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Abstract 
This paper addresses the problem of extending the lifetime of a battery-
powered mobile host in a client-server wireless network by using task 
migration and remote processing. This problem is solved by first 
constructing a stochastic model of the client-server system based on the 
theory of continuous-time Markovian decision processes. Next the 
dynamic power management problem with task migration is 
formulated as a policy optimization problem and solved exactly by 
using a linear programming approach. Based on the off-line optimal 
policy derived in this way, an on-line adaptive policy is proposed, 
which dynamically monitors the channel conditions and the server 
behavior and adopts a client-side power management policy with task 
migration that results in optimum energy consumption in the client. 
Experimental results demonstrate that the proposed method 
outperforms existing heuristic methods by as much as 35% in terms of 
the overall energy savings. 

Categories and Subject Descriptors 
C.2.1 [Computer-Communication Networks]: Network Architecture 
and Design – wireless communication; C.2.4 [Computer-
Communication Networks]: Distributed Systems – client/server. 

General Terms Algorithms, Design, Experimentations. 
Keywords: Client-server system, remote processing, 
network lifetime, Markovian decision processes. 

1 Introduction 
Extending the battery lifetime is one of the most critical and 
challenging problems in mobile battery-powered systems. Dynamic 
power management (DPM), which refers to a selective shut-off or 
slow-down of the idle or underutilized components, has proven to be a 
very effective technique in reducing power consumption of such 
systems. However, an implicit assumption in all of the previous DPM 
works [11][12] is that local tasks of a mobile device are executed on the 
device itself. This is true if the mobile device has no communication 
capabilities with other mobile devices. However, when we consider a 
mobile host within a mobile network, which carries a wireless LAN 
card and can interchange data with other mobile hosts or fixed base 
stations over a wireless channel, the situation becomes quite different. 
A host with heavy workload may ask other hosts or the base station to 
help it reduce its workload by dispatching local tasks to these remote 
sites for processing. In this way, the mobile host may save power and 
extend its service lifetime.  
Many key applications running on mobile platforms can benefit from 
task migration and remote processing. These applications include 

image processing, e.g., target detection and recognition used in robot 
control [1], voice recognition [2], and large-scale numerical 
computations [3]. 
The effectiveness of the remote processing technique is limited by the 
fact that data transmission over wireless channel results in additional 
power consumption. Energy savings on the local host is achieved only 
if the total energy for transmitting a task and receiving the result is less 
than the energy consumed for local execution of that same task. The 
rather large energy dissipation cost of wireless communication in 
mobile network of battery-powered devices makes the problem of 
deciding whether to execute a local task on the local host or to dispatch 
it to another mobile host for remote processing a very important one. In 
effect, energy-conscious policies must carefully consider the energy 
tradeoff between communication and computation and the task 
execution time from the viewpoint of the local host as well as the total 
energy dissipation for executing a task from the viewpoint of the 
network of mobile hosts. 
A number of research results related to this problem have been reported 
in the literature. Experiments performed in [2][3] demonstrated the 
potential of remote processing for significant power savings in a 
number of real time tasks. Based on CPU measurements, reference [5] 
proposed an adaptive decision-making policy for a repetitive task. A 
remote processing framework was proposed in [4], which supports 
process migration at the operating system level. This adaptive policy 
differs from that proposed in [5] in that it can filter out the transient 
noise. Reference [1] proposed a compilation framework for remote 
processing, which can identify candidate remote computations within a 
single program. Unfortunately, these works do not consider any timing 
constraints on the tasks and assume that the user must be able to cope 
with any level of additional delay that may be introduced by remote 
processing. This limitation makes these techniques unsuitable for real-
time applications, where violation of timing constraints may cause 
unacceptable loss in quality of service.  
IEEE 802.11 protocol supports two types of mobile networks: peer-to-
peer architecture (ad-hoc mode) and client-server architecture (infra-
structure mode). In ad-hoc network, there is no base station and 
communication among mobile hosts takes place without the need for a 
base station. In this case, the major issue is to balance the remaining 
energy resources of all mobile hosts so as to maximize the ad-hoc 
network lifetime. This problem – although interesting - is different 
from the problem that we are addressing here for the infra-structure 
mode and is beyond the scope of the present paper. This paper targets a 
mobile device providing real time services in a client-server wireless 
network. The mobile battery-powered device (client) can communicate 
with and possibly migrate tasks to the “wall-powered” base station 
(server). The paper first presents a new Markovian Decision Process-
based DPM framework for such a network. The proposed stochastic 
model is used for minimizing the power consumption of the mobile 
host by using remote processing while meeting real-time constraints.  
The remainder of this paper is organized as follows. Related work and 
ackground are provided in Section 2. In Section 3, details of the 
roposed DPM framework are described. In Section 4, stochastic 
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Experimental results and conclusions are given in Sections 6 and 7, 
respectively.  

2 Background 
Research on wireless communication has demonstrated that the multi-
path fading and shadowing (slow fading) effects in a wireless channel 
may significantly degrade the signal-to-noise ratio, increase the error 
rate, and thus cause a large amount of delay and energy consumption 
for re-transmitting the corrupted packets. So when determining an 
optimal policy for the client, a detailed and accurate model of a 
wireless channel should be constructed and used.  
A (controllable) continuous-time Markov decision process [13] 
(CTMDP) is defined with a discrete state space; a generator matrix, 
where an entry represents the transition rate from one state to another; 
an action set; and a reward function. In CTMDP, the generator matrix 
is a parameterized matrix that depends on the selected action. An 
irreducible CTMDP has a unique limiting distribution that is 
independent of the initial conditions. 
A complete system may consist of several components, each modeled 
by a CTMDP. The state set of the complete system is obtained as the 
Cartesian product of the state set of each component minus the set of 
invalid states. By using the method of [12], the generator matrix of the 
whole system can be generated from the generator matrices of its 
components by using the tensor sum and/or product operations. 

3 DPM Framework 
The proposed framework consists of three major components: the 
clients (mobile hosts), a server (base station) and a wireless channel 
which carries the communication packets between the client and the 
server. It is assumed that the server is AC-powered and has a much 
larger computational capability than the client. We also assume that the 
client services only its own local tasks and receives no request for 
remote processing from the server. This is a reasonable assumption 
since the AC-powered high-performance server is much more powerful 
from a processing point of view and has no energy limit, and thus it 
will execute its own tasks (in addition, it will execute tasks sent to it by 
the mobile hosts.) This also means that the server has all the hardware 
and software resources required to execute the tasks that are sent to it 
by the remote clients. Furthermore, for the same reasons, the server 
does not turn down any request for remote processing. 
When a client desires to execute a task on the server, it sends a remote 
process request (RPR) to the server with a required real time constraint. 
Because the server may be busy executing other tasks (some local, 
other remote tasks that have previously arrived), it may reject the RPR 
from the mobile host because it may have determined that it cannot 
meet the required time constraint for the remote task. This is the only 
case in which the server rejects a RPR, that is, the server never turns 
down a RPR for reasons of server-side energy saving. When the RPR is 
rejected by the server, the client will have to perform the task locally. 
However, at that point, the client has wasted some valuable resources 
(energy and time) trying to migrate a task to the server and because it 
has failed in doing so, it still has to perform the requested task locally. 
It is therefore essential for the energy efficiency of the client and for its 
performance to minimize the probability for its RPR’s to be rejected by 
the server.  
The procedure/protocol for remote processing is explained next. 
1. The client decides to migrate a task to the server. This task is 

called a remote execution candidate (REC). The client calculates 
the timing constraint for the execution of the REC. 

2. The client sends a RPR to the server containing workload and 
timing constraint information about the REC. 

3. When the server receives the RPR, it checks the status of the tasks 
waiting on the server to see whether the timing constraint for the 
REC can be satisfied. If so, the server will accept the application, 
otherwise, it will reject the application. Whether or not the 

application is accepted, the server will inform the client of its 
decision by sending an acknowledgment (ACK) back to the client. 
Included in the ACK response are the decision to accept or reject 
the RPR, and current status information about the server, i.e., the 
average incoming request rate and the average execution time of 
the tasks on the server side. 

4. If the client receives a positive (acceptance) response from the 
server, then it will start to migrate the REC to the server. 
Otherwise, the client will proceed to execute the task locally. 

5. When the client finishes the task migration step, it can 
immediately start processing a new task if one has arrived. 

6. When the server completes the task, it will store the result in its 
own memory and immediately inform the client that the 
computation result is ready by sending a task done (DONE) 
message to the client.  

7. If the client receives the DONE message from the server, then it 
will immediately contact the server and collect the computation 
result (RES). If the server does not see any activity from the client, 
then it will resend the DONE message at the next conference time. 
At that time, the client is guaranteed to be awake and therefore 
will receive the DONE message and will pick up the RES from 
the server. At the same time, if the client does not receive any 
message from the server and has not had a conference with the 
server since the last REC was sent off, then before the deadline for 
REC is expired, it will contact the server to pick up the RES. 1 

During the process of RPR negotiation (steps 1-3), REC handoff (step 
4,5), and RES computation (step 6), and RES delivery (step 7), the 
client counts the number of packets that had to be re-transmitted due to 
unrecoverable errors in the received packets. This information will 
enable client to determine the wireless channel condition in real time.  

4 Modeling 
Because this paper focuses on the client-server architecture (i.e., the 
infra-structure mode of the IEEE 802.11b), we can assume that the 
mobile hosts (clients) in the network are independent of each other2 and 
therefore when a client learns about the status of the server, it has all 
that it needs to make local decisions as to how it can improve its energy 
efficiency and thereby extend its battery lifetime. The client-server 
system is thus modeled by a joint CTMDP model, which is composed 
of CTMDP models of only three components: a single client, a wireless 
channel, and the server. 

4.1 Model of the Client 
We consider a (mobile) client that is continuously executing some real-
time service processes for each incoming task. The QoS requirements 
for the client service are: 1) the average task delay is less than a 
predetermined value D; and 2) the task loss rate is less than a threshold 
Th. Different tasks differ in the task size which is exponentially 
distributed. It is assumed that the relationships between the task size 
and its execution time on the client and the migration time over an 
error-free wireless channel are known in advance (for example, through 
profiling). 
The model of the client is illustrated in Figure 1. It has three processors: 
Service Provider (SP), Conference Processor (CP), and Issue Processor 
(IP).  

                                                           
1 This case really means that the server finished the RES computation, send 
a DONE message to the client who was sleep and thus missed the server 
ACK. 
2 Other mobile hosts affect the target mobile host only because of packet 
collision in the wireless channel. In this paper, we treat this collision effect 
(which is transparently handled and minimized by MAC layer) as noise in 
the wireless channel. 
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The SP represents the CPU of a real mobile device and can provide 
service for the service requests (SR). The CP is in charge of negotiation 
with the server for remote processing and task migration. When a REC 
is selected, the CP first sends a request for remote processing to the 
server, which includes the basic information about the REC, such as its 
expected computational workload and the relevant timing constraint. 
When receiving a RPR, the server checks its own resources and 
workload to see whether or not it can finish the task in the required 
time. If the timing constraint can be met, the request is accepted; 
otherwise, it is rejected. If the CP receives an “Accept” response from 
the server, it starts to send off (migrate) the task to the server. After 
completing the task migration, the CP can immediately start a new 
negotiation with the server for the next REC. When the server finishes 
the required job, it stores the RES in its own memory and waits for the 
client to get them back. If the CP receives a “Reject” response, it moves 
the rejected REC out of the Conference Queue (CQ) and inserts it into 
the Priority Queue (PQ). The tasks in the PQ have a higher priority in 
receiving service from the SP compared to other tasks in the normal 
Service Queue (SQ). This makes sense because these tasks have 
already been held back because of the “failed” attempt to migrate them 
to the server. A typical CP is a WLAN Card with Direct Memory 
Access (DMA) capability. Since it can transmit and receive data with 
very little CPU intervention, we assume that the CP and the SP can 
work independently of one another. When a new task is generated, the 
IP decides whether to service it locally or make it a REC, and therefore 
insert the incoming task into the SQ or CQ, respectively. The IP is a 
low complexity and power-efficient processor (e.g., a PIC processor). 
We assume its power consumption can be neglected in comparison to 
the SP and the CP. The IP is always awake waiting for the arriving 
tasks and deciding whether to treat them as local or REC’s. 

IP

SQ

CQ Idle

CP

Migration

Sleep

Conference
RPR

Rejected
RPR

AcceptedStart

Idle

SP

Wait

Sleep

Busy

Finish
Start

P
QSR

Data flow
State transition

Finish

  
Figure 1. CTMDP model of a client. 

The definitions of the states of the SP are as follows.  
Busy: a working state, where the SP service the tasks waiting in the SQ 

or CQ. 
Idle: a full-power but non-functional state, during which the Power 

Manager (PM) may issue any of the following commands to the 
SP: Go-to-Busy, Go-to-Wait, Go-to-Sleep, Stay-in-Idle. 

Wait and Sleep: low power states. The SP in the Wait state has a 
higher power consumption compared to the Sleep state, but its 
transition to Busy or Idle state requires more time and energy.  

The detailed states of the CP are explained as follows: 
Idle: State reached when a RPR negotiation is concluded with a 

“Reject” response, or when the RPR is accepted by the server and 
the client has completed the task migration step. It is also the state 
in which the CP receives commands from the PM to determine 
whether to start a new negotiation, go to sleep, or stay in idle. 

Conference: In this state, the client sends the RPR’s to the server, 
waiting for a server response indicating acceptance or rejection of 

the current RPR. If the request is rejected, the CP goes to the Idle 
state and the REC is fetched out of the CQ and inserted into the PQ. 
If the REC is accepted, the CP goes to the Migration state.  

Migration: This state is reached after a RPR is accepted by the server. 
In this state, the client sends all the data necessary for performing 
the task to the server through the wireless channel. When the data-
sending process is concluded, the CP goes back to the Idle state and 
at the same time the migrated task is removed from the CQ.  

Sleep: State reached when the PM decides to put the CP into the lowest 
power mode to save energy. In this state the front-end of the 
wireless LAN card is turned off, thus no communication from the 
server can be received.  

It is worth noting that in the CP model, we do not explicitly create a 
state for receiving the data RES of an RPR that has been serviced by 
the server. The reasons are: 1) The remote processing 
protocol/procedure described previously guarantees the transmission of 
computation RES from the server to the client. 2) It is more convenient 
from a modeling point of view to account for the time and power 
consumption overhead of receiving the data RES of a RPR in the 
Migration state.  
All of the state transitions of the CP are assumed to be either 
exponentially distributed (e.g., the transition from the Migration state to 
the Idle state) or instantaneous (the only case is for the transition from 
the Idle state to the Conference state.) 
4.2 Model of the Wireless Channel 
The Markovian chain model has proven to be a very successful 
mathematical tool to describe a wireless channel. A lot of Markovian 
chain based models have been proposed, from two-state “Gilbert 
Elliot” model [7] to hierarchical hidden Markov model [8]. Complex 
models work better in terms of capturing the higher order statistics of 
the wireless channel, but result in a nearly exponential increase in 
model complexity [9]. A real wireless channel is usually exposed to 
both fast and slow fading effects. The study in [10] suggests that a two-
state Markov chain model is quite accurate and remains insensitive to 
different coding/modulation schemes when the fading is slow, whereas 
independent, identically distributed (i.i.d.) processes are suitable for 
describing the fast fading effects. Based on this study and other similar 
published results, in this paper, we adopt a two-state continuous-time 
Markov process to model the slow fading effect. We assign a constant 
packet error rate PER to each state. These rates represent the expected 
packet error rate of the i.i.d. processes for describing the fast fading 
effect. The wireless channel model is shown in Figure 2, where 1/v(1,2) 
and 1/v(2,1) represent the expectation time that the wireless channel 
remains in state w1 and w2, respectively. Notice that it is 
straightforward to extend the two-state model to a higher-order model 
with more states to achieve higher accuracy, but a two-state wireless 
channel model is sufficient for our purpose.  

w 1 w 2
1P E R 2P E R)1,2(ν

)2,1(ν

 
Figure 2. Two-state CTMDP model of wireless channel. 

Let’s define the average packet error rate (PER, 0≤ PER≤1) as the ratio 
of the number of un-recoverable packets, in spite of error-correction 
techniques such as CRC coding, to the total number of packets. We 
assume that any packet that is corrupted during transmission and for 
which error correction circuitry on the receiver side cannot fix the error 
must be re-transmitted. Let t denote the time required for transmitting 
an n-packet data over an error-free wireless channel. The expected time 
ta for transmitting the same data over an error-prone wireless channel 
can be calculated as follows: 
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where, t0 denote the time for transmitting a single packet over an error-
free wireless channel, and m is the number of re-transmissions.        
4.3 Model of the Server 
The server can be represented as an infinite M/M/1 queue [6] with a 
multi-state task generator as shown in the Figure 3. Usually a server 
connects to a number of clients and has to perform a large amount of 
local computations. So we can assume that, in the stationary state 
condition, 1) the rate of incoming tasks to the server is independent of 
any particular client and 2) this rate changes slowly. From the client’s 
viewpoint, what is important is the rejection probability of its RPR’s. 
Thus we can reduce the order of the model as explained below. 

sµ
∞

1,sλ

2,sλ

ms,λ
 

Figure 3. Queuing model of the server. 

Assuming that the incoming task rate of the server is λs and its average 
service time is 1/µs. the probability that the number of waiting tasks in 
the server queue equals n, is computed as: 
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Suppose the service time constraint of a RPR is a constant factor c 
larger than its execution time on the server, where c≥1. The execution 
time of an RPR on the server can be approximated by an exponential 
distribution with a mean value k/µc, where 1 /µc is average service time 
of the client, k is the ratio of processing speed of the client to the server, 
k≤1. So the RPR rejection probability is calculated as: 
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where ts is the execution time of the RPR on the server and tw denotes 
the waiting time of the RPR on the server. LST-1[·] represents the 
reverse Laplace-Stieltjies Transform. Consequently, the model of the 
server can be reduced to a two-state Markovian process with rejection 
probabilities attached to each server state as shown in Figure 4. The 
rejection probability Preject,1, Preject,2 and Preject,m correspond to the 
incoming task rate states, respectively. 

1,sλ 2,sλ

2,1η

1,2η1,rejectp 2,rejectp

ms,λ

mrejectp ,
 

Figure 4. CTMDP model of the server with rejection probabilities. 

5 Policy Optimization 
We describe two policies: an off-line optimal policy and an on-line 
adaptive policy. The off-line optimal policy is computed based on the 
joint stochastic model of the client, the wireless channel and the server 
by using a linear programming approach. If the key characteristics of 
the wireless channel and the server are stable, then using the offline 
policy will result in the optimum energy saving solution. In practice, 
however, the channel conditions and the server workloads vary in time. 

For this time-varying situation, an on-line adaptive policy is devised to 
handle this time-varying situation. This on-line policy is based on 
dynamic lookup of pre-computed off-line optimal policies from a 
Cached Policy Table [14][15]. The key into this cache table is the 
parameter set that describes the channel conditions (packet error rate) 
and the server status (rejection probability for RPR’s.) The value is the 
optimal policy that should be put to practice. Although the optimality 
of the on-line policy cannot be guaranteed (because of the client-side 
error and/or latency in determining the channel and server parameters), 
it has proven to be a satisfactory solution in a varying environment, 
especially if the dynamics of the network change are not too fast (cf. 
the results.) 

5.1 Off-line optimal policy 
Our goal is to find an optimal policy for minimizing the energy 
consumed by the client based on the characteristics of the client, the 
wireless channel, and the server. To consider the QoS requirements for 
the real applications, the optimal policy is solved under hard constraints 
on the expected task service time and task loss rate. A task is lost in (or 
dropped by) any of the client queues (SQ, CQ or PQ) if the queue is 
full when the task arrives. We formulate the policy optimization 
problem as a linear program as described next. 
Let x represent the state of the whole power-managed system and ax 
denote an action enabled in state x. The constrained energy 
optimization problem is formulated as a linear program as follows: 
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where mλ  is the average rate of incoming tasks for the client. 
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In the above inequalities, sqx, cqx and pqx represent the length of waiting 
tasks in the queue SQ, CQ and PQ. Notice that, the inequalities (5-
6,7,8), which are based on the Litter’s theorem [6], impose constraints 

(5-1)

(5-2)

(5-3)

(5-4)

(5-5)

(5-6)

(5-7)

(5-8)

(5-9)
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on the expected task delay. In (5-6), pqx is added because the tasks in 
the PQ have a higher priority and can block the tasks in the SQ, which 
means that a task waiting in the SQ will be serviced only when all tasks 
in the PQ have been serviced. It is thus necessary to account for the 
task delays in the PQ when considering the delay of a task in the SQ.  
For delay calculation, we only consider the locally executed tasks, 
because we assume: 1) The timing constraint of each REC, which is 
assigned by the client and provided to the server during the RPR 
negotiation, equals c (c≥1) times its expected execution time on the 
server (cf. Section 4.3). 2) If the server accepts a RPR, it will definitely 
complete the task before its timing constraint. Therefore, the average 
delay of the RPR’s that are executed on the server will be less than D, if 
the condition in the following theorem is satisfied. 
Theorem: Let 1 /µc and 1 /µm represent the expected value of the task 
execution time for locally processed tasks (this includes the task service 
time on the client SP) and for remotely executed tasks (this includes the 
RPR negotiation time, the REC migration time, and the RES delivery 
time), respectively; k represents the ratio of processing speed of the 
client processor to the server processor. If D ≥ Dc + 1 /µm + k/µc, c = 
(D – Dc - 1 /µm)/(k/µc), where Dc is defined in equation (5-8) then the 
expected value of the delay of remotely executed tasks is less than D. 
5.2 On-line policy 
For the on-line policy, we assume that the status of the wireless channel 
and the server is not known a priori. So we must first construct a cache 
table of M×N entries off-line. Each entry (i,j) in this table corresponds 
to an optimal DPM policy computed based on the method proposed in 
Section 5.1 under the condition that the packet error rate of the wireless 
channel is PERi and the rejection probability of the server is Preject,j. The 
sets {PERi} and {Preject,j} for which an optimal policy is precomputed 
and stored in the table are determined by monitoring the channel and 
the frequency of RPR rejections over a moving window measurement. 
These indices of the cache table are arranged in an increasing order, i.e., 
PERi< PERi+1 and Preject,j< Preject,j+1.  
In contrast to the off-line optimal policy, if during a predetermined 
period there are no RPR’s, the on-line policy will arbitrarily select a 
task as a REC and send a corresponding RPR to the server. This is 
needed in order for the client to learn about the condition of the 
wireless channel and the status of the server.  
The client uses profiling and regression to estimate the value of PER 
and Preject. Let APER(n) denote the percentage of corrupted packets 
during the nth conference with the server. The predicted value of the 
packet error rate PER(n) is calculated as:  

)1()()( )1( −⋅−+⋅= nnn PERAPERPER αα . 
where α is a coefficient and 0≤α≤1. α should be set to a larger value in 
a fast-changing wireless channel and to smaller value in a slow-
changing wireless channel. 
Let RRN denote the rejection ratio of the last N RPR’s. Let λs

(n) and 
1/µs

(n)
 denote the incoming task rate and the average task service time 

in the server side (these are provided to the client by the server during 
the nth conference time). Thus the predicted server rejection probability 
Preject

(n) is: 

N
n

s
n

s
n

reject RRfP ⋅−+⋅= )1(),( )()()( βµλβ  . 

where 0≤β≤1 is a coefficient. β should be large if the workload status 
of the server changes rapidly; otherwise it should be small. 
If one of the two conditions take place:  
(PERi-1+PERi)/2 < PER(n) ≤ (PERi+PERi+1)/2 < PER(n-1) or  
PER(n-1) ≤ (PERi-1+PERi)/2 < PER(n) < (PERi+PERi+1)/2,  
then the policy corresponding to the entry (i, ⋅) will be activated. 
Similarly, if condition  
(Preject,j-1+Preject,j)/2 <Preject

(n) ≤ (Preject,j+Preject,j+1)/2 < Preject
(n-1) or Preject

(n-

1) ≤ (Preject,j-1+Preject,j)/2 <Preject
(n) < (Preject,j+Preject,j+1)/2,  

is satisfied, the policy corresponding to entry (⋅, j) will be activated. 
Note that “⋅” represents the unchanged index or index changed based 
on other conditions. The index i and j are calculated independently. 
The flow diagram of the on-line policy is shown in  
Figure 5. 
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Figure 5. Flow diagram of the on-line policy. 

6 Experimental Results 
In our simulations, we used a StrongARM SA-1110 processor as the 
SP in the mobile host. The StrongARM processor was running at a 
clock frequency of 206MHz. The CP in the host was Orinoco WLAN 
PC card. The power consumption and state transition times of the 
StrongARM processor and the Orinoco WLAN PC card are reported as:  

Table 1. Features of StrongARM SA1110 and Orinoco WLAN. 
StrongARM SA1110 Busy Wait Sleep 
Power (mW)  600 (with MEM) 100 0.2 

Wait to Busy 
Busy to Wait 

10 us 

Sleep to Busy 160 ms 

Transition Time 

Busy, Wait to Sleep 90 us 
Orinoco WLAN card Transmit Receive Sleep 
Power (mW) 1400 900 50 

Wake-up time 34 ms Transition Time 
Sleep-down time 62 ms 

In the simulation, we assumed that the average task execution time on 
the mobile host is 400ms, the conference time is 40ms, and the average 
RPR data migration time plus the RES pick up time is 80ms. The task 
incoming rate is 0.625 per second. The Maximum task loss rate is 
0.1%. The average task delay constraint is less than 0.8s. 
We compare the results of both our offline policy and online policy 
with two baseline techniques. These two baseline methods are: 
M1: No RPR. The client will execute every task locally. 

910



 

M2: Always try RPR first. For every incoming task, the client will first 
send a RPR to the server. The client will execute the task locally only if 
the server rejects the RPR. 
Off-line policy 
In  
Figure 6, Assume the state of the wireless channel and the server are 
unchanged. MDPBP, stands for Markov decision processes based 
policy, is our proposed method. 
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Figure 6. Comparison of simulation results of the three policies 

with an invariable wireless channel and server. 
When the PER and RPR rejection probabilities are small, the M2 
method results in large power savings compared with the M1 method. 
However, as the PER and RPR rejection probabilities increase, the 
average power consumption of M2 increases and finally significantly 
outweighs M1. This occurs because of both the energy wasted by the 
CP during the RPR negotiations and the extra energy consumed by the 
SP due to more stringent timing constraints (since an amount of time 
has been wasted for RPR negotiations.) The MDPBP always consumes 
the least power and achieves power savings as much as 34.9%. 
Now consider a wireless channel and a server with time-varying 
characteristics. In this simulation, the server is simulated as an infinite 
queue with a Markovian process based task generator (task incoming 
rates λs,1 and λs,2). We assumed that the average task execution time on 
the server is 25ms and the processing speed of the server is 20 times 
faster than the client. Set Dc, c.f. inequality (5-8), was set equal to 0.65s. 
The rest model parameters are shown in Table 2. Results of the off-line 
policy are compared with the two baseline polices in Table 3. 

Table 2. Model parameters of wireless channel and server. 
PER1 PER2 v(1,2) v(2,1) 

0% 20% 1/15000 1/10000 

λs,1 λs,2 η(1,2) η(2,1) 
16 per sec. 24 per sec. 1/20000 1/20000 

Table 3. Simulation results of the off-line policy. 
Policy M1 M2 MDPBP 
Average Power (W) 0.2742 0.2746 0.2412 

MDPBP Improvement 12.0% 12.2% -- 

On-line policy 
In this simulation, the server is simulated as an infinite queue with a 
randomly generated task trace; the parameters of the wireless channel is 
slowly and randomly increased or decreased. The on-line policy is 
based on a 5×5 decision table. Due to the limited space, we cannot 
include this table here. Simulation results are shown in Table 4. 

Table 4. simulation results of the on-line policy. 
Mode M1 M2 MDPBP 
Average Power (W) 0.2742 0.2570 0.2310 

MDPBP Improvement 15.8% 10.1% -- 

7 Conclusion 
A new mathematical framework for extending the lifetime of a mobile 
host in a client-server wireless network by using remote processing was 
proposed. The client-server system was modeled based on the theory of 
continuous-time Markovian decision processes. The DPM problem 
was formulated as a policy optimization problem and solved exactly by 
using a linear programming approach. Based on the off-line optimal 
policy computation, an on-line adaptive policy was developed ad 
employed in practice. Experimental results demonstrated the 
effectiveness of our proposed methods. 
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