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EXTENDING THE FORMULA TO CALCULATE

THE SPECTRAL RADIUS OF AN OPERATOR

FERNANDO GARIBAY BONALES AND RIGOBERTO VERA MENDOZA

(Communicated by Dale Alspach)

Abstract. In a Banach space, Gelfand’s formula is used to find the spectral
radius of a continuous linear operator. In this paper, we show another way to
find the spectral radius of a bounded linear operator in a complete topological
linear space. We also show that Gelfand’s formula holds in a more general
setting if we generalize the definition of the norm for a bounded linear operator.

1. Introduction and basic definitions

In all that follows E stands for a linear vector space over the field C of complex
numbers. E[t] will denote a complete locally convex topological vector space, with
a Hausdorff topology t, and T : E → E will be a linear map. Finally, ϑ(t) will
be the filter of all balanced, convex and closed t-neighborhoods of zero (in E).

Definition 1. The linear operator T : E[t] → E[t] is said to be a bounded
operator, if there is a neighborhood U ∈ ϑ(t) such that T (U) is a bounded set.

If in the definition above T (U) is a relatively compact set, then T is said to be a
compact operator. Any compact operator is a bounded operator, and any bounded
operator is continuous (with the t-topology) (see [5]).

We recall that, given any topological linear space E[ω] and S : E[ω] → E[ω] a
linear operator, the resolvent of S is the set

ρω(S) =
{
ξ ∈ C

∣∣∣ ξI − S : E[ω] → E[ω]

is bijective and has a continuous inverse
}
.

The spectrum of S is defined by σω(S) = C \ ρω(S) (the set-theoretic complement
in C of the resolvent set), and the spectral radius by

srω(S) = sup
{
|λ|

∣∣∣ λ ∈ σω(S)
}
.

Definition 2. A net {xα}J ⊂ E is said to be t-ultimately bounded (t-ub) if,
given any V ∈ ϑ(t) , there is a positive real number r and an index α0 ∈ J, both
depending on V , such that xα ∈ rV ∀α ≥ α0 .
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Let us denote by Γ the set of all t-ub nets in E.

Remark 1. Any bounded, convergent or Cauchy net is a t-ub net. For more details
about t-ub nets we refer the reader to [1].

Definition 3. Let ξ ∈ C . We will say that 1
ξnT

n Γt−→ 0 (T n = T ◦T ◦ ... ◦T , n

times) if, given both V ∈ ϑ(t) and {xα}J ∈ Γ , there exist α0 ∈ J and n0 ∈ N
such that 1

ξnT
n(xα) ∈ V ∀α ≥ α0 and ∀n ≥ n0 .

Definition 4. γt(T ) = inf
{
|ξ|
∣∣∣ 1
ξnT

n Γt−→ 0
}

.

Remark 2. It is shown by Vera [4] that for a bounded operator T, we have:

(i) γt(T ) <∞ , and for any ξ ∈ C such that γt(T ) < |ξ| , 1
ξnT

n Γt−→ 0.

(ii) srt(T ) ≤ γt(T ), where srt(T) is the spectral radius of T .
(iii) When E[t] is a Banach space, γt(T ) = rt(T ).

In [2] it was proved, based in the above result, that γt(T ) = srt(T ) when T is
a compact operator. In this paper we extend that result to any bounded operator.

2. Main results

From now on let T : E[t] → E[t] be a bounded operator and let U ∈ ϑ(t) be
such that T (U) is a bounded set.

Let PU be the functional of Minkowski (see [3]) generated by U , which is a
seminorm on E. Let E[PU ] denote the vector space E with the topology given by
the seminorm PU .

Remark 3. The topology on E given by the seminorm PU is coarser than the
topology t (PU ≤ t ).

Proposition 1. T : E[PU ] → E[PU ] is a bounded operator (hence a continuous
one).

Proof. Since T (U) is a bounded set and PU ≤ t , T (U) is also a PU -bounded set
in E[PU ].

Definition 5. γPU (T ) = inf
{
|ξ|
∣∣∣ 1
ξnT

n
ΓPU−→ 0

}
.

Here ΓPU convergence means that, given any net {xα}J ⊂ E such that for
all α , PU (xα) ≤ r for some positive real number r (PU -bounded net), then
PU ( 1

ξnT
nxα) → 0 as a net in R whose index set is N× J .

Proposition 2. γPU (T ) = γt(T ) .

Proof. Let ξ ∈ C be such that γPU (T ) < |ξ| , and let V ∈ ϑ(t) and {xα}J ∈ Γ
be given. Since 1

ξT (U) is a bounded set, there is a positive real number r1 such

that 1
r1ξ

T (U) ⊂ V . In [1] is shown that {xα}J ∈ Γ ⇒ {r1xα}J ∈ Γ. This implies

that there exist both α0 ∈ J and r2 > 0 such that r1xα ∈ r2U ∀α ≥ α0 ,
i.e., PU (r1xα) ≤ r2 , that is, the net {xα}α≥α0 is a PU -bounded net; therefore,
∃α1 ∈ J (α1 ≥ α0) and n1 ∈ N such that PU ( 1

ξnT
n(xα)) < 1 ∀α ≥ α1 , n ≥

n1 , that is, 1
ξnT

n(xα) ∈ U for those indices. Hence

1

ξn+1
T n+1xα =

1

r1ξ
T (

1

ξn
T nr1xα) ∈ 1

r1ξ
T (U) ⊂ V ∀α ≥ α1 , n ≥ n1 ,
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that is, 1
ξnT

n Γt−→ 0 , and therefore, γt(T ) ≤ |ξ| . This implies that γPU (T ) ≤
γt(T ).

On the other hand, let γt(T ) < |ξ| and {xα}J , a PU -bounded net; that
is, xα ∈ rU for all α and some r > 0 . Then { 1

ξTxα}J ⊂ r
ξT (U) , where

r
ξT (U) is a t-bounded set; therefore, { 1

ξTxα}J ∈ Γ . Since 1
ξnT

n Γt−→ 0 , given

ε > 0 , ∃α0 ∈ J and n0 ∈ N such that 1
ξn+1T

n+1xα = 1
ξnT

n(1
ξTxα) ∈ εU

∀α ≥ α0 , n ≥ n0 ; that is, PU ( 1
ξn+1T

n+1xα) ≤ ε for those indices. This says

that 1
ξnT

nxα is PU -convergent to 0; therefore, γPU (T ) ≤ |ξ| . This implies that

γt(T ) ≤ γPU (T ) .

Definition 6.

L(E) =
{
S : E[t] → E[t]

∣∣∣ S is a linear and continuous operator
}
,

LU (E) =
{
S ∈ L(E)

∣∣∣ S(U) is a bounded set
}
,

LU (E) is a vector subspace of the complex vector space L(E) .

Remark 4. For the bounded operator T that we have been working on we have
T, T n, λT, λT n ∈ LU (E) for all n ∈ N and all λ ∈ C .

Moreover, for any S ∈ L(E) , S ◦ T , T ◦ S ∈ LU (E) .

Definition 7. For any operator S ∈ LU (E) , we define, taking into account that
S(U) is a bounded set, the following real number:

||S||U = sup{PU (Sx) | x ∈ U} .

It easy to check that ||Sn||U ≤ ||S||nU ∀S ∈ LU (E) and ∀n ∈ N .

Theorem 1. If Sn
Γt−→ S in L(E), then ||Sn ◦ T − S ◦ T ||U → 0 .

Proof. Let us prove it by way of contradiction.
Let ε > 0 be such that there exist natural numbers n1 < n2 < n3 < ... such

that ε < ||Snk◦T−S◦T ||U ; hence, for each of those nk there is xnk ∈ U such that
PU [(Snk ◦ T − S ◦ T )xnk)] > ε . Since {Txnk} ⊂ T (U) , it is a bounded sequence;
hence, for V = εU ∈ ϑ(t) there is an index m0 ∈ N such that (Sn−S)(Txnk) ∈
V for all n , nk ≥ m0 ; this implies that PU [(Snk ◦ T − S ◦ T )xnk)] ≤ ε , which
yields a contradiction.

Proposition 3. ρt(T ) ⊂ ρPU (T ) .

Proof. Let us suppose first that γt(T ) < 1 . Let ξ ∈ ρt(T ) be such that |ξ| >
γt(T ) . Then S =

∑∞
k=0

1
ξk+1 T

k is a continuous operator and S = (ξI − T )−1.

Set Sn =
∑n

k=0
1

ξk+1T
k . Then Sn

Γt−→ S , and from Theorem 1 it follows that

||Sn ◦ 1
ξT − S ◦ 1

ξT ||U → 0. On the other hand, Sn ◦ 1
ξT = Sn+1 − 1

ξ I and S ◦
1
ξT = S − 1

ξ I ; hence ||Sn+1 − S||U → 0 . Thereby, given {xm}N ⊂ E such that

PU (xm) → 0 , then PU (Sxm) ≤ PU [(S − Sn)xm] + PU (Snxm) → 0 . This proves
that S : E[PU ] → E[PU ] is a continuous operator; hence ξ ∈ ρPU (T ) .

Now let ξ ∈ ρt(T ) be such that |ξ| ≤ γt(T ) . Then | 1ξ | > 1 > γt(T ) , which

means that 1
ξ I − T : E[PU ] → E[PU ] is a continuous operator. Since ξI − T =
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(ξ − 1
ξ )I − (T − 1

ξ I) , we have that

(ξI − T )−1 = (ξ − 1

ξ
)−1I ◦ [(T − 1

ξ
I)−1 − (

1

ξ
)−1I] ◦ (T − 1

ξ
I)−1;

since the right hand side is the composition of three continuous operators from
E[PU ] to E[PU ] we have that ξ ∈ ρPU (T ) .

Finally, let T be such that γt(T ) < r < ∞ . Then T1 = 1
rT ∈ LU (E) is such

that γt(T1) < 1 . Hence 1
rρt(T ) = ρt(T1) ⊂ ρPU (T1) = 1

rρPU (T ) , and therefore
ρt(T ) ⊂ ρPU (T ) .

Definition 8. N =
{
x ∈ E

∣∣∣PU (x) = 0
}
.

Remark 5. Since
{
x ∈ E

∣∣∣PU (x) ≤ 1
}
⊂ U , N ⊂ U .

Theorem 2. N is a closed linear subspace of E, and T(x) = 0 for all x ∈ N .

Proof. The first claim follows from the fact that

PU (ξx + y) ≤ |ξ| PU (x) + PU (y).

For the second claim let’s take x ∈ N ; then mx ∈ N for m = 1, 2, ... . Let V be
any balanced, convex and closed t-neighborhood of 0. Since {mT (x)}m=1,2,3,... ⊂
T (N) ⊂ T (U) and the latter set is bounded, there exists r ∈ R+ such that
{mT (x)} ⊂ rV ⇒ T (x) ∈ r

mV ⊂ V when m > r. Since V was an arbitrary
neighborhood of zero and E[t] is Hausdorff, then T (x) = 0.

Definition 9. Let E/N be the quotient linear space and let P̂U be the norm

on it defined by P̂U (x+N) = PU (x) (see [3]).

Remark 6. (E/N)[P̂U ] will denote the vector space E/N with the topology given

by the norm P̂U .

Definition 10. Let T̂ : (E/N) → (E/N) be defined by T̂ (x+N) = T (x) +N .

Remark 7. It is easy to show that T̂ is a well defined linear map.

Proposition 4. T̂ : (E/N)[P̂U ] → (E/N)[P̂U ] is a linear and bounded operator

(hence T̂ is continuous ).

Proof. U/N is the unit ball in (E/N)[P̂U ] and T̂ (U/N) = (T (U) +N)/N . The

latter set is P̂U -bounded because the canonical projection E[PU ] → (E/N)[P̂U ] is
a continuous map.

Remark 8. Since (E/N)[P̂U ] is a norm space we can define, as usual, the norm of

T̂ , and this will be denoted by ||T̂ ||P̂U .

Proposition 5. γP̂U (T̂ ) = γPU (T ) .

Proof. Set |ξ| > γPU (T ) . Let {xα + N}J be a P̂U -bounded net in E/N ; then
{xα}J is a PU -bounded net in E; hence, given ε > 0 , there are indices α0 ∈ J
and n0 ∈ N such that 1

ξnT
nxα ∈ εU ∀α ≥ α0 and n ≥ n0 . Thus

1

ξn
T̂ n(xα +N) =

1

ξn
T nxα +N ∈ ε (U/N), α ≥ α0 , n ≥ n0

This implies that γP̂U (T ) ≤ |ξ| . Hence γP̂U (T ) ≤ γPU (T ) .
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Set |ξ| > γP̂U (T ) . Let {xα}J be a PU -bounded net in E. Then {xα +N}J
is a P̂U -bounded net in E/N ; hence, given ε > 0 , there are indices α0 ∈ J

and n0 ∈ N such that 1
ξn T̂

n(xα + N) ∈ ε (U/N) ∀α ≥ α0 , n ≥ n0 . This

implies that for those indices 1
ξnT

nxα = εuα + zα , uα ∈ U , zα ∈ N ; hence

PU ( 1
ξnT

nxα) ≤ PU (εuα) + PU (zα) ≤ ε + 0 = ε , and thus |ξ| > γPU (T ) . This

implies that γP̂U (T ) ≥ γPU (T ) .

Proposition 6. ρPU (T ) = ρP̂U (T̂ ) .

Proof. ξ ∈ ρPU (T ) ⇒ ξI − T : E[PU ] → E[PU ] is bijective and has a continuous
inverse.

Let us show that A : (E/N)[P̂U ] → (E/N)[P̂U ] defined by A(x + N) =
(ξI−T )−1(x)+N , which is a linear and continuous map, is the inverse function of

ξÎ − T̂ . For this, A(ξÎ − T̂ )(x+N) = A(ξ̂I − T )(x+N) = A((ξI −T )(x)+N) =
(ξI − T )−1(ξI − T )(x) + N = x + N . In a similar way it can be proved that

(ξÎ − T̂ ) ◦A = I . This implies that ξ ∈ ρP̂U (T̂ ) .
It is just routine to prove the set contention in the other way around.

Definition 11. (̃E/N)[P̃U ] will denote the completion (as a normed space) of

(E/N)[P̂U ] , and T̃ will denote the natural extension of T̂ .

Remark 9. (̃E/N)[P̃U ] is a Banach space. Besides, since T̂ is a bounded operator,

T̃ : (̃E/N)[P̃U ] → (̃E/N)[P̃U ] is a bounded operator (see [3]).

Remark 10. Since (̃E/N)[P̃U ] is a Banach space we can define, as usual, the norm

of T̃ ; this will be denoted by ||T̃ ||P̃U .

Proposition 7. γP̂U (T̂ ) = γP̃U (T̃ ).

Proof. Since T̃ is an extension of T̂ , the proof follows immediately from the defini-
tions of γP̂U (T̂ ) and γP̃U (T̃ ).

Proposition 8. ρP̂U (T̂ ) = ρP̃U (T̃ ) .

Proof. If ξ ∈ ρ(T̂ ) , then ξI − T̂ : (E/N)[P̂U ] → (E/N)[P̂U ] is bijective and

has a continuous inverse, so that both ξI − T̂ and (ξI − T̂ )−1 have a continuous

extension to (̃E/N) , which are precisely ξI − T̃ and (ξI − T̃ )−1 respectively.

This implies that ξ ∈ ρ(T̃ ) .

On the other hand, if ξ ∈ ρ(T̃ ) , then ξI − T̃ : (̃E/N)[P̃U ] → (̃E/N)[P̃U ] is
bijective and has a continuous inverse; hence the restrictions of those functions to

(E/N)[P̂U ] are precisely ξI − T̂ and its inverse function, which are continuous

functions for being the restrictions of continuous ones. Then ξ ∈ ρ(T̂ ) .

Theorem 3. γt(T ) = srt(T ).

Proof. By Remark 2 (ii) it suffices to show that srt(T ) ≥ γt(T ). Also, from Re-
mark 2 (iii) we get

srP̃U (T̃ ) = γP̃U (T̃ )(1)
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because (̃E/N)[P̃U ] is a Banach space. From Propositions 2, 5 and 7 we obtain

γt(T ) = γP̃U (T̃ )(2)

From Propositions 3, 6 and 8 we obtain

ρt(T ) ⊂ ρP̃U (T̃ );

this implies that

srP̃U (T̃ ) ≤ srt(T ).(3)

From (1), (2) and (3) we finally get

γt(T ) ≤ srt(T ).

3. A generalization of Gelfand’s formula

In this part we prove that Gelfand’s formula (see [3]) applies for a bounded
operator defined on a topological vector space. Following the notation from the
sections above, we will show that we can use ||T ||U in Gelfand’s formula to calculate
the spectral radius of T .

Proposition 9. For any T ∈ LU (E) , ||T ||U = ||T̂ ||P̂U .

Proof. Set r > ||T ||U . Then T (U) ⊂ rU ; hence PU (Tx) ≤ r for all x ∈ U .

This implies that ||T̂ ||P̂U ≤ r , and therefore ||T̂ ||P̂U ≤ ||T ||U .

Set r < ||T ||U . Then there exists x ∈ U such that

r < PU (Tx) = P̂U (T̂ (x+N)) ≤ ||T̂ ||P̂U .

This implies that ||T̂ ||P̂U = ||T ||U .

Corollary 1. ||T̃ ||P̃U = ||T̂ ||P̂U = ||T ||U .

Theorem 4. srt(T ) = limn→∞ ||T n|| 1nU for any T ∈ LU (E) .

Proof. We recall first that T ∈ LU (E) ⇒ T n ∈ LU (E) . From (1), (2), and
Theorem 3 we obtain

srt(T ) = srP̃U (T̃ ).(4)

Because (̃E/N)[P̃U ] is a Banach space, Gelfand’s formula holds:

srP̃U (T̃ ) = lim
n→∞ ||T̃

n|| 1n .(5)

Finally, using (4) and (5) and the corollary above, we obtain

srt(T ) = lim
n→∞ ||T

n|| 1nU .
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