Extending the Design of a Blocks-Based Python
Environment to Support Complex Types

Matthew Poole
School of Computing
University of Portsmouth, UK
matthew.poole @port.ac.uk

Abstract—We are currently developing PyBlocks, a blocks-
based environment which allows novice programmers to construct
and execute Python programs. In the initial design of PyBlocks
[1], Python’s basic data types and lists are represented using
colors, every expression block is colored according to its type,
and each unfilled slot contains color indicating all valid argument
types. In this paper we extend the design to include Python’s
most common built-in composite types (lists, tuples, dictionaries
and sets) and to allow nesting of these where appropriate. Using
example types from a pedagogical media computation library, we
also show how further types may be supported. Together, these
extensions provide almost any type novice Python programmers
are likely to use.

I. INTRODUCTION

Blocks-based languages such as Scratch [2], Snap! [3] and
Blockly [4] offer several advantages over traditional text-based
languages for novice programmers. However, many learners
will at some point need to make the transition to traditional
textual languages such as Java or Python. Other students’ first
taste of programming will be in such a textual language.

Whatever their prior programming experience, these novice
programmers need to cope with the complexity of a main-
stream language’s syntax and semantics. One way to scaffold
such learning is by providing a blocks-based environment for
constructing programs directly in the text-based language of
choice. In such an environment, the blocks themselves contain
code in the target language and when connected together
they form a program which can be read directly from the
blocks. In [1], we gave initial design ideas for a blocks-
based environment, PyBlocks, for Python 3. Python is targeted
due to its comparative simplicity and its popularity as an
introductory text-based language both in high school and in
higher education. The current prototype version of PyBlocks
implements this design. It has been built as a modification
of Blockly and uses Skulpt, an in-browser implementation of
Python [5], for program execution.

PyBlocks aims to achieve some of the benefits of blocks-
based environments for learning Python, primarily the ability
to browse the language and the ease of constructing programs
free from syntax errors [6], [7]. PyBlocks also aims to reduce
run-type errors, rare in block-languages but frustratingly com-
mon in languages such as Python which has a rich and dynamic
type system. PyBlocks ensures that constructed programs will
remain well-typed during execution by enforcing static typing.

To help learners understand the use of types, an approach to
type visualization based on color is used: each basic type
is represented by a different color, every expression block
is colored according to its type, and unfilled slots in blocks
contain colors indicating all valid argument types.

The intended users of PyBlocks are high school or higher
education students who are beginning to learn programming
in Python, either with no previous programming experience,
or are transitioning from having used a blocks-based program-
ming environment such as Scratch. PyBlocks could be used
as a first environment for editing Python programs, or as a
fallback for students who are struggling with the structure of
the Python language when faced with a text editor. PyBlocks
doesn’t aim to support the whole Python 3 language; rather,
our focus is on providing those features commonly taught in
introductory courses in procedural programming.

Because of the complexity of Python’s type system, the
initial design in [1] was restricted to supporting Python’s four
“basic” types (integer, float, string and Boolean) and lists of
these. Although many programs can be written just using these
types, many more can’t; the provided types may appear par-
ticularly limiting for students in higher education. In order to
greatly expand the possibilities for what novice programmers
can learn and create, we need to allow for more complex types.
Firstly, in addition to lists, we need to include Python’s other
commonly-used composite data types—tuples, dictionaries and
sets—and to allow for nested structures. Secondly, we need
to provide support for user-defined types from, for example,
popular libraries for graphics [8] or media computation [9].

This paper is structured as follows. In the next section we
discuss related work. In Section III we review the principles
that have guided the design of PyBlocks and how it works
with basic types, as detailed in [1]. Section IV describes how
composite types are represented and in Section V we show how
non built-in library types can be added. Section VI concludes
the paper and discusses future work.

II. RELATED WORK

Other work on blocks-based editing of textual languages
includes Tiled Grace [10] for the pedagogical language Grace,
and Pencil Code [11], [12] which supports JavaScript and
CoffeeScript. In both systems the user can edit a program
directly using blocks and also switch to a well-formatted
editable text view. Expression types are generally not explicitly
indicated and restrictions on what constitutes a legal block

argument often only becomes apparent on attempting a drag-
and-drop operation.

Representing types as colors is not common in blocks-
based environments. Probably the use of color most related
to that of the current paper is in the prototype blocks editor
for Bootstrap [13], [14]. This functional language’s five types
are each represented by a color. A neutral color (gray) is used
for polymorphic blocks such as the conditional expression,
and polymorphic blocks change color once their type has
been determined during program construction. Being focused
towards middle school use, the language is relatively simple
and no complex types are supported.

There have been efforts to support complex types in block
languages, and these typically concern the design of connector
shapes. TypeBlocks [15] includes three basic type connectors
which can be combined in any way and to any depth using type
constructors for lists, pairs and functions. Each constructed
type has its own unique connector shape. Polymorphic Blocks
[16] takes a similar approach but also supports parametric
polymorphism through the use of “polymorphic ports”. A
block’s polymorphic ports are colored rather than shaped, and
when a port is connected to a shaped connector of another
block, all ports of the same color become (uncolored) connec-
tors of that shape. Both TypeBlocks and Polymorphic Blocks
provide a complete visual representation of arbitrarily complex
types using connector shapes. As the types get more deeply
nested however, the connectors can become very intricate and
blocks necessarily need to grow in order to allow their types
to be discerned.

III. OVERVIEW OF PYBLOCKS

Block-based environments aim to reduce ‘“‘syntax over-
load”, and to guide the user in constructing syntactically legal
programs. This is also a primary goal of PyBlocks. Learners
of dynamically typed text-based languages also know that a
major source of frustration is the frequent occurrence of run-
time errors—students are constantly faced with “TypeError”
messages (such as when a program attempts to add a float and
a string). Block languages such as Scratch tend to avoid run-
time errors, but do so by means of simpler and more forgiving
type systems than Python’s.

PyBlocks minimizes type-related run-type errors by enforc-
ing static typing during the construction of programs. This
is achieved by requiring that (i) variables’ types are fixed
(“declared”) when they are created within the palette, and (ii)
valid argument types of all operator and function blocks are
enforced. At the same time, the types of all blocks and slots
are made explicit to the user to help them learn how types
work within their programs. This latter point tends to be de-
emphasized in typical block languages.

The Python code in a PyBlocks-constructed program con-
forms to Python’s rules and conventions regarding formatting
and whitespace, demonstrating good code layout to learners
and also helping with a more seamless transition to textual
code editing [17]. Use of shaped connectors would break
whitespace conventions and leads to awkward vertical jumps
within lines of code. Furthermore, the richness of Python’s
type system would would require many, probably unwieldy,
connector shapes. PyBlocks avoids shaped connectors and

instead uses colors to denote basic data types: every expression
block is colored according to its type, and each unfilled slot
indicates, using color, all valid argument types.

A. Type colors and literals

Colors for the four basic (built-in, non-composite) types
are illustrated in Fig. 1 using blocks for literal values. Strings
are considered basic since they are not built from another type
(there is no character type in Python). The absence of space
around the values, and the lack of rounded corners helps with
adherence to conventions concerning whitespace.

734

float 3.14
string [NCIION
True

Basic type colors and literal values

integer

Boolean
Fig. 1.

These four colors have changed from those used in [1]; the
new colors are adapted from a palette of colors designed to be
perceived as distinct by users who are color blind and those
who are fully sighted [18]. (Note that any literal value within
a block can be edited by the user but only to a value of the
same type.)

B. Function and operator blocks

Blocks for functions and operators are colored according
to their result type and, to make clear the valid argument
types for these blocks, all unfilled slots are marked with “type
indicators” showing all acceptable argument types.

Example blocks are shown in Fig. 2. The integer division
operator “//” is colored orange to denote that it gives an
integer result. The two slots’ type indicators are also colored
orange since the arguments should also be integers; any attempt
at dropping an invalid block into either slot will be rejected.
The float block is sky-blue (it returns a float). Its slot
indicator is striped orange/green, meaning that it will accept
any integer or string block, or a multicolored block that
includes either or both of these colors—a block only needs to
share one color with a slot indicator to match it. The addition
operator block is striped sky-blue and orange, as are both its
slots’ indicators—it returns either a float or an integer and this
type depends on the types of its arguments, which can also be
floats or integers.

L_1//1]

| float(ETD *

Fig. 2. Blocks for the integer division operator, the f1oat function and the
addition operator

Fig. 3 illustrates some effects of dropping blocks. Dropping
the float block (2.3) into a slot in the addition block causes
the addition block to become solely sky-blue: with a float
operand the result of an addition can only be a float. Dropping
an empty addition block into a slot of the integer division
block has three effects: (i) the addition block becomes orange

since it must supply an integer to the division block, (ii)
both of its indicators become orange to ensure its arguments
can only be integers, and (iii) a pair of parentheses is added
to ensure correct order of evaluation (parentheses are added
automatically and only when they are required). Note that if
a nested block is subsequently removed from a slot, then all
affected blocks are recolored appropriately.

I) .

2.3
¢ drop l drop
g 1/
l becomes l becomes

i P R)

Fig. 3. Dropping of blocks into slots leading to recoloring of blocks and slot
indicators, and the appearance of parentheses

2.3 +]

C. Statement blocks

Statement blocks do not have result types and are therefore
colored a neutral gray. Statement blocks in the current version
of PyBlocks include assignments, if-statements, for and
while-loops, and blocks that call functions and methods, such
as print, which do not return values. Statement blocks are
chained together and nested using a simple “notch” connector.
Fig. 4 shows an incomplete program fragment containing
assignment, print and i f-statement blocks.

guess = int(IRAPUE(/'ERtErTgUEssI"))

if [:
print(guess, ["is'correct!")

else:

Fig. 4. An incomplete fragment of Python code in PyBlocks

We note that some blocks can be modified (by clicking
on the block to give a context menu) in order to change the
number of connecting or argument blocks; for example, elif
and else clauses can be added to an if block, and argument
slots can be added to a print block.

IV. COMPOSITE TYPES

Python includes a rich set of several built-in composite
types, primarily:

i lists — ordered, mutable collections;

ii tuples — ordered, immutable collections;
iii dictionaries — unordered, mutable key-value mappings;
iv sets — unordered, mutable collections.

All these types are widely used by experienced program-
mers. They also feature in introductory programming textbooks

and courses, and occasionally they are used in combination (i.e.
nested). In [8], for example, all types except sets feature, and
tuples are nested within lists. The same is true of [19] where
multidimensional lists are also used.

In deciding which of the types to support within PyBlocks,
and to what extent to support nesting, we need to reach a trade-
off between how likely a given type or combination of types
is to be used by a novice programmer, and how these types
can be visually represented within blocks.

A core aim of PyBlocks is to provide a complete visual
representation of the type of every expression block and
the allowable types for empty slots. These representations
need to be both visible and comprehensible. Blocks cannot
stretch horizontally to accommodate more complex visual rep-
resentations, since this would break adherence to whitespace
conventions. (In rare cases a variable of some complex type
could be forced to have a name of minimal length in order to
accommodate the visual representation of its type.) Blocks can,
however, grow downwards. In fact, all information concerning
the type of a function or operator block will typically need to
appear in the bottom portion of the block, below its argument
slots.

Python’s dictionary keys and set elements must be of
hashable type, and the only built-in types that are hashable are
those that are immutable (note that tuples are only hashable
if all their elements are). This means that many combinations
of composite types (such as sets of lists) are illegal. Other
nestings are legal but of little practical value (e.g dictionaries
as values of dictionaries). Legal nesting of composite types
within tuples, dictionaries and sets is generally rare and we
disallow them (although see a special case in Section IV-H).
Nesting of lists is, however, quite common. In fact, supporting
nesting (of any composite type) only within lists covers almost
any conceivable use by a novice programmer; lists of lists
and lists of tuples are particularly common. It is relatively
easy to allow an unlimited depth of list-list nesting (very deep
nesting just leads to very tall blocks) and to allow any another
composite type to appear at the deepest level (e.g. list of list
of tuples).

A. Rainbow coloring

The representations of the various composite types use
different white markings combined with colors representing
the element type(s) they contain. Central to the design of
expression blocks for these types are the concepts of “any basic
type” and “any type”. Our use of colors for basic types and
color striping for alternative types (as in Fig. 2) suggests the
use of rainbow stripes to stand for any basic type. A rainbow
with white stripes pattern is used to denote any type, including
basic types, composite types and indeed any constructible
nested composite type. These two patterns are illustrated in
Fig. 5.

Rainbow-and-white coloring is illustrated by the assign-
ment block in Fig. 6; both slot indicators are rainbow-and-
white meaning that any argument type is permitted. The left-
hand slot is also marked “var” to signify that only variable
blocks may be dropped into it. On dropping a string variable
block into this slot, the indicator in the right-hand slot is
recolored accordingly (to enforce static typing).

any basic type s&‘
any type :\‘&\\S

Fig. 5. Rainbow and rainbow-and-white type patterns

ldrop
vang = fau
lbecomes

Fig. 6. Assignment with rainbow-and-white patterns and “var” indicator

We note that the two rainbow patterns also match them-
selves and one another. So, the rainbow-and-white pattern
matches with everything; the rainbow pattern matches the
rainbow-and-white pattern and everything else that doesn’t
include white.

In the following sections we see how lists, tuples, dictionar-
ies and sets are represented visually and how blocks of these
types behave during editing. None of these types match with
any of the others (e.g. a list cannot match with a tuple) and
none match with any of the basic types. Within each category
of composite type, matching depends on the type of elements
they contain.

B. Lists

PyBlocks ensures that all lists are homogeneous to encour-
age good programming style and to allow for the benefits of
static typing [1]. The original design for lists (featuring two
vertical bars) has been replaced by saw-tooth markings at the
bottom of the block; see Fig. 7. The revised design allows us
to more easily represent nested lists and the other composite
types. Two list types match only if their content types match
(e.g. if they contain a common color).

rainfall w

Fig. 7. List variable blocks showing a list of integers in the original design
and a list of floats and list of strings using the revised design

numbers

Fig. 8 illustrates two list operator blocks. The list construc-
tor block on the left has a rainbow-and-white slot indicator
accepting any type; the block itself gives a list (saw-tooth at
the bottom) of any type (rainbow-and-white). Note the use of
the gray line on the edge of the saw-tooth that provides a
clear boundary between it and the rainbow-and-white pattern.
Dropping an integer block into the slot causes recoloring of
the block. The first slot in the list indexing block on the right
accepts a list containing values of any type and the block itself
can return any type. Dropping a list-of-string block into the slot
recolors the block to green (indexing a list of strings results
in a string).

273 ReRRR
} dr°p‘ 4 drop
Y
l becomes becomes
[273]

seasonst]1

Fig. 8. Behavior of the list construction and list indexing blocks

C. Nesting of lists within lists

The saw-tooth pattern adopted for lists allows for a straight-
forward visual representation of nested lists. Fig. 9 shows
a two-element list of floats being dropped into a slot of an
empty list construction block. The resulting block includes
a double saw-tooth pattern representing the type list-of-list-
of-floats, with gray used on the lower saw-tooth (outer list)
to make the representation clear. This stacking of saw-tooth
patterns allows any depth of nesting (with an increase of block
and indicator height) and, importantly, the depth of nesting (at
least up to a few levels) can be readily identified by the user.

[2.3, 8.4]

ldrop

L N N oS

becomes

[[2.3, 8.4], []°

Fig. 9. A list of floats is dropped into a slot of a list literal block resulting
in a nested list

D. Tuples

Tuples in Python are heterogeneous immutable collec-
tions. Their use is typically limited to combine data to form
“records”, such as (25, True), of pairs or triples. Elements
of tuples are mainly accessed via unpacking (see below).
To allow for static typing, we prohibit iteration through the
elements of tuples elements (tuple iteration is rarely used in
Python). We also limit tuples’ elements to be of basic type,
preventing overly complicated structures and representations.

Tuple types are represented within blocks with the element
type colors appearing in order from left-to-right, separated
by white columns. Two tuple types match only if they have
the same number of elements and, for each element, the two
element colorings match. A tuple construction block for a pair
is illustrated in Fig. 10. The rainbow patterns in the indicators
restrict the arguments to basic types. (Note that parentheses
around tuples are not always needed but are very commonly
used.) Unlike for (homogeneous) list construction, dropping a
block (an integer in the figure) into one of this block’s slots
does not cause recoloring of the other slot’s indicator. We see
that the white column is positioned to align with the comma
so that it is fully visible and shows clearly the relationship
between the types of the tuple and those of its components.

10
l drop
=

l becomes
Y

Fig. 10. Using the tuple construction (comma) operator block

Tuples can be assigned to variables in Python in two
different ways. Firstly, they can be assigned to variables of
the same tuple type. Alternatively, their elements can be
“unpacked” and assigned to separate variables using a multiple
assignment statement; see Fig. 11.

pa i pailf

ldrop ldrop
e =] B E= -

l becomes l becomes

it = [[[= P

Fig. 11. Dropping a tuple variable block into the left-hand side of an
assignment block and the right-hand side of a multiple assignment block

E. Dictionaries

Python dictionaries are mappings from keys to values,
where the keys must be of hashable type; an example dic-
tionary literal is {"jam": 1.65, "fish": 2.89}. We
will restrict dictionaries to be homogeneous (keys all of one
type, values all of one type) where both keys and values are
basic types.

We represent dictionary blocks with two areas of color,
the key type represented on the left, and the value type on the
right, separated by a vertical saw-tooth bar “pointing” from
left-to-right. Two dictionary types match if the colorings for
keys and values both match.

Fig. 12 illustrates the construction of a dictionary literal
of a single (string—float) pair; this is then dropped into the
right-hand-side of an assignment block.

F Sets

Python sets are unordered collections of hashable data
values; {3, 7, 6} is an example set literal. Our design restricts
set contents to be of basic type and homogeneous. We use
semi-circular markings at the bottom of the block to denote
sets. Two set types match only if their element types match.
Fig. 13 shows the construction of a two-element set of strings,
which is then dropped into the right-hand side of a set “in”
membership testing block.

G. Lists with composite elements

As discussed above, tuples, dictionaries and set blocks
cannot generally be nested within one another. However, our
design does allow lists (nested to any depth) containing these

l drop

[NN) N
becomes l l drop
pt.

becomes
{Fsa;: 1.65)
i drop
var] =
l becomes

ngaiit: 1.65)

Fig. 12. Construction of a single-element dictionary literal which is then
dropped into the right-hand side of an assignment block

l drop

o e

vy
becomes l l drop

{"the”, [P

l becomes

{"the", "a"}

ldrop
S S 2]

l becomes
[in (ther, ra)

Fig. 13. Construction of a set-of-strings literal which is then dropped into
the right-hand side of a membership test block

W

structures. Fig. 14 illustrates the construction of single-value
lists containing a tuple, a dictionary and a set, respectively.
Again note the use of gray on the top edge of the outer type
representation (the list saw-tooth).

pair pHice

l drop l drop l drop
- - NN
o MY o ES

[paif

-

Fig. 14. Construction of singleton lists of tuples, sets and dictionaries

H. Functions returning multiple values

It is quite common for a user-defined function in Python
to return multiple values. These values are in fact returned
within a tuple and then almost always unpacked by the calling
code into separate variables. Consider, for example, a function
countVowels which takes a string as a parameter, and
returns two values: a dictionary giving the frequency of each
vowel in the string, and a list of all non-vowels found in the
string. The resulting tuple type, (dictionary, list), would not
normally be permitted by our design where elements of tuples
need to be of basic type. To overcome this shortcoming, we
will allow tuples with elements of any type to appear within
return statement blocks.

If PyBlocks then provided an expression block for invoking
the function countVowels, this block would also be of type
(dictionary, list). It could then potentially be dropped into
any rainbow-and-white colored slot of another block, possibly
leading to an even more complicated type. To prevent this
from happening, we propose that PyBlocks does not create
blocks for invoking functions such as countVowels that
return tuples with composite elements. Instead, PyBlocks will
only provide code that invokes such functions “baked-in” to the
right-hand side of special tuple unpacking assignment block.
Fig. 15 shows the return block and function call unpacking
block for countVowels.

return FJ LEW
, E = .ntVojve'-l

Fig. 15. A return block for a function returning a dictionary and a list, and
a block for calling this function and unpacking the results.

1. For loops and the range type

Python’s for loop is used to iterate over any iterable type,
which includes strings, ranges and lists. Rather than designing
a single indicator to encompass all of these types, we instead
show three alternatives type indicators in the slot; a block needs
to match any one of these to be dropped into the slot; see
Figure 16. The range type in Python 3, which is represented as
a composite type containing integers, exists mainly for use in
for loops. Dropping the single-argument range block into
the loop slot causes the recoloring of the loop variable slot
indicator.

V. PROVIDING OTHER TYPES

Although the addition of composite types clearly expands
the sorts of programs that can be written, learners nowa-
days should expect to be able to produce more interesting
applications than are permitted by Python’s built-in types
alone. Educators who use Python have recognized this and
have developed learner-friendly libraries containing multiple
types for writing non text-based programs; examples include
Zelle’s graphics module [8] and Guzdial and Ericson’s Media
Computation [9].

range (D)

ldrop
in oo

{ becomes

for [var] in range(D):

for [var]

Fig. 16. A range block and a for loop block with three indicators denoting
alternative valid argument block colorings

There are two challenges in integrating these libraries into
PyBlocks. One concerns program execution: many libraries
have been developed for desktop use, rather than web use.
However, there are efforts to create web-based versions of
these particular libraries to work with Skulpt; a version of
media computation has been developed for Pythy [20], and we
have developed a prototype version of Zelle’s graphics module.

Perhaps the more obvious problem that concerns us here is
the number of types provided: there are 11 types defined in the
graphics module and 8 in the media computation library. Few
users, particularly those who are color blind, would be able to
differentiate between so many colors in addition to those used
for the basic types.

To address this, rather than using a separate color for
every type, we instead use a single new color to cover all the
types from a particular library. We then introduce a symbol
to identify each of the library’s types, and embed this symbol
within blocks and type indicators. A similar use of symbols
to represent types within blocks and indicators is found in the
Waterbear block editor [21].

Fig. 17 illustrates the use of blocks involving the media
computation types Picture, Pixel and Color. Here,
makePicture takes a filepath (a string) and returns a
Picture value; getPixels returns a list of Pixel values
from a Picture; getBlue returns the blue element of the
color of a Pixel as an integer; and setColor setsa Pixel
to a given Color value.

. .
getBlue(IIT] setcolor (T, &

Fig. 17. Example media computation blocks

Fig. 18 shows a short program using the media computation
blocks, illustrating how the types of all expressions in a
program are complete, clear and fully determined (no multi-
colored or rainbow patterns remain).

Whilst it would be relatively straightforward for non built-
in types such as these to be considered as basic types, we
currently see little benefit of this—their use within dictionaries,

file = pickAFile()
P -
A

r = getRed(H)
g = getGreen(H)
b =

getBlue(H)

ave = (r + g +b) // 3

o -
setColor(H, !)
show(n)

Fig. 18. A complete media computation program for displaying a picture
from a user-selected file in grayscale

tuples and sets seems much less likely than in lists. Also, the
use of white for the symbols contrasts well with the block
color. Given this coloring scheme, considering these types as
non-basic maintains the simplicity of the rule for the rainbow
pattern: i.e. that it matches the rainbow-and-white pattern and
everything that doesn’t include white. The rainbow-and-white
pattern still matches everything.

VI. DISCUSSION AND CONCLUSION

We have extended the initial design of PyBlocks from [1]
to provide support for Python’s built-in composite data types
and types from user-defined libraries. Together, these additions
should cover the vast majority of types used in typical learning
environments.

Although arguably a good introductory language, Python
is designed primarily for professional programmers and this
is reflected in a rich type system which is more complex
than those of most block languages. The decisions and trade-
offs made here attempt to increase substantially the number
of useful types provided whilst preserving a complete and
comprehensible type visualization that is usable to the learner.

Representing complex types visually within blocks is dif-
ficult. Attempts using block connectors, in [15] and [16]
for example, can lead to connector shapes that are visually
complicated and which require blocks to grow significantly in
order to accommodate them. The representations discussed in
this paper are certainly not all simple. However, by placing
reasonable limits on the types that can be represented, and by

using a combination of a few colors (for basic types), white
markings (for composite types) and symbols (for library types),
we believe the visual representations compare favorably with
related efforts.

Future work will include implementation of these design
ideas within PyBlocks together with the integration of peda-
gogical modules and libraries including those discussed above.
We also plan to test the ideas presented via software trials with
users from the target groups.

REFERENCES

[1] M. Poole, “Design of a blocks-based environment for introductory
programming in Python,” in Blocks and Beyond Workshop. IEEE,
2015, pp. 31-34.

[2] “Scratch,” scratch.mit.edu, accessed 17 July 2017.
[3] “Snap!” snap.berkeley.edu, accessed 17 July 2017.
[4] “Blockly,” developers.google.com/blockly/, accessed 17 July 2017.
[5] “Skulpt,” www.skulpt.org, accessed 17 July 2017.

[6] D. Bau, J. Gray, C. Kelleher, J. Sheldon, and F. Turbak, “Learnable pro-
gramming: blocks and beyond,” Communications of the ACM, vol. 60,
no. 6, pp. 72-80, 2017.

[71 D. Weintrop and U. Wilensky, “To block or not to block, that is
the question: students’ perceptions of blocks-based programming,” in
Proceedings of the 14th International Conference on Interaction Design
and Children. ACM, 2015, pp. 199-208.

[8]1 J. Zelle, Python Programming: An Introduction to Computer Science,
3rd ed. Franklin, Beedle & Associates Inc., 2016.

[91 M. J. Guzdial and B. Ericson, Introduction to Computing and Program-
ming in Python, A Multimedia Approach, 4th ed. Prentice Hall Press,
2016.

[10] M. Homer and J. Noble, “Combining tiled and textual views of code,”
in Software Visualization (VISSOFT), 2014 Second IEEE Working
Conference on. 1EEE, 2014, pp. 1-10.

[11] D. Bau, D. A. Bau, M. Dawson, and C. Pickens, “Pencil code:
block code for a text world,” in Proceedings of the 14th International
Conference on Interaction Design and Children. ACM, 2015, pp.
445-448.

[12] D. Bau, “Droplet, a blocks-based editor for text code,” Journal of
Computing Sciences in Colleges, vol. 30, no. 6, pp. 138-144, 2015.

[13] “Bootstrap block editor,” bootstrap-block-editor.appspot.com, accessed
28 August 2017.

[14] E. Schanzer, S. Krishnamurthi, and K. Fisler, “Blocks versus text:
Ongoing lessons from Bootstrap,” in Blocks and Beyond Workshop.
IEEE, 2015, pp. 125-126.

[15] M. Vasek, “Representing expressive types in blocks programming
languages,” Wellesley College, Honors thesis, 2012.

[16] S. Lerner, S. R. Foster, and W. G. Griswold, “Polymorphic blocks:
Formalism-inspired UI for structured connectors,” in Proceedings of
the 33rd Annual ACM Conference on Human Factors in Computing
Systems. ACM, 2015, pp. 3063-3072.

[17] M. Kolling, N. C. Brown, and A. Altadmri, “Frame-based editing:
Easing the transition from blocks to text-based programming,” in
Proceedings of the Workshop in Primary and Secondary Computing
Education. ACM, 2015, pp. 29-38.

[18] B. Wong, “Points of view: Color blindness,” Nature Methods, vol. 8, p.
441, 2011.

[19] B. N. Miller and D. L. Ranum, Python programming in context, 2nd ed.
Jones & Bartlett Publishers, 2014.

[20] S. H. Edwards, D. S. Tilden, and A. Allevato, “Pythy: improving the
introductory Python programming experience,” in Proceedings of the
45th ACM technical symposium on Computer science education. ACM,
2014, pp. 641-646.

[21] “Waterbear,” waterbearlang.com, accessed 28 August 2017.

