

Extending the IP Internet Through Address Reuse

Paul F. Tsuchiya, Bellcore, tsuchiya@thumper.bellcore.com
Tony Eng, MIT, tleng@athena.mit.edu

Abstract

The two most compelling problems facing the IP Internet are IP address depletion and
scaling in routing. This paper discusses the characteristics of one of the proposed
solutions—address reuse. The solution is to place Network Address Translators (Nat) at
the borders of stub domains. Each Nat box has a small pool of globally unique IP
addresses that are dynamically assigned to IP flows going through Nat. The dynamic
assignment is coordinated with Domain Name Server operation. The IP addresses inside
the stub domain are not globally unique—they are reused in other domains, thus solving
the address depletion problem. The pool of IP addresses in Nat is from a subnet
administered by the regional backbone, thus solving the scaling problem. The main
advantage of Nat is that it can be installed without changes to any existing systems,
although FTP will fail in some but not all cases. This paper presents a preliminary design
for Nat, and discusses its pros and cons.

1.0 Introduction

The two most compelling problems facing the IP Internet are IP address depletion and scaling in routing.

Numerous solutions have been proposed, such as increasing the size of the IP address, using completely

flat IP addresses, changing the structure of IP addresses, and even abandoning IP and switching to OSI

[Ch]. Unfortunately, all of these solutions require changes to routers, hosts, or both.

Among the proposed solutions is the notion of address reuse. This solution takes advantage of the fact that

a very small percentage of hosts in a stub domain1 are communicating outside of the domain at any given

time. Indeed, many (if not most) hosts never communicate outside of their stub domain. Because of this, IP

addresses inside a stub domain, that usually need not be globally unique or known externally, can be

dynamically translated into a small pool of IP addresses that are globally unique when outside

communications is required.

1. A stub domain is a domain, such as a corporate network, that only handles traffic originated by or destined to hosts
in the domain.

ACM SIGCOMM –16– Computer Communication Review

This solution has the disadvantage of taking away the end-to-end significance of an IP address, and making

up for it with increased state in the network. There are various work-arounds that minimize the potential

pitfalls of this. Indeed, connection-oriented protocols are essentially doing a kind of address reuse at every

hop.

The huge advantage of this approach is that it can be installed incrementally, without changes to either

hosts or routers2. Depending on how Nat is implemented, changes to the Domain Name System (DNS)

server in the stub domain may be required. This solution can be implemented and experimented with

quickly. If nothing else, this solution can serve to provide temporarily relief while other, more complex and

far-reaching solutions are worked out.

2.0 Overview of Nat

The design presented in this paper is called Nat, for Network Address Translator. Nat is a box or router

function that can be configured as shown in figure 1. The upper configurations require no host or router

modifications. The lower configuration requires a modification to the stub border router.

Nat’s basic operation is as follows. The addresses inside a stub domain can be reused by any other stub

domain. At each exit point between a stub domain and backbone, Nat is installed. Each Nat box is assigned

a small pool of globally unique IP addresses (each Nat has a separate pool). These IP addresses are

dynamically assigned to IP “flows” going through Nat.

For instance, in the example of figure 2, both stubs A and B internally use class A network number

42.0.0.0. Stub A’s Nat is assigned the (subnetted) class B subnet number 128.76.29.0, and Stub B’s Nat is

assigned the class B subnet number 128.76.28.03. The class B subnets are globally unique—no other Nat

boxes can use them.

When stub A host 42.33.96.5 wishes to exchange packets with stub B host 42.81.13.22 (“al.nxb.com”), it

sends a Domain Name System (DNS) query to the DNS in stub B (1). DNS knows that the internal address

for “al.nxb.com” is 42.81.13.22, but let’s assume that there is no external address assigned for

“al.nxb.com”. DNS would then send a query to Nat asking to have an address assigned (2). Nat finds an

2. A few unusual applications may require changes, and hosts that communicate outside their domain to hosts that do
not have permanent assignments must use DNS.

3. If a backbone assigned subnetted portions of a class B, then it could represent multiple stubs by advertising a sin-
gle class B address externally.

ACM SIGCOMM –17– Computer Communication Review

unassigned address in its pool, 128.76.28.4, and returns it to DNS (3), that in turn uses this address to

answer the original DNS query (4). Alternatively, the DNS box could not query the Nat box, but rather

send the answer (42.81.13.22) back towards stub A’s DNS. The Nat box would intercept the DNS answer,

assign a temporary address (128.76.28.4), and modify the DNS answer to return 128.76.28.4 to the DNS

server in stub A. This latter approach requires no changes to DNS, but constrains the configuration of Nat

boxes to one clique (see section 3.4). This constraint will not affect most domains.

42.33.96.5 then sends a packet to “al.nxb.com” with destination address 128.76.28.4. When this packet

reaches stub A’s Nat, it assigns an externally unique address (128.76.29.7) from the pool to 42.33.96.5, and

translates the source address of the IP header with the new address4. This packet is routed through the

backbones to the stub B Nat, which translates the destination address of the IP header to be the internally

known address, and the packet is sent to “al.nxb.com”. Likewise, IP packets on the return path go through

similar address translations.

4. Note that both the IP and TCP checksums must be modified. This does not require a complete recalculation—only
an incremental recalculation.

Nat

Stub border

Regional
Router

Stub
Router

Nat

Stub border

Regional
Router

Nat (implemented as

Stub border

Regional
Router

function in router)

Stub
Router

Figure 1: Nat Configurations

ACM SIGCOMM –18– Computer Communication Review

Notice that this requires no changes to hosts or routers. For instance, as far as the stub A host is concerned,

128.76.28.4 is the address used by “al.nxb.com”. The address translations are completely transparent.

Depending on whether or not the Nat box intercepts DNS packets, only the Domain Name Server may

require modification.

Of course, this is just a simple example. There are numerous issues to be explored. In the next section, we

discuss various aspects of Nat.

3.0 Various Aspects of Nat

3.1 Address Spaces

Partitioning of Reusable and Non-reusable Addresses

For Nat to operate properly, it is necessary to partition the IP address space into two parts—the reusable

addresses used internal to stub domains, and the globally unique addresses. We call the reusable address

local addresses, and the globally unique addresses global addresses. Any given address must either be a

local address or a global address. There is no overlap.

42.81.13.22

42.33.96.5

“al.nxb.com”

addr for “al.nxb.com”?

bind 42.81.13.22? 42.81.13.22 = 128.76.28.4

“al.nxb.com” = 128.76.28.4

s = 42.33.96.5
d = 128.76.28.4 s = 128.76.29.7

d = 128.76.28.4 s = 128.76.29.7
d = 42.81.13.22

d = 128.76.29.7
s = 42.81.13.22d = 128.76.29.7

s = 128.76.28.4d = 42.33.96.5
s = 128.76.28.4

1

2 3

4

5

host

DNS

Nat IP packet path

control packets path

d = dest addr
s = source addr IP packet

Stub A

Stub B

Figure 2: Basic Nat Operation

ACM SIGCOMM –19– Computer Communication Review

The problem with overlap is the following. Say a host in stub A wished to send packets to a host in stub B,

but the global addresses of stub B overlapped the local addressees of stub A. In this case, the routers in stub

A would not be able to distinguish the global address of stub B from its own local addresses, and would not

know whether to route the packets internally or externally.

Initial Assignment of Local and Global Addresses

Theoretically all stubs could use the same class A address locally. However, existing stubs already have

unique addresses assigned internally. It is difficult and takes time to change all addresses in a stub.

Therefore, at least initially, existing address assignments should be defined as local addresses. A block of

unassigned class B addresses should be defined as global addresses. These would be assigned to Nat boxes

(on a subnetted basis). A single class A address should also be defined as local. This class A would be

given to new stubs, who would be expected to install Nat when they connect to the IP Internet. Over time,

existing stubs should install Nat and transition their existing address to the class A address. Once the

transition was complete, the stub could give back its old addresses, which would then become global.

Scaling

One assignment strategy for global addresses goes as follows. Each regional (bottom level backbone)

would be assigned a global class B address. The regional would then subnet the class B address among Nat

boxes that connected to it. If, for instance, each Nat box required an average of 250 global addresses in its

pool (not an unreasonable estimate5), then the class B address could be subnetted among 250 or so Nat

boxes. Even if most stubs had two connections to the regional (thus requiring two Nat boxes, and two

pools of addresses), 125 stubs could be subnetted into one class B address. The regional could then

advertise one class B address to other backbones, rather than 125 separate addresses, as it does now. This

would shrink current routing tables from several thousand entries to tens of entries.

3.2 Address Assignments

Permanent Address Assignments

Not all address assignments made by Nat should be dynamic. Any hosts that communicate outside the stub

frequently should be given permanent assignments. Such hosts include DNS servers, email distributors,

and anonymous FTP repository hosts. Indeed, stubs that implement security by limiting outside

5. During one week of measurements of external TCP conversions at Lawrence Berkeley Laboratory [Pa], the largest
number of active simultaneous TCP connections registered was 57.

ACM SIGCOMM –20– Computer Communication Review

communications to a small number of “secure” hosts do not need dynamic assignment at all. Of course, the

DNS servers must have permanent assignments, because it is through the DNS servers that dynamically

assigned global addresses become known.

The global address pool (or just pool), then, is partitioned into two parts, the static pool and the dynamic

pool.

Choosing an Assignment

When Nat intercepts a DNS response (or receives a request from DNS for an assignment6), or when a

packet that does not have an assignment arrives from the stub destined for the backbone, Nat must choose

an assignment from the dynamic pool. The task of choosing an assignment from the pool can be tricky. The

goal is to 1) minimize prematurely destroying assignments while 2) maximizing address utilization and 3)

minimizing complexity. The primary goal is the first one, provided of course that we can make significant

efficiency gains in address utilization over current practice.

The simplest algorithm for choosing an assignment is to choose the address that has not been in active use

the longest. To do this, Nat would save the time that the last packet was seen for each of its assignments.

When a new assignment is needed, Nat chooses the one with the oldest time. We call this algorithm IP-

based, because it bases its activity estimate purely on the timing of individual IP packets.

The IP-based algorithm assumes (incorrectly, of course) that the usage behavior of all assignments is the

same. For instance, it would choose the assignment for a TCP connection that has been idle for two

minutes but never issued a close, over a TCP connection that issued a close one minute ago and has been

idle ever since. Clearly, it would be preferable to destroy the one-minute old closed connection over the

two-minute old open connection7. Since the IP-based algorithm does not monitor connection status, it

cannot know this.

If applications where a valid assignment may remain idle for long periods of time exist, then the IP-based

algorithm must maintain a large pool to insure that the oldest assignment is not still active. (If a limited

6. Throughout this paper, reference may be made to either the intercept method of modifying DNS packets, or explic-
it packet exchange between DNS boxes and Nat boxes, but not both. Unless otherwise stated, it should be understood
that either method is possible.

7. TCP does not have a keep-alive function, so a TCP connection can remain open without exchanging packets indef-
initely.

ACM SIGCOMM –21– Computer Communication Review

number of hosts have these kinds of applications, then a possible solution would be to give these hosts

permanent assignments.)

An alternative approach would be an algorithm that monitors connection status and partitions assignments

into two classes—those that have seen an end-of-connection indication and those that have not. The ended-

connection assignments would become available for re-assignment after a relatively short idle time, say

one minute. The open assignments would become available for re-assignment after a long idle time,

perhaps several hours. One way to implement this would be to consider the working idle time of an ended-

connection association to be x times the actual idle time, and then compare all idle times directly. We call

this the connection-based algorithm.8

It is impossible to know which assignment algorithm to use without knowing how applications behave.

Since Nat will initially be experimental, both algorithms can be experimented with. Since each Nat box can

independently choose it’s own algorithm, multiple algorithms can be experimented with simultaneously.

Incorrect Assignments

The reuse of global addresses by Nat is not explicitly coordinated with the use of addresses by hosts.

Through DNS packets, Nat can inform a host of an assignment. However, Nat cannot inform hosts when an

address has been re-assigned. As a result, it is entirely possible for a host A to use an address that it thinks

is for host B, but that in fact Nat has reassigned to host C.

Note that even without address reuse, there always exists the possibility that a host uses the wrong address.

For instance, DNS can be incorrectly configured so that the IP address it returns does not belong to the host

named in the query. Usually, the application protocol or the human user will discover the error. Nat,

however, increases the probability of misdelivering packets.

Notice that a protocol such as X.25 is basically an address reuse scheme similar in some respects to Nat. In

this case, the X.121 address corresponds to the Domain Name, and the Virtual Circuit Identifier (VCI)

corresponds to the assigned IP address. X.25 for all practical purposes does not have the mis-addressed

packet problem like Nat does, because the assignment of VCIs is explicitly coordinated by all components

on the path, including hosts. It follows, then, that the problem of mis-addressed packets in Nat is not a

problem with address reuse per se, but a problem of the style of implementation resulting from the decision

to keep Nat transparent to hosts.

8. Connection-less applications can only use the IP-based algorithm

ACM SIGCOMM –22– Computer Communication Review

All cases of mis-addressed packets are the result of hosts (or DNS) caching addresses longer than Nat. This

comes about because Nat, through the modification of DNS packets, can give a host an address to use, but

cannot later remove it. Nat should therefore always set the Time-to-Live (TTL) in DNS packets (or

responses to DNS queries for an assignment) to a value slightly smaller than the minimum time that Nat

will maintain an assignment [Lo]. This of course does not prevent a host from caching the assignment for a

longer period of time. For instance, the host may start up an application that runs for a long time, sends

very occasional UDP packets, always using the IP address that it was originally invoked with. A small TTL

only prevents a DNS server from storing the query beyond this time, thereby preventing it from giving the

assignment to another host after it has expired.

Another style of implementation, that requires changes to DNS and the involvement of DNS at both source

and destination, but that reduces the probability of mis-addressed packets, is briefly described as follows.

Instead of distinguishing assignments by only stub-side addresses, Nat distinguishes on both sides. In other

words, if a packet does not have an expected source and destination address, it is dropped.

When a host Ha wants to send packets, it queries its local DNS server Da. Rather than immediately send a

query to the destination DNS server, Da queries the Nat box Na in its domain and gets an assignment Aa.

This assignment is then conveyed in the query to the DNS server Db on the destination side. Db then

conveys the address Aa to the destination Nat box Nb, which associates the source global address Aa with

the destination global address Ab that it assigns. When Db answers the query, Da informs Na of the address

Ab, so now both Nat boxes have both Aa and Ab associated with their assignments. As a result, hosts that

previously used either Aa or Ab will now not be able to use them, and packets will not be mis-delivered

(just dropped). To successfully communicate, these hosts will have to again query their DNS server.

If a third host Hc wants to send packets to host Hb with global address Ac, DNS server Db will need to

inform Nb of the new address Ac so that Nb will now associate both Aa and Ac with Ab. Note that if only

one side has implemented Nat, the DNS server on the Nat side will need to query the DNS server on the

non-Nat side to learn the expected IP address of the other side. This extra query is needed because DNS

queries normally only carry the domain name of the query originator, not the IP address.

This two-sided design involves more overhead and complexity than the one-sided design, and may turn out

not to be necessary. Its inclusion in Nat is a matter for further debate and experimentation. Notice that with

ACM SIGCOMM –23– Computer Communication Review

permanent assignments, there is no possibility of mis-addressed packets, and so the two-sided technique

has no effect there.

3.3 Running Routing Algorithms Across Nat

Of course, in order for Nat to be transparent to the border routers of the backbone and the stub, the border

routers must believe that they are exchanging routing information with each other in the usual way. In

other words, the stub border router must think that it is sending routing information about its internal

(local) addresses to the backbone border router. Nat must intercept the routing information from the stub

border router and replace the local address information with address information reflecting its global pool.

However, global information that Nat receives from the stub border router must be passed through

unchanged. Routing information from the backbone border router to Nat should always be passed through

unchanged.

3.4 Multiple Nat Boxes and DNS Servers

All of the previous descriptions assume that each stub has just one Nat box and one DNS server. However,

each stub/backbone entry/exit point needs to have a Nat box. In many, if not most cases, an IP packet can

potentially travel through more than one border router. For this to work in the context of Nat, every Nat

box that might potentially handle the packets of a given connection must know the assignment.

In addition, any given host may have multiple DNS servers (primary and backup, for instance). In what

follows, we describe the mechanisms necessary to make multiple Nat boxes and DNS servers work.

Need for Nat Cliques

The Nat boxes of a stub are partitioned into one or more possibly overlapping groups, each with one or

more Nat boxes. We call these groups Nat cliques. A Nat clique is a group of Nats such that a packet

addressed with an assignment from one of the Nats in the clique can potentially be routed through any of

the Nats in the clique. Therefore, the formation of a Nat clique depends on both intra-domain and inter-

domain routing, primarily inter-domain.

There can be many reasons why such cliques form. For instance, assume that a stub has two attachments

each to both NSFNET and MILNET. Assume also that the addresses assigned to the Nat boxes

corresponding to each backbone are hierarchically formed to imply routing through that backbone.

Therefore, packets assigned by the NSFNET-attached Nats will go only through NSFNET, and packets

ACM SIGCOMM –24– Computer Communication Review

assigned by the MILNET-attached Nats will go only through MILNET. In this case, there are two Nat

cliques.

The Nats in a Nat clique are divided into two types—those that can assign and receive addresses for the

clique, and those that only receive addresses for the clique. We call these clique-assigning Nats and clique-

receiving Nats.9 Although it is not absolutely necessary, every Nat should be a clique-assigning Nat for at

least some clique (for instance, for robustness in case all other Nats in a clique fail).

The reason for having two types of Nats is as follows. Consider the previous example, but modify it so that

it is possible to alternate route packets with the MILNET-derived assignments through NSFNET, but it is

not possible to alternate route packets with the NSFNET-derived assignments through MILNET. In this

case, the NSFNET Nats must be aware of the MILNET assignments, in case such packets are alternate

routed through them, but the MILNET Nats do not need to be aware of the NSFNET Nat assignments.

There are therefore two cliques. The “NSFNET” clique has just the two NSFNET-attached Nats, and both

are clique-assigning Nats. The “MILNET” clique has all four Nats, but the MILNET-attached Nats are

clique-assigning Nats, and the NSFNET-attached Nats are clique-receiving Nats.

Operation of Nat Cliques and DNS Cliques

Nat cliques and DNS cliques require the following configuration information. The DNS server contains a

list for each Nat clique (in the case where interception is not being used). Within each list is the IP address

of the clique-assigning Nats in the clique. Each Nat contains a list for each Nat clique for which it is a

clique-assigning member. This list contains the IP address of every Nat in the clique (both clique-assigning

and clique-receiving). Clique-assigning Nats must also contain a list for each DNS clique (in the case

where interception is not being used). A DNS clique is a group of DNS servers that can potentially answer

a query for the same hosts. Although it is only necessary as a configuration-correctness mechanism, each

Nat may contain a list for each Nat clique for which it is a clique-receiving member. This list contains the

IP address for every clique-assigning member of the clique. All of the configuration information must be

stored in non-volatile memory (or be learnable upon booting).

Every Nat box has one or more unique pools of global addresses from which it can make assignments. By

not having Nat boxes share global addresses, we eliminate the need for coordination of address assignment

9. If Nat intercepts DNS packets, then there can be only one clique, and all members of the clique must be clique-as-
signing Nats. This is because a DNS packet can be routed through any Nat box, and so all Nat box must be prepared
to make assignments.

ACM SIGCOMM –25– Computer Communication Review

where one Nat box has to check with others to make sure that a particular assignment can be made. This

has the negative effect of requiring a larger pool in each Nat box than what otherwise would be necessary

(to insure that any Nat box doesn’t run out of addresses to assign). However, the increase is not that much

(certainly not linear with the number of Nat boxes), since assignments can be spread over the Nats in a

clique.

The reason that a Nat box may have multiple pools is because a backbone may assign multiple address

prefixes to a single stub for the purposes of policy routing. For instance, assume that a regional backbone is

attached to both MILNET and NSFNET. If the regional network maintains two address prefixes, and

advertises one of them to MILNET and the other to NSFNET, then packets with the MILNET-advertised

address will be routed through MILNET and vice versa. By receiving multiple addresses in a query, a host

(or user) has the power to choose the backbone network [Ts1].

When a DNS server receives a DNS query, it sends a Nat-assignment query to one clique-assigning Nat in

each Nat clique. It should round-robin the queries among the clique-assigning Nats in each clique to evenly

spread the assignment load. The Nat receiving the query makes an assignment, returns the assignment to

the DNS server, sends an assignment notification message to all DNS servers that are members of the DNS

cliques that the requesting DNS server belongs to, and sends an assignment notification message to all of

the Nats in its cliques indicating the new assignment. On rare occasions, the Nat receiving the query may

have no addresses available for assignment. In this case, Nat returns a NULL assignment, and the DNS

may either query another Nat box in the clique, or return a failure in its DNS response.

When the assignments are returned to the DNS servers, they have expiration times associated with them.

(If interception is used, then Nat sets the TTL in the DNS response itself.) The assigning Nat boxes must

not reassign the address until the expiration time has elapsed. The DNS servers must not set the TTL

(Time-to-Live) field in the DNS response to longer than the shortest expiration time. If the DNS servers

choose to cache the assignment, they must remove the cache entry by the shortest expiration time. Note

that it is not necessary for the DNS servers to cache the entry, because if another query for the same host

comes, the DNS server will query Nat boxes and receive the same assignments.

When Nat boxes receive assignment notifications, they keep the assignments until notified otherwise. This

will occur when the assigning Nats reassigns the addresses.

Nat assignment notifications must be reliable, because there is no refreshing (or timing out) of assignments

by receiving Nats. Therefore, assignment notification messages must be acknowledged, and resent if no

ACM SIGCOMM –26– Computer Communication Review

acknowledgment is received. Of course, if a receiving Nat has crashed, then no acknowledgment can be

sent. Therefore, Nat boxes must be able to mark other Nat boxes as down after a number of attempted

assignment notifications. Also, when Nat boots (comes up after crashing), it must contact all assigning

Nats in its cliques and receive all current assignments. This must also happen if Nats in a clique have been

partitioned from each other, and the partition heals. Note that each Nat must have enough memory to hold

all of the assignments of all of the Nats in all of their cliques.

Private Networks that Span Backbones

In many cases, a private network (such as a corporate network) will be spread over different locations and

will use a public backbone for communications between those locations. In this case, it is not desirable to

do address translation, both because large numbers of hosts may want to communicate across the

backbone, thus requiring large global address pools, and because there will be more applications that

depend on configured addresses, as opposed to going to a name server. We call such a private network a

backbone-partitioned stub.

Backbone-partitioned stubs should behave as though they were a non-partitioned stub. That is, the routers

in all partitions should maintain routes to the local address spaces of all partitions. Of course, the (public)

backbones do not maintain routes to any local addresses. Therefore, the border routers must tunnel through

the backbones using encapsulation. To do this, each Nat box will set aside one global address from the pool

for tunneling. When a Nat box x in stub partition X wishes to deliver a packet to stub partition Y, it will

encapsulate the packet in an IP header with a destination address from the pool of Nat box y that has been

reserved for encapsulation. Then Nat box y receives a packet with that destination address, in decapsulates

the IP header and routes the packet internally.

3.5 Header Manipulations

In addition to modifying the IP address, Nat must modify the IP checksum, the TCP checksum, places in

ICMP and FTP where the IP address appears, and perhaps other places where the IP address appears10.

The checksum modifications to IP and TCP are simple and efficient. Since both use a one’s complement

sum, it is sufficient to calculate the arithmetic difference between the before-translation and after-

translation addresses and add this to the checksum. The only tricky part is determining whether the

10. The author knows of no other such places off hand, but there are undoubtedly some. Hopefully, most such appli-
cations will be discovered during experimentation with Nat.

ACM SIGCOMM –27– Computer Communication Review

addition resulted in a wrap-around (in either the positive or negative direction) of the checksum. If so, 1

must be added or subtracted to satisfy the one’s complement arithmetic. Sample code (in C) for this is as

follows:

int16 nat_newChk(checksum,oldaddr,newaddr)
 int16 checksum;
 int32 oldaddr, newaddr;
{
 int16 newCheck, oldCheck;
 int32 chk32,diff32;
 int16 crossing;
 int32 carry1, carry2;

 /* diff32 could be pre-calculated when assignment is made */
 diff32 = (((newaddr >> 16) & 0x0000ffff) + (newaddr & 0x0000ffff)) -
 (((oldaddr >> 16) & 0x0000ffff) + (oldaddr & 0x0000ffff));

 checksum = ~checksum;
 chk32 = (0x0000ffff & checksum);
 chk32 += 0x00020000;
 chk32 += diff32;
 crossing = (chk32 >> 16) - 2;

 chk32 += crossing;
 checksum = 0xffff & (int16)chk32;

 return (~checksum);
}

The arguments to the File Transfer Protocol (FTP) PORT command include an IP address (in ASCII!). If

the IP address in the PORT command is the same as that of the host sending the PORT command, then Nat

must substitute the (local) IP address in the FTP PORT command with the (global) assigned IP address.

Because the address is encoded in ASCII, this may result in a change in the size of the packet (for instance,

10.18.177.42 is 12 ASCII characters, while 193.46.228.137 is 14 ASCII characters). If the packet size is

changed in transit, then the subsequent TCP sequence numbers (which are in units of bytes) will be wrong,

and TCP will fail.

In some cases, it may be possible for Nat to choose a global IP address that has the same number of ASCII

characters as the local IP address. It is possible, however, for the character size of the local IP address to be

smaller (or larger) than the smallest (or largest) possible IP address from the pool. In this case, FTP will

fail. In general, in order to run FTP outside of a stub, it will be necessary to either limit outside FTP to a

few internally widely available hosts, or set up an FTP application gateway.

ACM SIGCOMM –28– Computer Communication Review

If the IP address in the PORT command is different from that of the host sending the PORT command, but

the IP address is local to the stub domain, then Nat can create an assignment for the IP address and

substitute that. Since the address is encoded in ASCII, the TCP checksum cannot as easily be incrementally

recalculated, and should therefore be recalculated from scratch. If the IP address in the PORT command is

not from the local stub, then it should not be modified. Of course, if the FTP session is encrypted, the

PORT command will fail.

If an ICMP message is passed through Nat, it may require two address modifications and three checksum

modifications. This is because most ICMP messages contain part of the original IP packet in the body.

Therefore, for Nat to be completely transparent to the host, the IP address of the IP header embedded in the

data part of the ICMP packet must be modified, the checksum field of the same IP header must

correspondingly be modified, and the ICMP header checksum must be modified to reflect the changes to

the IP header and checksum in the ICMP body. Of course, the normal IP header must also be modified as

already described.

It is not entirely clear that the IP header information in the ICMP part of the body really need be modified.

This depends on whether or not there is really any host code that looks at this IP header information11. It

may in fact be useful to not translate, so as to provide the exact header seen by the router or host that issued

the ICMP message, which may aid in debugging. In any event, no modifications are needed for the Echo

and Timestamp messages, and Nat should never need to handle a Redirect message.

3.6 Other Aspects of Nat

Global Routing and Addressing Issues

Over the short term, Nat provides scaling benefits by allowing for subnetting of stubs by backbone

networks. In doing this, we essentially add a level of hierarchy to IP routing. We also introduce the

coupling of route to address that the OSI community is now having to face. Namely, if an IP address is

handed out by a backbone, and that backbone advertises that address as reachable through it, then routes

will naturally go through that backbone. If an alternate route through another backbone is desired (for

instance, because the primary route failed), that route may not be available.

11. In the theoretical worst case, an ICMP message could be sent concerning an FTP packet that contained a PORT
command. In this case, modifications would be required to the PORT command and the TCP checksum, in addition to
the fields already mentioned. In practice, this seems unnecessary.

ACM SIGCOMM –29– Computer Communication Review

Viewed another way, this coupling of route to address can actually be a feature rather than a bug. If a host

or user wishes to route through one backbone vs. another, it can manipulate the choice by choosing the

appropriate address. This would work as follows. When the DNS server queries the Nat boxes for

assignments, it may get back multiple answers, one from each Nat clique, and possibly multiple

assignments from a single Nat clique. These multiple answers essentially reflect reachability of the stub

through multiple backbones. When the DNS server then returns the queries, the source host can choose the

appropriate one.

The use of multiple addresses as a means of policy routing and scaling are discussed extensively in [Ts1].

The main point here is that the extra layer(s) of IP address hierarchy resulting from Nat make it possible to

take advantage of multiple addresses.

Dynamic Allocation of Nat Pool

The size of the pool of addresses needed by a Nat box varies over time. At certain times more addresses are

needed than at others. If the Nat pools can be dynamically assigned to Nat boxes from a larger pool, then

the benefits of statistical sharing can be realized. Each Nat box could keep a pool large enough to handle

most of its needs, but the Nat box could dynamically request more addresses from its backbone when

necessary.

This could be done using the two-level kampai algorithm described in [Ts2]. That algorithm is for the

purpose of assigning subnet numbers. Its main advantage is that it allows subnet numbers to be assigned

efficiently without requiring advance knowledge of the size (in terms of number of hosts) and number of

subnets. It does this by removing a bit from the mask when more space is needed in a subnet. This doubles

the subnet’s space. Since this algorithm can be automated, it may be possible for Nat boxes to request and

return address space in increments of powers of two.

Applications with IP-address Content

Any application that carries (and uses) the IP address inside the application will not work through Nat

unless Nat knows of such instances and does the appropriate translation. It is not possible or even

necessarily desirable for Nat to know of all such applications. And, if encryption is used then it is

impossible for Nat to make the translation.

ACM SIGCOMM –30– Computer Communication Review

It may be possible for such systems to avoid using Nat, if the hosts in which they run are assigned global

addresses. Whether or not this can work depends on the capability of the intra-domain routing algorithm

and the internal topology. This is because the global address must be advertised in the intra-domain routing

algorithm. With a low-feature routing algorithm like RIP, which does not use masks, the host requires its

own class C address space. This address must be advertised externally as well as internally (thus hurting

global scaling). With a high-feature routing algorithm like OSPF, which does use masks, the host address

can be passed around individually, and can come from the Nat pool.

Privacy, Security, and Debugging Considerations

Unfortunately, Nat reduces the number of options for providing security. With Nat, nothing that carries an

IP address or information derived from an IP address (such as the TCP-header checksum) can be

encrypted. While most application-level encryption should be ok, this prevents encryption of the TCP

header.

On the other hand, Nat itself can be seen as providing a kind of privacy mechanism. This comes from the

fact that machines on the backbone cannot monitor which hosts are sending and receiving traffic (assuming

of course that the application data in encrypted).

The same characteristic that enhances privacy potentially makes debugging harder (including tracking

security violations) more difficult. If a host is abusing the Internet is some way (such as trying to attack

another machine or sending large amounts of junk mail or something) it is more difficult to pinpoint the

source of the trouble because the IP address of the host is hidden.

4.0 Conclusions and Status

Nat may be a good short term solution to the address depletion and scaling problems. This is because it

requires no changes to existing hosts and routers, or only changes to DNS, and can be installed

incrementally. Nat has several negative characteristics that make it inappropriate as a long term solution,

and may make it inappropriate even as a short term solution. Only implementation and experimentation

will determine its appropriateness.

ACM SIGCOMM –31– Computer Communication Review

The negative characteristics are:

1. Not all applications can run over Nat. The most serious case is with FTP, where the ASCII size of

the substituted IP address sometimes cannot be made the same as the original IP address (thus

breaking TCP sequence numbering). While it is possible to run FTP without the PORT command,

this requires changes in current implementations. In addition, it won’t work with encryption of the

TCP header, or encryption of any upper layer protocols that encode IP addresses for the sake of de-

termining the return IP address.

2. It requires a sparse end-to-end traffic matrix. Otherwise, the Nat pools will be large, thus using up

many addresses. While the expectation is that end-to-end traffic matrices are indeed sparse, experi-

ence with Nat will determine whether or not they are. In any event, future applications may require

a rich traffic matrix (for instance, distributed resource discovery), thus making long-term use of

Nat unattractive.

3. It may significantly increase the load on DNS. This is because DNS server will not be able to

cache responses for as long. Currently, DNS represents a significant proportion of Internet traffic.

Since current caching efficiency for DNS is not currently known, the DNS traffic increase may be

light, or it may be heavy.

4. It increases the probability of mis-addressing.

5. It won’t work with hosts that don’t query DNS (except for permanent assignments).

6. It hides the identity of hosts. While this has the benefit of privacy, it is generally a negative effect.

4.1 Current Implementation

An experimental prototype of Nat is being implemented on public domain KA9Q TCP/IP software [Ka].

The prototype currently does permanent assignments (administered from the system monitor), but does not

do dynamic assignment in concert with DNS queries. The prototype has demonstrated that IP addresses

can be translated transparently to hosts within the limitations described in this paper.

But we have not gathered any data having to do with the dynamics of address assignment—assignment

strategies, appropriate pool sizes, and mis-addressed packets. Since this is the more interesting aspect of

Nat experimentation, much work remains to be done.

ACM SIGCOMM –32– Computer Communication Review

Acknowledgments

The authors would like to acknowledge Van Jacobsen, who initially expressed the concept of address reuse

in the context of IP, and Dave Clark for his review of this work.

REFERENCES

[Ch] Chiappa, N., “The IP Addressing Issue”, IETF Internet Draft, draft-chiappa-
ipaddressing-00.txt, anonymous FTP from nnsc.nsf.net, March, 1991.

[Ka] Karn, P., “KA9Q”, anonymous FTP from ucsd.edu (hamradio/packet/ka9q/docs).

[Lo] Lottor, M., “Domain Administrators Operations Guide”, RFC-1033, USC/Information
Sciences Institute, November 1987.

[Mo] Mockapetris, P.V., “Domain names - implementation and specification”, RFC-1035,
USC/Information Sciences Institute, November 1987.

[Pa] Paxton, V., “Measurements and Models of Wide Area TCP Conversations”, LBL-30840,
Lawrence Berkeley Laboratory, Berkeley, California, May, 1991.

[Ts1] Tsuchiya, P.F., “Robust and Efficient Policy Routing using Multiple Hierarchical
Addresses”, ACM SIGCOMM ‘91, Zurich, Switzerland, September 1991.

[Ts2] Tsuchiya, P.F., “On the Assignment of Subnet Numbers”, RFC 1219, USC/Information
Sciences Institute, April 1991.

ACM SIGCOMM –33– Computer Communication Review

