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ABSTRACT

Aims. A new method to constrain the cosmological equation of state is proposed by using combined samples of gamma-ray bursts
(GRBs) and supernovae (SNeIa).
Methods. The Chevallier-Polarski-Linder parameterization is adopted for the equation of state in order to find a realistic approach to
achieve the deceleration/acceleration transition phase of dark energy models.
Results. We find that GRBs, calibrated by SNeIa, could be good distance indicators capable of discriminating between cosmological
models and ΛCDM model at high redshift.
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1. Introduction

From an observational viewpoint, one of the fundamental goals
of cosmology is to measure cosmological distances and then to
build a suitable and reliable cosmic distance ladder. This issue
has recently become even more important due to the evident de-
generacy of several dark energy models withΛCDM, despite the
advent of the so-called Precision cosmology (Ellis 1999).

In the last two decades, a class of accurate standard candles,
the type Ia supernovae (SNeIa), has been highly studied and the
results obtained from the use of these objects led to the surpris-
ing discovery of an acceleration of the cosmic Hubble flow (for
a review see Kowalski et al. 2008). However these objects are
poorly detectable at redshifts higher than ∼1.5, so we need dis-
tance indicators at higher redshifts in order to remove the de-
generation of dark energy models affecting current cosmolog-
ical models (ΛCDM is a good approximation of the observed
Universe, even though there is still no theoretical basis about the
nature of its components, but the issue of global evolution is far
from being addressed; for a comprehensive review see Copeland
et al. 2006). A possible solution could be found by adopting
gamma ray bursts (GRBs) as distance indicators.

GRBs are the most powerful explosions in the Universe: the
most likely scenarios for their generation are the formation of
massive black holes or the coalescence of binary stellar sys-
tems. These events are observed at considerable distances, so
there have been several efforts to frame them into the standard of
the cosmological distance ladder. In the literature, there are sev-
eral models that account for GRB formation (Meszaros 2006).
All these scenarios involve a similar shock phenomenon: a “fire-
ball”, possibly be supported by a further jet emission. However
none of these models is intrinsically capable of integrating all
the observable quantities.

Despite the poor knowledge of the GRB mechanism, it
seems that GRBs could be used as reliable distance indicators.
There exist several observational correlations among the photo-
metric and spectral properties of GRBs to support this possibil-
ity (Basilakos & Perivolaropoulos 2008; Ghirlanda et al. 2006).
Nevertheless the origin of these spectroscopic and photometri-
cal correlations is not known very well and there are several ef-
forts to interpret the behavior of GRB features in a coherent way,
by relatively simple scenarios (Dainotti et al. 2008; Ghisellini
et al. 2008). Succeeding in explain the mechanism that gener-
ates GRBs is one of the objectives of modern astrophysics and
to clarify these observed correlations in this context would make
GRBs reliable distance indicators. A complete review of the ex-
isting luminosity relations for GRBs can be found in Schaefer
(2007).

In this paper, we consider two relations, the one by
Liang-Zhang (LZ) (Liang & Zhang 2005), and the one by
Ghirlanda (GGL) (Ghirlanda et al. 2004). They are the only
3-parameter relations known and have less scatter with respect to
the theoretical best fit than the other 2-parameter ones. However
calibration of the relations used has been necessary in order to
avoid the circularity problem. This means that all the relations
need to be calibrated for each set of cosmological parameters.
Indeed, all GRB distances, obtained in a photometric way, are
strictly dependent on the cosmological parameters since, cur-
rently, there is no low-redshift (z up to 0.2–0.3) set of GRBs
available to achieve a cosmology-independent calibration. In or-
der to overcome this difficulty, Liang et al. (2008), proposed a
method in which several GRB relations have been calibrated by
SNeIa. Supposing that these relations work at all redshifts and
that, at the same redshift, GRBs and SNeIa have the same lumi-
nosity distance, it becomes possible, in principle, to calibrate the
GRB relations using an interpolation algorithm. In this way, it
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becomes possible to build a GRB-Hubble diagram by calculat-
ing the luminosity distance for each GRB with the well-known
relation between the luminosity distance dl and the energy-flux
ratio of the distance indicators.

In the literature there are several paper that use simi-
lar methods to constraint the cosmological parameters of the
Concordance Model using GRBs as extension of the SNeIa
Hubble Diagram (Firmani et al. 2005, 2006; Wang & Dai 2006;
Wang et al. 2007; Li et al. 2008b,a).

Here we take into account a cosmological EoS work-
ing at any redshift, using GRBs as tracers and adopting
again the Chevallier-Polarski-Linder (CPL) parameterization. In
particular we discuss a method which should allow us to obtain
an analytic cosmology-independent formulation of the luminos-
ity distance and then of the distance modulus. After a brief in-
troduction to the GRB luminosity relations, we show fits of the
data obtained by these relations and the results and perspectives
of the approach are discussed in the last section.

2. The theoretical framework

Our goal is to obtain an analytic formulation of the Hubble dia-
gram valid at any redshift. We start from the Friedmann equation

H2 =
8πG

3
ρ − kc2

a2
· (1)

We obtain, by some algebra, the following equation in terms of
the density parameter

H2 = H2
0

[
Ω0

(a0

a

)3(w+1)
− (Ω0 − 1)

(a0

a

)2
]
, (2)

where the subscript 0 indicates the present value of the parame-
ters. From now onwards, we take into account a spatially quasi-
flat Universe, k ≈ 0; the contribution of the curvature will be
negligible and we haveΩ0 ≈ 1, as suggested by the latest CMBR
(Komatsu et al. 2008) and the SNeIa observations (Kowalski
et al. 2008). However, in the final section, we will perform a test
to verify this assumption with observations coming from GRBs.
Now if we translate in terms of redshift z,
a0

a
= 1 + z, (3)

the previous equation reduces to

H2(z) = H2
0 (1 + z)3(w+1) . (4)

The w-parameter indicates the EoS w = p/ρ, where p and ρ
are the pressure and the matter-energy density of the Universe,
respectively. Considering the CPL parameterization of the EoS,
(Chevallier et al. 2001):

w(z) = w0 + wa
z

1 + z
, (5)

and substituting into Eq. (4), we obtain:

H(z) = H0

[
(1 + z)

3
2 (w0+wa+1) exp

( −3waz
2(1 + z)

)]
, (6)

which enters directly in the expression of the distance modulus

μ(z) = −5 + 5 log dl(z), (7)

where dl(z) = c(1 + z)Dl(z) and where

Dl(z) =
∫ z

0

dξ
H(ξ)

· (8)

This means that an analytic expression for μ can be achieved.
The integral Dl in Eq. (8) can be solved giving a Gamma function
of the first kind1:

Dl(z) =

(
3wa

2

)− 1+3w0+3wa
2

exp

(
3wa

2

)

× Γ
[
1 + 3w0 + 3wa

2
,

3wa

2(1 + ξ)

]∣∣∣∣∣∣
ξ=z

ξ=0

· (9)

Substituting such an expression in the distance modulus, we ob-
tain a model for data fitting which could work, in principle, at
any z. The obtained expression for the Hubble parameter H(z)
is independent of the density parameters, ΩM and ΩΛ, provided
that their sum is equal to 1.

We use the CPL parameterization not only for the dark en-
ergy component, but for the total energy-matter density of the
Universe. This assumption works because dark and baryonic
matter contribute with a null pressure while the radiation com-
ponent is negligible in matter- and dark energy-dominated eras.
Furthermore, the analytical formulation that we adopt for the lu-
minosity distance is assumed valid at any redshift z.

3. GRB luminosity relations

In the last years, thanks to several spacecraft missions capa-
ble of observing this high energy region, the main features of
GRBs have become better known. Recently, some photomet-
ric and spectroscopic relations between GRB observables have
been found and then the hypothesis that these objects could
be considered suitable distance indicators has become feasible.
Nevertheless, there is no theoretical model that fully explains
these relations so the GRBs cannot be considered as standard
candles. For a detailed review of the observational features see
Schaefer (2007).

Here, we take into account the existing 3-parameter rela-
tions. This choice has been made because these relations place
better constraints on the data giving less scatter between the
theoretical relation and the experimental data (Schaefer 2007).
The first relation is the so-called Liang-Zhang relation, (Liang
& Zhang 2005), which allows us to connect the GRB peak en-
ergy, Ep, with the isotropic energy released in the burst, Eiso, and
with the jet break-time of the afterglow optical light curve in the
rest frame, measured in days, tb, that is

log Eiso = a + b1 log
Ep(1 + z)

300 keV
+ b2 log

tb
(1 + z)1 day

(10)

where a and bi, with i = 1, 2, are calibration constants.
The other relation is that given by Ghirlanda et al. (2004).

It connects the peak energy Ep with the collimation-corrected
energy, or the energy release of a GRB jet, Eγ, where Eγ =
FbeamEiso = 1 − cos(θ)Eiso, with θjet the jet opening angle de-
fined in Sari et al. (1999):

θjet = 0.163
( tb
1 + z

)3/8
(

n0ηγ

Eiso,52

)1/8

, (11)

1 In our case, the variable of the Gamma function, z, is always positive
so that we have no problem of discontinuity in applying the gamma
function in the following calculations.
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Table 1. Results of the fits. SNeIa is only for the supernovae data, LZ
is for the GRBs data obtained from the Liang-Zhang relation, GGL for
the Ghirlanda et al. one.

Relation w0 wa R2

SNeIa −0.910 ± 0.070 0.755 ± 0.054 0.983
LZ −1.39 ± 0.38 1.18 ± 0.37 0.817
GGL −1.46 ± 0.38 1.36 ± 0.32 0.812
LZ + SNeIa −1.15 ± 0.10 0.93 ± 0.11 0.933
GGL + SNeIa −1.42 ± 0.12 1.24 ± 0.13 0.920

where Eiso,52 = Eiso/1052 ergs, n0 is the circumburst particle den-
sity in 1 cm−3, and ηγ the radiative efficiency. The Ghirlanda
et al. relation is

log Eγ = a + b log
Ep

300 keV
, (12)

where a and b are two calibration constants.
From these relations, we can directly obtain the luminosity

distance dl from the well-known formula which connects dl with
the isotropic energy Eiso and the bolometric fluence S bolo:

dl =

(
Eiso

4πS bolo

) 1
2

, (13)

from which it is easy to compute, for each GRB, the distance
modulus μ = and its error given by (Liang et al. 2008):

σμ =
[(

2.5σlog Eiso

)2
+

(
1.086σS bolo/S bolo

)2
] 1

2

(14)

with σlog Eiso and σS bolo obtained from the error propagation ap-
plied to Eqs. (10) and (12). Moreover, we assume that the error
in the determination of the redshift z is negligible, as well as for
the radiative efficiency ηγ. We note also that the assumption of
a well-known n0 is a strong hypothesis since the goodness of
the fits depends, in particular, on this parameter. The GRB data
sample is taken from the already cited work by Schaefer. We take
into account 27 events with extremely precise data. This sample
is the same one adopted in Capozziello & Izzo (2008).

4. The data fitting

The next step is the fit of the GRB sample with the empiri-
cal relations, Eqs. (10), (12), described in Sect. 3. The aim is
to achieve an estimate of the CPL parameters and consequently
to determine the trend of the EoS at any redshift, using the an-
alytical relation, Eq. (9). We are considering the same sample
of 27 GRBs used in Capozziello & Izzo (2008) in which we
have added the sample of SNeIa by the Union Supernova Survey
(Kowalski et al. 2008).

The numerical results of the fits are shown in Table 1, where
we obtain a robust estimation of the CPL parameters for both
the relations used, with and without SNeIa data. An immediate
comparison is done with the best fit applied only to the SNeIa
sample. It is evident how adding GRBs to SNeIa data completes
the knowledge of and the accuracy on the EoS parameter w.

In order to measure the goodness of the fit, we use the R2 test,
see Table 1. The R2 test is a measure of how successful the fit is
in explaining the variation of the data (see for details Draper &
Smith 1998). An R2 close to 1.0 indicates that we have accounted
for almost all of the variability with the data specified in the
model. As a standard, the R2 test is the square of the correlation

Fig. 1. Redshift-distance modulus diagram for the GRB+SNeIa sample.
The black dots are the GRBs, the blue ones are the SNeIa. The red line
is the best fit obtained from the data, with the dashed line representing
the confidence limits at 3σ. The error bars on the supernova data are not
represented because they are negligible.

Fig. 2. Comparison between the best fit of μ and the observed distance
modulus μobs at any redshift. The black dots are the GRBs data and
the red line is the best fit curve representing the theoretical distance
modulus.

between the response values and the predicted response values,
that is:

R2 = 1 − SSE
SST

= 1 −
∑n

i=1 wi(yi − ŷi)∑n
i=1 wi(yi − ȳi)2

, (15)

where SSE is the sum of the squares due to errors and it measures
the total deviation of the response values from the fit and SST is
the sum of squares about the mean: ŷ is the predicted response
value, ȳ is the mean value and the wi are the weights on the
values.

The extension of the supernova Hubble Diagram with the
GRB data can be used to improve our knowledge of the trend
at high redshift. In this way, also using the GRB data, we show
in Fig. 3, the distance modulus μ versus the redshift z, in a log-
arithmic scale. The best fit curve, obtained with Eq. (9), is also
reported. A more detailed analysis confirms the presence of a
transition (re-acceleration) redshift around z = 0.5.

In Fig. 2, we plot the comparison between the theoretical
μth and the observed distance modulus μobs at any redshift, the
residual plot. A smooth trend up to z ≈ 3.5 in the residual curve
can be immediately detected. Beyond this limit, we have 3 GRBs
that exceed, by the same side, the 3σ confidence limit of the best
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Table 2. Cosmological density parameters, with uncertainties computed at 1σ confidence limit, obtained by a Monte Carlo procedure.

Sample Ωm ΩΛ Ωk χ2

UNION + GRB 0.26 ± 0.14 0.73 ± 0.14 0.01 ± 0.04 1.032
UNION + GRB corrected 0.25 ± 0.10 0.74 ± 0.135 0.01 ± 0.035 1.00027

Fig. 3. Redshift-distance modulus diagram for the GRB+SNeIa sample
versus redshift in logarithmic scale.

fit. This discrepancy is clear in Fig. 3, where we plot the best fit
for the combined sample in the case of an LZ relation with a
logarithmic scale for the redshift.

This fact is fundamental for the goodness of the fit because
these GRBs represent the most distant objects that one can use to
make such an analysis and their weight on the fit is very high, in
the sense that they appear to be not accurate distance indicators.

However there is strong evidence that the data of these
3 GRBs, GRB 050505, GRB 050904 and GRB 060210, re-
ported in the Schaefer catalog, are uncertain. For the first and the
last GRB the peak energies are underestimated (Cabrera et al.
2007). As a consequence we would obtain an underestimated
value for the bolometric fluence. GRB 050904 is the most dis-
tant GRB considered and it shows some probelms related to the
peak energy reported by different authors, that differ by a fac-
tor of ∼3. Moreover the afterglow of GRB is complicated by
flares and re-brightenings so that the standard afterglow model
gives an extremely high value of the circumburst medium den-
sity n ∼ 700 cm−3 (Frail et al. 2006), contrary to the assumed
value n = 3 cm−2.

For this reason we repeat the analysis described above with-
out these 3 GRBs, obtaining a better value than the previous one
for the R2 test. The results of these corrected fits are shown in
Table 3. In Fig. 4, we plot the best fit with this corrected sam-
ple. From these results we conclude that the complete sample
gives different results than does corrected sample, the first one
suggesting a phantom/quintessence regime for the present epoch
while the second one fits an accelerating ΛCDM model. This
last result is confirmed by the following analysis, where we have
performed a Monte-Carlo-like procedure for the comparison of
the results with the usual likelihood estimator given by

χ2 =

N∑
i=1

[
(μth(zi) − μobs(zi))2

σi

]
, (16)

in the context of a ΛCDM model of the Universe, where μth is
the distance modulus computed from the Eqs. (7) and (8), zi is

Fig. 4. Redshift-distance modulus diagram for the corrected
GRB+SNeIa sample. The red line is the best fit obtained from
the data, with the dashed line representing the confidence limit at 3σ.

Table 3. Results of the fits corrected for the 3 “outying” GRBs.

Relation w0 wa R2

LZ + SNeIa −0.95 ± 0.01 0.74 ± 0.01 0.999
GGL + SNeIa −0.865 ± 0.005 0.66 ± 0.005 0.999

SNeIa is for the supernova Ia data, LZ is for the GRBs data obtained
from the Liang-Zhang relation, GGL for the Ghirlanda et al. one.

the observed redshift for each GRB and σi the observed distance
modulus uncertainty. The results of this analysis are shown in
Table 2, where we can see the improvement obtained by the GRB
sample corrected for the 3 “wrong” GRBs.

We have adopted a similar procedure in the case of an EoS
evolving with redshift and where μth is obtained by Eq. (9).
The result of this analysis is plotted in Fig. 5 where the best
fit value, the cross in the figure, corresponds to the value
w0 = −0.84 ± 0.14 and wa = 0.72± 0.06, and where the bound-
aries correspond to 1σ, 2σ and 3σ confidence levels, in a good
agreement with the results obtained, see Table 3, using our the-
oretical relation, Eq. (9).

From this analysis, we conclude that the corrected sample
agrees fairly well with the ΛCDM model with a small contri-
bution of the curvature parameter, k = 0.01 ± 0.04. Thus, the
method delineated in Sect. 2 seems a good approximation of the
observed cosmography and agrees very well with the ΛCDM
model, so that we can argue that GRBs could be good distance
indicators at redshift values up to z = 4.

5. Discussion and conclusions

Starting from the Friedmann equation, we have investigated a
new method to constrain the cosmological equation of state at
high redshifts. In particular we obtain an analytical formula
for the distance modulus so we could directly estimate the
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Fig. 5. 68%, 95% and 98% constraints on w0 and wa obtained from the
UNION sample and the GRB sample corrected for the 3 outlying GRBs.
The cross represents the best fit value and it is in a good agreement with
that found using the theoretical model described in Sect. 2.

parameters of the cosmological model considered. The work-
ing hypothesis involves the use of GRBs as distance indicators
at high redshift, well beyond the distance where SNeIa have
been detected to date. The CPL parameterization for the EoS
has been explicitly used for the whole matter-energy content
of the Universe as a suitable approach to investigate the pa-
rameter w = w(z) and discriminate values with respect to the
ΛCDM model. In particular, regarding the Friedmann equations,
we have obtained, in the case of the LZ relation, the epoch for
the transition between the deceleration-acceleration phases at a
redshift value of z ≈ 5, with a reliable confidence level. This
is a value that, if higher than the redshift of the farthest GRB
used, could be in agreement with current quasar formation sce-
narios. Also, we are in good agreement with the observed phan-
tom/quintessence regime at the present epoch, that is for z → 0,
we obtain w ≤ −1.

So we reject the current phantom regime by this analysis, ob-
taining for w0 a value in agreement with the ΛCDM model at the
present epoch. The method, while preliminary, seems to indicate
that GRBs could be used as standard candles once a reliable uni-
fied model of their photometric and spectroscopic quantities is
achieved (some relevant results are presented in Ghisellini et al.
2008). However, more robust samples of data are needed and
a more realistic EoS (with respect to the simple perfect fluid
models) should be taken into account in order to suitably track
redshift at any epoch (see for example Capozziello et al. 2006).

With improving observations, in particular with the launch of
new satellites devoted to GRB surveys, such as Fermi-GLAST2

and AGILE3, one should be able to expand the samples of GRBs,
possibly with data coming from objects at higher redshift.

2 http://fermi.gsfc.nasa.gov
3 http://agile.rm.iasf.cnr.it

Considering these preliminary results, it seems that GRBs
could be considered as a useful tool to remove degeneracy and
constrain self-consistent cosmological models. The matching
with other distance indicators would improve the consistency of
the Hubble distance-redshift diagram by extending it up to red-
shift 6–7 and higher.
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