
0733-8724 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/JLT.2015.2406392, Journal of Lightwave Technology

> FOR CONFERENCE-RELATED PAPERS, REPLACE THIS LINE WITH YOUR SESSION NUMBER, E.G., AB-02 (DOUBLE-CLICK HERE) 
< 
 

1 

Extending the dynamic range of sweep-free Brillouin optical time-

domain analyzer  

 
 

Asher Voskoboinik, Alan E. Willner, and Moshe Tur 
 

 
Abstract—Sweep-free Brillouin optical time-domain analysis 

(SF-BOTDA) replaces the sequential frequency scanning of 

classical BOTDA by parallel interrogation of the fiber-under-test 

using the simultaneous interaction of multiple pump tones with 

counter-propagating multiple probe tones. While the basic SF-

BOTDA technique boosts the measurement speed by a factor 

equal to the number of probe tones used, its dynamic range is 

limited to approximately the pump tone spacing, which is of the 

order of 100MHz. This paper provides in-depth analysis of our 

method to significantly extend the dynamic range to the GHz 

regime. Based on sequential interrogation with up to three sets of 

multiple tones, each having a different frequency spacing, this 

method provides a major speed advantage over the classical 

BOTDA in spite of the use of three sets of tones.  With this 

development, which does not require any additional hardware, 

SF-BOTDA offers distributed sensing of optical fibers over 

practical dynamic ranges of strain/temperature variations, with 

the potential to become one of the fastest sensing techniques. 

 
Index Terms— Stimulated Brillouin scattering (SBS), Brillouin 

sensors, optical fiber sensors, Brillouin gain spectrum (BGS). 
 

I. INTRODUCTION 

TIMULATED Brillouin based sensors are of great interest 
in various security, environmental and other sensing 

applications [1]. Sensors based on this technology use the 
Brillouin nonlinear process [2] in which acoustic waves in the 
fiber mediate power transfer between counter propagating 
'pump' and 'probe' waves. For a given pump, the spectral 
characteristics of the Brillouin-amplified light are uniquely 
tied to the local strain- and temperature-dependent acoustic 
velocity in the fiber. Using pulses for the pump and radar 
methodology, the strain and temperature distribution along 
optical fibers can be extracted [3]. 

One of the most prevalent techniques is the Brillouin 
Optical Time Domain Analysis (BOTDA) [4], which requires 
frequency sweeping of one of the counter-propagating waves 
in order to find the frequency difference between the pump 
and probe waves for which the Brillouin-mediated power 
transfer is maximized. This frequency is called the Brillouin 
Frequency Shift (BFS). The need to make consecutive 
multiple frequency steps in order to map the Brillouin gain 

spectra (BGS) and locate its maximum may potentially limit 
the ability to resolve fast, dynamic changes in the BFS 
distribution along the optical fiber. 

Several dynamic Brillouin sensing concepts have been 
already proposed and demonstrated [5-7], including: (i) Slope-
assisted techniques which use a single frequency to monitor 
how the magnitude [5-6] or phase [7] of the probe wave 
change as the BGS shifts with strain/temperature. While the 
technique is very fast, it has an inherent limited dynamic 
range, of the order of the width of the BGS; (ii) In the fast-
BODTA [8] technique the optical frequency of the probe is 
scanned against that of the pump at high speed, limited only 
by the fiber length. By proper choice of the number of scanned 
frequencies and their spacing, an arbitrary dynamic range can 
be covered at a predetermined accuracy, at the expense of the 
time required to scan over all chosen frequencies; (iii) 
Frequency scanning was replaced in [9] by a single pulsed 
probe acting (in a Brillouin loss configuration) against a comb 
of multiple pump tones, interacting with a single BGS. 
Clearly, for good frequency resolution the pump tones spacing 
should be a small fraction of the width of the BGS (a few tens 
of MHz). However, a small frequency spacing is not is 
compatible with frequency-hungry short probing pulses, 
resulting in a demonstrated spatial resolution of 12m. Recently 
[10-13], we described a novel concept, called SF-BOTDA (for 
Sweep-Free BOTDA), which retains all the advantages of the 
classical BOTDA technique together with the potential to be 
much faster. In [10] we demonstrated the basic concept, to be 
described below, Sec. II, where CW multiple pump and 
multiple probe tones pair-wise interact via the Brillouin effect 
in the fiber to simultaneously probe different parts of multiple 
replicas of the fiber BGS. Once the tones are detected, the 
Brillouin amplification experienced by each of them can be 
determined, resulting in an accurate reconstruction of the 
BGS, and, consequently, in the determination of the BFS. 
Then in [11] we have shown, how the technique can be 
applied to distributed sensing faster than classical BOTDA 
by a factor, which could be as high as the number of 
simultaneous tones used. In [11] we also introduced the idea 
of ‘sequential pulse launching’, where the multiple pump 
pulsed tones are sequentially launched into the fiber, thereby 
avoiding nonlinear interactions among them, as well as 
overloading of the optical amplifiers. Fast measurements were 
demonstrated in [12]. However, one issue remained unsolved: 
Strain or temperature changes, which move the BFS by an 
amount larger than the frequency spacing between adjacent 
pump tones (or more) will introduce ambiguity, thereby, 
severely limiting the strain (temperature) dynamic range. 

This paper presents a method to significantly extend the 
effective dynamic range of the SF-BOTDA technique to 
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(potentially) hundreds of degree Celsius and many thousands 

of mictrostrains (µ), without sacrificing their obtainable 
resolution. Following the basic experimental demonstration of 
the technique in [13], its detailed theory is presented here. 
Section II provides a mathematical description of the basic SF-
BOTDA technique and its dynamic range limitations. The 
proposed procedure to extend this dynamic range is described 
and quantitatively analyzed in Sec. III, with proofs given in 
the Appendix. Illustrative experimental demonstrations of the 
technique appear in Sec. IV, followed by a critical discussion, 
Sec. V, and summary, Sec. VI. 

 

 
Fig. 1.  Sweep-free Brillouin probing using the simultaneous launching of 
multiple pump and probe tones. (a) Npump (=25) pump tones (Eq. (1a), magenta 
stems topped by circles, spaced by 100MHz) are launched into the fiber 
against Nprobe (=20) probe tones (Eq. (1(b), blue stems topped by diamonds), 
spaced by 95MHz (i.e., 5MHz smaller than that of the pump tones) and 
overall downshifted in frequency from the pump tones by a fixed frequency 
difference, BFS0, chosen to be close to the average BFS of the fiber under 
study (note the different horizontal scales for the two stem plots); (b) The 
resulting cumulative Brillouin-induced gain spectrum arbitrary units ([A.U.]), 
generated by the pump tones together with its sampling by the probe tones. 
Here the actual BFS is assumed to be equal to BFS0 and we note that each 
probe tone samples the BGS generated by the pump associated with that probe 
tone: e.g., the middle (11th) probe tone, circled at its bottom, samples the BGS 
originated from the middle (13th) pump tone, bolded and circled at top; (c) 
Plotting the sampled gains (Diamonds) against {h(i)} of Eq. (3) results in an 

approximate reconstruction  of the common gain BGSn(). More importantly, 
fitting the upper part of the data to a parabola (not shown) produces an 
excellent estimation of the zero shift from BFS0. A Lorentzian, precisely 

centered at the true BFS=BFS-BFS0 and having the same height and center 
as the fitted parabola, is also shown in (c). The reconstructed spectrum is a bit 
wider than the true Lorentzian, due to the influence of neighboring peaks in 
(b), but shares the same peak location. (d) and (e) are the same as (b) and (c) 
but with BFS0+27.5MHz. Again, the estimation of the 27.5MHz shift from 
BFS0 is quite good: 27.49MHz. 

II. DESCRIPTION OF THE ORIGINAL METHOD AND ITS 

DYNAMIC RANGE LIMITATION 

The concept of the SF-BOTDA sensor, as described in [10-

13], is illustrated in Fig. 1. Instead of scanning the frequency 
difference between a single pump tone and a counter-
propagating single probe tone, multiple pump and probe tones, 
Fig. 1(a), are generated and counter-propagate within the 
optical fiber. The frequencies of the pump tones are given by: 
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Here, ν0 is an optical frequency around which the pump 

frequencies reside, most commonly near 1550nm. )}({ if
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are RF frequencies that define the pump frequencies 
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their spacing must significantly exceed the actual Brillouin 
linewidth in order to prevent crosstalk. In Fig. 1, 
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 , significantly 

larger than the assumed natural linewidth of 30MHz (for 
standard SMF fibers at around 1550nm). Note that for pump 

pulses shorter than ~50ns, 
pump

 must be increased to 

accommodate the wider Brillouin linewidth, which approaches 
an inverse dependence on the pump pulse width, T, for 
T<20ns. These pump tones produce multiple and practically 
identical, [10], Brillouin gain spectra. Under common low-
gain conditions, the otherwise exponential Brillouin gain, [2], 
can be linearized, resulting in a cumulative linear gain of the 
form: 
 

   



pumpN

i

pumpni
zBFSiBGSPLgzGain

1

))()((1),(  .    (2) 

Here, 
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P [W/m2] is the optical power density of i-th pump; 
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n

BGS  is a normalized Brillouin gain spectrum of 

Lorentzian shape for long pump pulses, and of more rounded,  
non-Lorentzian shape for pump pulses shorter than ~50ns;    
the pump-pulse-width dependent g  is related to the line-

center Brillouin gain factor [2], and L=VgT/2 (Vg is the group 

velocity in the fiber). Both g  and )(
n

BGS may be a function 

of the distance coordinate, z, along the fiber. The local 
environmentally-sensitive down-shift in frequency, BFS(z), 
which is the quantity of interest [11], is assumed common to 
all pump tones, Fig. 1(b). 
 
The chosen probe tones,  
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are a down-shifted version of the pump tones with the 
following distinct properties: (i) The downshifting amount, 
BFS0, is predetermined, chosen to be close to the expected 
average BFS of the fiber under study; (ii) Since for reasons to 
be explained in Sec. IV the number of probe tones may be 
smaller than the number of pump tones (20 vs. 25 in all 
relevant figures), the parameter k associates the j-th probe tone 
with the (j+k)-th pump tone (k=2 in Fig. 1); and (iii) The 
spacing of the probe tones is slightly larger (or smaller) than 
that of the pump tones so that each probe tone samples a 
different region of the BGS induced by the corresponding 
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pump tone. The difference between the spacings of the tone 
families (5MHz in Fig. 1) eventually determines the 
measurement resolution, much like the frequency scanning 
resolution in a classical BOTDA implementation [14]. In Fig. 
1, }20.1 MHz,5)1(-50MHz)({ ..jjjh  , counting j from 

the left, and the probe tone spacing is 95MHz. In Fig. 1(b)-(c) 
the 'measured' BFS is assumed to be equal to BFS0 (i.e., zero 
shift) and all pump tones are of equal power. Since Npump=25 
while Nprobe=20, the j-th tone of the probe is amplified by the 
(j+2)-th tone of the pump through Stimulated Brillouin 
Scattering (SBS). Probe tones, which are closer (in frequency) 
to the BGS centers, experience higher Brillouin gains. The 
'measured' gains of the Nprobe probes are then plotted, panel (c) 
in Fig. 1(c), against )(h  of (3) to obtain a line shape whose 

peak, denoted by 
shift

  and calculated [14] from fitting the 

30% top part of the sampled gains to a parabola (not shown), 
provides a measured estimate (~0MHz) of the assumed 
Brillouin shift of BFSBFS-BFS0=0MHz. Panels (d) and (e) 
in Fig. 1 are the same as (b) and (c) but with a non-zero 
Brillouin shift, namely: BFS=BFS0+27.5MHz. The observed 
accuracy, 27.49MHz (estimated) vs. 27.5MHz (assumed), is 
quite good (A Brillouin shift of 10kHz is related to 
temperature and strain variations of 0.010C and 0.2µ, 
respectively). However, the ubiquitous presence of noise, 
ignored in the example, will undoubtedly require better 
frequency resolution for the same accuracy.   

In this way and without the need for frequency sweeping, 
the SF-BOTDA technique estimates the BFS shift from BFS0 
in a single measurement (up to averaging), and therefore, has 
the potential to increase the measurement speed by a factor of 
Nprobe with respect to classical BOTDA [10-13].  

Note that in Fig. 1(e) (BFS=27.5MHz) the first probe 
tone on the left (j=1) is no longer amplified by its 
corresponding pump tone (i=j+2=3), as in Fig. 1(b), but rather 
by the 4th pump tone. This behavior, which is also shared by 
probe tones j=2-6, worsens as BFS approaches 50MHz (half 
the pump spacing) and is the source of ambiguity to be 
discussed below.  

The spacing of the probe tones could be also chosen to be 
larger than that of the pump tones. In this case, the distances, 
{h()}, (3), of the probe signals from the centers of the BGSs 
induced by their corresponding pump tones progressively 
increase. Note that an increasing (decreasing) BFS moves the 
cumulative Brillouin spectra to the left (right), see Fig. 1. 
Consequently, for increasing h(i), the reconstructed Brillouin 
gain, Fig. 2(e), will be shifted to a negative value -27.49MHz, 
which is the opposite of the true shift. Since this behavior is 
systematic, then when working with probe tone spacing larger 
than that of the pump tones, the negative of the observed shift 
should be taken as the true value. 

The above implementation of the multiple pump/probe 
concept works well when most probe tones are amplified by 
their corresponding pump tone, as in Fig. 1, where the local 
BFS deviates from BFS0 by less than half the pump frequency 
spacing. Otherwise, and in view of the periodicity of the pump 
spectrum, the reconstruction algorithm described above 

generates values for the shift of the reduced spectrum, 
shift

 , 

which relate to the true BFS shift  through a periodic 

expression (the 'round()' function rounds its argument towards 
the nearest integer): 
  

)/(round; 00 pumppumpshift
BFSnnBFS      (4) 

 

Indeed, for deviations of the BFS larger than half the pump 
spacing, probe tones are amplified by the Brillouin gain 
induced by higher-index or lower-index (in frequency) pump 
tones, Fig. 2. Thus, different BFS values separated by an 
integer multiple of the pump spacing produce the same 
reduced BGS as shown in Fig. 2. Consequently, the above-
described implementation of the technique provides reliable 
measurements only if it is known in advance that the expected 
dynamic range of the strain/temperature variation in a given 
scenario is strictly limited to the rather small span of 

}2/|{| 0 pump
BFSBFSBFS  . Another consequence of 

large deviations of the BFS from BFS0 is the loss of Brillouin 
gain at edge-residing probe tones, causing the estimation of 
the true BFS (modulo the pump tone spacing) to be a bit worse 
in Fig. 2(c), as compared with Fig. 1(c) (27.45 instead of 
27.42MHz). While the estimation accuracy critically depends 
on the particular algorithm in use, this issue may be also 
addressed by having more pump tones than probe tones, as has 
been done above (Nprobe=20<25= Npump). 

 
Fig. 2: Erroneous BGS reconstruction for BFS values which are larger than 
BFS0 by more than half the pump tone spacing. Here the probe tone spacing is 
95MHz as in Fig. 1. Left column: BFS=BFS0+427.5MHz; Right column: 
BFS=BFS0+372.5MHz. While the BFS values here are distinctly different 
from those of Fig. 1, they are erroneously estimated as very close to their 
values in Fig. 1, namely: 27.42MHz and -27.5MHz instead of 427.5 and 
372.5MHz. The source of this ambiguity is the fact that the probe tones 
sample Brillouin gains other than those associated with them. Thus, for 
BFS=427.5MHz (Left column) the 11th (counting from the left, circled at its 
bottom) probe tone does not sample the Brillouin gain induced by its 
corresponding pump (the 13th, bolded one, circled at top), as in Fig. 1, but 
rather by the (13+4)th pump tone. A similar argument holds for 
BFS=372.5MHz. 

III. EXTENDING THE DYNAMIC RANGE OF SF-BOTDA 

A straightforward way to increase the dynamic range with 
no ambiguity is to increase the pump spacing, pump to a 
value large enough to cover the required dynamic range. For 
example, pump of 500MHz will cover a temperature 
measurement range of 5000C or a strain dynamic range of 
10,000µ or a more limited combination of both. However, as 
detailed in [15], estimation accuracy depends on the number 
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of pump and probe tones, and for a given value of Npump, the 
total range spanned by the pump tones, Npumppump, must be 
smaller than the BFS (~11GHz). This limitation on either 
Npump (resolution) or pump (dynamic range) calls for more 
flexible ways to increase the measurement dynamic range of 
SF-BOTDA.  

Another, although somewhat cruder, approach to deal with 
an arbitrary dynamic range comprises the following steps: (i) 
Determine the BFS using a classical BOTDA measurement 
(other fast methods, e.g. [5], also require this preliminary step 
to find their operating point on the BGS slope). Additional 
hardware is not required since our SF-BOTDA setup [10-13], 
is easily software-modified to act as a classical BOTDA; then 

(ii) Assign the measured value to 0BFS ; (iii) perform 

measurements using the SF-BOTDA technique; and finally 
(iv) avoid ambiguities by continuously tracking the changes in 
the BFS, which are assumed to be much slower than the 
sampling rate of the SF-BOTDA technique, so that sudden 
jumps of the BFS larger than a single pump spacing, should 
not occur. While providing virtually unlimited dynamic range 
(limited only by that of the classical BOTDA instrumentation) 
this approach has its obvious limitations in terms of the time it 
consumes, as well as the difficulty to correctly determine the 
BFS under dynamic conditions [16].  

Here, we propose and demonstrate an alternative novel 
solution, which removes the dynamic range ambiguity by 
employing, consecutively, pump tones of three different 

spacings:  
pumppumppump

 0 . Using the capabilities of 

our original hardware, [11-13], this reduces the sampling rate 
of SF-BOTDA by a factor of 3 but, somewhat surprisingly, 
will further increase the speed advantage of SF-BOTDA over 
classical BOTDA, see Sec. IV. 

 
 

Fig. 3: BGS reconstruction of ∆BFS=427.5MHz, using 3 pump spacings for 
BFS values within the dynamic range defined by Eq. (5), which is ±450MHz 
(around the pre-chosen BFS0) for the spacing choice of (a=d) 

MHz1000 
pump

 , (b) MHz91 
pump

 , and (e) MHz109 
pump

 . Once 

the spectral shifts of the three measurements are estimated from (c) and (f) as 

42.270 
shift

 , 47.27
shift

 , and 45.8
shift

 (all in units of MHz), n0 and 

the ∆BFS can be uniquely estimated, from either the additional sampling at 

pump

 or at 
pump

 , or from both, see text. Here only the results of the 

sampling at 
pump

 are valid. Indeed, while the 11th probe samples the gain of 

the (13+4)th pump in both (a=d) and (e), it samples the gain of the (13+5)th  
pump in (b). 
 

Each measurement, with either 0

pump
 , 

pump
  or 

pump
  

will produce an estimated shift of the reduced spectrum, 
panels (c) and (f) of Fig. 3, obeying equations similar to (4): 
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Based on these three measurements we now claim (see 

Appendix for proof) that the values of 0n and consequently 

those of BFS , Eq. (5), and ultimately those of the measured 

BFSBFSBFS  0 , can be uniquely determined in a much 

wider dynamic range, DR, given by (the 'floor()' function 
rounds its argument towards minus infinity): 
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In the example of Fig. 3,  0
pump=100MHz,  -

pump=91MHz, 
 

+
pump=109MHz so that nmax=floor[0.5min(91/9,109/9)]-1=4. 

Here, the dynamic range is: |BFS|<450MHz, i.e., 9 times 
wider than the previous 50MHz, and DRSF-BOTDA=900MHz. 
Hence, as long as the actual strain/ temperature variations to 
be measured induce Brillouin frequency shifts within this 
range, the SF-BODTA technique provides both fast and 
unique results.  

As shown in the Appendix, 0n  is determined from 

the measured 
shiftshiftshift

 ,,0  using either  
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round ,        (7.2) 

which ever produces a value of 0n smaller or equal in absolute 

value to m axn of (6b). Obtained values for 0n , which are larger 

than m axn are discarded. It is guaranteed, however, that as long 

as 
 

  )]/()(5.0[floor
max

 
pumppumppumppump

n            (8) 
 

(=5 in our example), either (7.1) or (7.2) (or both) will provide 

the correct value for 0n , see Appendix. For the example of Fig. 

3, the smaller, 91MHz, pump tone spacing, gives 

6)]9/()42.2747.27[(round0 n , whose absolute 

value is larger than nmax=4, and, therefore, is discarded. On the 
other hand, the larger pump tone separation, 109MHz, gives 
n0=round[(-8.45-27.42)/(-9)]=4, resulting (see Eq. (5)) in 
∆BFSest=4·100+ 27.42=427.42 MHz, which is a very good 
estimate of the true 427.5MHz one. 
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Fig. 4: Experimental block diagram: MZM: Mach-Zehnder electro-optic 
modulator; EDFA: Erbium-doped fiber amplifier; PC: polarization controller; 
ISO: optical isolator; AWG: arbitrary waveform generator;  FUT: fiber-under-
test. 

IV. AN EXPERIMENTAL EXAMPLE 

In order to illustrate the proposed concept of dynamic 
range extension, we used a simplified version of the 
experimental setup of [11-13], see Fig. 4. A highly coherent 
laser was split into pump and probe arms: (i) Pump tones: One 
channel of a wideband arbitrary waveform generator (AWG) 
was used to generate a comb of 10 RF frequencies, having a 
programmable spacing, pump. After proper RF amplification 
this comb drove a Mach-Zehnder electro-optic modulator 
(MZM2), biased near zero transmission, to produce Npump=21 
optical pump tones (the 11th tone was the laser light); (ii) 
Probe tones: The other channel of the AWG generated another 
8-tone comb, with a programmable spacing of probe. This 
comb signal fed the IF input of a mixer, whose RF input was 
connected to a microwave synthesizer. The output of the 
mixer thus comprised 16 tones symmetrically arranged around 
the (also programmable) generator frequency. This multi-tone 
signal drove another modulator (MZM1), where it was up-
converted to the optical domain, thereby creating two 
sidelobes, with Nprobe=17 optical tones on each side of the 
laser light. After proper optical magnification the pump and 
probe signals entered the 95m single mode fiber under test 
(FUT) from its opposite sides. The emerging probe tones then 
passed a circulator on their way to a high resolution (20MHz) 
optical spectrum analyzer. Finally, the Brillouin gains of the 
amplified lower-sidelobe probe tones were estimated by 
measuring their optical powers with and without the pump 
tones. While this simplified setup, using CW rather than 
pulsed pump tones, cannot perform distributed sensing, it is 
comprehensive enough to demonstrate the proposed dynamic 
range extension technique.  

We used the same 3 sets of pump spacing as in Figs. 1-3: 
pump=100, 91 and 109 MHz. The probe tones spacing, 
though, had to be changed to accommodate their smaller 
number. For the 17 probe tones to fully cover the pump tone 
spacing the following corresponding values were used: 93.75,  
85.3125 and 102.1875 MHz, resulting in an interrogation 
resolution of (pump /16) 6.25, 5.6875 and 6.8125 MHz, 
respectively. 

With the above choice of pump spacings the allowed 
dynamic range is ±450 MHz, which translates into an 
extremely wide dynamic range of either temperature (1 
MHz/0C) or strain (500 MHz/1%). Instead of subjecting the 
fiber to extreme environments, we have used a completely 

equivalent and quite a simple way to experimentally test the 
available dynamic range. 

We first turned off the AWG and scanned the microwave 
synthesizer to find out that maximum Brillouin gain was 
achieved when the synthesizer was set to fosc=BFSfiber=10,058 
MHz. Then, in order to challenge the SF-BOTDA setup with a 
BFS change of BFS we simply moved the synthesizer 

frequency from fosc=10,058 MHz to BFSf
osc

 . In this way, 

a situation was created where the setup is set to (see Sec. II) 

BFSBFSBFS
fiber

0
and measures a fiber whose BFS is 

BFS  away from the frequency to which the setup was set: 

0BFSBFSBFS
fiber

 . 

 
Fig. 5: Experimental demonstration of the dynamic range extension concept 
using three different pump tone spacings of 100, 91 and 109 MHz. 16 probe 
tones are used (the 17-th probe tone periodically repeats the effect of the first 
one). The estimated peak locations are indicated by short vertical lines and 
their frequency locations also appear in the figure). Based on these estimates, 
Lorentzian curves have been added. 

 

Figure 5 describes the results of a measurement where the 
synthesizer frequency was set to 10,360MHz, being equivalent 
to a BFS of -302 MHz. This value is well outside the native 
dynamic range of ~±50 MHz for the selected pump spacings. 
Parabolic fitting around the peaks, [14], resulted 

in 5.10 
shift

 , 9.29
shift

 ,  MHz2.27
shift

 .  Here, both 

Eqs. (7) give valid values for n0=-3. BFS can now be 
estimated in three ways: 

 

MHz8.299)2.27(109)3(

MHz9.302)9.29(91)3(

MHz5.301)5.1(100)3(





BFS

BFS

BFS

,          (9) 

 

having a mean of -301.4 MHz instead of the set value 
of -302MHz. This obtained accuracy is well within the 
measurement granularity of pump /16~6 MHz. 
      A similar measurement was taken for the case of 
BFS=-520MHz, which is outside the projected dynamic 
range of ±450 MHz. The resulting shifts were measured to be 

)20(3.210 
shift

 , )26(5.25
shift

 ,  MHz)25(6.27
shift

  

(the numbers in parentheses are those predicted by Eqs. (5)). 
Applying Eqs. (7.1) and (7.2) we indeed get for n0 values (5 
and -5, respectively), both exceeding (in absolute values) the 
allowed nmax=4 of Eq. (6b). 

      While demonstrated here for the non-distributed CW 
version of SF-BOTDA, the proposed dynamic range extension 
technique is fully compatible with complete distributed-
measurement-capable setup of [11-13].  
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V. DISCUSSION 

A few important characteristics of the dynamic extension 
technique are discussed below: 

 
(a) How wide can the extended dynamic range DRSF-BOTDA 

go? Clearly, the dynamic range of Eqs. (6) is inversely 

proportional to the difference || 0 
pumppump

  . 

However, the dynamic range cannot be increased at will 

by simply choosing 
pump

 to be arbitrarily close to 

0

pump
 . As evident from Eqs. (6) and Fig. 3, the smaller 

|| 0 
pumppump

 , the closer together are the measured 

values for  },{ 0 
shiftshift

  and their accurate estimation, and 

more importantly the accurate estimation of their 

difference, 
shiftshift

 0 , later used in Eqs. (7), becomes 

more difficult. Practically, a lower bound on the 

proximity of 
pump

  to 0

pump
 will be determined by the 

measurement resolution (which is of the order of a 
fraction of the difference between the pump and probe 

spacings: || ,0,0  
probepumpspacing

 (, noise issues, and 

the sophistication of the signal processing techniques 

used to determine },{ 0 
shiftshift

 . 

 
(b) Speed advantage of the extended dynamic range SF-

BOTDA over classical BOTDA: In a measurement 
scenario involving Brillouin frequency shifts limited to 

2/|| 0 punp
BFSBFS   for a pre-chosen 0BFS , the 

original SF-BOTDA technique [10-12] offers a speed 
increase by a factor of Nprobe, assuming both methods use 
the same number of interrogating tones with the same 
frequency spacing, spacing. We now show that the 
extended dynamic range technique of this paper offers a 
significantly higher gain in speed. For the same dynamic 
range, DR,  and the same frequency spacing of the 
interrogating tones, spacing, classical BOTDA requires 
the sequential measurements of DR/spacing frequencies. 
On the other hand, the SF-BOTDA technique will 
provide the same frequency coverage with the same 
frequency resolution in only 3 measurements! In our 
example of spacing=5MHz and DR=900MHz, the speed 
gain is 180/3=60 (180=900/5). Averaging will reduce the 
speed of both methods in the same way. This comparison 
assumes, though, that the more complex implementation 
of SF-BOTDA will provide the same signal to noise ratio 
as in classical BOTDA. Streamlining and optimizing the 
current hardware may come close to this challenging 
goal. 
 

(c) The need for extra pump tones: It has been already 
noted above, Fig. 2(a-b), that every shift of the BFS  by 
one pump spacing further distances one of the extreme 
probe tones from the BGS induced by its counter-part 
pump tone: While in Fig. 1 the 20th probe tone is 
amplified by its associated 22nd pump tone, in Fig. 2(a) 
the 19th probe is amplified by the 25th pump tone and the 

far-right 20th probe tone, which is supposed to be 
amplified non-existing pump tone, is not amplified at all. 
Unless more pump tones are added, these extreme probe 
tones will experience no gains, deteriorating the accuracy 
of the estimation of BFS shift. To maintain the 
measurement accuracy of the zero-order dynamic range 

( 2/|| 0

pump
BFS  ) over the full dynamic range of Eq. 

(6), 
pump

N  should exceed 
max2nN

probe
 (In Fig. 2(a) 

BFS=427.5MHz<450MHz, 
pump

N  should have been 27. 

Instead, only 25 pump tones were used in order to 
demonstrate the issue). 

 
(d) The correct estimation of shift : Finally, the accurate 

estimation of the spectral shift of the reduced spectrum, 

shift
 , is of paramount importance for the success of the 

SF-BOTDA method. So far, we assumed the reduced 
spectrum to have a well-defined peak, which is the case 

as long as ||
shift

  is not too close to 2/,0 
pump

 , i.e., not 

too close to the edges of the reduced spectrum, Fig. 

1(c,e). In the vicinity of 2/,0 
pump

 , however, there is 

no distinct peak and more advanced signal processing of 
the data is required, probably eased by the method 
capability to continuously track the changes in the BFS, 
as well by the fact that the shape of the measured 
spectrum is known. 

VI. SUMMARY 

This paper provides an in-depth quantitative analysis of a 
proposed technique, which significantly extends the 
strain/temperature dynamic range of SF-BODTA. It shows 
that by performing at most three sequential measurements, 
each with a different frequency spacing of the multiple pumps 
and their corresponding multiple tones, the Brillouin 
Frequency Shift can be uniquely determined within an 
extended dynamic range, whose value depends on the chosen 
three frequency spacings, Eq. (5). The closer these spacings, 
the wider is the dynamic range. The available signal-to-noise 
ratio, the number of averages used and other system 
parameters will set a lower practical bound on their closeness. 
Neither the BFS estimation accuracy nor the spatial resolution 
are compromised by this dynamic-range extension technique, 
which neither requires any additional hardware. While the 
sensing speed is reduced by (at most) a factor of three (relative 
to the original SF-BOTDA implementation), its speed 
advantage over classical BOTDA is even more pronounced in 
many wide dynamic range applications. To alleviate the three-
fold speed reduction, an alternative way to extend the dynamic 
range of SF-BOTDA by removing the ambiguity of what 
pump amplifies a given probe, is currently under study using 
individual coding of the pump tones.  

With this development, SF-BOTDA offers distributed 
sensing of optical fibers over practical dynamic ranges of 
strain/temperature variations, with the potential to become one 
of the fastest sensing techniques. It is currently hardware-
intensive but its speed advantages may merit the effort.  
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VII. APPENDIX 

Starting from Eq. (5), 
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      (A1) 

 

we note that since   
pumppumppump

 0  , the three indices 

{n0, n- , n+} may not be equal. If however, n-=n0  or  n+=n0, 
then (A1) leads to:  
 









pumppump

shiftshift

shiftpumpshiftpump
nnn





-

-
0

0

00

00

0
. (A2) 

       While n0 is an integer, measurement errors and noise will 
cause the ratio in (A2) to slightly deviate from a whole 
number. Adding the round() function (rounding to the nearest 
integer) produces Eqs. (7). 
 
But it may well be the case that n± measured through (A1) is 
different than n0, namely: n±=n0+m±, with m±≠0. We now 
investigate this situation and show that for the dynamic range 
defined by Eqs. (6), only those obtained values for n± which 
are smaller or equal in absolute value to nmax of (6.1) can be 
used to predict n0. Furthermore, once Eq. (8) is satisfied, see 
below for a proof, it is guaranteed that either n+ and/or n- will 
produce the correct n0. 
 
When n±=n0+m±, with m±≠0, (A1) gives: 
 




















pumppump

pump

pumppump
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shiftpumpshiftpump
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0

00
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       (A3) 

 

Our proposed procedure aims at estimating n0 from either 
 

 ]-[round
-

-
round

00

0
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 Kmnn

pumppump

shiftshiftest




        (A4.1) 

 

or 
 

 ]-[round
-

-
round

00

0
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 Kmnn

pumppump

shiftshiftest




.    (A4.2) 

 

Clearly, if m±≠0 then  
00

nn
est   and the use of (A4.1-4.2) to 

predict the correct value of 0n simply fails. We now prove that 

whenever the measurement scenario is such that the BFS 
variations do not exceed the dynamic range of (6), there is a 
way to detect those cases for which m±≠0, and to successfully 
avoid them. 
 
Claims:  

A) If 1|]}min[|5.0{floor|| max0  Knn , as in (6); and if 

m±≠0, then 
max0

|| nn
est  and, hence, can be discarded.  

B) If also ])/()(5.0floor[
max

 
pumppumppumppump

n  , 

Eq. (8), then it is guaranteed that either n0=n- , and/or  n0=n+  , 
so that n0 can be always correctly estimated 

 
Proof: From our assumption that 

1|]}min[|5.0{floor|| max0  Knn  and the definition of the 

‘floor’ function (y=floor(y)+, 0<1) it follows that  
 

   1|]min[|5.01|]min[|5.0 0    KnK ,       (A5) 
 

with 10  . The following expressions apply to || K  if 

||||   KK  or else to || K . Thus, 
 

   1||5.01||5.0 0    KnK .        (A6)  
 

We now subtract Km  from (A6) and use the definition of 

the round() function (y=round(y)+, ||0.5) to obtain: 
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And finally, 
 

   













1||5.0
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KmK

KmK
Kmn        (A7) 

 

If 0Km then (m±≠0 is an integer whose absolute value is 
assumed to larger or equal to 1): 
 

)22(

22}1||5.0{

1||5.0][round

max

00
















n

K

KmKKmnnest

 

 
Since 0)22(   we conclude that 
  

             
max00

][round nKmnn
est  

 .         (A8) 
 

Similarly, if 0Km then 
 

max

max

00

)22(

22}1||5.0{

1||5.0][round

n

n

K

KmKKmnn
est

















(A9) 

 

which completes the proof of our claim whenever 

max0
|| nn

est  or 
max0

|| nn
est  they can serve as valid estimators 

for n0. 
       In order to prove our second claim we plot in Fig. A1 the 

BFS dependence of 0n , Eqs. (7) (blue: solid), est
n

0
(red: 

dashed) and est
n

0 (green: dashed-dotted), Eq. (A4), for the data 

of the pump tone spacings used in Fig. 3. Also shown are 
vertical arrows, denoting the allowed dynamic range of Eqs. 
(6), MHz450|| BFS , and horizontal arrows at vertical 

values of m axn . It is clearly seen that as long as BFS is 

within its dynamic range,  a correct estimate of 0n  can  always  
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Fig. A1. The dependence of 
0n (blue: solid), est

n0
(red: dashed) and 

est
n

0
(green: dashed-dotted), Eq. (A4), on BFS  for the data of the pump 

tone spacings used in Fig. 4: MHz1000 
pump

 , MHz91 
pump

 , and 

MHz109 
pump

 . The vertical arrows denote the allowed dynamic range 

of Eqs. (6),  MHz450|| BFS , while horizontal arrows point at the 

maximum allowed values for  
maxn (4). 

 

be obtained from either est
n

0
(the red curve coincides with the 

blue one) or from est
n

0
(the green curve coincides with the blue 

one) or from both. As BFS grows from 0BFS , the two      

estimates work well (i.e., 0
000
 

nnn
estest until 

BFS exceeds 2/
pump

 , where n becomes )0(1 0  n , 

driving est
n

0
 to a value (-10) smaller than  m axn (-4). At this 

point, 0n can be estimated only from est
n

0
. When 

BFS exceeds 2/0

pump
 , 0n increases to 1 (=n-) and 0n  can 

be again correctly estimated from est
n

0
but not from est

n
0

 

(=-11<-4). 
000

nnn
estest   resumes its validity for 

2/
pump

BFS   until  BFS crosses  
pump

5.1 136MHz, 

and so on and so forth. This guaranteed estimation process of 

0n depends on the returning of the est
n

0
curve to the 0n  curve 

before the est
n

0
curve departs from the 0n one. Let 

return
BFS ,  

denote the value of BFS at which the est
n

0
 returns to the 0n  

curve. Similarly,  
Depart

BFS ,  will denote the value of BFS at 

which the est
n

0
 departs from the 0n  curve. Mathematically,  

 

   
2/

2/

0,

0,











pumppumpdepart

pumppumpreturn

nBFS

nBFS




.      (A10) 

 

In order for the est
n

0  curve to return to the 0n  one before the 

departure of the est
n

0
 curve we require that 

 

                      
departreturn

BFSBFS ,,    ,      (A11) 
 

 which leads to the additional condition on m axn , (8), namely: 
 





















pumppump

pumppump
n




5.0floor
max

      (A12)  

 

Similar considerations hold for 0BFS , also resulting in 

(A12). In our example of Fig. 3, (A12) is violated for 

MHz5.591|| BFS , outside our allowed dynamic range. 

More generally, it is easy to show that a sufficient, but by no 
means necessary condition for (A12) to be obeyed for nmax of 
Eq. (6b), is to choose the three pump spacings such that 

0

pump
 is the average of 

pump
 and 

pump
 .  
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