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Abs t rac t  

Recent experimental results by Schn6rr 89 with an approach based on a simplified 'oriented 

smoothness constraint' show considerable improvement at expected discontinuities of the 

optical flow field. It thus appears justified to study whether the local gray value variation 

can be exploited in the temporal as well as in the spatial domain in order to achieve further 

improvements at discontinuities in the optical flow field associated with the image areas of 

moving objects in image sequences. An extension of the oriented smoothness constraint into 

the temporal domain is presented. In this context, a local estimation approach for the spatio- 

temporal partial derivatives of optical flow has been developed. This, in turn, is used to 

compare two approaches for the definition of optical flow. 

1. In t roduc t ion  

The notion of optical flow has been introduced in the course of studies of human perception. 

The 2-D optical flow can be an important clue both i'or the 3-D relative motion between 

camera and scene as well as for the relative depths of points in the scene. Since the concept 

of optical flow has originally been introduced only qualitatively, various possibilities exist 

for attempts to define it in such a manner that it becomes amenable to quantitative 

estimation. 

Optical flow u = ( u,  v )T is taken to describe the apparent shift of gray value structures 

g(x,y,t) = g(x,t) in an image plane of a camera which moves relative to the depicted scene. 

Here, the 2-D vector x = ( x, y )r denotes a location in the image plane and t denotes time. 

One usually defines optical flow b y  the requirement that the gray value structure 

g(x+uSt,  t+St) observed at time t+St  at the location x+  u6t is the same as g(x,t). This 

results in the so-called 'Brightness Change Constraint Equation (BCCE)' which expresses a 

single constraint between the components u and v ofu : 

g u + gyV + gt : 0 ~1.1} 
The derivatives of g{x,t) with respect to x, y, and t are denoted by the corresponding 

subscripts. Since eq. (1.1) does not allow the estimation of both components of u, Horn and 
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Schunck 81 formulateda  minimization approach in order toest imate u and v as a function of 

X :  

fl {[ l [ 1} dx g u + gyV + gt + ~2 u2x + u2y + v2x + v2y => minimum (1 .2 )  

In order to reduce the smoothing effect of the second term - multiplied by k 2 - in eq. (1.2) 

across potential discontinuities in the optical flow field, Naget suggested to let the 

contribution of this smoothness term be controlled b y t h e  local gray value variation, This 

resulted in the following modification ofeq. (1.2) : 

where the weight matrix W is given by (Nage187) : 
2 

(1.4) W - 2 ~ 2 gx + g +2y _gxgy gx + ¥ 

Snyder 89 recently proved that  - assuming general constraints for such an expression - the 

weight matrix given by eq. (1.4) is the only reasonable choice. In addition, Schn6rr 89 has 

just proved that  the problem formulation according to eq. (1.3) with W according to (1.4) has 

a unique solution which depends continuously on the input data. SchnSrr 89 compared 

results obtained based on this oriented smoothness constraint with results based on eq. (1.2). 

This comparison supports the expectation that  the oriented smoothness constraint 

contributes to a much better demarkation of the optical flow field arount moving object 

images than the isotropic smoothness constraint introduced by Horn and Schunck 81. 

These encouraging results lead to the following consideration: just as the spatial gray value 

gradient may be used to constrain the strength and orientation of a spatial smoothness 

requirement for the optical flow estimates, strong temporal changes in the components of 

optical flow - i. e. potential discontinuities - could be estimated more reliably by the 

introduction of a temporal smoothness constraint which in turn would have to be controlled 

by the spatio-temporal gray value variation. This conjecture will be formulated 

quantitatively in the next section. 

2. Extens ion  of  the or iented s m o o t h n e s s  constra int  into the t empora l  d o m a i n  

The observed gray value function g(x,t) can be interpreted as a density in the three- 

dimensional space (x,t). The partial derivatives with respect to the variables (x,t) or (x,y,t) 

may be considered to form a three-component gradient vector Vxt = (~ / ax,  O / ay ,  a / at ) r .  If 

we extend the definition of the optical flow vector u formally to ~ = ( u ,  v ,  1 ) T by a third 

component with the constant value 1, we may write the BCCE (1.1) in the form 

(Vxtg)T~ = 0 (2 .1 )  

This equation can be interpreted as the requirement that  the optical flow vector O(x,t) is 

constrained to a plane defined by the normal vector (V~ g) at (x,t). This leaves one degree of 

freedom to tl(x,t), namely its orientation within this plane. We may interprete the optical 
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flow vector fi(x,t) as the tangent  to a flow line through the point (x,t). I f  the gray value 

function g(x,t) does not vary with time, ag / at = 0 and all tangent  planes are parallel to the 

t-axis. In this case one would like to have flow lines which are parallel to the t-axis, too. If  

the gray value structure is translated with constant velocity in the image plane, the normal 

vector (Vxt g) will be slanted with respect to the t-axis, but one would like to retain flow lines 

which are still parallel to each other within tangent planes to g(x,t). This aim can be 

achieved by postulating that  the direction of a flow line, i. e. the orientation of an optical 

flow vector, remains constant for infinitesimal displacements within the tangent  plane to 

g(x,t). This is equivalent to the postulate that  changes i n u occur at  most in the direction of 

the gradient (Vxt g). This in turn implies that  changes in the components of fi , i. e. the 

vectors (Vxtu) and (VxtV), are collinear with (Vxtg). These latter requirements can be 

expressed by demanding that  the vector products between (Vxt g) and both (Vxt u) as well as 

(V~t v) vanish : 
ag ag au 

0 - - - -  ~ - -  

0t 0y ax 

[(Vxtg)X(Vxtu)] = ( Ogot 0 _Ogox ) ( a ~ )  = 0 (2.2a) 

Og ag au 
- - - -  - -  0 

Oy ox at 

and analogously for (V~t v). Since such a requirement will in general be too strong for 

measurements  of g(x,t) corrupted by noise, eq. (2.2a) will be replaced by the less stringent 

requirement that  
au 

g ; +  2 
gt -gxgy -gxgt  Ox 

II[(Vxtg) X (Vxt u) ]l~ = ax Oy at -gxgy gx+ gt --gygt ~ =>  minimum 

2 
-gxgt  --gygt g~ + gy &t 

at 
(2.2b) 

It  is seen that  the upper left 2x2 submatrix on the right hand side ofeq. (2.2b) corresponds to 

the oriented smoothness expression for Vu, provided g2 is set equal to zero, yI with I as the 

2x2 identy matrix is added and the  sum is normalized by the trace of the resulting weight 

matrix. The generalized oriented smoothness constraint for the first component of u can 

thus be written as 
au 

2 + 2 + y -gxgy -gxg t ax gy gt 

,2 l ( Ou Ou Ou ) ( 2 2 ) (' ~u ) 
2 (g2 + g2 + g~) + 3"/ Ox 02/ Ot --gxgy gx + gt + ¥ --gygt .. ~ (2_3) 

x y 
2 2 

-gxgt  -gygt  gx + gy + ¥ au 
at 
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The expression (2.3) and a corresponding expression for Vv can thus be considered to 

represent a generalization of the two-dimensional oriented smoothness constraint from eqs. 

(1.3) and (1.4) to the three-dimensional (x,y,t)-space. T h e  same weight matrix as in 

expression (2.3) has been used by Krdmer 89 in an at tempt to estimate structure and motion 

directly from monocular image sequences. 

During the development of earlier forms of the oriented smoothness constraint (see 

Nage187), analytical investigations of u and v as a function of the local spatio-temporal gray 

value variation turned out to be very useful. It  thus is expected that  similar investigations 

will advance the understanding of the implications of the generalized oriented smoothness 

constraint proposed in this section. As a preparation for such studies, u and v as well as their 

partial derivatives with respect to x,y, and t should be obtained as explicit functions of the 

local spatio-temporal gray value variation. This is the topic of subsequent sections. 

3. Expl ica t ing  local  spa t io - t empora l  g r a y  va lue  va r i a t i ons  

In order to explicate the dependency of partial derivatives of g on x and t, we choose the 

point of interest as the origin of a local coordinate system and consider the Taylor expansion 

of the gray value gradient components up to first order terms. Moreover, in order to restrict 

this approximation to an explicitly characterized local spatio-temporal environment around 

the origin, this Taylor expansion is weighted by a trivariate Gaussian 

x 2 + y2 + c2 t2 

c 2~2 x [ \ 
g (x , t )=  ~g (o,0) + g=(o,o)~ + g~y(o,0)y + g~,(o,0)t ) - - ~  

(3.1) 

where the ratio ~x / crt = c has the dimension of a velocity. This approximation implies a 

choice for (r t which allows to disregard contributions from the infinite past or future as being 

negligibly small. The spatial derivatives with respect to y and t can be written analogously. 

Similarly, we introduce the following representation for the first component u of the optical 

flow : 
x2 + y2 + c 2 t 2 

C 

(3.2) 
and an analogous one for the second component v. It  should be noted that  eq. (3.2) comprises 

partial derivatives of u and v with respect to time in addition to those with respect to the 

spatial coordinates x and y. 

In order to simplify subsequent derivations, we introduce a more compact notation where 

the arguments (0,0) of the partial  derivatives have been dropped : Gx = (gx, gxx, gxy, gxt )T ; 

2o2 
• u (x . t )  = (u(o,o) + Ux(O,O)x + uy(o,o)y + .~(o,o) t  ) - - e  
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Gy = (gy , gyx , gyy , gyt )T; G t -  (gt , gtx , gty , gtt )W. In analogy we introduce 

U = (u, Ux, Uy, ut )T and V = (v, Vx, Vy, vt)T. Similarly, we define 

1 x 2 + y2 + c2t2  

[ - -  \ 3 / 2  e (3 .3 )  
X -  /o22,~ Y 

\ x  ] t 

Using these conventions, we may write the modified BCCE with explicated dependency on 

x, on t, and on the extent of the environment : 

Rather than requiring that this form of the BCCE should be valid at each space-time 

location (x,t), we postulate that the integral of the square ofeq. (3.4) should be minimized : 

dxdt G T x . u T x  + GTx*vTx  + GTx => minimum (3.5) 

The trivariate Oaussian in X wil| enforce convergence of the integral without the necessity 

to introduce sharp boundaries for the integration region. It appears reasonable to estimate 

the spatio-t~emporal derivatives Gx , Gy , and Gt by a convolution of g(x,t) with the cor- 

responding derivatives of the trivariate Gaussian in X. The choice of Ox and ot thus 

determines the extent of the spatio-temporal domain which contributes significantly to the 

integral in eq. (3.5). 'Local estimation' of U and V is understood to refer to the domain 

around the origin determined by Ox and or. 

4. Equa t ions  for the u n k n o w n  c o m p o n e n t s  of U and V 

The partial derivatives contained in Gx, Gy, and Gt,  taken at the origin of the coordinate 

system, are observed constant values. The explication of the dependency on x and t through 

the expression for X defined by eq. (3.3) implies that the components of U and V are 

considered to be constant unknown values associated with the origin (0,0) of the local 

coordinate system. Setting the partial derivatives of the integral in eq. (3.5) with respect to 

the unknown components of U and V to zero results in the following system of eight linear 

equations, written here as a set of two (4xl)-vector equations : 

and 

(4.1a) 

The coefficients of this system of linear equations in U and V are integrals with each 

integrand consisting of a trivariate Gaussian, multiplied by monomials in x, y and t of up to 

I f  L y , 
(4.1b) 
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fourth order. The expansion of the coefficient integrals yields for the general case on the left 
hand side with 11, ( ~{ x ,  y } and { GqTXeXTG(eXX w } = { ( GrlTXXTG( )eXX T } : 

(GTxxTG~)et (GTXXTG~)etx 

(GTxxTG~)oy (G~XXTG~)et 
2(x2 + y2 + c2t2) 

} 

(4.2) 

The evaluation of the integral over each component of this 4x4 matr ix  presents no problems. 

Space limits prevent an illustration of intermediate results for this evaluation. The 

integrands on the right hand sid e ofeqs. (4.1) can be treated analogously. 

Using these coefficients, it is straightforward to write the system ofl inear  equations (4.1) for 

the unknown entities u, v, and their partial derivatives. It turns out, however, that  attempts 

at  the symbolic solution of this system of equations result in rather  involved expressions. In 

order to provide some insight into the structure of this system of linear equations, a smaller 

system will be discussed here. I t  is obtained by omitting the derivative with respect to time t 

in the Taylor expansion of eqs. (3.1) as well as (3.2) and by omitting the Gaussian weight 

function depending on t. The system of linear equations resulting from these steps are 

formally equal to those in eqs. (4.1) although the evaluation of the integrals yields slightly 

different values for the coefficients. 

5. Equat ions  for u, v, and their partial derivatives  with r e spec t  to x and y 

Since there will be no Gaussian weighting function with respect to t ime and thus no or, the 

distinction between at and Ox will not be necessary. Henceforth, ~ without a subscript will be 

used. Only u, v, ux, Uy, vx, and vy are retained as unknowns. The integrals are evaluated in 

analogy to the procedure discussed previously. 

In order to simplify the subsequent presentation, it is assumed that  the local coordinate 

system has been aligned with the directions of principal curvatures of g(x,t), i. e. gxy = 0 .  

Moreover, in all expressions it turns out that  whenever a second partial derivative of g(x,t) 

appears, i t  does so always in combination with a factor 0/2. I t  thus is advantageous to 

introduce the convention - again with ~ { x , y }  - that g~4* = ( ~/2 ) g ~ and 

gt<* = ( ~/2 ) gt~ - By this definition, the second partial derivatives with an asterisk have 

the same dimension - namely [gray value] • [length] -1 or [gray value] • [time] ~ , 

respectively, - as the first partial derivatives. This can be useful while checking some of the 

formulas. For simplicity, the asterisk is henceforth dropped a n d  all second partial 

derivatives are taken to 
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carry implicitly a factor 0/2. Similarly, all first partial derivatives of u and v are taken to 

carry implicitly a factor 0/2. Using these conventions, the linear system of equations for the 

components of U and V can be written as follows, after having exchanged some rows and 

columns in order to group u and v as well as their first derivatives together: 

o 3 2 2 u 

2 g ~  g~gyy 0 v 3 
gxgy gy+gyy 2gygyy ~gtgy+gtygyy 

2 2 U x 
32 

2 2 U 0 gxgyy 0 gx+gxx g~xgyy gxgy y 
g~g ty 

g yg ~ 0 g ~g y g xxg yy g y+ g 2 0 vx 
gygtx 

gy+3gyy g~gyy 2gygyy gxxgyy gxgy 0 2 2 u 
Y gtgyy+gygty 

(5.1) 

It turns out that  the matrix in eq. (5.1) has only rank five rather than the required full rank 

of six. The eigenvector of this matrix corresponding to its eigenvalue 0 has the form 

eo :__ (gy, _gx ,O,  gyy, _gxx,O )T (5.2) 

A test using the components ofe 0 as factors reveals that not only the row vectors of the coeffi- 

cient matrix, but both left and right hand sides ofeqs. (5.1) are linearly dependent, i. e. either 

the first, second, fourth, or fifth equation can be deleted as redundant. Deletion of, say, the 

fifth equation leaves a system of five equations with six unknowns, i. e. five unknowns can be 

determined up to a linear function of the sixth one, say Vx. 

Assume that a special solution is known for the unknowns. Since the eigenvector e o is 

orthogonal to all row vectors of the coefficient matrix of eq. (5.1), we may define the general 

solution of this system of equations by adding a multiple w ofe o to this special solution, i. e. 

( f l , ~ , f l x , f l y ,  ~ ' x , f r y )  T ---- ( U , V , U x , U y ,  V x , V y )  T -1- w e  0 .  (5 .3)  

If we now treat the newly defined entities on the left hand side of eq. (5.3) as unknowns, we 

can set ~x =: Vx - Wgxx = 0 by choosing w appropriately. This removes the fifth column from 

the left hand side ofeq. (5.1) and enables us to solve for the five remaining variables ft, 0,  fix, 

fly, and ¢¢y .. Since the resulting expressions in the derivatives of g are rather lengthy, space 

limitations force us to restrict the discussion of the results to a particularly interesting case. 

Eq. (5.3) in combination with eq. (5.2) shows that the solutions for ux and Vy do not depend on 

the free parameter w. It is possible, therefore, to determine the divergence of u directly in 

terms of the spatio-temporal derivatives of the grayvalue function g(x,t) : 
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+ ) 3 2 2 + 3 2 2 

Y g2yy ( 2 2+ 2 2 )  2 ( 2 3 +  2 3 )] + gtgxx [ (g2 + ) gxgyy gygxx + gyy gxgyy gygxx 

g~gyy gygxx ) + 2g=(gxgyy gygxx ] j 
(5.4) 

In this expression, the implicit factor of o/2 in the definition of Ux and Vy has already been 

made explicit again and has been compensated against the same factor on the right hand 

side ofeq. (5.4). 

Another possibility to cope with the degeneracy of the linear system of eq. (5.1) consists in 

supplementing the minimization problem by a regularization term. Then, the inverse of the 

correspondingly supplemented coefficient matrix according to eq. (5.1) exists. Using a 

symbolic algebra programming system like MAPLE, it can be computed without problem. 

The resulting expressions, however, are very lengthy and are not immediately amenable to 

significant simplifications. Therefore, they will not be presented here. 

Alternatively, one could fix either one or a linear combination of the unknowns by an 

additional assumption. Since it is desirable to introduce any additional assumption in a 

manner  invar iant  to rotations of the coordinate system, it is suggested to demand that  the 

shear tensor should vanish. 

( u - o y  u +v ) 
I x y x 

s h e a r ( u )  = -~ u + v  x - ( u - v  ) = 0 
y x y 

(55) 
This implies two additional constraint equations, leaving only four unknowns. The 

postulate expressed by eq. (5.5) can be incorporated into the minimization problem by 

adding the following terms to the integrand : 

i22 ( u x -  Vy )2 + V2 (Uy+ V x }2 
(5.6) 

where t12 and v2 represent Lagrange multipliers. The contribution of these terms drop out of 

the equations obtained by forming the partial derivatives of the expanded minimization 

problem with respect to U and V since they contain a factor of either (Ux -Vy) or (Uy + Vx) 

which vanishes. One obtains a system of five equations of rank 5 for four unknowns. A 

pseudo:inverse formalism can be used to solve for the unknowns. The resulting expressions 

are involved. 

During a recent discussion, I learned that  Koenderink and coworkers also investigate the 

direct estimation of optical flow and its partial  derivatives, but taking into account higher 

than second order spatio-temporal derivatives of the gray value distribution. In both cases, a 

Gaussian is used to localize the estimation procedure (Koenderink 89). 
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6. C o m p a r i s o n  with the def ini t ion of  opt ica l  f low by  Giros i  et  al. 89 

The following discussion concentrates on the direct estimation of u and v. The BCCE in itself 

does not provide sufficient constraints in order to estimate both u and v. If, however, the 

gray values vary sufficiently as a function ofx and y, it could be shown tha t  - by taking into 

account higher order spatial derivatives of g(x,t) - both components of u can be estimated 

directly (Naget 83). 

Recently, Girosi et al. 89 discussed another possibility to directly estimate u and v which 

may be considered to be a special case of the approach investigated, for example, in Nagel  

83 +87. The  difference consists in the fact tha t  Girosi et al. 89 def ine  optical flow not by 

something like eq. (1.1) but as the solution of the vector equation 

d dx dy 

d dx ~y 
~t g Y g y x ' ~  + g yy '~  + g yt 

which results in the following system of equations : 

(6.1) 

# , * * 

gxx u + gzy v = --gxt and  gxyU + gyyV = - g y t  
(6.2) 

Here, u* = (u* ,  v* )W has been used in order to emphasize the difference between the 

definition of optical flow u* according to eq. (6.1) and the one of u according to eq. (1.1). The 

solution to this system of equations is 

u* g yy2 0 g xt 

' v* g ~ y y  0 gx2x gyt 
(6.3) 

where the convention of setting gxy = 0 has been used. This approach captures only part  of 

the situations which allow to estimate locally both components of the optical flow u, namely 

only those situations with a non-singular Hessian. For curved lines of maximum gray value 

slope, in particular for 'gray value corners' characterized as points of maximum curvature in 

such locus lines of maximum slope, the gradient is maximum which implies that  the 

corresponding second partial derivative vanishes. In such cases, the Hessian becomes 

singular and the approach expressed by eq. (6.1) breaks down, whereas the one of Nagel  83 

provides a useful estimate in such cases. 

7. C o n c l u s i o n  

The extension of the oriented smoothness constraint into the temporal domain is expected to 

facilitate a better detection and localization of discontinuities in the optical flow field. 
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It has been shown that, by appropriate modeling of the local gray value variation, it becomes 

possible - at least in theory - to estimate not only both components of optical flow, but in 

addition some linear combination of its partial derivatives with respect to x and y. In 

particular, it becomes possible to estimate div(u) directly from spatio-temporal gray value 

variations. If the isotropic smoothness term introduced by Horn and Schunck 81 is included 

into the model developed here, one does not need to make the assumption of vanishing 

shear(u) in order to determine all spatial partial derivatives of u and v. Obviously, 

experimental investigations are needed in order to test the reliability of these approaches. 
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