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ABSTRACT. In a Banach space, Gelfand’s formula is used to find the spectral
radius of a continuous linear operator. In this paper, we show another way to
find the spectral radius of a bounded linear operator in a complete topological
linear space. We also show that Gelfand’s formula holds in a more general
setting if we generalize the definition of the norm for a bounded linear operator.

1. INTRODUCTION AND BASIC DEFINITIONS

In all that follows E stands for a linear vector space over the field C of complex
numbers. E[t] will denote a complete locally convex topological vector space, with
a Hausdorff topology ¢, and T : E — FE will be a linear map. Finally, ¥(¢) will
be the filter of all balanced, convex and closed t-neighborhoods of zero (in E).

Definition 1. The linear operator T : E[t] — E[t] is said to be a bounded
operator, if there is a neighborhood U € ¥(t) such that T(U) is a bounded set.

If in the definition above T'(U) is a relatively compact set, then T is said to be a
compact operator. Any compact operator is a bounded operator, and any bounded
operator is continuous (with the ¢-topology) (see [5]).

We recall that, given any topological linear space Flw] and S : E[w] — E[w] a
linear operator, the resolvent of S is the set

pu(S) = {5 e c‘gl— S:Elw] — E[u]
is bijective and has a continuous inverse}.

The spectrum of S is defined by 0,,(S) = C\ p,,(S) (the set-theoretic complement
in C of the resolvent set), and the spectral radius by

57, () = sup{|)\| A aw(S)}.

Definition 2. A net {z,}; C E is said to be t-ultimately bounded (t-ub) if,
given any V € 9(t) , there is a positive real number r and an index «ag € J, both
depending on V', such that z, € 7V Va > ag.
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98 F. GARIBAY BONALES AND R. VERA MENDOZA

Let us denote by I' the set of all t-ub nets in F.
Remark 1. Any bounded, convergent or Cauchy net is a t-ub net. For more details
about t-ub nets we refer the reader to [1].

Definition 3. Let ¢ € C. We will say that &7 =% 0 (1" =ToTo..oT ,n

times) if, given both V € d(t) and {x,}s € T, there exist ag € J and ny € N
such that élnT"(xa) cV Va>ag and Vn>ng.

Definition 4. ~(T) = inf{|§|‘ L I g }
Remark 2. Tt is shown by Vera [4] that for a bounded operator T, we have:
(i) 7(T) <oo, and for any & € C such that (T) < [¢], 1" L.

(i) sr+(T) < v(T), where sr¢(T) is the spectral radius of 7.
(iii) When E[t] is a Banach space, v:(T) = r+(T).

In [2] it was proved, based in the above result, that ~;(T) = sr+(T) when T is
a compact operator. In this paper we extend that result to any bounded operator.

2. MAIN RESULTS

From now on let T : E[t] — E[t] be a bounded operator and let U € ¥(t) be
such that T'(U) is a bounded set.

Let Py be the functional of Minkowski (see [3]) generated by U, which is a
seminorm on E. Let E[Py| denote the vector space E with the topology given by
the seminorm FPy.

Remark 3. The topology on FE given by the seminorm Py is coarser than the
topology t (Py <1t).

Proposition 1. T : E[Py] — E[Py] is a bounded operator (hence a continuous

one).
Proof. Since T'(U) is a bounded set and Py <t, T(U) is also a Py-bounded set
in E[Py]. O

r
Definition 5. vp, (T) = inf{|§| ‘ 5LnTn _u 0}'

Here I'p, convergence means that, given any net {z,}; C E such that for
all a, Py(z,) < r for some positive real number r ( Py-bounded net), then
PU(E%T”:Z:Q) — 0 as a net in R whose index set is N x J.

Proposition 2. ~yp, (T) = w(T).

Proof. Let £ € C be such that ~vp, (T) < |¢], and let V € 9¥(t) and {z,}s €T
be given. Since %T(U ) is a bounded set, there is a positive real number r; such

that &T(U) C V. In[1] is shown that {z,}; €T = {riz,}s € I'. This implies

that there exist both ag € J and ro > 0 such that rz, € U Va > «aq,
ie., Py(rize) < rgy, that is, the net {zo}a>a, isa Py-bounded net; therefore,

Jag € J (a1 > ap) and ny € N such that PU(gTT”(xa)) <lVa>a,n>

ny, that is, glnT”(;va) € U for those indices. Hence

1 n+1 1

1 1
éT-H ZEQZET(—TnTliEa)E—T(U)CV Va>ai,n>n,

&n r1§
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that is, flnT” AR 0, and therefore, ~(T) < |¢|. This implies that yp, (T) <

Y(T).

On the other hand, let . (T) < || and {x.}s, a Py-bounded net; that
is, To € rU for all a and some 7 > 0. Then {Tza}s C §T(U), where
%T(U) is a t-bounded set; therefore, {%TI'Q}J e I' . Since glnT" AN , given
e >0, Jag € J and ng € N such that fnlﬂT”‘Hxa = %T”(%Txa) € U
Va > ag, n > ng; that is, PU(EnﬂlT"“xa) < € for those indices. This says
that glnT”xa is Py-convergent to 0; therefore, vp,(T) < |€|. This implies that
(1) < vp, (T). O

Definition 6.

L(E) = {S . E[t] — EJt] ‘ S is a linear and continuous operator},

Ly(E) = {S’ € L(E) ‘ S(U) is a bounded set},
Ly (E) is a vector subspace of the complex vector space L(FE).

Remark 4. For the bounded operator T' that we have been working on we have
T, T" XTI, \T" € Ly(E) forall n€ N andall A e C.
Moreover, for any S € L(E), SoT,ToS € Ly(E).

Definition 7. For any operator S € Ly (F) , we define, taking into account that
S(U) is a bounded set, the following real number:

S|l = sup{Py(Sz) | x € U} .
It easy to check that [|S™||y < ||S||; VS € Ly(E) and Vn e N.

Theorem 1. If S, L5 i L(E), then ||Sp,oT —SoT|ly — 0.

Proof. Let us prove it by way of contradiction.

Let ¢ > 0 be such that there exist natural numbers n; < no < nz < ... such
that € < ||Sp, 0T —SoT ||y ; hence, for each of those ny, thereis x,, € U such that
Py[(Sp, oT — SoT)xy,)] >e€. Since {Tz,, } CT(U), it is a bounded sequence;
hence, for V = €U € 9(¢t) there is an index mgy € N such that (S, —S)(Tzn,) €
V for all n, ng > mg ; this implies that Py[(S,, oT — S o T)xy,, )] < €, which
yields a contradiction. O

Proposition 3. p(T) C pp,(T) .

Proof. Let us suppose first that ~v(T) < 1. Let £ € p(T) be such that |¢] >
w(T). Then S =32, & T is a continuous operator and § = (€1 —T)~".
Set S, = ZZ:O #T’“ . Then S, s , and from Theorem 1 it follows that
1Sp 0 ¢T —So¢T|ly — 0. On the other hand, Sy 0T = Syp41— ¢l and So
%T =5- %I ; hence |[Sp+1 — S|l — 0 . Thereby, given {z,,}n C E such that
Py(zm) — 0, then Py(Szy,) < Py[(S — Sn)zm] + Pu(Snzm) — 0. This proves
that S : E[Py] — E[Py] is a continuous operator; hence & € pp, (T).

Now let & € py(T) be such that [¢| < %(T). Then [¢]>1>~(T), which

means that %I — T : E[Py] — E[Py] is a continuous operator. Since &I —T =
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100 F. GARIBAY BONALES AND R. VERA MENDOZA

(= %)I —(T - %I) , we have that
Er-T)"'= (- l)—Hro (T — 11)—1 - (1)—11] o(T — 11)—1.
a 3 3 3 13 ’

since the right hand side is the composition of three continuous operators from
E[Py] to E[Py] we have that & € pp, (T).

Finally, let T' be such that (7) < r < co. Then T = 1T € Ly(E) is such
that ~v(T1) < 1. Hence 1p(T) = pi(Th) C pp,(T1) = Lpp,(T) , and therefore
pi(T) € ppy(T). 0

Definition 8. N = {x €eFE ‘ Py(z) = 0}.

Remark 5. Since {1: cE ‘ Py(z) < 1}c U,NcU.

Theorem 2. N is a closed linear subspace of E, and T(z) = 0 for all © € N .
Proof. The first claim follows from the fact that

Py(§x +y) < |¢] Pu(x)+ Pu(y).

For the second claim let’s take z € N ; then mz € N for m =1,2,.... Let V be
any balanced, convex and closed ¢t-neighborhood of 0. Since {m T (z)}m=123,.. C
T(N) C T(U) and the latter set is bounded, there exists r € R* such that
{mT(x)} crV = T(z) € 5V C V when m > r. Since V was an arbitrary
neighborhood of zero and E[t] is Hausdorff, then T'(x) = 0. |

Definition 9. Let E/N be the quotient linear space and let Py be the norm
on it defined by Py(x + N) = Py(x) (see [3]).

Remark 6. (E/N)[Py] will denote the vector space E/N with the topology given
by the norm Py.

Definition 10. Let T : (E/N) — (E/N) be defined by T'(x+ N) =T(z) + N.
Remark 7. Tt is easy to show that T is a well defined linear map.

Proposition 4. T : (E/N)[Py] — (E/N)[Py] is a linear and bounded operator
(hence T is continuous ).

Proof. U/N is the unit ballin (E/N)[Py] and T(U/N) = (T'(U)+ N)/N . The
latter set is Py-bounded because the canonical projection E[Py| — (E/N)[Py] is

a continuous map. O

Remark 8. Since (E/N)[Py] is a norm space we can define, as usual, the norm of
1", and this will be denoted by |||, -

Proposition 5. vz (T) = vp, (T).

Proof. Set |€] > yp,(T). Let {zo + N}; be a Py-bounded net in E/N; then
{zo}s is a Py-bounded net in E; hence, given € > 0, there are indices ag € J
and ng € N such that ginT"xa cel Ya>ay and n > ng . Thus
1 1
& &
This implies that vp (') < [¢| . Hence vp (T') < vp, (T)-

T (20 +N) = —=T"z,+ N e € (U/N), a>ag, n>mng
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Set [¢] >vp, (T). Let {za}s bea Py-bounded net in E. Then {zo + N},
is a Py-bounded net in E/N; hence, given € > 0, there are indices ag € J
and no € N such that gTT”(xa +N) € e(U/N)Va > ap, n > ng. This
implies that for those indices E%T”:zca = €Uy + 20, Ua € U, z4 € N ; hence
PU(E%T”;EQ) < Py(euy) + Pu(za) < €+ 0 = €, and thus [§] > vp,(T) . This
implies that vz (') > vp, (T). |

Proposition 6. pp, (1) = pp, (T).

Proof. € € pp,(T) = (&I —T : E[Py] — E[Py] is bijective and has a continuous
inverse.

Let us show that A : (E/N)[Py] — (E/N)[Py] defined by A(z 4+ N) =
(€I —-T)"Y(z)+ N, which is a linear and continuous map, is the inverse function of
¢l —T . For this, A&l —T)(x+N)= Al —T)(x+N) = A(EI-T)(z)+N) =
(I —T)"Y&I —T)(x) + N = 2+ N . In a similar way it can be proved that
(€] —T)o A =1 . This implies that £ e Pp, (T).

It is just routine to prove the set contention in the other way around. O

Definition 11. (E/N)[Py] will denote the completion (as a normed space) of
(E/N)[Py], and T will denote the natural extension of T'.

Remark 9. (E/N)[Py] is a Banach space. Besides, since T' is a bounded operator,

e~ =~

T :(E/N)[Py] — (E/N)[Py] is a bounded operator (see [3]).

Remark 10. Since (/E—m) [Py] is a Banach space we can define, as usual, the norm
of T'; this will be denoted by |||, -

Proposition 7. vp (1) = vp, (1).

Proof. Since T is an extension of 7', the proof follows immediately from the defini-

tions of vy (T) and vp, (T). O

Proposition 8. py (1) = pp, (T) .

Proof. It € € p(T) , then &¢I —1T : (E/N)[Py] — (E/N)[Py] is bijective and
has a continuous inverse, so that both &I —T and (£ —T)~! have a continuous

extension to (E/N) , which are precisely &I — T and (€I —T)~! respectively.
This implies that & € p(T').

On the other hand, if ¢ € p(T) , then &I —T : (E/N)[Py] — (E/N)[Py] is
bijective and has a continuous inverse; hence the restrictions of those functions to
(E/N)[Py] are precisely &I — T and its inverse function, which are continuous

functions for being the restrictions of continuous ones. Then ¢ € p(T)). O

Theorem 3. v(T) = sr(T).

Proof. By Remark 2 (ii) it suffices to show that sry(T") > v¢(T"). Also, from Re-
mark 2 (iii) we get

(1) srp, (T) =p,(T)
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—_~

because (E/N)[Py] is a Banach space. From Propositions 2, 5 and 7 we obtain

(2) W(T) =vp, (T)
From Propositions 3, 6 and 8 we obtain

pi(T) C pp, (T);
this implies that

(3) s1p, (T) < sry(T).
From (1), (2) and (3) we finally get

Y (T) < sr(T).

3. A GENERALIZATION OF GELFAND’S FORMULA

In this part we prove that Gelfand’s formula (see [3]) applies for a bounded
operator defined on a topological vector space. Following the notation from the
sections above, we will show that we can use ||T||y in Gelfand’s formula to calculate
the spectral radius of T'.

Proposition 9. For any T € Ly(E) , ||T|lv = ||T||15U .

Proof. Set r > ||T||y . Then T(U) C rU ; hence Py(Tz) <r forall z € U.
This implies that |[T'|[5, <, and therefore ||T|5, <||T|v .
Set r < ||T||y . Then there exists « € U such that

r < Py(Tz) = Py(T(z+ N)) < |[T||5, -
This implies that ||T||5, = ||T||v - O
Corollary 1. ||T||15U = ||T||15U =||Tlv -

Theorem 4. sry(T) = lim, .o ||T”||§ forany T € Ly(E).

Proof. We recall first that T € Ly(E) = T™ € Ly(E). From (1), (2), and
Theorem 3 we obtain

4) sri(T) = srs, (T).

Because (J/E_m) [Py] is a Banach space, Gelfand’s formula holds:
(5) srp, (T) = lim [|T7]|.

Finally, using (4) and (5) and the corollary above, we obtain

1
sre(T) = lim |77
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