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Extending the osmometer method for assessing drought tolerance 
in herbaceous species

Robert J. Griffin-Nolan1,2 · Troy W. Ocheltree2,3 · Kevin E. Mueller4 · Dana M. Blumenthal5 · Julie A. Kray5 · 
Alan K. Knapp1,2

Abstract
C om m unity-scale  surveys of  plant drought to lerance are essential for understanding  sem i-arid  ecosystem s and  com m unity  

responses to clim ate change. T hus, there is a need  for an accurate and  rapid  m ethodology for assessing  drought to lerance  

strategies across plant functional types. T he osm om eter m ethod  for predicting  leaf osm otic potential at fu ll turgor (πo), a  

key  m etric of  leaf-level drought to lerance, has  resulted  in  a  50-fold  increase  in  the  m easurem ent speed  of  th is trait; how ever, 

the applicability  of  th is  m ethod  has only  been  tested  in  w oody  species and  crops. H ere, w e  assess the  osm om eter m ethod  for 

use  in  herbaceous  grassland  species and  test w hether πo is an  appropriate  plant trait for understanding  drought strategies of 

herbaceous species as w ell as species distributions along  clim ate  gradients. O ur m odel for predicting  leaf  turgor loss point 

(πTLP) from  πo (πΤ L Ρ  =  0.80πo-0 .845) is nearly  identical to  the  m odel previously  presented  for w oody  species. A dditionally , 

πo w as highly  correlated  w ith  π-^  for gram inoid  species (πtlp =  0.944πo-0 .611; r2 =  0.96), a  plant functional group  previously  

flagged  for having  the  potential to cause erroneous m easurem ents w hen  using an osm om eter. W e  report that πo, m easured  

w ith  an  osm om eter, is w ell correlated  w ith  other traits linked  to  drought to lerance  (nam ely , leaf  dry  m atter content and  leaf 

vulnerability  to  hydraulic  failure) as w ell as clim ate  extrem es linked  to  w ater availability . T he  validation of  the  osm om eter 

m ethod  in  an  herb-dom inated  ecosystem  paves  the  w ay  for rapid  com m unity-scale  surveys of  drought to lerance  across plant 

functional groups, w hich  could  im prove  trait-based  predictions of  ecosystem  responses to  clim ate  change.

Keywords O sm otic potential · C lim ate  change · G rasslands · Plant traits · D rought

Introduction

A ccurate and  efficient quantification of  drought to lerance  

w ithin  plant com m unities is needed  given  that w ater  is a  pri­

m ary  lim iting  resource for plants across m uch  of  the  w orld  

(K napp  et al. 2017 ) and  extrem e droughts are expected  to  

becom e m ore com m on w ith clim ate change (D ai 2011 ; 

2013 ; IPC C  2013 ). T he  response of ecosystem  processes, 

such as aboveground  net prim ary  productiv ity , to drought 

has been show n to  vary  am ong ecosystem s (H uxm an et al. 

2004 ), even w ithin the sam e  biom e (K napp et al. 2015 ); 

how ever, a m echanistic understanding of th is variability  is 

lacking. H ydraulic traits, such as leaf turgor loss point and  

xylem  vulnerability  to cavitation , can  provide a m echanis­

tic understanding of plant grow th and survival as w ell as 

com m unity assem bly  in  response  to  w ater stress (review ed  

by R eich 2014 ). W hen scaled  up from  m easurem ents of  

indiv idual plants and  species, such  traits m ay  provide use­

fu l inform ation  regarding responses of com m unities and
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ecosystem s to  clim ate  change  (Suding  et al. 2008 ). U nfortu­

nately , hydraulic  traits are  infrequently  m easured  in  com m u ­

nity-scale  trait surveys (G riffin-N olan  et al. 2018 ), likely  due  

to the tim e-in tensive m easurem ent protocols they  require  

(Sack  et al. 2002 ; B rodribb  and  H olbrook  2003 ); thus, a  key  

research  need  is the identification and  validation of rapid , 

high-throughput m ethods for assessing drought to lerance  

that can  be  applied  w ithin  and  across  plant functional types.

L eaf turgor loss point (πT L P), the leaf w ater potential at 

w hich average cell turgor is lost and leaf w ilting occurs, 

provides a  w ealth  of  physio logical inform ation  pertain ing  to  

cell w all in tegrity , stom atal closure  and, m ore  generally , the  

extent to  w hich  plants can  m aintain  m etabolism  as soil dries 

(K ram er and  B oyer 1995 ; B artlett et al. 2016 ; M einzer et al. 

2016 ). G iven  th is and  the strong  correlation  betw een  πT L P 

and  w ater availability  both  w ithin  and  betw een biom es, πT L P 

is an  ideal trait for assessing drought to lerance  across  broad  

spatial scales (B artlett et al. 2012a ). T he  traditional protocol 

for quantify ing  πT L P , pressure-volum e  (p-v) curves, requires  

a  lengthy  procedure  (up  to  2  days to  produce  curves for 4-6  

leaves) w hich  greatly  lim its the  num ber of species or loca­

tions that can  be  viably surveyed. Fortunately , πT L P can  be  

estim ated  from  leaf  osm otic  potential at fu ll turgor, the  com ­

ponent of  w ater  potential related  to  cellu lar solu te  concentra­

tion  and  a strong  determ inant of  πT L P  (B artlett et al. 2012a ). 

L eaf  osm otic  potential at fu ll turgor (πo) is typically  quanti­

fied  from  p-v curves as w ell; how ever, B artlett et al. (2012b ) 

recently  described  a  m ethod  for rapid ly  m easuring  πo using  

a vapour pressure osm om eter. T he m ethod has resulted  

in a 30- to 50-fold increase in the m easurem ent speed of 

πT L P and  has since  been  used  to quantify  com m unity-scale  

drought to lerance in tropical rainforests (M aréchaux  et al. 

2015 ). Since its publication , the osm om eter m ethod, and  

the linear m odel for predicting πT L P from  πο, have exclu ­

sively  been  used  in  ecosystem s dom inated  by  w oody  species 

(M aréchaux  et al. 2015 ; E sperón-R odríguez  et al. 2018 ) or 

crops (M art et al. 2016 ) and  has  yet to  be  validated  in  herba­

ceous plant com m unities, such  as  grasslands. Indeed, several 

studies have  cautioned  that osm om eter estim ates of  π o m ay  

prove  inaccurate for leaves w ith  dense large  vein netw orks 

o r th in  leaves w ith  large  m idrib  veins (i.e . grass leaf  blades)  

as the inclusion  of such  veins in tissue sam pling m ay  lead  

to  apoplastic  dilu tion  (K ikuta  and  R ichter 1992 ; M aréchaux  

et al. 2016 ); thus, testing of the osm om eter m ethod  w ithin  

grasslands including such  species is needed.

T he grassland biom e covers m ore than 30%  of E arth ’s 

terrestrial surface and provides valuable ecosystem  ser­

vices such as carbon storage, soil stabilization , forage  pro ­

duction , and  w ildlife  habitat (N oy-M eir 1973 ; Field  et al. 

1998 ). G iven that m ost grasslands are w ater-lim ited , they  

are an ideal study system  for surveying drought to lerance  

and  responses to  fu ture  changes in  E arth ’s hydrologic cycle  

(IPC C  2013 ). H ere, w e  focus on  grasslands of  the  A m erican  

G reat Plains, a  region  characterized  by  highly  variable  pre ­

cip itation  and  a  high  frequency  of  clim ate  extrem es such  as 

drought and  flooding  (K unkel et al. 2013 ). W ater availability  

w ill likely  becom e  m ore variable  in th is region as som e of 

these grasslands are  expected  to experience m ore frequent 

“dust-bow l”-like  conditions by  the  end  of  the  century  (K arl 

et al. 2009 ).

W e  conducted  a  survey  of  drought to lerance  traits of  com ­

m on  herbaceous plant species across three N orth  A m eri­

can  grasslands to address tw o  m ain goals. First, w e  test the  

valid ity  of  the  osm om eter m ethod  (B artlett et al. 2012b ) for 

use on  herbaceous plant species. V alidation of  th is m ethod  

w ill encourage  com m unity-scale  surveys of drought to ler­

ance across plant functional types, especially  w ithin  a  rela­

tively drought-sensitive region (i.e . grasslands; H uxm an  

et al. 2004 ; K napp et al. 2015 ), as w ell as address recent 

concerns of  scientific  reproducibility  (B aker 2016 ). Second, 

w e  assess the  m echanistic  value  of  π o as a  drought to lerance  

trait in grasslands. A  central goal of trait-based  ecology  is 

to  m ake  generalized  predictions of  large-scale phenom enon  

(e .g . com m unity  assem bly , nutrient cycling , dynam ics of  net 

prim ary  production) using  the  com posite traits of in teract­

ing organism s w ithin a com m unity (Shipley et al. 2016 ). 

E stablished links betw een species distributions, perfor­

m ance, and  physio logical traits are thus required , yet often  

difficult to  identify  (Paine et al. 2018 ). T o  th is end, w e  test 

the  hypothesis that π o w ill be  correlated  w ith  other m echa­

nistic traits com m only  used  to describe  leaf-level drought 

to lerance, nam ely  leaf  dry  m atter content (L D M C ) and  leaf 

vulnerability  to  hydraulic failure  (B rodribb  2017 ). A ddition ­

ally , w e  define  the  clim atic  extrem es of  species  distributions  

and  test the  hypothesis that π o is positively  correlated w ith  

w ater availability (i.e . species w ith  m ore negative  π o w ill 

predom inately  inhabit arid  regions) (B artlett et al. 2012a ). 

T he degree  to  w hich  th is correlation  is driven  by  the  driest 

or w ettest extrem e of a species distribution  w ill highlight 

the  relative influence of abiotic stress to lerance (i.e . w ater­

lim itation) or biotic stress to lerance (i.e . com petition w ith  

m ore  resource-acquisitive  species), respectively , in  contro l­

ling  π o of  herbaceous species.

Materials and methods

Plant material

W e  collected  nine  species of  gram inoids and  ten  species of 

forbs/subshrubs (non-w oody) from  three native grassland  

sites (predom inately m ixed-grass  prairie) across W yom ing  

and  K ansas during m id-sum m er 2015 (T able 1 ). Six  plant 

sam ples, including soil and a portion of the root system , 

w ere  unearthed  at each  site, placed  in a reservoir of w ater, 

and  covered  w ith  large  plastic  bags (n =  6  pots/species/site).



Table 1 H erbaceous species surveyed in th is study are show n along  

w ith collection sites, functional type, and trait m eans (SE). T raits  

include osm otic potential estim ated from  both an  osm om eter (πo*osm )

and  p-v curves (πo*pv), turgor loss point (πT L P), vulnerability to  cavi­

tation (P 50), leaf dry m atter content (L D M C ), and  apoplastic fraction  

(aƒ)

Species C ode C ollection  sitea Functional type πo*osm  (M Pa)
π o*pv (M Pa) πT LP (M Pa) P 50 (M Pa) L D M C Af

Andropogon gerardii A N G E K N Z G ram inoid  (C 4  grass) -  1.2  (0 .01) -  1.2  (0 .04) -  1.7 (0 .06) -  1.1 0.32 0

Bouteloua curtipendula B O C U H Y S G ram inoid  (C 4  grass) -  1.8 (0 .07) -  1.8 (0 .11) -  2.5 (0 .08) -  1.6 0.45 0.37

Bouteloua gracilis B O G R H PG G ram inoid  (C 4  grass) -  1.8 (0 .02) -  1.7 (0 .09) -  2.3 (0 .12) -  1.1 0.46 0.16

Sorghastrum nutans SO N U K N Z G ram inoid  (C 4  grass) -  0.9 (0 .08) -  1.2  (0 .06) -  1.6 (0 .03) -  0.8 0.32 0.10

Sporobolus asper SPA S H Y S G ram inoid  (C 4  grass) -  1.8 (0 .12) -  1.6 (0 .06) -  2.3 (0 .12) -  2 0.41 0.11

Carex duriuscula C A D U H PG G ram inoid  (C 3 sedge) -  2.7 (0 .10) -  2.7 (0 .16) -  3.2  (0 .19) - 1.9 0.41 0.17

Hesperostipa comata H E C O H PG G ram inoid  (C 3 grass) -  2.2  (0 .06) -  2.2  (0 .08) -  2.7 (0 .13) -  2.3 0.44 0.39

Pascopyrum smithii PA SM H PG G ram inoid  (C 3 grass) - 1.7 (0 .02) -  1.6 (0 .04) -  2.0  (0 .07) - 1.8 0.38 0.20

Poa secunda PO SE H PG G ram inoid  (C 3 grass) - 1.7 (0 .11) -  1.5 (0 .04) -  2.1 (0 .12) - 0.32 0.33

Leucocrinum monta- L EM O H PG M onocot (forb) - 1.3 (0 .06) -  0.8 (0 .06) -  1.2  (0 .11) - 0.18 0.65

num

Astragalus drummondii A SD R H PG D icot (forb) -  0.7  (0 .08) - 1.1 (0 .12) -  1.5 (0 .12) - 0.24 0.58

Astragalus laximannii A SLA H PG D icot (forb) -  1.0  (0 .13) - 1.7 (0 .09) -  2.2  (0 .10) - 0.26 0.26

Astragalus shortianus A SSH H PG D icot (forb) -  0.7  (0 .07) -  0.7  (0 .11) -  1.0  (0 .15) - 0.17 0.76

Linaria dalmatica L ID A H PG D icot (forb) -  0.6  (0 .16) -  1.0  (0 .09) -  1.3 (0 .10) -  0.9 0.19 0.36

Mertensia lanceolata M E L A H PG D icot (forb) -  0.9  (0 .06) -  1.2  (0 .08) -  1.5  (0 .09) -  0.5 0.21 0.19

Penstemon albidus PE A L H PG D icot (forb) -  0.6  (0 .01) -  1.3 (0 .14) -  1.6  (0 .13) -  1.3 0.27 0.18

Sphaeralcea coccinea SPC O H PG D icot (forb) -  1.0  (0 .04) -  1.4  (0 .13) -  1.9  (0 .15) -  1.8 0.3 0.41

Artemisia frigida A R FR H PG D icot (subshrub) -  1.4  (0 .04) -  1.1 (0 .04) -  1.5  (0 .04) - 0.35 0.50

Eriogonum effusum E R EF H PG D icot (subshrub) -  0.6  (0 .08) -  1.1 (0 .07) -  1.5  (0 .11) - 0.32 0.48

aC ollection sites include a northern m ixed-grass prairie (H igh Plains G rassland R esearch C enter, H PG ; m ean annual precip itation  

[M A P] =  415 m m , m ean annual tem perature [M A T ] =  7 °C , coordinates  =  41°11 '52"N , 104° 53 '13 "W ) in W yom ing, a southern m ixed-grass  

prairie (H ays A gricultural R esearch  C enter, H Y S; M A P  =  581 m m , M A T  =  12.3 °C , coordinates  =  39°5 '9 "N , 99°9 '23 "W ) and a  tallgrass prairie  

(K onza  Prairie  B iological Station , K N Z; M A P  =  864  m m , M A T  =  13 °C , coordinates 39°05 'N , 96°35 'W ) in  K ansas

Plants  w ere  left in  the  dark  for  ~  12  h  to  allow  leaves  to  fu lly  

rehydrate  prior to  p-v curve  determ ination  and  osm om eter 

m easurem ents.

Osmometer method validation

Pressure-volum e  curves  w ere  m easured  on  one  leaf  per plant 

sam ple (n =  6  leaves/species) using  the  bench  drying  m ethod  

(Schulte and  H inckley 1985 ). A  recently expanded  m ature  

leaf  w as w rapped  in  parafilm  w ax  and  cut near the  leaf  base  

(parafilm  w as w eighed  and  subtracted  from  subsequent leaf 

w eight m easurem ents). Im m ediately after cutting , the  leaf 

w as placed  in a Scholander-sty le pressure cham ber (PM S  

Instrum ents, A lbany, O R , U SA ) to  m easure  leaf  xylem  w ater 

potential (Ψ leaf). Follow ing  w ater potential determ ination , 

the leaf and parafilm  w ere w eighed on a m icro-balance  

(±  0.1 m g, O haus Pioneer; O haus C orporation , Parsippany, 

N J, U SA ). T he leaf w as then sealed in a plastic bag and  

placed  in a dark  draw er to allow  slow  dehydration . T his 

process w as repeated approxim ately 10  tim es for each  leaf 

o r until Ψ leaf reached -  4 M Pa. T he leaf w as then rehy ­

drated , scanned for leaf area at 300  dpi (E pson Perfection  

V 600, E pson  A m erica  Inc., L ong B each, C a, U SA ), dried  

for 48 h at 60 °C  and  w eighed. L eaf area w as calculated  

using  Im ageJ softw are (https://im agej.n ih .gov/ij/). T urgor 

loss  point (πT L P), osm otic  potential at fu ll turgor (π o*pv) and  

leaf capacitance (C leaf) w ere calculated  for 5-6  leaves fo l­

low ing standard  m ethods (T urner 1988 ; K oide et al. 1989 ) 

and  averaged  for each  species. Fresh  w eight of  hydrated  and 

oven-dried  leaves w as used  to  calculate  L D M C  (g  dry  m ass 

g -1 fresh  m ass).

W ithin  24  h  of  p-v curve  determ ination , osm otic  potential 

at fu ll turgor w as also estim ated  using a vapour pressure  

osm om eter (πo*osm ) (V A PR O  5520  vapour pressure  osm om ­

eter, W escor, L ogan, U T ), fo llow ing B artlett et al. (2012b ). 

Six leaves per species w ere clipped  underw ater and fu lly  

hydrated  overnight prior to  m easuring  no*osm . A  leaf  disc w as 

sam pled  from  each  hydrated  leaf  using  a  5-m m  biopsy  punch  

(M iltex  D P-5  m m , E lectrum  Supply , E lkhart, IN ), w rapped  

in tin fo il, and subm erged in liquid nitrogen for  ~  60 s to  

lyse the  plant cell w alls. T he leaf disc w as generally  taken  

tow ard  the apical portion of the leaf  to avoid  or m inim ize  

the  sam pling  of  large  m idrib  veins, depending  on  leaf  w idth . 

B artlett et al. (2012b ) w arn of  potential inaccuracies likely  

to arise w hen  using  the  osm om eter m ethod  on species w ith  

large  m idrib  veins (e.g . grasses such  as  Sorghastrum nutans) 

https://imagej.nih.gov/ij/


as the sym plastic solu tion m ay  becom e dilu ted  by  xylem  

w ater. W hen  possib le, the leaf disc w as taken from  a por­

tion of the  lam ina  w ithout any  m idrib  present (e.g . species  

w ith  broad  leaves). For species w ith  leaves that w ere nar­

row er than our biopsy  punch, several leaves w ere aligned  

next to  each  other and  the  sam ple  w as taken  across m ultip le  

leaves to  ensure  com parable disc  sizes w ere  sam pled  across 

species. E ach disc w as then punctured  ~  15 tim es using  

forceps to facilitate rapid  equilibration in the osm om eter 

cham ber. L eaf  discs w ere quickly  placed  in the osm om eter 

cham ber fo llow ing puncturing to m inim ize evaporation  

(<  30  s betw een  rem oval from  liquid  nitrogen  and  placem ent 

in osm om eter cham ber). Sam ples w ere left in the closed  

cham ber for  ~  10  m in  to  allow  equilibration . M easurem ents  

w ere  then  m ade  every  tw o  m inutes until osm olarity  reached  

equilibrium  (<  5 m m ol kg -1 change  in osm olarity  betw een  

m easurem ents). O sm olarity  w as then  converted  to osm otic  

potential at fu ll turgor (no*osm ) using  the  fo llow ing  equation: 

no*osm  =  osm olarity  * -  2.3958/1000.

B artlett et al. (2012b ) outline  possib le  discrepancies in  

osm om eter m easurem ents  that can  arise  due  to  the  opposing  

effects of  apoplastic  dilu tion (w hich  leads to  overestim ations  

of  πo*osm ) and  cell w all dissolu tion  (w hich  leads to  underes­

tim ations of  no*osm ). T o account for such  discrepancies, w e 

calculated ‘predicted  no*osm ’ fo llow ing a m odel presented  

by  B artlett et al. (2012b ) w hich  includes estim ates of  these  

effects:

(1)

w here, L D M C  is a proxy  for cell w all investm ent and  thus  

dissolu tion , w hile  πo*pv*af is an  estim ate  of  osm otic  potential 

at fu ll turgor (from  p-v curves) corrected  for apoplastic  dilu ­

tion , using  apoplastic  fraction  (af) is a  proxy  (πo*pv*af= πo*pv 

* (1 -  af)). p-v curve  estim ates of  a^ w ere  set to  zero  for one  

species (A N G E) as  estim ates w ere  not significantly  different 

from  zero . A  slope  of 1 for the  relationship  betw een  m eas­

ured  and  predicted  πo*osm  w ould  indicate  that accounting  for 

apoplastic  dilu tion  and  cell w all dissolu tion  corrects th is  bias 

in osm om eter m easurem ents (B artlett et al. 2012b ).

Leaf hydraulic conductance

L eaf hydraulic vulnerability  curves w ere produced  for 12  

of the 19 focal species, including both gram inoids and  

forbs/subshrubs, fo llow ing  the  rehydration kinetics m ethod  

(B rodribb  and  H olbrook  2003 ). T he  m ethodology  described  

here  is for gram inoids, as vulnerability  curves for forbs, sub ­

shrubs, and  one sedge (Carex duriuscula) w ere taken  from  

previously  collected  data  (O cheltree  in  review ). Several till­

ers, each  w ith  at least tw o  recently  em erged  leaves of  com ­

parable  size, w ere  clipped  from  the  rehydrated  sam ples and

placed on a bench  to dry  slow ly. D rying tim e varied from  

30  s to  3  h  depending  on  the  species and  the  desired  level of 

dehydration . Prior to  hydraulic  conductance  m easurem ents, 

the tiller w as sealed in a plastic bag and  placed  in a dark  

draw er for 2-3  m in to allow  any  w ater potential gradients 

across a single leaf  to  equilibrate. T he  m ore  apical leaf  w as  

rem oved  from  the  stem  w ith  a  razor and  placed  in  a  pressure  

cham ber to determ ine in itial leaf w ater potential (Ψ 0). T he  

second  leaf  w as rem oved  by  cutting  under filtered  de-ionized  

w ater that had  been  de-gassed  for 1 h  and  then  rehydrated  

for a  pre-determ ined  am ount of  tim e  (5-120  s depending  on  

Ψ 0). T he leaf  w as then  re-cut slightly above the w ater line  

and  placed  in a pressure cham ber to determ ine  final rehy ­

drated  leaf  w ater potential (ψ ƒ). L eaf  hydraulic  conductance  

(Kleaf) w as then  calculated  using  in itial and  final leaf  w ater 

potential as w ell as average  capacitance (Cleaf ; n =  6) quanti­

fied  from  p-v curves:

(2)

w here t is the rehydration tim e in seconds. Kleaf w as cal­

culated for 30-40 leaves varying in hydration status and  

regressed against Ψ 0 . M axim um  conductance (Km ax) w as  

estim ated as the m ean of the five highest values of Kleaf 

betw een Ψ 0 of -  0.5 and - 1 M Pa. L eaf  hydraulic  vulner­

ability  curves w ere  produced  by  fitting logarithm ic, linear, 

exponential, and  sigm oidal m odels to  data  binned  and  aver­

aged  to  0.5  M Pa  in tervals and  selecting  the  m odel w ith  the  

low est A kaike Inform ation C riteria (A IC ; see T able S1  

for A IC  values). T his m odel w as used  to  calculate the leaf 

w ater  potential at w hich  Kleaf decreases to  50%  of  Kmax (P50, 

in M Pa). V ulnerability  curves w ere m ade for a subset of  

gram inoids in  th is study  (F ig . S1), w hile  P 50 values for forbs/ 

shrubs w ere  taken  from  O cheltree (in  review ).

Bioclimatic envelopes

B ioclim atic  envelopes of  tem perature  and  precip itation  w ere  

generated  using  the  geographic  range of  each  species. Spa­

tial inform ation  on  all reported  occurrences of  each  species 

w as dow nloaded  from  the  G lobal B iodiversity  Inform ation  

Facility (G B IF ; w w w .gbif.org ). T he num ber of reported  

occurrences  ranged from  90  to  8259  w ith  an  average  of 1193  

occurrences/species. C lim atic  data  from  the  nearest 0.5-km  

grid  cell of each  reported  occurrence w ere collected  from  

the  W orldC lim  database (http ://w w w .w orldclim .org/b iocl 

im ). B ecause  G B IF  data are spatially  biased  and  one  region  

can  be  over-represented  in  a data  set (B eck  et al. 2014 ), w e 

subsam pled  the  clim ate  data  to  rem ove  th is bias. If  m ultip le  

occurrences fell w ithin the sam e  grid  cell of clim ate data  

from  W orldC lim , that grid  cell w as only  used once in our

http://www.gbif.org
http://www.worldclim.org/bioclim
http://www.worldclim.org/bioclim


analysis. Further, the  occurrence  data  w ere  filtered  to  rem ove  

any incorrect entries that reported occurrences in aquatic  

environm ents (i.e . large  bodies of  w ater). W e  focused  on  var­

iab les including  estim ates of  tem perature  and  precip itation  

seasonality  as  w ell as annual sum m aries of  tem perature  and  

precip itation  (see  T able S2  and  the  W orldC lim  database  for 

a fu ll list of  clim atic variables). T he 5th  and  95th  quantiles 

of  each  variable  w ere  calculated  from  data  com piled  for all 

recorded  occurrences to  quantify  bioclim atic  envelopes  that 

define  the  clim atic extrem es of a species ’ inhabited  range. 

For exam ple, the 5th  quantile of ‘precip itation during  the  

w ettest m onth ’ represents  the  precip itation  during  the  w ettest 

m onth  in  the  driest locations of  a species range. T hese  bio- 

clim atic envelope  param eters have  been show n to  be  m ore  

biologically  relevant than  regional annual clim ate  statistics 

(O cheltree  et al. 2016 ).

Data analyses

U nivariate linear regression analyses w ere  used  to test for 

relationships am ong  πT L P , πo*pv , and  no*osm . T he  assum ptions 

of  linear regression  (skew ness, heteroscedasticity , etc.) w ere  

m et for all m odels presented in th is study. T he slope and  

in tercept of the  m odels presented  by  B artlett et al. (2012b ) 

w ere  com pared  to  95%  confidence  in tervals (C I) of  the  slope  

and  in tercept of  the  m odels presented  here. T he  PR E SS  and  

R M SE  statistics for all m ethod  com parison  m odels are  avail­

able  in  T able  S3. T he  m ost parsim onious m odel for estim at­

ing  both  no*pv and  πT L P  w as determ ined  by  calculating  A IC c  

values for linear m ixed  effects m odels including  L D M C , af, 

no*osm  and all possib le in teractions as fixed effects (A IC c  

values in T able S4). L eaf osm otic potential at fu ll turgor  

(no*osm ) w as also  regressed  against P 50 and  L D M C  to  inves­

tigate correlations am ong these functional traits. T raits of 

different plant functional types (gram inoids vs. forb/sub- 

shrub) w ere  com pared  using  t tests. A dditionally , hydraulic  

trait m ean values from  B artlett et al. (2012b ) w ere com ­

pared  to the  range of hydraulic trait values assessed  in  th is 

study. R elationships betw een species-specific bioclim atic 

envelopes and  no*osm  w ere also assessed  using  a Pearson ’s 

correlation  m atrix ( ‘cor ’ function  in base R ). R  statistical 

softw are  version 3.4 .4  w as used  for all statistical analyses.

Results

Osmometer method validation

L eaf turgor loss point and  osm otic  potential at fu ll turgor 

calculated from  p-v curves w ere  highly  correlated  am ong  

com m on  herbaceous species w ithin central U S grasslands, 

w ith  96%  of  the  variation  in  πT L P  explained  by  no*pv (F ig . 1 ). 

A dditionally , no*pv w as highly correlated w ith osm otic  

potential estim ated from  a vapour pressure osm om eter 

(no*osm ) (F ig. 2 ), w ith  the slope and in tercept not signifi­

cantly  different from  that presented  by  B artlett et al. (2012b ); 

how ever, th is m odel did diverge from  a 1:1 relationship  

indicating som e bias in osm om eter m easurem ents. U sing  

E q. 1 , w e  tested w hether the divergence  from  a 1:1 line  in  

th is m ethod  com parison  could  be explained  by  the oppos­

ing effects of apoplastic dilu tion and  cell w all dissolu tion . 

T he  relationship  betw een  no*predicted and  no*osm  (r2 =  0.78) did  

not differ significantly  from  a 1:1 relationship , indicating  no  

bias after correcting  for these  factors (F ig . 3 ). N onetheless, 

m odel selection for predicting no*pv from  all com binations  

of fixed effects (no*osm , af, and  L D M C , plus in teractions)  

selected a m odel w ith  just no*osm  as the m ost parsim oni­

ous (A IC c  =  10.57; T able S4) w ith  the am ount of variance  

explained only increasing  by 13%  w ith  the inclusion of  af 

and  L D M C  (p lus in teractions).

L eaf osm otic  potential at fu ll turgor m easured w ith  an  

osm om eter w as highly  correlated  w ith  leaf  turgor loss point 

across several com m on  grassland  species including gram i- 

noids, forbs and  subshrubs (F ig . 4a). T his linear m odel for 

predicting πT L P of predom inantly herbaceous species is  

nearly  identical to the w oody species m odel presented  by  

B artlett et al. (2012b ), w ith  a m inor offset for the  y in ter­

cept (- 0.21 M Pa). A dditionally , the slope  and  in tercept of 

their m odel fall w ithin  the 95%  C I of the  grassland  m odel 

presented here. T he strength of the grassland m odel w as

Fig. 1 L eaf turgor loss point is largely contro lled by leaf osm otic  

potential at fu ll turgor, the com ponent of leaf w ater potential deter­

m ined by cellu lar solu te concentrations. A  strong linear relationship  

betw een osm otic potential at fu ll turgor (no*pv) and osm otic potential 

at turgor loss point (πT L P) estim ated from  pressure-volum e curves  

is show n for largely herbaceous grassland species including gram i- 

noids, forbs, and subshrubs. T he black line represents th is m odel: 

πT L P  =  1.103no*pv —  0.294, w hile the grey line represents the 1:1 line  

and  bi-d irectional error bars represent standard  error



Fig. 2 O sm otic potential at fu ll turgor m easured w ith a vapour  

pressure osm om eter (no*osm ) predicts that estim ated from p-v 

curves (πo*pv) w ith a slight deviation from  the 1:1 line. T he m odel 

show n here (no*pv  =  0.690no*osm — 0.5481; black line) does not dif­

fer significantly from a sim ilar m odel presented for w oody spe­

cies (no*pv  =  0.690no*osm — 0.5481; B artlett et al. 2012b ) based on  

the 95%  C I of the slope (0 .45 , 0.92) and in tercept (— 0.8954093, 

—  0.2007442). G ram inoid species fall along the 1:1 line (grey line), 

w hile m uch  of the scatter is due to  variability  in  forbs/subshrubs. B i­

directional error bars represent standard  error

im proved  w hen forbs and subshrubs w ere excluded, w ith  

96%  of  the  variation  in  gram inoid  πT L P  explained  by  no*osm  

(F ig . 4b)— th is relationship also  did  not differ from  that of 

B artlett et al. (2012b ). A m ong forbs/subshrubs, w e  did  not 

observe a  significant relationship  betw een  πT L P  and  no*osm .

Mechanistic value of πo

W e  found  significant differences  in  trait values  betw een  plant 

functional types (PFT; gram inoids vs. forbs/subshrubs). 

G ram inoids had significantly low er pressure  potential for 

all param eters (πT L P , πo*pv , and  πo*osm ) than  forbs/subshrubs  

(F ig. 5 ), w ith th is PFT  difference sim ilar in m agnitude to  

the  regional differences observed  by  B artlett et al. (2012b ) 

betw een  species sam pled  from  a  tropical forest site (annual 

rainfall =  1532 m m ) and a com m on garden near U C L A  

(annual rainfall =  450 m m ). T hese average differences  

betw een PFTs contributed substantially  to the  correlations 

betw een  pressure potential param eters (e.g ., πT L P and  no) 

am ong species (F igs. 1 , 2 , 3 ). G ram inoid species also  had  

significantly higher L D M C  com pared to forbs/subshrubs  

(m ean  =  0.39  and  0.25  g  g — 1 , respectively ; t test, p <  0.001). 

N o statistical com parisons of P 50 across PFTs w ere tested  

due to the sm all sam ple size for forbs/subshrubs (n =  3; 

T able 1 ).

Fig. 3 C orrecting for discrepancies that arise from  osm om etry (see  

the departure from  the 1:1 line in Fig . 2 ), no*osm w as recalculated  

using E q. 2 (taken from  B artlett et al. 2012b ). O sm om etry can lead  

to over- and underestim ations of πo due to apoplastic dilu tion and  

cell w all dissolu tion , respectively . H ere, predicted osm otic potential 

at fu ll turgor (no*predicted) w as calculated from  a m odel that includes  

estim ates of cell w all dissolu tion  (leaf dry  m atter content as a proxy, 

L D M C ), apoplastic fraction , and their in teraction . T he fitted regres­

sion  betw een m easured  no*osm  and  no *predicted has a slope of 1.0  ±  0.12  

SE (πo*osm  =  1.0 πo*predicted - 5.6e-6 ; plotted black line), as does the  

relationship including solely gram inoids (slope  =  0.9  ±0.23 SE ; see  

T able S2), indicating no bias after correcting for these factors. T he  

counterbalancing effects of apoplastic dilu tion  and cell w all dissolu ­

tion suggest the osm om eter m ethod is robust for gram inoid leaves  

(gram inoids fall along the 1:1 line in  Fig . 2 ); how ever, the net effect 

of L D M C and a^ should be considered for other types of leaves. 

πo *predicted  =  - 1.2684*πo*pv*af  +  1.4875*L D M C  +  5.2601* πo*osm *af  *L  

D M C  -  1.2147

O sm om eter estim ates of leaf osm otic potential at fu ll 

turgor w ere  highly  correlated  w ith  other hydraulic  and  m or­

phological traits that are indicative of drought to lerance. 

Specifically , πo*osm  w as positively correlated w ith  vulner­

ability  to  hydraulic failure (P 50 ; see  Fig . S1 for vulnerabil­

ity  curves), and  negatively correlated  w ith  leaf dry  m atter 

content (L D M C), suggesting there m ay be coordination  

am ong leaf drought to lerance characteristics  of these spe­

cies (F ig . 6 ). A dditionally , L D M C  w as negatively  correlated  

w ith  P 50 (r2  =  0.37; p =  0.02).

T he bioclim atic envelopes assessed in th is study  repre­

sent clim atic boundaries of a species distribution w ith  high  

and  low  quantiles indicating  the  clim ate  extrem es that spe­

cies experiences across their observed  range. For gram inoids, 

the bioclim atic envelope that explained the m ost variabil­

ity in no*osm  w as m ean annual precip itation (M A P) at the  

w ettest extrem es (95th quantile) of a species distribution  

(F ig. 7 ; M A P 95th w as also significantly  correlated  w ith  no*pv ; 

r2  =  0.60). T his significant positive  relationship  indicates that 

no*osm  w as less negative for gram inoid species that occupy



Fig. 4 A linear m odel for predicting leaf turgor loss point (πT L P ) 

am ong grassland species using osm otic potential at fu ll turgor esti­

m ated from a vapour pressure osm om eter (no*osm ). a T he slope  

and in tercept of the linear m odel developed by B artlett et al. 

(π tlp  =  0.832nosm - 0.631; dashed line) falls w ithin the 95% C I of 

the slope (0 .5552126, 1.0460131) and in tercept (- 1.2050772, -  

0.4852862) of the grassland  m odel show n here (b lack  line; grey line  

represents the 95%  C I). T he linear m odel equation depicted on the  

figure is for the grassland m odel, w hich includes gram inoids, forbs

and subshrubs. b T he linear m odel including only gram inoid species 

also  does not differ significantly  from  the  B artlett m odel (dashed  line) 

w hich falls w ithin the 95%  C I of the slope (0 .7793554, 1.1086195)  

and in tercept (- 0.9190000, - 0.3034649) of the gram inoid m odel 

show n here (b lack  line; grey line represents the 95%  C I). N o signifi­

cant relationship w as found  for forbs/subshrubs alone. Sym bols rep ­

resent photosynthetic pathw ay (C 4 vs. C 3). B i-directional error bars 

represent standard  error

Fig. 5 T urgor loss point (πT L P) and osm otic potential at fu ll turgor 

m easured from  pressure-volum e curves (πo*pv) and a vapour pres­

sure osm om eter (no*osm ) are show n grouped  by  plant functional type  

(gram inoids and forbs/subshrubs; m ean±SE ). Forbs/subshrub spe­

cies have significantly higher pressure potentials for each trait com ­

pared to gram inoid species (p <0.05; denoted by *). A lso show n  

are the pooled m ean (±  SE ) for the species used  in the B artlett et al. 

(2012b ) m odel sam pled from  tw o separate locations: a com m on gar­

den near U niversity of C alifornia L os A ngeles (U C L A ; annual rain ­

fall =  450 m m ) and a tropical forest plant com m unity at X ishuang-  

banna  B otanic G arden  in  C hina (X T BG ; annual rainfall  =  1532  m m )

sites characterized  by  high  annual rainfall. T his relationship  

w as driven  by  the w et extrem es of a species distribution as 

there  w as only  a  m oderately  significant relationship  betw een  

gram inoid  no*osm  and  the  5th  quantile  of  M A P  (p=0.08). T em ­

perature w as not a significant predictor of  gram inoid  no*osm . 

W hen  PFTs  w ere  com bined, how ever, the  only  significant pre­

dictor of  πo*osm  w as tem perature; a  w eak  positive  relationship  

(r2 =  0.18; p=0.04)  w as observed  betw een  no*osm  and  the  5th  

quantile  of  tem perature during  the  w ettest quarter of  the  year. 

G iven that m ost precip itation in grasslands falls w ithin the  

spring/sum m er grow ing season (R osenberg 1987 ), th is bio- 

clim atic envelope  param eter represents the coldest grow ing  

season  tem perature  extrem es a  species  can  to lerate. A  positive  

relationship  indicates that no*osm  is m ore  negative for species  

capable  of  grow ing  in  areas w ith  low  grow ing  season  tem pera­

tures. N o  significant trait  X  clim ate  relationships  w ere  observed  

for forbs/subshrubs separately .

Discussion

Osmometer method validation

L eaf hydraulic traits, such as πo and πT L P , of trees are  

w ell correlated  w ith spatial variability  in annual m oisture



Fig. 6 O sm otic potential at fu ll turgor can  be rapid ly  estim ated from  

a vapour pressure osm om eter (no*osm ) and is correlated w ith other  

m echanistic plant traits such as, a the leaf w ater potential at 50%  

loss of hydraulic conductance (P 50) and b leaf dry m atter content 

(L D M C ). T he 1:1 line  is show n  as a  grey  line

availability  as w ell as species  distributions across m oist and  

dry  biom es (B artlett et al. 2012a ). T he osm om eter m ethod  

for rapid ly  estim ating these traits in w oody species has  

facilitated com m unity-scale surveys of leaf-level drought 

to lerance  in  several forest ecosystem s (B artlett et al. 2012b ; 

M aréchaux  et al. 2015 ); how ever, concerns about the  utility  

of th is m ethod  for estim ating osm otic potential at fu ll tur­

gor of  th in  leaves w ith  large  m idribs (e.g . gram inoids) have  

prevented  its application  to  a  w ide  range  of  plant functional 

groups. Several of the gram inoid species surveyed  in th is 

study  have large leaf m idribs, a characteristic  that has the  

potential to dim inish the  proportion of extra-xylary  w ater 

in the sam ple placed  in  the osm om eter cham ber. C onsider­

ing  that xylem  typically  contains low er sugar concentrations  

than  other cells in  the  leaf  (Peuke  et al. 2001 ), the  inclusion  

of  the  m idrib  in  a  sam ple  could  lead  to  an  overestim ation  of

Fig. 7 M ean annual precip itation at the w ettest extrem es of a spe­

cies distribution (M A P95 th) explained a significant portion of in ter­

specific variability  (56% ) in  osm otic potential at fu ll turgor m easured  

w ith an osm om eter (no*osm ). A positive relationship indicates that 

species w ith low er πo*osm  (m ore negative) are found in drier regions  

of the central U S. T he w et extrem e (i.e . 95th quantile) suggests that 

resource allocation to drought to lerance (i.e . low  πo*osm ) is beneficial 

along an arid ity gradient only until w ater becom es less lim iting , at 

w hich  point m ore m esic species w ith  higher grow th  rates outcom pete  

xeric species. A t the dry extrem e of species bioclim atic envelopes  

(5 th quantile), πo*osm w as only m oderately significantly correlated  

w ith  precip itation  during  the  w ettest quarter of  the  year (p =  0.08)

πo w hen  using an osm om eter com pared  to  estim ates from  

p-v curves (B artlett et al. 2012b ); how ever, w e  found  no  evi­

dence  of  th is potential bias am ong  the  species w e  sam pled. 

W e observed a significant relationship betw een osm otic  

potential at fu ll turgor  m easured  w ith  an  osm om eter (no*osm ) 

and  p-v curves (no*pv ) w ith  all gram inoid  species falling  

along the 1:1 line (F ig. 2 ). A  large m idrib does not neces­

sarily  m ean there is a larger proportion of xylem  conduits  

relative  to solu te-rich m esophyll cells. For instance, large  

m idribs typically  have m ultip le vascular bundles that are  

sim ilar in size  and  density  to  bundles outside  of  the  m idrib  

(F ig  S2; also  see  E vert and  E ichhorn  2013 ). T he  m idrib  also  

has a  large am ount of  parenchym a  tissue  w hich  contributes  

to  to tal leaf  osm otic potential at fu ll turgor. T hus, the  inclu ­

sion  of  the  m idrib  m ay  not necessarily  low er the  proportion  

of  extra-xylary  w ater in  a  sam ple.

T he  slope  and  in tercept of  the  relationship  show n  in  Fig . 2  

is not significantly  different from  the  relationship  presented  

by  B artlett et al. ((2012b )— Fig . 2 , w ithin). T his relation ­

ship differs significantly  from  a 1:1 relationship  indicating  

clear bias in  osm om etry . Such  bias is expected  in  osm om eter  

m easurem ents of  πo due  to  the  net effect apoplastic  dilu tion  

and  cell w all dissolu tion  (B artlett et al. 2012b ). R upturing  of 

plant cell w alls  during  sam ple  processing  causes w ater from  

the  apoplast to  dilu te  the  sam ple  leading  to  overestim ations  



of  πο. A dditionally , underestim ation  of  πο can  occur as dis­

turbed  cell w all m aterials dissolve  in to  the  sam ple solution. 

W e  accounted  for these  opposing  effects fo llow ing  E q. 1 and  

found a 1:1 relationship betw een  m easured and  predicted  

πo*osm  (F ig . 3 ), w hich  is in  line  w ith  m easurem ents on  leaves 

from  w oody  species (B artlett et al. 2012b ). T his highlights 

the  robustness of  th is m ethod  as w ell as the  im portance of  

considering  species-specific leaf vein netw orks and  the  net 

effect of  apoplastic  dilu tion  and  cell w all dissolu tion , w hich  

m ight change  the  fitted  regression  across leaf  types.

W e  provide evidence that the osm om eter m ethod  devel­

oped  by  B artlett et al. (2012b ) can  be  used  to estim ate  leaf 

turgor loss point in  herbaceous species com m only  found  in  

central U S  grasslands:

π tlp = 0.80πo*osm  - 0.845 (3)

N ot only  w as the relationship  betw een πT L P and πo*osm  

statistically  significant (F ig . 4a), the  m odel param eters w ere  

nearly  identical to  those  presented  by  B artlett et al. (2012b ) 

for w oody  species, suggesting  the  sam e  linear m odel can  be  

applied across plant functional types. T he strik ing sim ilar­

ity  betw een  the ‘G rassland ’ and ‘B artlett’ m odels is likely  a  

result of: (1) the  sim ilar range  in  drought to lerance assessed  

in the tw o studies (F ig . 5 ); (2) the fact that th is m ethod  

sam ples sim ilar proportions of m esophyll tissue despite  

anatom ical differences betw een  dicots and  m onocots; and  

(3) the  dom inant ro le of osm otic potential at fu ll turgor in  

explain ing  turgor  loss  point across all plants at a  global scale  

(B artlett et al. 2012a ), and  perhaps m ore so across plant 

functional types w ithin com m unities (F ig. 1 ). O ur results  

show  that 72%  of  the  variation  in  πT L P  across all species and  

96%  of the  variation  in π  of gram inoids w ere explained  

using the osm om eter m ethod, providing strong support for 

the  valid ity  of  th is technique  both  across functional groups  

and  w ithin gram inoids. T he lack  of a correlation  betw een  

πT L P and πo*osm for forbs/subshrubs m ay be due to the  

sm aller range  in  πT L P  and  πo*osm  values sam pled. G iven  that 

forb  species w ere all m easured  w ithin  the  sam e site  (H PG ), 

w e  recom m end  additional m easurem ents of  πT L P  and  πo*osm  

of forb species across broad spatial arid ity gradients. W e  

suggest caution in in terpreting  πo*osm  of forb species until 

additional results on th is grow th  form  have  been  reported . 

W e  recom m end  using  the  fo llow ing  linear  m odel for estim at­

ing  leaf  turgor loss  point from  πo*osm  of  com m on  C 3  and  C 4  

grass species:

(4)

Mechanistic value of no

T his  rapid  m easure  of  leaf  drought to lerance  for herbaceous  

species is especially  useful if  these  traits can  help  us  under­

stand the ecological strategies of plants, w hich are often  

identified  through  analyses of  trait covariation  (W right et al.

2004 ). W e  observed  a negative  relationship  betw een  πo*osm  

and  L D M C , a com m only  m easured  leaf trait indicative of 

resource  conservation strategies and  leaf  construction  costs  

(Poorter and  G arnier 1999 ) (F ig . 6 ). L arge  values of  L D M C  

can  result from  either a large structural investm ent in leaf 

tissue  and/or high  concentrations of non-structural carbo ­

hydrates. Structural investm ents are  generally  considered  to  

result from  extensive cell w all investm ent, such as th ick ­

w alled  xylem  or a large  proportion of sm all diam eter ves­

sels. T he negative  relationship  w e observed likely  reflects 

both  com ponents of L D M C . W e w ould  expect plants w ith  

m ore  negative πo*osm  to  have  a  higher concentration of  non- 

structural carbohydrates or other osm olytes. In addition , 

especially  in ecosystem s w ith m ore severe or persistent 

w ater stress, plants that invest in m ore  negative πo*osm  (i.e . 

low er turgor loss  point) tend  to  further bolster their drought 

to lerance  by  investing  in  xylem  that is resistant to  hydraulic  

failure (Z hu  et al. 2018 ), w hich  is characterized  by  conduits 

w ith th ick w alls relative to their lum en diam eter (B lack ­

m an et al. 2010 ). Indeed, w e did  find a negative  relation ­

ship betw een L D M C  and resistance to hydraulic failure  

(P 50), w hich  m ay  reflect th is investm ent in xylem . W e also  

observed  a significant relationship  betw een  πo*osm  and  P 50 , 

a valuable trait for defin ing  hydraulic safety vs. efficiency  

tradeoffs and  re-grow th capabilities of grasses fo llow ing  

drought (O cheltree  et al. 2016 ). L eaf  resistance  to  hydraulic  

failure (i.e . P 50) is largely  determ ined  by  leaf  vein  architec­

ture (Scoffoni et al. 2011 ); thus, the  osm om eter m ethod  can  

provide  both  a  valuable  proxy  for πT L P  as w ell as  inform ation  

about aspects of drought to lerance  m ore closely associated  

w ith  leaf  structural investm ents (L D M C  and  P 50).

T rait-environm ent relationships are  key  for understand­

ing  species responses to  clim ate  change  (Suding  et al. 2008 ). 

In  forested  biom es, low er values π o are  associated  w ith  high  

arid ity  (B artlett et al. 2012a ; Z hu  et al. 2018 ). For herba ­

ceous plants, identify ing clim ate variables that explain the  

distributions  of  species traits can  be  m ore  difficult given  the  

ability  of  these  plants to occupy  m icrosites w ithin a land ­

scape (R icklefs and  L atham  1992 ). D espite  these  potential 

lim itations, w e  did  find significant trait-environm ent rela­

tionships for πo*osm of gram inoids and PFT s com bined. 

G ram inoid species that m ore exclusively occupy xeric  

regions (low  M A P) tend  to  have  low er ππππo*osm  (F ig . 7 ) sug ­

gesting that low  πo*osm  helps plants to survive and  repro ­

duce  w here  w ater is lim iting , as observed  for w oody  species 

(B artlett et al. 2012a ); how ever, M A P  at the  driest extrem es  

of gram inoid  species distributions (M A P5th) w as not sig ­

nificantly  correlated  w ith  π o*osm , w hile  M A P  of  the  w ettest 

extrem es w as (F ig . 7 ); th is indicates that the  distribution of 

drought to lerance traits for gram inoids m ay  be determ ined  

by  com petitive  pressures that are m axim ized  at the w etter 

end  of  their distribution  w here  m ore  acquisitive  faster grow ­

ing species dom inate grassland com m unities. A llocating  



resources to low er πo*osm is indeed advantageous in drier 

clim ates; how ever, it m ay  prevent gram inoid species from  

inhabiting m esic areas w here the costs of such strategies 

(slow er grow th  rates) outw eigh  the  benefits.

A cross functional types, tem perature w as the only sig ­

nificant clim atic predictor of πo*osm . Specifically , tem pera­

ture of the w et season for the coldest regions of a species  

distribution  explains only 18%  of the variability in no*osm  

across PFT s. T his significant, albeit w eak, relationship  m ay  

sim ply  reflect functional type differences (gram inoids vs. 

forbs/subshrubs; Fig . 5 ) and  the  tem perature constrain ts on  

the geographic distribution of C 4  vs. C 3 plants (Sage and  

M onson 1999 ; E dw ards and Still 2008 ) or adaptations for 

freezing  to lerance (L iu  and  O sborne  2008 ). T he  lack  of  any  

significant trait X  clim ate relationship for forbs/subshrubs 

highlights the  potential lack  of  utility  of  th is trait for under­

standing  drought responses of  these  functional types, w hich  

tend  to  rely  m ore  on  deep  roots rather than  drought-to lerant 

leaves (W eaver 1958 ).

U ntil additional studies evaluate  the  relationship  betw een  

πT L P and  no*osm  w ithin com m unities, including  both  herba­

ceous and w oody-dom inated  ecosystem s, it w ill rem ain  

unclear to  w hat extent the  tight coupling of  πT L P and  no*osm  

across broad geographic scales and  phylogenetic groups  

(sensu  B artlett et al. 2012b and  th is study) is representa ­

tive of: (1) convergent, but partly  independent responses of 

both  πT L P  and  no*osm  to  environm ental gradients  in  space  and  

tim e, or (2) stringent biophysical or ecological constrain ts  

on covariance betw een  πT L P and  no*osm  that operate  inde ­

pendent of the spatial or phylogenetic scope of sam pling. 

In other w ords, caution  m ust be applied  w hen  in terpreting  

the  functional equivalence  of  πT L P  and  no*osm  am ong  species  

w ithin any  given com m unity. A dditionally , although πT L P 

and  no*osm  represent prom ising  traits for capturing  differ­

ences in  the ability  of  plants to  m aintain  function and  keep  

tissues alive at low  w ater potentials, they do not capture  

drought-avoidance  strategies that enable  plants to  m aintain  

high  leaf  w ater potential through  w ater  conservation  or deep  

rooting  profiles (L evitt 1980 ; M itchell et al. 2016 ). Further­

m ore, πT L P and no*osm  are m easured on fu lly rehydrated  

plants, w hich  fails to  capture  the  trait plasticity  exhibited  by  

som e  species w hen  partially  dehydrated. For exam ple, πT L P 

can  change  by  >  1.0  M Pa  in  Juniperus monosperma w ithin  

several hours, prim arily  due  to  osm otic adjustm ent (M einzer 

et al., 2014 ). O n  a  global scale, how ever, osm otic adjustm ent 

typically  accounts for up  to  a  0.5  M Pa  change  in  πT L P  (B ar­

tlett et al., 2014 ), and  has little influence on species ’ ranks  

w ith  respect to leaf-level drought to lerance, but there are  

clearly  exceptions that should  be  considered  w hen  in terpret­

ing  πT L P  and  no*osm  as indices of  plant responses to  drought.

In sum m ary, leaf-level drought to lerance of  herbaceous 

species can  be  m easured accurately and  rapid ly  using the  

osm om eter  m ethod. W e  provide  evidence  that no*osm  predicts  

πT L P  of  herbaceous  species from  a  linear m odel nearly  identi­

cal to  that of  w oody  species (π tlp  =  0.80no*osm  -  0.845) and  

is w ell correlated  w ith  tw o  other traits indicative  of  drought 

to lerance  (L D M C  and  P 50) as  w ell as species-specific  distri­

butions across gradients of  precip itation . T here  is an  urgent 

need  for rapid  techniques to assess plant com m unity-scale  

drought to lerance (G riffin-N olan  et al. 2018 ) as a  hotter and  

drier clim ate  w ill becom e  the  norm  for m any  of  E arth ’s eco ­

system s (IPC C  2013 ). T o m ake  predictions of how  differ­

ent plant functional types w ill respond  to  increased  drought 

frequency  and  in tensity , w e  need  to  identify  baseline  m etrics  

of drought to lerance that are com parable across the plant 

kingdom . T he osm om eter m ethod  m akes com m unity-scale  

surveys of drought to lerance  possib le, w hich  w ill im prove  

trait-based  predictions of ecosystem  responses to clim ate  

change and allow  for a m ore in tegrative  understanding of 

plant functional strategies for dealing  w ith  w ater stress.
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