenko, A.; Müller, K. R. SchNet - A Deep 
Learning Architecture for Molecules and Materials. J. Chem. Phys. 2018, 148 (24), 241722. 
https://doi.org/10.1063/1.5019779. 

(20)  Yao, K.; Herr, J. E.; Toth, D. W.; Mcintyre, R.; Parkhill, J. The TensorMol-0.1 Model Chemistry: 
A Neural Network Augmented with Long-Range Physics. Chem. Sci. 2017, 9 (8), 2261–2269. 
https://doi.org/10.1039/C7SC04934J. 

(21)  Bleiziffer, P.; Schaller, K.; Riniker, S. Machine Learning of Partial Charges Derived from High-
Quality Quantum-Mechanical Calculations. J. Chem. Inf. Model. 2018, 58 (3), 579–590. 
https://doi.org/10.1021/acs.jcim.7b00663. 

(22)  Nebgen, B.; Lubbers, N.; Smith, J. S.; Sifain, A. E.; Lokhov, A.; Isayev, O.; Roitberg, A. E.; 
Barros, K.; Tretiak, S. Transferable Dynamic Molecular Charge Assignment Using Deep Neural 
Networks. J. Chem. Theory Comput. 2018, 14 (9), 4687–4698. 
https://doi.org/10.1021/acs.jctc.8b00524. 

(23)  Gastegger, M.; Behler, J.; Marquetand, P. Machine Learning Molecular Dynamics for the 
Simulation of Infrared Spectra. Chem. Sci. 2017, 8 (10), 6924–6935. 
https://doi.org/10.1039/C7SC02267K. 

(24)  Zubatyuk, R.; Smith, J. S.; Leszczynski, J.; Isayev, O. Accurate and Transferable Multitask 
Prediction of Chemical Properties with an Atoms-in-Molecules Neural Network. Sci. Adv. 2019, 5, 
eaav6490. https://doi.org/10.1126/sciadv.aav6490. 

(25)  Thompson, A. P.; Swiler, L. P.; Trott, C. R.; Foiles, S. M.; Tucker, G. J. Spectral Neighbor 
Analysis Method for Automated Generation of Quantum-Accurate Interatomic Potentials. J. 
Comput. Phys. 2015, 285 (C). https://doi.org/10.1016/j.jcp.2014.12.018. 

(26)  De Jong, M.; Chen, W.; Notestine, R.; Persson, K.; Ceder, G.; Jain, A.; Asta, M.; Gamst, A. A 
Statistical Learning Framework for Materials Science: Application to Elastic Moduli of k-Nary 
Inorganic Polycrystalline Compounds. Sci. Rep. 2016, 6, 34256. 
https://doi.org/10.1038/srep34256. 

(27)  Legrain, F.; Carrete, J.; Van Roekeghem, A.; Curtarolo, S.; Mingo, N. How Chemical 
Composition Alone Can Predict Vibrational Free Energies and Entropies of Solids. Chem. Mater. 
2017, 29 (15), 6220–6227. https://doi.org/10.1021/acs.chemmater.7b00789. 

(28)  Chmiela, S.; Tkatchenko, A.; Sauceda, H. E.; Poltavsky, I.; Schütt, K. T.; Müller, K.-R. Machine 
Learning of Accurate Energy-Conserving Molecular Force Fields. Sci. Adv. 2017, 3 (5), e1603015. 
https://doi.org/10.1126/sciadv.1603015. 

(29)  Smith, J. S.; Nebgen, B. T.; Zubatyuk, R.; Lubbers, N.; Devereux, C.; Barros, K.; Tretiak, S.; 
Isayev, O.; Roitberg, A. E. Approaching Coupled Cluster Accuracy with a General-Purpose 
Neural Network Potential through Transfer Learning. Nat. Commun. 2019, 10, 2903. 
https://doi.org/10.1038/s41467-019-10827-4. 

(30)  Faber, F. A.; Lindmaa, A.; Von Lilienfeld, O. A.; Armiento, R. Machine Learning Energies of 2 
Million Elpasolite (ABC2D6) Crystals. Phys. Rev. Lett. 2016, 117 (13), 135502. 
https://doi.org/10.1103/PhysRevLett.117.135502. 

(31)  Grisafi, A.; Fabrizio, A.; Meyer, B.; Wilkins, D. M.; Corminboeuf, C.; Ceriotti, M. Transferable 
Machine-Learning Model of the Electron Density. ACS Cent. Sci. 2019, 5 (1), 57–64. 
https://doi.org/10.1021/acscentsci.8b00551. 

(32)  Chmiela, S.; Sauceda, H. E.; Müller, K. R.; Tkatchenko, A. Towards Exact Molecular Dynamics 
Simulations with Machine-Learned Force Fields. Nat. Commun. 2018, 9 (1), 3887. 
https://doi.org/10.1038/s41467-018-06169-2. 

(33)  Behler, J.; Parrinello, M. Generalized Neural-Network Representation of High-Dimensional 
Potential-Energy Surfaces. Phys. Rev. Lett. 2007, 98 (14), 146401. 
https://doi.org/10.1103/PhysRevLett.98.146401. 

(34)  Smith, J. S.; Isayev, O.; Roitberg, A. E. Data Descriptor: ANI-1, A Data Set of 20 Million 
Calculated off-Equilibrium Conformations for Organic Molecules. Sci. Data 2017, 4, 170193. 
https://doi.org/10.1038/sdata.2017.193. 



(35)  Smith, J. S.; Nebgen, B.; Lubbers, N.; Isayev, O.; Roitberg, A. E. Less Is More: Sampling 
Chemical Space with Active Learning. J. Chem. Phys. 2018, 148 (24). 
https://doi.org/10.1063/1.5023802. 

(36)  Fink, T.; Raymond, J. L. Virtual Exploration of the Chemical Universe up to 11 Atoms of C, N, O, 
F: Assembly of 26.4 Million Structures (110.9 Million Stereoisomers) and Analysis for New Ring 
Systems, Stereochemistry, Physicochemical Properties, Compound Classes, and Drug Discove. J. 
Chem. Inf. Model. 2007, 47 (2), 342–353. https://doi.org/10.1021/ci600423u. 

(37)  Fink, T.; Bruggesser, H.; Reymond, J. L. Virtual Exploration of the Small-Molecule Chemical 
Universe below 160 Daltons. Angew. Chemie - Int. Ed. 2005, 44 (10), 1504–1508. 
https://doi.org/10.1002/anie.200462457. 

(38)  Bento, A. P.; Gaulton, A.; Hersey, A.; Bellis, L. J.; Chambers, J.; Davies, M.; Krüger, F. A.; Light, 
Y.; Mak, L.; McGlinchey, S.; Nowotka, M.; Papadatos, G.; Santos, R.; Overington, J. P. The 
ChEMBL Bioactivity Database: An Update. Nucleic Acids Res. 2014, 42 (D1), D1083–D1090. 
https://doi.org/10.1093/nar/gkt1031. 

(39)  Brauer, B.; Kesharwani, M. K.; Kozuch, S.; Martin, J. M. L. The S66x8 Benchmark for 
Noncovalent Interactions Revisited: Explicitly Correlated Ab Initio Methods and Density 
Functional Theory. Phys. Chem. Chem. Phys. 2016, 18 (31), 20905–20925. 
https://doi.org/10.1039/C6CP00688D. 

(40)  Landrum, G. RDkit: Open-source Cheminformatics. 
(41)  Davies, M.; Nowotka, M.; Papadatos, G.; Atkinson, F.; van Westen, G.; Dedman, N.; Ochoa, R.; 

Overington, J. MyChEMBL: A Virtual Platform for Distributing Cheminformatics Tools and 
Open Data. Challenges 2014, 5 (2), 334–337. https://doi.org/10.3390/challe5020334. 

(42)  Kesharwani, M. K.; Karton, A.; Sylvetsky, N.; Martin, J. M. L. The S66 Non-Covalent 
Interactions Benchmark Reconsidered Using Explicitly Correlated Methods Near the Basis Set 
Limit*. Aust. J. Chem. 2018, 71 (4), 238–248. https://doi.org/10.1071/CH17588. 

(43)  Hjorth Larsen, A.; JØrgen Mortensen, J.; Blomqvist, J.; Castelli, I. E.; Christensen, R.; Dułak, M.; 
Friis, J.; Groves, M. N.; Hammer, B.; Hargus, C.; et al. The Atomic Simulation Environment - A 
Python Library for Working with Atoms. Journal of Physics Condensed Matter. IOP Publishing 
July 2017, p 273002. https://doi.org/10.1088/1361-648X/aa680e. 

(44)  Ballell, L.; Bates, R. H.; Young, R. J.; Alvarez-Gomez, D.; Alvarez-Ruiz, E.; Barroso, V.; Blanco, 
D.; Crespo, B.; Escribano, J.; González, R.; et al. Fueling Open-Source Drug Discovery: 177 
Small-Molecule Leads against Tuberculosis. ChemMedChem 2013, 8 (2), 313–321. 
https://doi.org/10.1002/cmdc.201200428. 

(45)  Kanal, I. Y.; Keith, J. A.; Hutchison, G. R. A Sobering Assessment of Small-Molecule Force Field 
Methods for Low Energy Conformer Predictions. Int. J. Quantum Chem. 2018, 118 (5), e25512. 
https://doi.org/10.1002/qua.25512. 

(46)  Sellers, B. D.; James, N. C.; Gobbi, A. A Comparison of Quantum and Molecular Mechanical 
Methods to Estimate Strain Energy in Druglike Fragments. J. Chem. Inf. Model. 2017, 57 (6), 
1265–1275. https://doi.org/10.1021/acs.jcim.6b00614. 

(47)  Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; 
Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; et al. Gaussian09 Revision D.01, 
Gaussian Inc. Wallingford CT. Gaussian 09 Revision C.01. 2010. 

(48)  Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; 
Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; et al. Gaussian 16. Gaussian, Inc. 
Wallingford CT 2016. 

(49)  Neese, F. The ORCA Program System. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012. 
https://doi.org/10.1002/wcms.81. 

(50)  O’Boyle, N. M.; Banck, M.; James, C. A.; Morley, C.; Vandermeersch, T.; Hutchison, G. R. Open 
Babel: An Open Chemical Toolbox. J. Cheminform. 2011. https://doi.org/10.1186/1758-2946-3-
33. 

(51)  Sauceda, H. E.; Chmiela, S.; Poltavsky, I.; Müller, K.-R.; Tkatchenko, A. Molecular Force Fields 



with Gradient-Domain Machine Learning: Construction and Application to Dynamics of Small 
Molecules with Coupled Cluster Forces. J. Chem. Phys. 2019, 150 (11), 114102. 
https://doi.org/10.1063/1.5078687. 

(52)  Řezáč, J.; Riley, K. E.; Hobza, P. Benchmark Calculations of Noncovalent Interactions of 
Halogenated Molecules. J. Chem. Theory Comput. 2012, 8 (11), 4285–4292. 
https://doi.org/10.1021/ct300647k. 

(53)  Halgren, T. A. Merck Molecular Force Field. II. MMFF94 van Der Waals and Electrostatic 
Parameters for Intermolecular Interactions. J. Comput. Chem. 1996, 17 (5‐6), 520–552. 
https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<520::AID-JCC2>3.0.CO;2-W. 

(54)  Hanwell, M. D.; Curtis, D. E.; Lonie, D. C.; Vandermeerschd, T.; Zurek, E.; Hutchison, G. R. 
Avogadro: An Advanced Semantic Chemical Editor, Visualization, and Analysis Platform. J. 
Cheminform. 2012. https://doi.org/10.1186/1758-2946-4-17. 

(55)  Stevenson, J.; Jacobson, L. D.; Zhao, Y.; Wu, C.; Maple, J.; Leswing, K.; Harder, E.; Abel, R. 
Schrodinger-ANI: An Eight-Element Neural Network Interaction Potential with Greatly Expanded 
Coverage of Druglike Chemical Space. December 12, 2019. 
https://doi.org/10.26434/chemrxiv.11319860.v1. 

(56)  Sifain, A. E.; Lubbers, N.; Nebgen, B. T.; Smith, J. S.; Lokhov, A. Y.; Isayev, O.; Roitberg, A. E.; 
Barros, K.; Tretiak, S. Discovering a Transferable Charge Assignment Model Using Machine 
Learning. J. Phys. Chem. Lett. 2018, 9, 4495–4501. https://doi.org/10.1021/acs.jpclett.8b01939. 

(57)  Pordes, R.; Petravick, D.; Kramer, B.; Olson, D.; Livny, M.; Roy, A.; Avery, P.; Blackburn, K.; 
Wenaus, T.; Würthwein, F.; Foster, I.; Gardner, R.; Wilde, M.; Blatecky, A.; McGee, J.; Quick, R. 
The Open Science Grid. In Journal of Physics: Conference Series; IOP Publishing, 2007; Vol. 78, 
p 012057. https://doi.org/10.1088/1742-6596/78/1/012057. 

(58)  Sfiligoi, I.; Bradley, D. C.; Holzman, B.; Mhashilkar, P.; Padhi, S.; Würthwein, F. The Pilot Way 
to Grid Resources Using GlideinWMS. In 2009 WRI World Congress on Computer Science and 
Information Engineering, CSIE 2009; IEEE, 2009; Vol. 2, pp 428–432. 
https://doi.org/10.1109/CSIE.2009.950. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



TOC graphic 

 



download fileview on ChemRxivmanuscript_2-05.pdf (588.07 KiB)

https://chemrxiv.org/ndownloader/files/21606099
https://chemrxiv.org/articles/Extending_the_Applicability_of_the_ANI_Deep_Learning_Molecular_Potential_to_Sulfur_and_Halogens/11819268/1?file=21606099


Supplementary Information 

TS1: Mean absolute error, root mean square error, R-squared correlation, and spearman rank 
between relative conformer energies predicted by ANI and MP2 for each molecule in the 
conformer test set. Energy range is the difference between the highest and lowest energy 

conformer as predicted by MP2. 

Molecule MAE 
(kcal/mol) 

RMSE 
(kcal/mol) 

R2 Spearman 
Rank 

Energy Range 
(kcal/mol) 

omegacsd_FABSOQ10 1.092 1.329 0.365 0.467 1.262 
omegacsd_DIAVER 1.272 1.527 0.754 0.527 4.762 

omegacsd_CDBMPI10 1.556 1.981 0.589 0.571 6.125 
omegacsd_GALSEM 1.918 2.535 0.422 0.318 7.416 

astex_1n2j 1.428 1.922 0.781 0.922 8.088 
omegapdb_1m5f 1.433 1.753 0.739 0.854 8.798 
omegapdb_1v2k 1.213 1.583 0.853 0.901 8.958 

astex_1of1 1.870 1.870 0.869 0.911 10.252 
omegacsd_SEYMIS 2.700 4.341 0.235 0.484 10.491 
omegacsd_FIBREN 2.304 2.843 0.785 0.871 10.613 

omegapdb_1qxw 2.376 3.296 0.466 0.675 10.745 
omegacsd_SPIRIL 1.581 1.960 0.820 0.837 11.107 

omegacsd_CUHNEY10 1.542 2.121 0.785 0.794 11.107 
omegapdb_2f7p 1.537 1.879 0.837 0.910 11.689 

omegacsd_CEJTIU 3.239 4.264 0.705 0.901 12.056 
omegapdb_2byh 3.100 4.156 0.421 0.650 12.216 
omegapdb_1z1r 3.342 4.155 0.629 0.808 13.824 
omegapdb_1gs5 1.978 3.354 0.694 0.827 14.936 

astex_1meh 1.551 1.914 0.947 0.958 15.013 
omegapdb_1xom 1.414 1.712 0.917 0.896 15.102 

 

 

 

 

 

 

 

 

 

 

 



TS2: DFT@ANI 

Mean absolute error, root mean square error, R-squared correlation, and spearman rank between 
relative conformer energies predicted by ANI and DFT for each molecule in the conformer test 
set. The structures were optimized using ANI-2x and single point calculation on those structures 
were performed with ꞷb97x/6-31g*. Energy range is the difference between the highest and 
lowest energy conformer as predicted by DFT. 

 

Molecule 
MAE 

(kcal/mol) 
RMSE 

(kcal/mol) 
R2 

Spearman 
Rank 

Energy Range 
(kcal/mol) 

omegacsd_FABSOQ10 0.973 1.167 0.471 0.692   2.596 
omegacsd_DIAVER 1.218 1.442 0.674 0.855   4.557 

omegacsd_CDBMPI10 1.332 1.623 0.707 0.462   4.756 
Omegacsd_GALSEM 1.044 1.328 0.797 0.768   6.662 

omegapdb_1v2k        0.909 1.099 0.926 0.946   8.732 
omegacsd_SEYMIS      0.838 1.062 0.936 0.967   9.120 

astex_1n2j 1.368 1.708 0.842 0.928   10.574 
omegapdb_1m5f 1.399 1.745 0.795 0.854   11.020 

astex_1of1 0.537 0.700 0.982 0.982   11.618 
omegapdb_2f7p 1.183 1.531 0.894 0.940   12.207 

omegacsd_SPIRIL     2.219 2.716 0.818 0.809   12.567 
omegacsd_FIBREN     2.015 2.462 0.813 0.938   13.063 

omegapdb_1qxw       2.838 3.490 0.649 0.777   13.212 
omegacsd_CEJTIU 0.705 0.873 0.988 0.926   14.155 
omegapdb_1xom 0.836 1.053 0.972 0.931   14.582 

omegacsd_CUHNEY10 1.397 1.792 0.957 0.877   15.657 
omegapdb_1gs5 1.014 1.247 0.969 0.979   15.989 
omegapdb_2byh 2.624 3.234 0.675 0.824   16.724 
omegapdb_1z1r 1.888 2.363 0.900 0.947   18.865 

astex_1meh 2.017 3.009 0.873 0.916   20.207 
 

 

 

 

 

 

 

 

 



TS3: ANI@DFT 

Mean absolute error, root mean square error, R-squared correlation, and spearman rank between 
relative conformer energies predicted by ANI and DFT for each molecule in the conformer test 
set. The structures were optimized using ꞷb97x/6-31g* and single point calculation on those 
structures were performed with ANI-2x. Energy range is the difference between the highest and 
lowest energy conformer as predicted by DFT. 

Molecule MAE 
(kcal/mol) 

RMSE 
(kcal/mol) 

R2 Spearman 
Rank 

Energy Range 
(kcal/mol) 

omegacsd_FABSOQ10 1.076   1.305 0.141   0.250   2.205   
omegacsd_DIAVER 0.518   0.648 0.835   0.960   3.394   

omegacsd_CDBMPI10 0.916   1.104 0.823   0.724   5.036   
omegacsd_SEYMIS 1.561   1.899 0.927   0.962   7.652   
omegacsd_GALSEM 1.153   1.553 0.795   0.790   8.165   

omegapdb_1v2k 1.030   1.271 0.891   0.911   8.190   
omegapdb_1m5f 1.406   1.715 0.775   0.897   9.466   

omegacsd_SPIRIL 1.553   1.980 0.837   0.861   9.808   
astex_1n2j 1.113   1.361 0.895   0.934   10.655   

omegapdb_1qxw 1.636   2.075 0.788   0.852   11.424   
astex_1of1 0.596   0.749 0.982   0.971   11.594   

omegacsd_FIBREN 2.067   2.675 0.836   0.953   12.298   
omegapdb_2f7p 1.228   1.505 0.905   0.927   12.373   

omegacsd_CEJTIU 0.933   1.151 0.980   0.864   12.907   
omegacsd_CUHNEY10 1.020   1.268 0.966   0.889   13.376   

omegapdb_2byh 2.466   3.131 0.619   0.833   13.980   
omegapdb_1xom 1.010   1.262 0.961   0.897   15.533   
omegapdb_1gs5 1.021   1.306 0.961   0.962   15.945   
omegapdb_1z1r 2.396   2.912 0.816   0.885   16.596   

astex_1meh 1.218   1.542 0.966   0.970   18.899   
 

 

 

 

 

 

 

 

 

 



TS4: ANI@ANI_DFT@DFT 

Mean absolute error, root mean square error, R-squared correlation, and spearman rank between 
relative conformer energies predicted by ANI and DFT for each molecule in the conformer test 
set. The conformers were optimized with each method and the correlation between the methods 
is shown below. 

Molecule MAE 
(kcal/mol) 

RMSE 
(kcal/mol) 

R2 
Spearman 

Rank 
omegacsd_FABSOQ10 1.251   1.521 0.135   0.179   

omegacsd_DIAVER 1.433   1.702 0.174   0.322   
omegacsd_CDBMPI10 1.209   1.499 0.750   0.514   

omegacsd_SEYMIS 0.828   1.004 0.963   0.967   
omegacsd_GALSEM 1.965   2.526 0.400   0.385   

omegapdb_1v2k 1.341   1.658 0.830   0.911   
omegapdb_1m5f 1.590   1.955 0.689   0.847   

omegacsd_SPIRIL 1.595   1.942 0.838   0.795   
astex_1n2j 1.209   1.491 0.875   0.931   

omegapdb_1qxw 2.124   2.662 0.651   0.752   
astex_1of1 1.320   1.978 0.873   0.931   

omegacsd_FIBREN 2.024   2.526 0.803   0.923   
omegapdb_2f7p 1.198   1.511 0.903   0.933   

omegacsd_CEJTIU 0.916   1.132 0.981   0.887   
omegacsd_CUHNEY10 0.669   0.841 0.976   0.872   

omegapdb_2byh 2.932   3.871 0.468   0.672   
omegapdb_1xom 1.109   1.412 0.954   0.895   
omegapdb_1gs5 1.114   1.413 0.953   0.981   
omegapdb_1z1r 3.673   4.757 0.599   0.761   

astex_1meh 1.454   1.911 0.947   0.945   
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 



TS5: MAE and RMSE comparing ANI-2x to DFT interaction energies including deformation 
energy for the X40 dataset and the dataset from Halgren.  
 

Error Metric Halgren X40 

MAE 1.25 1.30 
RMSE 1.81 1.89 

 

 

TS6: MAE and RMSE comparing ANI-2x to DFT interaction energies for the X40 dataset, 
separated by interaction type and whether or not deformation energy was included in the 
interaction energy values. The number of systems from the X40 dataset for each interaction type 
is also reported.  

 Error 

Metric 

London 

Dispersion 

Induction Dipole-

dipole 

Interaction 

Stacking Halogen 

Bonds 

Hydrogen 

Bonds 

Number of 

Systems 

 2 4 2 2 4 8 

No 

Deformation 

Energy 

MAE 0.60 0.90 0.32 1.43 1.07 2.59 
RMSE 0.66 1.06 0.33 1.90 1.24 3.73 

Including 

Deformation 

Energy 

MAE 0.58 0.89 0.32 1.03 1.06 2.10 
RMSE 0.64 1.06 0.32 1.34 1.23 2.81 

 
 

 

 

 

 

 

 

 

 

 

 



FS1: Each red point represents the MAE across all 36 conformers compared to benchmark 
CCSD(T)/CBS data for one molecule in the genentech benchmark. The boxes extend to include 
50% of the points and the whiskers extend to include 90% of the points. The middle line 
represents the median value. The table shows the MAE and RMSE of each method across all 
conformers of all molecules. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



FS2: ANI-2x energies vs. MP2 energies for each of the molecules in the conformer test case. 
One conformation of each molecule is shown to help demonstrate the types of molecules studied. 

 

 

 



 

 

 

 



FS3: ANI-2x error and ensemble standard deviation divided by the square root of number of 
atoms in the system for each of the molecules from the 2D torsion scan benchmark. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Name Error STD/sqrt(N) 

Cysteine-Dipeptide 

  

DDT 

  

Hexafluoroacetone 

  

Bendamustine 

  



Methods: 

The bond lengths, angles, and dihedrals analyzed during the conformer search and score test 
were attained by iterating over all bonds using the RDKit software package. RMSD calculations 
were performed using open babel’s python implementation pybel and exclude hydrogens. 

 

ANI-2x contains an ensemble of 8 models. Each model contains a separate atomic network for 
each species. Table S4 shows details for these networks. 

 

TS7: 

Hydrogen 

 Layer 1 Layer 2 Layer 3 Layer 4 
Nodes 256 192 160 1 

Activation CELU CELU CELU Linear 
Regularization L2 (5.0E-3) L2(1.0E-6) L2(1.0E-6) None 

Carbon 

Nodes 224 192 160 1 
Activation CELU CELU CELU Linear 

Regularization L2(5.0E-3) L2(1.0E-6) L2(1.0E-6) None 
Nitrogen 

Nodes 192 160 128 1 
Activation CELU CELU CELU Linear 

Regularization L2(5.0E-3) L2(1.0E-6) L2(1.0E-6) None 
Oxygen 

Nodes 192 160 128 1 
Activation CELU CELU CELU Linear 

Regularization L2(5.0E-3) L2(1.0E-6) L2(1.0E-6) None 
Sulfur/Fluorine/Chlorine 

Nodes 160 128 96 1 
Activation CELU CELU CELU Linear 

Regularization L2(5.0E-3) L2(1.0E-6) L2(1.0E-6) None 
 

 

 

 

 

 

 



 

TS8: Comprehensive Machine-learning Potential version 2 (COMP6v2) benchmark.  

BENCHMARK # OF 

MOLECULES 

# OF 

CONFORMATIONS 

AVERAGE 

ATOMS/MOLECULE 

(STDV.) 

S66X8 66 528 20(7) 
TRIPEPTIDES 345 3536 51(7) 
MD 

BENCHMARK 

14 1791 75(73) 

GDB-12TO13 2000 24000 26(3) 
GDB-10TO11 1746 41670 21(3) 
GDB-07TO09 2625 63000 16(3) 
DRUGBANK 1451 23203 44(18) 

 

The ANI model atomic environment vector (AEV) is computed using the in-house NeuroChem 
software suite. These AEVs are computed identically to those published in the ANI-1 work.7 In 
this work the atomic elements C, H, N, and O are described by the AEVs (using the parameters 
below) yielding a total of 384 AEV elements per atom. The AEV parameters used to train each 
model are supplied below. 

 Radial Parameters:  

• Radial Cutoff= 5.1 Å 
• 𝜂Radial= 19.70000 
• RSRadial=[8.0000000e+01, 1.0687500e+00, 1.3375000e+00, 1.6062500e+00, 

1.8750000e+00, 2.1437500e+00, 2.4125000e+00, 2.6812500e+00, 2.9500000e+00, 
3.2187500e+00, 3.4875000e+00, 3.7562500e+00, 4.0250000e+00, 4.2937500e+00, 
4.5625000e+00, 4.8312500e+00] Å 

Angular Parameters: 

• Angular Cutoff= 3.5 Å 
• 𝜂Angular= 12.50000 
• RsRadial=[8.0000000e-01, 1.1375000e+00, 1.4750000e+00, 1.8125000e+00, 

2.1500000e+00, 2.4875000e+00, 2.8250000e+00, 3.1625000e+00] 
• ζ= 14.10000 
• θs=[3.9269908e-01, 1.1780972e+00, 1.9634954e+00, 2.7488936e+00] 
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