Extending the
concept of transaction
compensation

The ability to compensate for previous
activities, often in the case of failure or
exceptional events, is an important feature of
long-running business transactions. In this
paper, we present several extensions to
existing notions of compensation for business
transactions. The extensions are described
using a business process modeling language
called StAC (Structured Activity Compensation)
but are also placed in the context of IBM’s
BPBeans (Business Process Beans) enterprise
technology. The meaning of the
compensation mechanisms is made precise,
as are issues of compensation scoping in
multilevel transactions. The compensation
extensions result in flexible and powerful
mechanisms for modeling and implementing
long-running business transactions.

To compensate is “to make amends for, to make up
for.”! In the context of business transactions, a com-
pensation is an action taken when something goes
wrong or when there is a change of plan. For exam-
ple, when an airline has overbooked a flight and too
many passengers turn up at the gate, something has
gone wrong. The airline needs to take corrective ac-
tion to resolve the problem. In this case, the airline
will typically attempt to encourage some passengers
to delay their journey by offering monetary payments.
The payments and the rebooking of the flight are a
compensation for the inability to seat these passen-
gers on this flight.

In this paper, we present some extensions to the stan-
dard notion of compensation. We show that these

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002

0018-8670/02/$5.00 © 2002 I1BM

by M. Chessell C. Ferreira
C. Giriffin P. Henderson
D. Vines
M. Butler

extensions provide powerful and flexible mechanisms
for modeling and building extended business trans-
actions. Some of the mechanisms described here
have been implemented as part of 1BM’s BPBeans*
(Business Process Beans) technology. BPBeans is
now part of the IBM WebSphere™ Application Server
Enterprise Edition.

The standard approach to compensation involves as-
sociating a compensation activity with the primary
activities of a transaction.® If compensation is re-
quired, the compensation activities of all successfully
executed primary activities are executed. In the ap-
proach of Reference 3, the compensation activities
are expected to undo the effect of the primary ac-
tivity to which they are associated. We refer to the
invocation of compensation activities as reversal. If
we reach a point where compensation will no longer
be required, compensation activities can be forgot-
ten. We refer to this as acceptance.

We present a simple business process modeling lan-
guage called StAC (Structured Activity Compensa-
tion), which incorporates compensation constructs.
We use StAC as a vehicle for describing our exten-
sions to transaction compensation. We present ex-
tensions of two types:

* The first type involves mechanisms that are more
general than the standard concept of compensa-

©Copyright 2002 by International Business Machines Corpora-
tion. Copying in printed form for private use is permitted with-
out payment of royalty provided that (1) each reproduction is done
without alteration and (2) the Journal reference and IBM copy-
right notice are included on the first page. The title and abstract,
but no other portions, of this paper may be copied or distributed
royalty free without further permission by computer-based and
other information-service systems. Permission to republish any
other portion of this paper must be obtained from the Editor.

CHESSELL ET AL.

743

tion. Compensation takes place at the application
level. The standard concept of compensation is ex-
tended to include transactions that are not atomic,
and thus compensation is not necessarily a seman-
tic “undo.” Compensation of sequential and con-
current activities is supported and compensation
is hierarchically structured.

e The second type involves new mechanisms sup-
porting multiple compensation. We introduce the
notions of selective compensation and alternative
compensation. In selective compensation, the re-
versal selects which activities should be compen-
sated. In alternative compensation, several com-
pensations may be attached to a primary activity
and the reversal chooses which of these should be
invoked.

We proceed with an overview of the standard ap-
proach to compensation. We then present the two
types of extension to the standard approach.

Transactions and failure

Deciding what to do when things go wrong is one
of the most difficult aspects of software design and
development. Many mechanisms have been devel-
oped to help with the design and coding of error de-
tection and correction. The most basic mechanisms
involve the use of return codes and exception han-
dling. These permit the program to detect and in-
dicate that an error condition has occurred, but they
do nothing to help the program with corrective ac-
tion.

One of the first mechanisms to be introduced in or-
der to help with corrective action is that of ACID
transactions. In general in this paper, by “transac-
tion” we mean a long-running transaction that is typ-
ically not ACID. When we are referring to an ACID
transaction, it will be clear from the context.

ACID transactions. The ACID transaction is a con-
cept that was first introduced during the 1960s (al-
though the term ACID was not introduced until
1983.)* An ACID transaction is a grouping of actions
or operations that together have the following prop-
erties:

Atomicity. The group of actions occurs atomically,
that is, the actions either all happen or none happen.

Consistency. The group of actions together are a cor-
rect transformation of the state of the system.

Isolation. Even though transactions are processed
concurrently, it appears to each transaction that

744 CHESSELL ET AL.

other transactions occurred either before or after
it.

Durability. Once a transaction “commits,” its effects
survive any system failures.

ACID transactions aid programmers immensely by al-
lowing them to rely on a transaction processing mon-
itor (a program that manages and coordinates the
transactions in a system) to provide facilities for mak-
ing a group of actions atomic.

The ACID transaction processing monitor normally
provides services to an application to allow it to de-
marcate the work it wishes to perform into ACID
transactions. The application makes a begin call at
the start of the ACID transaction and then either a
commit call (when it wants the actions to occur) or
arollback call (when the application wishes to abort
the actions) at the end of the ACID transaction. This
ACID mechanism assumes transactions are fast and
simple. This may not be the case for complex op-
erations. So, for example, exclusive locks put on data
may be held for a long time, seriously reducing the
throughput of the system. Also, ACID transactions
involving a large amount of work can be very expen-
sive to roll back, especially in the latter stages of their
life. For example, think of a payroll application. If
it were operating as a single ACID transaction, a
server failure that occurred during the payment of
the last employee would undo the successful payment
of all other employees.

Compensation. Compensation is the act of making
amends when something has gone wrong or when
plans are changed. Although compensation can be
as simple as undoing an original action (for exam-
ple crediting an account that has been debited), it
should not be viewed as simply undoing the original
action. For example, if a bill has been sent to a cus-
tomer, it is not possible to undo the sending. In this
case the compensation would probably involve ei-
ther sending an apologetic letter asking the customer
to disregard the bill, or providing a refund.

Generally, a long-running transaction can be bro-
ken into smaller transactions and compensating
transactions, which can then be combined into a form
of extended transaction known as a “saga.”* The saga
is composed of a sequence of transactions, each of
which (except for the very last one) has an associ-
ated compensation. If one of the transactions in the
sequence reverses, the compensations associated
with those transactions that were successfully com-
pleted are run in reverse order.

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002

By using sagas, a long-running transaction can be
broken into smaller pieces, each of which can keep
fewer exclusive locks, and release those locks much
earlier than the original long-running transaction.
However, the saga violates the isolation principle of
ACID transactions. If another transaction examines
data being changed by the saga, it may see data from
the middle of the execution of the saga.

Introduction to business process beans

In its simplest terms, the BPBeans framework allows
customers to build Java** objects that represent their
business processes. A business process models a par-
ticular piece of work that is useful to the business.
Generally, this work involves inputting data, process-
ing the data, updating some stored data, and pro-
ducing a result.

To be useful, business processes are often connected
together so that the output from one process be-
comes the input for the next. The network of bus-
iness processes for a business function is usually de-
fined in a business process model. These models can
often be complex, especially when error handling and
exception processing is included. To make them com-
prehensible, most business process models are ar-
ranged in a hierarchy of abstractions. At the top level
of the model one can see the major business func-
tions. Each business function can be expanded to
show its main internal business processes, which may
in turn be expanded through many levels until the
simple primitive operations are exposed.

Although business process modeling is very useful
for business managers, it is not straightforward to
take parts of the model and implement them across
anumber of computer systems. This is because a bus-
iness process model normally uses many different
styles of business process, each of which requires a
different piece of middleware technology. For exam-
ple, Component Broker® can run customer-written
objects that communicate with one another in a syn-
chronous manner. WebSphere MQ*,® on the other
hand, is very good at asynchronous message pass-
ing. A business process model is likely to be imple-
mented using both styles of communication, and an
implementation of part of a business process often
involves integrating different types of middleware
that use different terms and modes of operation.

BPBeans provides the means, in the form of the

ABC? (Application Builder for Components) tool,
for an application designer to build an application

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002

based on a business process model that makes use
of different styles of processing (e.g., parallel or se-
quential processes communicating either synchro-
nously or asynchronously). The BPBeans run-time
environment is then responsible for combining the
necessary middleware to support the application. In
addition, the run-time environment will control
transactions and advanced error recovery mecha-
nisms such as compensation through properties and
constructs added to the business process model. This
means the programming interfaces that the custom-
er-written code uses must be very simple.

Not only is the programming of the system based on
the contents of the business process model, the de-
ployment, monitoring, and debugging is also driven
by the business process model. This means the or-
ganization works with a single view of the system.

BPBeans applications. A BPBeans application is
made up of a hierarchy of nested components. At
the bottom of this hierarchy are the primitive com-
ponents. A primitive component contains a simple
Javabean. This Java bean is loaded into the ABC tool,
which creates some XML (Extensible Markup Lan-
guage) that describes the services required by the
Java bean. It is this combination of the XML and the
Java bean that makes the BPBean.

From the ABC tool, the application designer is able
to pull these primitive components together into
composite components called processes and connect
them. Processes may also contain other processes,
creating a hierarchy of components. The BPBeans
run time provides implementation for a number of
useful primitive components, plus some process pat-
terns such as the following:

 Concurrent processes that can support an arbitrary
number of communicating tasks (activities or pro-
cesses) running in parallel

* Sequential processes that step through a sequence
of tasks, one at a time, using the result (outcome)
of the previous task to determine which task to run
next

e Compensation pair processes that combine two
tasks together, where one of the tasks is run if com-
pensation for the effects of the other task is re-
quired

The BPBeans framework also provides for accep-
tance of tasks and for reversal of tasks. The BPBeans
framework uses a graphical representation of these
patterns as shown in Figure 1. In this figure, the ovals

CHESSELL ET AL. 745

Figure 1 BPBeans example

CreditOk

not(CreditOk)

Table 1 StAC syntax

Syntax Meaning

Process ; Process
Process || Process
PAR i IN S DO Process

Sequential processes
Concurrent processes
Generalized concurrency

IF Condition THEN Process Conditional

ELSE Process

O] Early termination
{Process} Termination scoping
Process + Process Compensation pair
[Process] Compensation scoping
Accept

Reverse

represent activities, whereas boxes and arrows are
used to group these. The box with the dashed line
represents a compensation pair. In this case, Accept
Order is compensated by Restock Order. Arrows rep-
resent sequencing of activities, so Accept Order takes
place before Pack Order and Credit Check. Activi-
ties in the same box that are not connected by ar-
rows represent concurrent activities, so Pack Order
and Credit Check take place concurrently. The tri-
angle to which Credit Check is attached means that
the outcome used to select subsequent behavior is
determined solely by Credit Check and is not affected
by Pack Order. The box with the check represents
transaction acceptance, whereas the box with the X
represents transaction reversal. The solid circle rep-
resents the entry point, whereas the circle with the
dot in the center represents the exit point. A pro-
cess in BPBeans may consist of several hierarchically
structured diagrams.

746 CHESSELL ET AL

Structured activity compensation

StAC (Structured Activity Compensation) is a tex-
tual business process modeling language introduced
in Reference 7. StAC supports sequential and con-
current activities, as well as compensation. We give
an overview of the language in this section. Some of
the language used for describing processes is ex-
plained in Table 1.

Sequential and concurrent activities. An activity in
StAC corresponds to a primitive component in the
BPBeans framework. Activities act on a global set
of variables shared by all activities in a model. As
in BPBeans, activities may be composed sequentially
or concurrently using the sequential and concurrent
operators.

The sequential construct is a binary operator that
composes two processes, P;Q. In the process P;Q,
P is executed first. When P completes, Q is executed.

There are two forms of concurrent construct, the bi-
nary form, P||Q, which composes two processes in
parallel, and the generalized form, PAR i IN S DO
P, which models concurrent invocation of multiple
instances of a process. For example,

PARiIN1..10DOi.P

represents 10 concurrent instances of process P,
where each instance of P is indexed by a unique num-

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002

beriintherangel .. 10. A concurrent process com-
pletes when all the constituent processes complete.

The sequential operator is associative, that is, (P;
0);R = P;(Q;R), which means that we can write
anested sequential composition of the form P;(Q;R)
without parentheses as P;Q;R. Similar principles ap-
ply for the binary parallel operator.

Because activities act on a shared global variable set,
the processes of a concurrent composition can in-
teract indirectly via variables. A fuller description
of StAC, including a description of the approach used
to specify global variables and changes to global var-
iables, as well as a formal semantics of StAC, may
be found in Reference 7.

Early termination in StAC. The process terminator,
©, causes a process to terminate early. The behav-
ior that is made to terminate is limited by the ter-
mination scoping brackets, {...}. For example, the
process

iP; ©; 0L R

will first execute P, then the terminator will cause
the process within the braces to terminate so that Q
will not get executed. The overall process will then
continue by executing R. Termination scoping may
be nested. In the case of concurrent processes, a ter-
minator within one process also applies to the other
process. For example, in the process

{(P; ©; Q) [RHIS

the terminator causes R to terminate. The termina-
tor does not cause S to terminate because S is out-
side the termination scope. It is important to note
that R may not terminate immediately on invoca-
tion of the terminator but at some later stage. This
is because termination of concurrent processes would
be implemented by sending messages to the pro-
cesses instructing them to terminate, and these mes-
sages will not be transmitted or acted upon instan-
taneously.

The rules for the process terminator are:

¢ Invocation of a terminator within a sequential pro-
cess causes that process to terminate immediately.
* Processes within the scope of a terminator that are
running concurrently to the terminator may con-
tinue to execute for several steps after invocation

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002

of the terminator before terminating either pre-
maturely or at completion.

Compensation in StAC. A compensation pair (P +
Q) is a grouping of two tasks, where P is the primary
task, and Q is the compensation task. When a com-
pensation pair runs, it runs the primary task. Once
the primary task has completed, the compensation
task is remembered. At a later stage, the compen-
sation task may be invoked. The instruction to per-
form compensation is indicated by the reversal op-
erator, X. For example, consider the following
process, where A and B are activities:

(A + B);

This process will perform activity 4 and remember
the compensation B. The transaction reversal in-
struction will then cause compensation activity B to
be executed.

A sequence of compensation pairs is compensated
in reverse order, so the process

(A1 = Bl); (A2 + B2); (A3 = B3);

executes A1, A2, and A3 sequentially and then, be-
cause of the transaction reversal instruction, executes
B3, B2, Bl sequentially.

Concurrent compensation pairs are compensated
concurrently, so the process

(A1 + BD|(42 +~ B2)[(43 + B3));

executes A1, A2, and A3 concurrently and then, be-
cause of the reversal instruction, executes BI, B2,
B3 concurrently.

The acceptance operator, 4, indicates that currently
remembered compensations should be forgotten be-
cause they will no longer be required. For example,
the process

(A1 ~ B1); 4; (A2 + B2);

performs A7 followed by 42 and then performs the
compensation B2. Compensation BI is not per-
formed, because it has been removed by the accept

instruction.

Once the acceptance or reversal steps have been per-
formed, a process can continue on to other steps.

CHESSELL ET AL.

141

These steps can result in new compensation pairs
being invoked. Also, once a compensation has been
performed, the compensation will be cleared. If there
are no compensation pairs in between two succes-
sive reverses, the second reverse will have no effect.

The StAC language permits nested compensation
pairs, modeling the fact that a compensation task can
itself be compensated. The following example shows
a process with two levels of compensation:

Al + (A2 +~ A3);

First, activity A1 is executed and the compensation
pair A2 + A3 is remembered as the compensation
for activity A1. Next, the reversal instruction will
cause the compensation pair A2 + 43 to be executed,
by executing 42 and remembering the compensation
A3. The remembered compensation can be invoked
by a later reversal instruction. Thus, A7 is compen-
sated by activity A2, and A2 is compensated by ac-
tivity A3. The implications of this construction for
implementations are yet to be explored.

Scoping of compensation. The compensation scop-
ing brackets of StAC are used to delimit the scope
of the accept and reversal operators. Within a scope,
a reversal instruction will only execute those com-
pensation activities that have been remembered since
the start of the scope. For example, the process

(A1 + BI); [(42 = B2); K]

executes A1, 42, and B2 sequentially. Compensation
BI is outside the scope of the reversal instruction
and does not get invoked.

Within a scope, an accept instruction will only re-
move those compensation activities that have been
remembered since the start of the scope. For exam-
ple, the process

(A1 =~ B1);[(A42 +~ B2); 1],

executes 41,42, and B1 sequentially. Compensation
B2 does not get invoked as it is removed by the ac-
cept instruction. Compensation BI does not get re-
moved by the accept instruction because it is out-
side the scope of the accept.

When the end of a compensation scope is reached,
nonaccepted compensations will be maintained be-

748 CHESSELL ET AL

cause they may be invoked by the outer level scope.
For example, the process:

[(41 + B])]; &

executes A1, remembering BI. When the end of
scope is reached, B/ is maintained because it has nei-
ther been invoked nor accepted. The reversal instruc-
tion then causes BI to be invoked.

StAC extends BPBeans by allowing nested compen-
sation. As mentioned at the end of the previous sub-
section “Compensation in StAC,” a compensation
can have any other process as a compensation in
StAC, whereas in BPBeans this is not permitted. Fur-
thermore, there are some modeling differences be-
tween StAC and BPBeans. In BPBeans, cach level
in a process hierarchy overrides the lower-level com-
pensation: a BPBeans process P is modeled in StAC
as [P; 4]. Also, each concurrent process in BPBeans
has its own compensation scope so that the concur-
rent composition of P and Q in BPBeans is mod-
eled in StAC as [P]||[Q].

Order fulfillment example

To illustrate the use of compensation, we model a
fictitious scenario based around an order fulfillment
process in StAC. ACME Ltd distributes goods that
have a relatively high value to its loyal customers.
To accept and fulfill an order, the company performs
the following steps:

* An order is accepted from a customer.

* Once the order is accepted, the warehouse is asked
to prepare the order for shipment. As part of the
preparation, a courier is booked to collect the or-
der.

e Simultaneously with the warehouse preparing the
order, ACME Ltd does a credit check on the cus-
tomer to verify that the customer can pay for the
goods. The credit check is performed in parallel
because it normally succeeds and in this normal
case we do not wish to delay the order unneces-
sarily.

e If the credit check fails, fulfillment of the order is
stopped.

Application example using StAC compensation
mechanism. In the following, underlined identifiers
represent basic activities, that is, processes that can-
not be further decomposed. Other identifiers rep-
resent processes that we define subsequently.

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002

Table 2 ABC example without compensation mechanism

ACME = AcceptOrder;
FulfillOrder,

FulfillOrder = {WarehousePackaging
WarehousePackaging = PackOrder

PackOrder = (PAR I IN Orderltems DO

(PAR i IN Orderltems DO

RestockOrder

IF not(okFulfillOrder) THEN Compensate
| (CreditCheck; TF not(okCreditCheck) THEN ©)}
| (BaokCourier; CourierlsBooked := TRUE)

i.Packltem; i.ltemIsPacked := TRUE)
Compensate = IF CourierlsBooked THEN CancelCourier;

IF iltemIsPacked THEN i.Unpackltem);

At the top level the application is defined as a se-
quence as follows:

ACME =
(AcceptOrder ~ RestockOrder); FulfillOrder;

IF okFulfillOrder THEN 4 ELSE

The first step in the ACME process is a compensation
pair. The primary action of this pair is to accept the
order and deduct the order quantity from the inven-
tory database. The compensation action is simply to
add the order quantity back to the total in the in-
ventory database. Following the compensation pair,
the FulfillOrder process is invoked. Finally, if the or-
der has been fulfilled correctly, the order is accepted,
otherwise the order is compensated by invoking the
reversal. (okFulfillOrder indicates successful outcome
of the FulfillOrder activity.)

The order is fulfilled by packaging the order at the
warehouse while concurrently doing a credit check
on the customer. If the credit check fails, the Ful-
fillOrder process is terminated:

FulfillOrder =

{ WarehousePackaging
| (CreditCheck; IF not
(okCreditCheck) THEN ©)}

Notice that the termination scope includes the Ware-
housePackaging process so that a failed credit check
results in a termination instruction being sent to that
process. This will cause WarehousePackaging to ter-

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002

minate eventually, possibly before all the items in
the order have been packed.

The WarehousePackaging process consists of a com-
pensation pair in parallel with the PackOrder pro-
cess:

WarehousePackaging = (BookCourier
+ CancelCourier)
| PackOrder

The compensation pair books the courier, with the
compensation action being to cancel the courier
booking. CancelCourier results in a second message
being sent to the courier rather than reversing the
sending of the original message. The PackOrder pro-
cess packs each of the items in the order in parallel.
Each Packltem activity is compensated by a corre-

sponding Unpackltem:

PackOrder = (PAR i IN Orderltems
DO i.Packltem + i.Unpackltem)

In the case that a credit check fails, the FulfillOrder
process terminates with the courier possibly having
been booked and some of the items possibly having
being packed. The reversal will then be invoked and
will result in the appropriate compensation activity
being invoked for those activities that did take place.

Application example without StAC compensation
mechanism. A StAC model of the order fulfillment
system that does not use the compensation mech-
anism is shown in Table 2. Here each primary ac-

CHESSELL ET AL. 749

tivity sets a flag on completion indicating that it has
been executed. The explicit Compensate process uses
these flags to determine which compensation activ-
ities should be invoked. This style has a number of
disadvantages. Extra variables need to be introduced
to record which activities have taken place, and the
application modeler needs to define the overall com-
pensation behavior explicitly.

The most significant disadvantage of not using the
compensation mechanism is that process reuse is se-
verely hampered. In order to model the compensa-
tion mechanism explicitly, the application modeler
needs to be aware of all activities that require com-
pensation and what their compensation is. On the
other hand, using the compensation mechanism pro-
vided by StAC, an application modeler can reuse an
entire process definition, which may have compen-
sation pairs embedded within it, without knowing
what compensation is required. If reversal is re-
quired, the application modeler simply invokes the
reversal operator, and the compensation mechanism
of StAC ensures that the appropriate compensation
is invoked on the reused process.

Multiple compensation

In this section we present some extensions to the
StAC language that allow a process to have several
simultaneous compensation tasks associated with it.
A process decides to which task to attach compen-
sation activities, and individual tasks can be accepted
or reversed. This contrasts with the language pre-
sented in the previous subsection, “Scoping of com-
pensation,” where scoping is hierarchical and each
scope has a single implicit compensation task.

To distinguish different compensation tasks, the com-
pensation pair and the acceptance and reversal op-
erators are indexed. The StAC language is extended
as follows:

Process +; Process Indexed Compensation Pair
; Indexed Accept

X, Indexed Reverse

In the extended language, process P <, Q has P as
its primary task and, when P completes, compensa-
tion Q is remembered on compensation task i. The
instruction to accept (i.e., clear) compensation task
i is given by [4;, whereas the instruction to reverse
(i.e., execute) compensation task i is given by ;. The

750 CHESSELL ET AL.

compensation scoping brackets [] do not apply to
the indexed compensation operators.

To help illustrate indexed compensation, consider
the following example:

(Al +, B1); (A2 +, B2); ®;; (43 +, B3); ¥,

This process will invoke A7/ and A2. The reversal
causes only compensation B/ to be invoked. Com-
pensation B2 will not be invoked at this stage be-
cause it is attached to compensation task 2, and only
compensation task 1 is invoked by the first reversal
operator. After the first compensation, activity A3
is performed. Reversal is then invoked on compen-
sation task 2, which causes B3 followed by B2 to be
executed.

The compensation information of a process is main-
tained by a compensation function that for each com-
pensation task index returns the associated com-
pensation process. When the primary task of a
compensation pair concludes its execution, the com-
pensation task is composed in sequence with the orig-
inal compensation process for that task. For exam-
ple, consider the process

(A1 +, B1); (A2 =, B2)

After the execution of A7, BI is composed as the
compensation process for task 1. When the primary
task A2 has completed, the compensation task B2 is
composed sequentially with compensation process
B1. The resulting compensation for task 1 is the se-
quential process B2; BI. The reversal instruction for
task i invokes the compensation process for task 7,
and the acceptance instruction for task i clears the
compensation process for task i. The nonindexed ver-
sion of StAC can be modeled by the indexed ver-
sion. The scoping brackets (see the previous subsec-
tion, “Scoping of compensation”) introduce a new
compensation task with an empty compensation pro-
cess, and all compensations within the brackets will
be added to the compensation process of that new
task. In the same way, all reverse and accept instruc-
tions within the brackets refer to the new compen-
sation task. When the process within the brackets
terminates, the compensation process of the new task
will be composed in sequence with the compensa-
tion task of the surrounding process.

Utilizing the facility of multiple compensation tasks,
we introduce two idioms of multiple compensation,

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002

selective compensation and alternative compensation.
With selective compensation, the reversal selects
some activities to be compensated, while preserving
the compensations for other activities. With alter-
native compensation, several alternative compensa-
tion tasks may be attached to an activity and the re-
versal chooses one of these alternatives for
invocation. We illustrate selective compensation
through a travel agency example, and alternative
compensation through a meeting scheduling exam-
ple.

Selective compensation: Travel agency example.
A travel agency (example taken from Reference 8)
offers on-line trip reservation services to its clients.
A client can compose an itinerary with several flight,
car rental, and hotel reservations. The client is then
asked to decide whether he or she wants to reserve
anitinerary or to abort the reservation. Once the cli-
ent’s order has been confirmed, the reservations for
the flights, car rentals, and hotels are made. Since
these reservations are independent, they are made
in parallel to speed up the overall process. If all the
reservations in the client’s itinerary are successful,
the final itinerary is sent to the client, and this con-
cludes the trip reservation process. Otherwise, if any
of the reservations fail, the client is contacted and
given the choice of selecting an alternative itinerary
or aborting the reservation.

Before presenting the model of the travel agency,
we introduce some extra constructs of the StAC lan-
guage that are required for the example:

skip Null activity
Process [1 Process Choice
Process * Activity Iteration

The process skip does nothing and completes imme-
diately.

The choice between tasks P and Q is represented by
PUQ. This represents a choice between the initial
activities of P and the initial activities of Q and can
be used, for example, to model a menu choice of-
fered to a user. The initial activities of a process are
the ones that can be executed immediately. For ex-
ample, the initial activities of process

(AI: A2) 0 (BI; B2)

are activities A7 and BI, so the user has to choose
between executing A7 or BI.

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002

At the beginning of each iteration of the process
PxA, the user has to choose either to execute ac-
tivity A or process P. The selection of 4 terminates
the iterations. If A4 is not selected, P is executed.

In the travel agency, a trip is arranged by getting an
itinerary and continuing with the reservation:

Trip = Getltinerary; ContinueReservations

Getting an itinerary involves continually iterating
over offering the client the choice of selecting from
aflight, a car, or a hotel until EndSelection is invoked:

Getltinerary = (SelectFlight
0 SelectCar [SelectHotel)

* EndSelection

ContinueReservations starts by making the reserva-
tions on the client’s itinerary. If some of the reser-
vations failed, the client is contacted; otherwise, the
process ends:

ContinueReservations =
MakeReservations;
IF okMakeReservations THEN EndTrip
ELSE ContactClient

The flight, car, and hotel reservations are made con-
currently:

MakeReservations = FlightReservations

| CarReservations

| HotelReservations
FlightReservations = PAR fIN flights

DO f.FlightReservation
CarReservations = PAR ¢ IN cars

DO c.CarReservation
PAR & IN hotels
DO h.HotelReservation

HotelReservations

The FlightReservation process reserves a single flight
using the ReserveFlight activity. The travel agency
uses two compensation tasks: compensation task S,
representing compensation for reservations that have
been booked successfully, and compensation task F,
representing compensation for reservations that have
failed. The choice of compensation task is deter-
mined by the outcome of the ReserveFlight activity.

Because we use two compensation tasks, instead of
having a compensation pair we have a compensa-

CHESSELL ET AL. 751

Table 3 Travel Agency example without the StAC

extensions
Trip =
Getltinerary = ...
ContinueReservations = MakeReservations;
IF okMakeReservations
THEN
ELSE ContactClient
MakeReservations = ...
f-FlightReservation = f.ReserveFlight + f.DeleteFlight
f-DeleteFlight = IF f.okReserveFlight
THEN f.RemoveFlight
| £CancelFlight
ELSE f.RemoveFlight
ContactClient = Continue; &; Trip
0
Quit;

tion triple, with a primary task P and two compen-
sations Q7 and Q2. We model this triple with a con-
struction of the form:

P; IF ¢ THEN (skip +, Q1) ELSE (skip +, 02)

If P makes c true, this is equivalent to P <+, QI with
Q1 being added to compensation task 1. If P makes
c false, this is equivalent to P <+, Q2 with Q2 being
added to compensation task 2.

The flight reservation and its associated compensa-
tions is defined as follows:

f.FlightReservation =
f-ReserveFlight;

IF f.okReserveFlight

THEN skip +¢ (f.RemoveFlight
| . CancelFlight)

ELSE skip + f.RemoveFlight

The f. RemoveFlight activity removes flight f from the
client’s itinerary. The f.CancelFlight activity cancels
the reservation of flight f with the airline. The car
and hotel reservations are defined similarly and are
omitted here.

The ContactClient process is called if some reserva-
tions fail. The client is offered the choice between
continuing or quitting:

752 CHESSELL ET AL.

ContactClient = Continue; Xg; Trip

0
Quit; (s || =)

In the case that the client decides to continue, re-
versal is invoked on compensation task F, the failed
reservations. This has the effect of removing all failed
reservations from the client’s itinerary. Compensa-
tion task § is preserved because the successful res-
ervations may need to be compensated at a later
stage. In the case that the client decides to quit, re-
versal is invoked on both compensation tasks. This
has the effect of removing all reservations from the
client’s itinerary and canceling all successful reser-
vations.

Finally, the trip reservation is ended by accepting
both compensation tasks:

EndTrip = (U || Zg)

In general, by selective compensation, we mean that
some compensations can be reversed selectively,
whereas the remaining compensations are main-
tained. We have modeled the selection criteria in the
travel agency by using two compensation tasks and
deciding immediately, when the primary process is
complete, to which of these tasks to add the com-
pensation. We then invoke the compensations se-
lectively by selecting the appropriate compensation
task.

An important feature of selective compensation is
that those compensations that are not selected for
reversal are preserved. This feature makes it diffi-
cult to model selective compensation in the subset
of StAC that does not support interleaved compen-
sation tasks (and difficult to implement in the cur-
rent form of BPBeans).

Modeling the travel agency without the StAC exten-
sions. Table 3 presents a StAC model of the travel
agency without using multiple compensation tasks.
Processes that are identical in both models of the
travel agency are not described, for example, Trip,
Getltinerary. The new model of the travel agency has
a single implicit compensation task instead of hav-
ing two compensation tasks, one for successful res-
ervations and another for failed reservations. Here
the compensation for ReserveFlight is the conditional
process DeleteFlight. 1f the flight has been booked
successfully, the compensation has to cancel the res-
ervation and remove the flight from the client’s itin-
erary. Otherwise, the compensation just removes the

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002

flight from the client’s itinerary. If some reservations
failed, the client is contacted, and in the case that
the client decides to continue, reversal is invoked,
causing the cancellation of all the services in the cli-
ent’s itinerary, including all successful bookings. This
approach has the disadvantage of not retaining the
reservations that were successful. Instead of allowing
the client to replace just the part of the itinerary that
failed with another alternative itinerary, the client has
to choose the complete itinerary all over again.

Although it is possible to describe the travel agency
without multiple compensation, the resulting model
has a different behavior. It is not possible to model
the cancellation of part of the itinerary, while main-
taining the compensation information for success-
ful bookings, with a single compensation task.

The behavior of the travel agency model without ex-
tensions is very similar to the travel agency example
presented in Reference 8 (pages 259-274). In Ref-
erence 8 the authors use spheres of compensation
to delimit the extent of the abort instruction. Abort-
ing will only invoke compensations that are inside
that sphere of compensation. Given that reservations
are made concurrently, they have to belong to the
same sphere of compensation, which causes the can-
cellation of the whole itinerary in the case of failed
reservations.

With selective compensation it is possible to orga-
nize the compensation information into several com-
pensations tasks, where each one of those tasks can
later be reversed or accepted independently of the
others.

Alternative compensation: Meeting scheduling ex-
ample. In this example, the goal is to select a date
for a meeting for which everyone in the team is avail-
able. A set of possible dates is proposed based on
the availability of the meeting room. Every member
of the team suggests possible dates from this initial
set. If an agreement is reached, the meeting is sched-
uled; otherwise it will be canceled.

The top-level process is defined as a sequence of
three processes. First, a set of possible dates on which
the room is available is selected. Next, the team chooses
possible dates for the meeting. Finally, a date is selected
for the meeting and the meeting is scheduled.

ArrangeMeeting = CheckRoom; CheckTeam;
Decide

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002

In this example, compensation is used in a novel way.
Instead of the usual use of compensation when there
is a failure or a change of plan, here compensation
is used to perform a positive task. The arrange meet-
ing application uses two compensation tasks: CF and
CL. Compensation task CF represents activities that
need to be confirmed, like the booking of the room
or a date for the meeting. Compensation task CL
represents activities that need to be canceled.

Process CheckRoom has a compensation pair within
another compensation pair. In practice, it means that
the date selection has two compensation activities:
compensation ConfirmRoom in the task CF and
compensation CancelRoom in task CL.

CheckRoom = (SelectPossibleDates

+cr ConfirmRoom)

+¢ CancelRoom

The SelectPossibleDates activity chooses a set of dates
where the meeting room is available and temporarily
books the room for those dates. The compensation
activity ConfirmRoom will confirm the booking of a
single date for the room and remove all the remain-
ing dates. The compensation activity CancelRoom
will remove all the dates temporarily booked.

Each member of the team suggests several dates for
the meeting:

CheckTeam = PAR t IN team DO
(t.SuggestDates
+cp t.ConfirmDate)

+¢p t.CancelDate

In the SuggestDates activity, the member chooses his
or her available dates from the possible dates for the
meeting, and those dates will be inserted in the mem-
ber’s diary. The compensation activity ConfirmDate
confirms the final date for the meeting and removes
the remaining dates from the diary. The compen-
sation CancelDate cancels all dates for the meeting
in the diary.

The process Decide verifies that there is a date where
all team members are available. In this case the book-
ing of the meeting is confirmed, otherwise the meet-
ing is canceled:

CHESSELL ET AL. 753

Decide = IF emptyDates
THEN X ; Mg
ELSE SelectDate; X g;

Doy

When emptyDates is true, the meeting has to be can-
celed, as the set of dates acceptable to all team mem-
bers is empty. This is achieved by reversing compen-
sation task CL and accepting compensation task CF.
The reversal of compensation task CL will remove
the temporary bookings of the meeting room and
clear the suggested dates from the team members’
diaries. When emptyDates is false, compensation task
CF isreversed, and CL is accepted. The reversal of
CF will confirm the booking of the room and the
meeting date on each member’s diary.

The distinctive feature in alternative compensation
is that activities can have several alternative com-
pensation activities remembered for them simulta-
neously. Later a decision is made about which of the
compensations attached to an activity should be in-
voked.

In this example, the compensation mechanism is used
to perform a positive task and not just a compen-
sating task. All the confirmations are performed by
invoking the reversal on the compensation task CF.
In this case, reversal is not invoked with the inten-
tion of correcting some failure.

Discussion

The following subsections review related work in the
area of transaction compensation, discuss StAC ex-
tensions to compensation, relate compensation and
ACID transactions, and compare compensation with
exception-handling mechanisms.

Related work. In the saga construct introduced in
Reference 4, transactions are nonhierarchical and
purely sequential. Compensation activities are ex-
pected to undo the effect of the associated primary
activity so that the atomicity of transactions is pre-
served, and compensation would normally be in-
voked when there is a failure in a system. In StAC,
transactions are not atomic, since there is no require-
ment for compensation activities to semantically
undo the effect of primary activities with which they
are associated. Instead, the application or compo-
nent developer must decide on the appropriate com-
pensation to be associated with primary activities.
The decision about whether and when to invoke com-

754 CHESSELL ET AL.

pensation takes place at the application level rather
than being based on system failure. This means that
compensation can be used to achieve some desired
behavior in the event of “nonfailing” outcomes, as
well as to recover from failure.

In nested transactions® a transaction is decomposed
into a hierarchy of subtransactions. Each subtrans-
action can either commit or roll back, and the “com-
mit” will only take effect when its parent transaction
(the transaction’s predecessor in the hierarchy) com-
mits. The rollback of a transaction causes all of its
subtransactions to roll back. The tree structure of
nested transactions creates a similar structure to the
StAC compensation scoping: invoking an accept or
reject instruction within a StAC compensation scop-
ing will only affect the processes inside that scope;
similarly invoking a commit or a rollback within a
nested transaction will only affect its subtransactions.

A difference between StAC and nested transactions
lies in the fact that in StAC the occurrence of an ac-
cept instruction in a compensation scope takes place
immediately and is not dependent on the outcome
of its predecessor in the hierarchy. Similarly to StAC,
in open nested transactions," which are a general-
ization of nested transactions, subtransactions can
commit or abort independently of their predeces-
sor. Considering that a transaction can be aborted
after several of its subtransactions have already com-
mitted, open nested transactions require a compen-
sation function for each subtransaction. The com-
pensation function has to semantically undo the
effects of committing its corresponding transaction.
In both nested and open nested transactions the in-
vocation of rollback is based on system failure,
whereas in StAC, compensation is determined by the
application. StAC provides a more precise defini-
tion of the nesting and scoping of compensation than
nested or open nested transactions, as well as a more
precise definition of the relationship between the ex-
ecution of sequential and concurrent primary activ-
ities and their corresponding compensations. Besides
that, StAC features, such as nonatomic compensa-
tion and multiple compensation tasks, are not rep-
resented in nested or open nested transactions.

A more formal approach that attempts to overcome
the limitations of ACID transactions is presented in
Korth et al."! The authors introduce the notion of
compensating transactions; these transactions allow
access to uncommitted data and undoing of commit-
ted transactions. Compensation is formalized in
terms of the properties it has to guarantee: a com-

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002

pensating transaction has to reverse the effects of
execution of the associated transaction, so that the
state of the system after the compensation must be
identical to the state before the execution of the
transaction. This notion of compensation is very re-
strictive and for real-world actions (e.g., firing a mis-
sile, sending a letter) is impossible to achieve. Be-
sides this, their approach does not provide a language
as StAC does; instead the focus is on properties of
compensation.

ConTracts " is a more structured approach to com-
pensation. In ConTracts a system is described as a
set of steps (actions or operations) that are executed
according to a script (control flow description). Each
step must have an associated compensation that will
be invoked explicitly by the user within a conditional
instruction: if the outcome of a step is false, then
the associated compensation is executed. In this ap-
proach, a compensation step has to semantically re-
verse the effects of the associated step, which can be
more than just undoing. Although compensations
may not be atomic, each step can only have a single
compensation. ConTracts does not have equivalent
instructions to the StAC acceptance and reversal, and
consequently in ConTracts compensation has to be
explicitly invoked.

Reference 14 describes the basic constructs that a
workflow specification language should support,
namely sequence, iteration, splits (AND and OR), and
joins (AND and OR). StAC supports those basic con-
structs directly. For example, workflow AND-split and
OR-spit are represented in StAC, respectively, by par-
allel and choice constructs. Furthermore, StAC can
also model most of the advanced workflow constructs
described in Reference 15, such as implicit termi-
nation and multiple instances. This indicates that
StACis a suitable workflow modeling language with
the advantage of having a formal semantics. Most
workflow languages follow a transactional approach
to recovery, which overlaps with the related work we
already discussed. A different approach to recovery
in the domain of workflow systems is presented in
Reference 16. The authors’ approach combines
transaction atomicity with the concept of exception
handling present in some programming languages
such as C++ or Java. When an exception is raised,
the signaler is replaced by an alternative activity,
while the system has to undo all changes made by
the signaler using spheres of atomicity. In this ap-
proach the overall process has to be atomic, so that
it can be possible to semantically undo all its effects.
A process specification has to verify several prop-

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002

erties in order to guarantee its well-formedness. Be-
cause of the combination of exception handling and
spheres of atomicity, these properties are complex
and difficult to verify. As we show, exception han-
dling can be formally modeled in StAC without the
complexity of Reference 16.

StAC extensions to compensation. This section
summarizes StAC (and BPBeans) extensions to com-
pensation and at the same time highlights the dis-
tinctions between StAC and other languages that
support compensation. We focus the comparison on
the ConTract model, because it is the model with
most similarities with StAC.

Nonatomic compensations. In both BPBeans and
StAC, a compensation can be a complex process.
StAC broadens the BPBeans functionality of com-
pensation by allowing the use of nested compensa-
tion, so that compensation can itself be compensated.
In ConTract compensation can be a complex pro-
cess, but nested compensation is not permitted.

Compensation invocation at the application level. In
BPBeans and StAC, the invocation of compensation
is done at the application level instead of being based
on the occurrence of a system failure. In ConTract
compensation can be invoked at the application level,
although it has to be made explicitly because Con-
Tract does not have instructions equivalent to the
StAC acceptance and reversal instructions.

Multiple compensation. The most distinctive feature
in StAC is multiple compensation, which allows a
process to have several independent compensation
tasks. Neither ConTracts nor any other approach
mentioned in the related work covers multiple com-
pensation.

Compensation and ACID transactions. We consider
the relationship between compensation and ACID
transactions. In many cases, the basic activities of a
long-running BPBeans transaction will themselves
be ACID transactions. The isolation property of ACID
transactions will be particularly important in the case
of concurrent activities. For example, a basic activ-
ity may involve updating a database—which means
that the basic activity should be isolated from other
concurrent activities that access the same data until
the basic activity has completed.

When specifying ACID transactions involving some
complex business logic, it may be convenient to use
the compensation mechanism as part of the ACID

CHESSELL ET AL. 755

transaction. This is especially the case when com-
pensation extends beyond an ACID transaction. For
example, an ACID transaction that updates a data-
base could also include the automatic sending of an
e-mail during the transaction. The e-mail could be
compensated by the sending of another e-mail. The
compensation could extend beyond the ACID trans-
action in that the compensation e-mail might be sent
after the ACID transaction has committed. Although
embedded in an ACID transaction, the sending of the
original e-mail is not itself transactional in nature,
so allowing its compensation to extend beyond the
ACID transaction is reasonable.

Compensation and exception handling. Since com-
pensation can be used to deal with exceptions, it is
instructive to compare the compensation mechanism
with exception-handling mechanisms found in pro-
gramming languages such as Java. In general, excep-
tion-handling mechanisms have three important fea-
tures: a means of jumping out of the flow of control
(the throw statement in Java), a means to define the
scope of the jump (the #ry statement in Java), and
a means to provide code to handle the occurrence
of exceptions (the catch statement in Java). All of
these features are present in StAC, with process ter-
mination providing a means of jumping out of the
flow of control, and compensation providing a means
of defining behavior that handles exceptions. There
are, however, a number of differences between StAC
and exception handling in programming languages.

In StAC, the termination mechanism is completely
separate from the compensation mechanism in that
the flow of control is exited using the termination
statement, whereas the compensation behavior is in-
voked using the reversal operator. In programming
languages, these functions are combined in the rais-
ing of an exception, which results in the flow of con-
trol being exited and the exception handling code
being executed.

In StAC, the primary behavior and the compensa-
tion behavior are packaged together as compensa-
tion pairs, and the compensation mechanism invokes
all the compensation activities as required. This is
more difficult to achieve in programming languages
when several compensation activities are required.
For example, consider the StAC process

(A1 = B1); (A2 = B2);

Representing this behavior using exception handling
would require code of the form:

756 CHESSELL ET AL.

try {Al;
try {AZ;
throw e}
catch(e) {B2; throw e}}
catch(e) {B1}

Here the compensation activity B/ has been sepa-
rated from the primary activity A1. Also, the sequenc-
ing of the exception handling needs to be made ex-
plicit by raising a further exception after B2.

Another important difference is that the termination
and compensation mechanisms in BPBeans and
StACwork across concurrent activities as well as se-
quential activities, whereas exception handling in
programming languages only works within single se-
quential threads.

Conclusion

Compensation is an essential feature of many bus-
iness processes and the compensation mechanisms
provided by BPBeans and StAC allow compensation
to be represented and considered as part of a high-
level business process model. The mechanisms are
powerful in that they automatically take care of re-
membering and sequencing compensation activities.
As explained in the previous subsection, “Applica-
tion example without StAC compensation mecha-
nism,” the compensation pair and the reversal mech-
anisms contribute to the reusability of business
components by freeing an application developer
from having to be aware of the compensations re-
quired by a reusable process component. This allows
for flexibility in constructing models and systems.

BPBeans is a feature of IBM’s WebSphere that sup-
ports the construction of business systems from En-
terprise JavaBeans** and comes with a run-time
environment that implements the compensation
mechanisms. StAC is a modeling language that was
developed in order to explore the semantics of com-
pensation in a more rigorous way. The formal se-
mantics of StAC is described in Reference 7. The
design of StAC was originally based on the compen-
sation mechanisms provided by a prototype version
of BPBeans. The formal nature of StAC allowed
some ambiguities to be identified and then clarified,
especially scoping issues. These then led to improve-
ments in the design of BPBeans.

The simplicity of StAC also allowed us to explore

some more general forms of compensation, leading
to the selective and alternative compensation idioms.

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002

The case studies to which we have applied them sug-
gest that they are useful concepts, and the addition
of selective and alternative compensation to BP-
Beans is being considered.

Currently we are continuing to explore the relation-
ship between ACID transactions and the use of com-
pensation mechanisms within ACID transactions.
Whether compensation can be used to implement
all ACID transactions is an open question. We are
also investigating the use of compensation for ex-
ception handling in programming. Compensation has
the potential to provide a more modular approach
to exception handling, as well as providing excep-
tion handling across concurrent activities.

Acknowledgments

We wish to acknowledge the support of the IBM Fac-
ulty Partnership program in funding the participa-
tion of the authors who are members of the Univer-
sity of Southampton Declarative Systems and
Software group.

*Trademark or registered trademark of International Business
Machines Corporation.

*“*Trademark or registered trademark of Sun Microsystems, Inc.

Cited references

1. Chambers Twentieth Century Dictionary, W. and R. Chambers
Ltd., Edinburgh (1972).

2. WebSphere Application Server Enterprise Edition 4.0—A
Programmer’s Guide, IBM Corporation (2002). See http://
www.redbooks.ibm.com/redbooks/SG246504.html.

3. J. Gray and A. Reuter, Transaction Processing Concepts and
Techniques, Morgan Kaufmann Publishers, San Francisco, CA
(1993).

4. H. Garcia-Molina and K. Salem, “Sagas,” Proceedings of ACM
SIGMOD, San Francisco, CA (1987), pp. 249-259.

5. Redbook—IBM Component Broker Connector Overview, IBM
Corporation (1998). See http://www.redbooks.ibm.com/
redbooks/SG242022.html.

6. B.Blakeley, H. Harris, and R. Lewis, Messaging and Queuing
Using the MQI: Concepts and Analysis, McGraw-Hill, Inc., New
York (1995).

7. M. Butler and C. Ferreira, “A Process Compensation Lan-
guage,” Proceedings of the Integrated Formal Methods 2000
Conference, Lecture Notes in Computer Science, Vol. 1945,
Springer-Verlag (2000).

8. F. Leymann and D. Roller, Production Workflow Concepts
and Technigues, Prentice Hall, Englewood Cliffs, NJ (2000).

9. J. Moss, “Nested Transactions and Reliable Distributed Com-
puting,” Proceedings of the IEEE Symposium on Reliability in
Distributed Software and Database Systems, Pittsburgh, PA.
IEEE CS Press (1982).

10. G. Weikum and H. Schek, “Concepts and Applications of
Multilevel Transactions and Open Nested Transactions,” Da-
tabase Transaction Models for Advanced Applications, A. El-

IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002

magarmid, Editor, Morgan Kaufmann Publishers, San Fran-
cisco, CA (1992).

11. H.Korth, E. Levy, and A. Silberschatz, “A Formal Approach
to Recovery by Compensating Transactions,” Proceedings of
the 16th Very Large Data Bases Conference, Brisbane, Aus-
tralia (1990).

12. A.Reuter, K. Schneider, and F. Schwenkreis, “ConTracts Re-
visited,” Advanced Transaction Models and Architectures,
S.Jajodia and L. Kerschberg, Editors, Kluwer Academic Pub-
lishers, Norwall, MA (1997).

13. H. Wichter and A. Reuter, “The ConTract Model,” Data-
base Transaction Models for Advanced Applications, A. Elma-
garmid, Editor, Morgan Kaufmann Publishers, San Francisco,
CA (1992).

14. Workflow Management Coalition Terminology and Glossary
(WFMC-TC), Workflow Management Coalition, Hampshire,
United Kingdom (1999).

15. W. van der Aalst, A. Barros, A. Hofstede, and B. Kiepus-
zewski, “Advanced Workflow Patterns,” Business Process
Management: Models, Techniques, and Empirical Studies,
W.van der Aalst, J. Desel, and A. Oberweis, Editors, Lecture
Notes in Computer Science, Vol. 1806, Springer-Verlag (2000).

16. C.Hagen and G. Alonso, “Exception Handling in Workflow
Management Systems,” IEEE Transactions on Software En-
gineering 26, No. 10, 943-956 (2000).

Accepted for publication May 16, 2002.

Mandy Chessell IBM United Kingdom Laboratories Lid.,
Hursley Park, Winchester, Hants SO21 2JN (electronic mail:
mandy_chessell@uk.ibm.com). Mrs. Chessell is an IBM Master
Inventor and member of the IBM Academy of Technology. She
joined the Hursley Development Laboratory in 1987 and is now
a software architect leading a team of developers producing bus-
iness process modeling software for WebSphere. She is the first
woman ever to win the Silver Medal of Engineering from the Royal
Academy of Engineering. Two years ago, MIT’s Technology Re-
view Magazine voted her as one of the TR100, a group of people
under 35 years of age most likely to make significant technical
innovations in the twenty-first century. She has a M.Sc. degree
in software engineering from the University of Brighton, England,
received in 1997.

Catherine Griffin IBM United Kingdom Laboratories Ltd.,
Hursley Park, Winchester, Hants SO21 2JN (electronic mail:
cgriffin@uk.ibm.com). Ms. Griffin is a software engineer at the
IBM Hursley Development Laboratory in the United Kingdom
working in the Transaction Systems organization. She joined the
laboratory in 1993 and has worked on several of IBM’s program
products including cICS® for 05/2% and the CICS Transaction
Gateway. She has a B.Sc. degree from the University of Notting-
ham, England, received in 1993.

David Vines IBM United Kingdom Laboratories Ltd., Hursley Park,
Winchester, Hants SO21 2JN (electronic mail: dvines@uk.ibm.com).
Mr. Vines is a software engineer at the IBM Hursley Develop-
ment Laboratory in the United Kingdom working in the Trans-
action Systems organization. He joined the laboratory in 1984
and has worked on a wide variety of IBM’s program products in-
cluding GDDM ™, MQSeries™, LANDP ™, and, most recently,
Component Broker and WebSphere. Mr. Vines is a joint inven-
tor on eleven patent applications. He has a B.Sc. degree from the
University of Exeter, England, received in 1984.

CHESSELL ET AL.

157

Michael Butler Department of Electronics and Computer Science,
University of Southampton, Highfield, Southampton, SO17 1BJ,
United Kingdom (electronic mail: mjb@ecs.soton.ac.uk). Dr. But-
ler is a professor of computer science at the Declarative Systems
and Software Engineering group of the Department of Electron-
ics and Computer Science at the University of Southampton. He
received a B.A. degree in computer science from Trinity College,
Dublin, in 1988, an M.Sc. degree in computing from the Univer-
sity of Oxford in 1989, and a D.Phil. degree in computing from
the University of Oxford in 1992. His research is mostly centered
around formal methods for software engineering. He works on
verification and refinement techniques for distributed systems and
control systems, on integration of formal methods with software
engineering techniques such as UML, and on the development
of tool support for refinement and verification. He has published
many papers in this area and is on the program committees of
several conferences on formal methods.

Carla Ferreira Department of Electronics and Computer Science,
University of Southampton, Highfield, Southampton, SO17 1BJ,
United Kingdom (electronic mail: cf@ecs.soton.ac.uk). Ms. Fer-
reira is a research assistant in the Declarative Systems and Soft-
ware Engineering group. She received an M.Sc. degree in com-
puter science in 1997 from the University of Minho, Portugal.
Currently she is working on her Ph.D. thesis on precise modeling
of business processes.

Peter Henderson Department of Electronics and Computer Sci-
ence, University of Southampton, Highfield, Southampton, SO17
1BJ, United Kingdom (electronic mail: ph@ecs.soton.ac.uk). Dr.
Henderson is Professor of Computer Science and head of the De-
clarative Systems and Software Engineering group at Southamp-
ton. His research interests include software engineering, business
process modeling, and software architectures. He is a member
of IFIP WG2.3 (Programming Methodology) and IFIP WG2.8
(Functional Programming). He leads several research projects
on dependable software systems. Between 1996 and 2000 he was
program coordinator for the UK EPSRC’s managed research pro-
gram, Systems Engineering for Business Process Change.

758 CHESSELL ET AL IBM SYSTEMS JOURNAL, VOL 41, NO 4, 2002

