PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 126, Number 1, January 1998, Pages 97–103 S 0002-9939(98)04430-X

EXTENDING THE FORMULA TO CALCULATE THE SPECTRAL RADIUS OF AN OPERATOR

FERNANDO GARIBAY BONALES AND RIGOBERTO VERA MENDOZA

(Communicated by Dale Alspach)

ABSTRACT. In a Banach space, Gelfand's formula is used to find the spectral radius of a continuous linear operator. In this paper, we show another way to find the spectral radius of a bounded linear operator in a complete topological linear space. We also show that Gelfand's formula holds in a more general setting if we generalize the definition of the norm for a bounded linear operator.

1. INTRODUCTION AND BASIC DEFINITIONS

In all that follows E stands for a linear vector space over the field **C** of complex numbers. E[t] will denote a complete locally convex topological vector space, with a Hausdorff topology t, and $T: E \to E$ will be a linear map. Finally, $\vartheta(t)$ will be the filter of all balanced, convex and closed t-neighborhoods of zero (in E).

Definition 1. The linear operator $T : E[t] \to E[t]$ is said to be a bounded operator, if there is a neighborhood $U \in \vartheta(t)$ such that T(U) is a bounded set.

If in the definition above T(U) is a relatively compact set, then T is said to be a compact operator. Any compact operator is a bounded operator, and any bounded operator is continuous (with the t-topology) (see [5]).

We recall that, given any topological linear space $E[\omega]$ and $S: E[\omega] \to E[\omega]$ a linear operator, the resolvent of S is the set

$$\rho_{\omega}(S) = \left\{ \xi \in \mathbf{C} \mid \xi I - S : E[\omega] \to E[\omega] \right\}$$

is bijective and has a continuous inverse $\}$.

The spectrum of S is defined by $\sigma_{\omega}(S) = \mathbf{C} \setminus \rho_{\omega}(S)$ (the set-theoretic complement in **C** of the resolvent set), and the spectral radius by

$$sr_{\omega}(S) = \sup \Big\{ |\lambda| \ \Big| \ \lambda \in \sigma_{\omega}(S) \Big\}.$$

Definition 2. A net $\{x_{\alpha}\}_{J} \subset E$ is said to be *t*-ultimately bounded (*t*-ub) if, given any $V \in \vartheta(t)$, there is a positive real number *r* and an index $\alpha_0 \in J$, both depending on *V*, such that $x_{\alpha} \in rV \ \forall \alpha \geq \alpha_0$.

©1998 American Mathematical Society

Received by the editors February 27, 1996.

¹⁹⁹¹ Mathematics Subject Classification. Primary 47A10; Secondary 46A03.

 $Key\ words\ and\ phrases.$ Spectral radius, bounded linear operator, locally convex topological space, t-ultimately bounded net.

Research supported by the Coordinación de Investigación Científica de la UMSNH.

Let us denote by Γ the set of all *t*-ub nets in *E*.

Remark 1. Any bounded, convergent or Cauchy net is a t-ub net. For more details about t-ub nets we refer the reader to [1].

Definition 3. Let $\xi \in \mathbf{C}$. We will say that $\frac{1}{\xi^n}T^n \xrightarrow{\Gamma_t} 0$ $(T^n = T \circ T \circ \ldots \circ T, n \text{ times})$ if, given both $V \in \vartheta(t)$ and $\{x_\alpha\}_J \in \Gamma$, there exist $\alpha_0 \in J$ and $n_0 \in \mathbf{N}$ such that $\frac{1}{\xi^n}T^n(x_\alpha) \in V \ \forall \alpha \ge \alpha_0$ and $\forall n \ge n_0$.

Definition 4. $\gamma_t(T) = \inf \left\{ |\xi| \mid \frac{1}{\xi^n} T^n \xrightarrow{\Gamma_t} 0 \right\}.$

Remark 2. It is shown by Vera [4] that for a bounded operator T, we have:

- (i) $\gamma_t(T) < \infty$, and for any $\xi \in \mathbf{C}$ such that $\gamma_t(T) < |\xi|, \quad \frac{1}{\xi^n} T^n \xrightarrow{\Gamma_t} 0.$
- (ii) $sr_t(T) \leq \gamma_t(T)$, where $sr_t(T)$ is the spectral radius of T.
- (iii) When E[t] is a Banach space, $\gamma_t(T) = r_t(T)$.

In [2] it was proved, based in the above result, that $\gamma_t(T) = sr_t(T)$ when T is a compact operator. In this paper we extend that result to any bounded operator.

2. Main results

From now on let $T: E[t] \to E[t]$ be a bounded operator and let $U \in \vartheta(t)$ be such that T(U) is a bounded set.

Let P_U be the functional of Minkowski (see [3]) generated by U, which is a seminorm on E. Let $E[P_U]$ denote the vector space E with the topology given by the seminorm P_U .

Remark 3. The topology on *E* given by the seminorm P_U is coarser than the topology $t \ (P_U \leq t)$.

Proposition 1. $T: E[P_U] \to E[P_U]$ is a bounded operator (hence a continuous one).

Proof. Since T(U) is a bounded set and $P_U \leq t$, T(U) is also a P_U -bounded set in $E[P_U]$.

Definition 5. $\gamma_{P_U}(T) = \inf \left\{ |\xi| \mid \frac{1}{\xi^n} T^n \xrightarrow{\Gamma_{P_U}} 0 \right\}.$

Here Γ_{P_U} convergence means that, given any net $\{x_{\alpha}\}_J \subset E$ such that for all α , $P_U(x_{\alpha}) \leq r$ for some positive real number r (P_U -bounded net), then $P_U(\frac{1}{\xi^n}T^nx_{\alpha}) \to 0$ as a net in **R** whose index set is $\mathbf{N} \times \mathbf{J}$.

Proposition 2. $\gamma_{P_U}(T) = \gamma_t(T)$.

Proof. Let $\xi \in \mathbf{C}$ be such that $\gamma_{P_U}(T) < |\xi|$, and let $V \in \vartheta(t)$ and $\{x_\alpha\}_J \in \Gamma$ be given. Since $\frac{1}{\xi}T(U)$ is a bounded set, there is a positive real number r_1 such that $\frac{1}{r_1\xi}T(U) \subset V$. In [1] is shown that $\{x_\alpha\}_J \in \Gamma \Rightarrow \{r_1x_\alpha\}_J \in \Gamma$. This implies that there exist both $\alpha_0 \in J$ and $r_2 > 0$ such that $r_1x_\alpha \in r_2U \ \forall \alpha \ge \alpha_0$, i.e., $P_U(r_1x_\alpha) \le r_2$, that is, the net $\{x_\alpha\}_{\alpha \ge \alpha_0}$ is a P_U -bounded net; therefore, $\exists \alpha_1 \in J \ (\alpha_1 \ge \alpha_0)$ and $n_1 \in \mathbf{N}$ such that $P_U(\frac{1}{\xi^n}T^n(x_\alpha)) < 1 \ \forall \alpha \ge \alpha_1, n \ge n_1$, that is, $\frac{1}{\xi^n}T^n(x_\alpha) \in U$ for those indices. Hence

$$\frac{1}{\xi^{n+1}}T^{n+1}x_{\alpha} = \frac{1}{r_{1}\xi}T(\frac{1}{\xi^{n}}T^{n}r_{1}x_{\alpha}) \in \frac{1}{r_{1}\xi}T(U) \subset V \quad \forall \, \alpha \geq \alpha_{1} \,, \, n \geq n_{1} \,,$$

98

that is, $\frac{1}{\xi^n}T^n \xrightarrow{\Gamma_t} 0$, and therefore, $\gamma_t(T) \leq |\xi|$. This implies that $\gamma_{P_U}(T) \leq \gamma_t(T)$.

On the other hand, let $\gamma_t(T) < |\xi|$ and $\{x_\alpha\}_J$, a P_U -bounded net; that is, $x_\alpha \in rU$ for all α and some r > 0. Then $\{\frac{1}{\xi}Tx_\alpha\}_J \subset \frac{r}{\xi}T(U)$, where $\frac{r}{\xi}T(U)$ is a t-bounded set; therefore, $\{\frac{1}{\xi}Tx_\alpha\}_J \in \Gamma$. Since $\frac{1}{\xi^n}T^n \xrightarrow{\Gamma_t} 0$, given $\epsilon > 0$, $\exists \alpha_0 \in J$ and $n_0 \in \mathbf{N}$ such that $\frac{1}{\xi^{n+1}}T^{n+1}x_\alpha = \frac{1}{\xi^n}T^n(\frac{1}{\xi}Tx_\alpha) \in \epsilon U$ $\forall \alpha \ge \alpha_0, n \ge n_0$; that is, $P_U(\frac{1}{\xi^{n+1}}T^{n+1}x_\alpha) \le \epsilon$ for those indices. This says that $\frac{1}{\xi^n}T^nx_\alpha$ is P_U -convergent to 0; therefore, $\gamma_{P_U}(T) \le |\xi|$. This implies that $\gamma_t(T) \le \gamma_{P_U}(T)$.

Definition 6.

 $L(E) = \Big\{ S : E[t] \to E[t] \mid S \text{ is a linear and continuous operator} \Big\},$ $L_U(E) = \Big\{ S \in L(E) \mid S(U) \text{ is a bounded set} \Big\},$

 $L_U(E)$ is a vector subspace of the complex vector space L(E).

Remark 4. For the bounded operator T that we have been working on we have $T, T^n, \lambda T, \lambda T^n \in L_U(E)$ for all $n \in \mathbb{N}$ and all $\lambda \in \mathbb{C}$.

Moreover, for any $S \in L(E)$, $S \circ T$, $T \circ S \in L_U(E)$.

Definition 7. For any operator $S \in L_U(E)$, we define, taking into account that S(U) is a bounded set, the following real number:

$$||S||_U = \sup\{P_U(Sx) \mid x \in U\}.$$

It easy to check that $||S^n||_U \le ||S||_U^n \quad \forall S \in L_U(E)$ and $\forall n \in \mathbb{N}$.

Theorem 1. If $S_n \xrightarrow{\Gamma_t} S$ in L(E), then $||S_n \circ T - S \circ T||_U \to 0$.

Proof. Let us prove it by way of contradiction.

Let $\epsilon > 0$ be such that there exist natural numbers $n_1 < n_2 < n_3 < \dots$ such that $\epsilon < ||S_{n_k} \circ T - S \circ T||_U$; hence, for each of those n_k there is $x_{n_k} \in U$ such that $P_U[(S_{n_k} \circ T - S \circ T)x_{n_k})] > \epsilon$. Since $\{Tx_{n_k}\} \subset T(U)$, it is a bounded sequence; hence, for $V = \epsilon U \in \vartheta(t)$ there is an index $m_0 \in \mathbb{N}$ such that $(S_n - S)(Tx_{n_k}) \in V$ for all $n, n_k \geq m_0$; this implies that $P_U[(S_{n_k} \circ T - S \circ T)x_{n_k})] \leq \epsilon$, which yields a contradiction.

Proposition 3. $\rho_t(T) \subset \rho_{P_U}(T)$.

Proof. Let us suppose first that $\gamma_t(T) < 1$. Let $\xi \in \rho_t(T)$ be such that $|\xi| > \gamma_t(T)$. Then $S = \sum_{k=0}^{\infty} \frac{1}{\xi^{k+1}} T^k$ is a continuous operator and $S = (\xi I - T)^{-1}$. Set $S_n = \sum_{k=0}^n \frac{1}{\xi^{k+1}} T^k$. Then $S_n \xrightarrow{\Gamma_t} S$, and from Theorem 1 it follows that $||S_n \circ \frac{1}{\xi}T - S \circ \frac{1}{\xi}T||_U \to 0$. On the other hand, $S_n \circ \frac{1}{\xi}T = S_{n+1} - \frac{1}{\xi}I$ and $S \circ \frac{1}{\xi}T = S - \frac{1}{\xi}I$; hence $||S_{n+1} - S||_U \to 0$. Thereby, given $\{x_m\}_{\mathbf{N}} \subset E$ such that $P_U(x_m) \to 0$, then $P_U(Sx_m) \leq P_U[(S - S_n)x_m] + P_U(S_nx_m) \to 0$. This proves that $S: E[P_U] \to E[P_U]$ is a continuous operator; hence $\xi \in \rho_{P_U}(T)$.

Now let $\xi \in \rho_t(T)$ be such that $|\xi| \leq \gamma_t(T)$. Then $|\frac{1}{\xi}| > 1 > \gamma_t(T)$, which means that $\frac{1}{\xi}I - T : E[P_U] \to E[P_U]$ is a continuous operator. Since $\xi I - T =$

 $(\xi - \frac{1}{\xi})I - (T - \frac{1}{\xi}I)$, we have that

$$(\xi I - T)^{-1} = (\xi - \frac{1}{\xi})^{-1} I \circ [(T - \frac{1}{\xi}I)^{-1} - (\frac{1}{\xi})^{-1}I] \circ (T - \frac{1}{\xi}I)^{-1};$$

since the right hand side is the composition of three continuous operators from $E[P_U]$ to $E[P_U]$ we have that $\xi \in \rho_{P_U}(T)$.

Finally, let T be such that $\gamma_t(T) < r < \infty$. Then $T_1 = \frac{1}{r}T \in L_U(E)$ is such that $\gamma_t(T_1) < 1$. Hence $\frac{1}{r}\rho_t(T) = \rho_t(T_1) \subset \rho_{P_U}(T_1) = \frac{1}{r}\rho_{P_U}(T)$, and therefore $\rho_t(T) \subset \rho_{P_U}(T)$.

Definition 8.
$$N = \left\{ x \in E \mid P_U(x) = 0 \right\}.$$

Remark 5. Since $\left\{ x \in E \mid P_U(x) \leq 1 \right\} \subset U$, $N \subset U$.

Theorem 2. N is a closed linear subspace of E, and T(x) = 0 for all $x \in N$.

Proof. The first claim follows from the fact that

$$P_U(\xi x + y) \le |\xi| P_U(x) + P_U(y).$$

For the second claim let's take $x \in N$; then $mx \in N$ for m = 1, 2, Let V be any balanced, convex and closed *t*-neighborhood of 0. Since $\{mT(x)\}_{m=1,2,3,...} \subset T(N) \subset T(U)$ and the latter set is bounded, there exists $r \in \mathbf{R}^+$ such that $\{mT(x)\} \subset rV \Rightarrow T(x) \in \frac{r}{m}V \subset V$ when m > r. Since V was an arbitrary neighborhood of zero and E[t] is Hausdorff, then T(x) = 0.

Definition 9. Let E/N be the quotient linear space and let \hat{P}_U be the norm on it defined by $\hat{P}_U(x+N) = P_U(x)$ (see [3]).

Remark 6. $(E/N)[\hat{P}_U]$ will denote the vector space E/N with the topology given by the norm \hat{P}_U .

Definition 10. Let $\hat{T}: (E/N) \to (E/N)$ be defined by $\hat{T}(x+N) = T(x) + N$.

Remark 7. It is easy to show that \hat{T} is a well defined linear map.

Proposition 4. $\hat{T}: (E/N)[\hat{P}_U] \to (E/N)[\hat{P}_U]$ is a linear and bounded operator (hence \hat{T} is continuous).

Proof. U/N is the unit ball in $(E/N)[\hat{P}_U]$ and $\hat{T}(U/N) = (T(U) + N)/N$. The latter set is \hat{P}_U -bounded because the canonical projection $E[P_U] \to (E/N)[\hat{P}_U]$ is a continuous map.

Remark 8. Since $(E/N)[\hat{P}_U]$ is a norm space we can define, as usual, the norm of \hat{T} , and this will be denoted by $||\hat{T}||_{\hat{P}_U}$.

Proposition 5. $\gamma_{\hat{P}_U}(\hat{T}) = \gamma_{P_U}(T)$.

Proof. Set $|\xi| > \gamma_{P_U}(T)$. Let $\{x_{\alpha} + N\}_J$ be a \hat{P}_U -bounded net in E/N; then $\{x_{\alpha}\}_J$ is a P_U -bounded net in E; hence, given $\epsilon > 0$, there are indices $\alpha_0 \in J$ and $n_0 \in \mathbf{N}$ such that $\frac{1}{\xi^n} T^n x_{\alpha} \in \epsilon U \quad \forall \alpha \ge \alpha_0$ and $n \ge n_0$. Thus

$$\frac{1}{\xi^n}\hat{T}^n(x_\alpha+N) = \frac{1}{\xi^n}T^nx_\alpha+N \in \ \epsilon \ (U/N), \ \alpha \ge \alpha_0, \ n \ge n_0$$

This implies that $\gamma_{\hat{P}_U}(T) \leq |\xi|$. Hence $\gamma_{\hat{P}_U}(T) \leq \gamma_{P_U}(T)$.

100

Set $|\xi| > \gamma_{\hat{P}_U}(T)$. Let $\{x_\alpha\}_J$ be a P_U -bounded net in E. Then $\{x_\alpha + N\}_J$ is a \hat{P}_U -bounded net in E/N; hence, given $\epsilon > 0$, there are indices $\alpha_0 \in J$ and $n_0 \in \mathbf{N}$ such that $\frac{1}{\xi^n} \hat{T}^n(x_\alpha + N) \in \epsilon (U/N) \ \forall \alpha \ge \alpha_0 \ , \ n \ge n_0$. This implies that for those indices $\frac{1}{\xi^n} T^n x_\alpha = \epsilon u_\alpha + z_\alpha \ , \ u_\alpha \in U \ , \ z_\alpha \in N \ ;$ hence $P_U(\frac{1}{\xi^n} T^n x_\alpha) \le P_U(\epsilon u_\alpha) + P_U(z_\alpha) \le \epsilon + 0 = \epsilon \ ,$ and thus $|\xi| > \gamma_{P_U}(T)$. This implies that $\gamma_{\hat{P}_U}(T) \ge \gamma_{P_U}(T)$.

Proposition 6. $\rho_{P_U}(T) = \rho_{\hat{P}_U}(\hat{T})$.

Proof. $\xi \in \rho_{P_U}(T) \Rightarrow \xi I - T : E[P_U] \to E[P_U]$ is bijective and has a continuous inverse.

Let us show that $A: (E/N)[\hat{P}_U] \to (E/N)[\hat{P}_U]$ defined by $A(x+N) = (\xi I - T)^{-1}(x) + N$, which is a linear and continuous map, is the inverse function of $\xi \hat{I} - \hat{T}$. For this, $A(\xi \hat{I} - \hat{T})(x+N) = A(\xi I - T)(x+N) = A((\xi I - T)(x) + N) = (\xi I - T)^{-1}(\xi I - T)(x) + N = x + N$. In a similar way it can be proved that $(\xi \hat{I} - \hat{T}) \circ A = I$. This implies that $\xi \in \rho_{\hat{P}_U}(\hat{T})$.

It is just routine to prove the set contention in the other way around. \Box

Definition 11. $(E/N)[\tilde{P}_U]$ will denote the completion (as a normed space) of $(E/N)[\hat{P}_U]$, and \tilde{T} will denote the natural extension of \hat{T} .

Remark 9. $(\widetilde{E/N})[\widetilde{P}_U]$ is a Banach space. Besides, since \widehat{T} is a bounded operator, $\widetilde{T}: (\widetilde{E/N})[\widetilde{P}_U] \to (\widetilde{E/N})[\widetilde{P}_U]$ is a bounded operator (see [3]).

Remark 10. Since $(E/N)[\tilde{P}_U]$ is a Banach space we can define, as usual, the norm of \tilde{T} ; this will be denoted by $||\tilde{T}||_{\tilde{P}_U}$.

Proposition 7. $\gamma_{\hat{P}_{U}}(\hat{T}) = \gamma_{\tilde{P}_{U}}(\tilde{T}).$

Proof. Since \tilde{T} is an extension of \hat{T} , the proof follows immediately from the definitions of $\gamma_{\hat{P}_{tr}}(\hat{T})$ and $\gamma_{\tilde{P}_{tr}}(\tilde{T})$.

Proposition 8. $\rho_{\hat{P}_{U}}(\hat{T}) = \rho_{\tilde{P}_{U}}(\tilde{T})$.

Proof. If $\xi \in \rho(\hat{T})$, then $\xi I - \hat{T} : (E/N)[\hat{P}_U] \to (E/N)[\hat{P}_U]$ is bijective and has a continuous inverse, so that both $\xi I - \hat{T}$ and $(\xi I - \hat{T})^{-1}$ have a continuous extension to $(\widetilde{E/N})$, which are precisely $\xi I - \tilde{T}$ and $(\xi I - \tilde{T})^{-1}$ respectively. This implies that $\xi \in \rho(\tilde{T})$.

On the other hand, if $\xi \in \rho(\tilde{T})$, then $\xi I - \tilde{T} : (E/N)[\tilde{P}_U] \to (E/N)[\tilde{P}_U]$ is bijective and has a continuous inverse; hence the restrictions of those functions to $(E/N)[\hat{P}_U]$ are precisely $\xi I - \hat{T}$ and its inverse function, which are continuous functions for being the restrictions of continuous ones. Then $\xi \in \rho(\hat{T})$.

Theorem 3. $\gamma_t(T) = sr_t(T)$.

Proof. By Remark 2 (ii) it suffices to show that $sr_t(T) \ge \gamma_t(T)$. Also, from Remark 2 (iii) we get

(1)
$$sr_{\tilde{P}_{U}}(T) = \gamma_{\tilde{P}_{U}}(T)$$

because $(\widetilde{E/N})[\widetilde{P_U}]$ is a Banach space. From Propositions 2, 5 and 7 we obtain

(2)
$$\gamma_t(T) = \gamma_{\tilde{P}_{tt}}(T)$$

From Propositions 3, 6 and 8 we obtain

 $\rho_t(T) \subset \rho_{\tilde{P_u}}(\tilde{T});$

this implies that

(3)
$$sr_{\tilde{P}_{II}}(T) \leq sr_t(T).$$

From (1), (2) and (3) we finally get

$$\gamma_t(T) \le sr_t(T)$$

3. A generalization of Gelfand's formula

In this part we prove that Gelfand's formula (see [3]) applies for a bounded operator defined on a topological vector space. Following the notation from the sections above, we will show that we can use $||T||_U$ in Gelfand's formula to calculate the spectral radius of T.

Proposition 9. For any $T \in L_U(E)$, $||T||_U = ||\hat{T}||_{\hat{P}_{T}}$.

Proof. Set $r > ||T||_U$. Then $T(U) \subset rU$; hence $P_U(Tx) \leq r$ for all $x \in U$. This implies that $||\hat{T}||_{\hat{P}_U} \leq r$, and therefore $||\hat{T}||_{\hat{P}_U} \leq ||T||_U$.

Set $r < ||T||_U$. Then there exists $x \in U$ such that

$$r < P_U(Tx) = P_U(T(x+N)) \le ||T||_{\hat{P}_U}$$

This implies that $||\hat{T}||_{\hat{P}_U} = ||T||_U$.

Corollary 1. $||\tilde{T}||_{\tilde{P}_{U}} = ||\hat{T}||_{\hat{P}_{U}} = ||T||_{U}$.

Theorem 4. $sr_t(T) = \lim_{n \to \infty} ||T^n||_U^{\frac{1}{n}}$ for any $T \in L_U(E)$.

Proof. We recall first that $T \in L_U(E) \Rightarrow T^n \in L_U(E)$. From (1), (2), and Theorem 3 we obtain

(4)
$$sr_t(T) = sr_{\tilde{P}_{tr}}(\tilde{T}).$$

Because $(\widetilde{E/N})[\widetilde{P_U}]$ is a Banach space, Gelfand's formula holds:

(5)
$$sr_{\tilde{P}_U}(\tilde{T}) = \lim_{n \to \infty} ||\tilde{T}^n||^{\frac{1}{n}}.$$

Finally, using (4) and (5) and the corollary above, we obtain

$$sr_t(T) = \lim_{n \to \infty} ||T^n||_U^{\frac{1}{n}}$$

102

References

- C. L. DeVito, On Alaoglu's Theorem, Bornological Spaces and the Mackey-Ulam Theorem. Math. Ann. 192, 83-89 (1972). MR 44:2014
- [2] F. Garibay and R. Vera, A Formula to Calculate the Spectral Radius of a Compact Linear Operator. Internat J. Math. & Math. Sci. 20, no. 3 (1997), 585–588.
- [3] W. Rudin, Functional Analysis. New York, McGraw-Hill, Inc. 1991. MR 92k:46001
- [4] R. Vera, *Linear Operators on Locally Convex Topological Vector Spaces*. Ph.D. Thesis, Department of Mathematics, University of Arizona, 1994.
- [5] K. Yosida, Functional Analysis. Springer Verlag, New York, 1965. MR 31:5054

Escuela De Ciencias Físico-Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B, Planta Baja, Ciudad Universitaria, Morelia, Michoacán, CP 58060, México

E-mail address: fgaribay@zeus.ccu.umich.mx

E-mail address: rvera@zeus.ccu.umich.mx